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Abstract

Unraveling the nature of genetic interactions is crucial to obtaining a more
complete picture of complex diseases. Accumulating evidence suggests that
gene-gene interactions play an important role in the etiology of cancer, cardio-
vascular and immune-mediated disease. Interactions among genes are de-
fined as phenotypic effects that differ from those observed for independent
contributions of each gene, usually detected by univariate logistic regression
methods. Using a multivariate extension of linkage disequilibrium, we have
developed two novel methods, based on distances between sample covariance
matrices for groups of SNPs, to test for gene-gene interactions associated with
a disease phenotype. Since a disease-associated interacting locus will often be
in linkage disequilibrium with more than one marker in the region, methods
that examine a set of markers in a region collectively offer greater power than
traditional methods. Our methods effectively identify interaction effects in
simulated data, as well as in data on the genetic contributions to the risk for
graft-versus-host disease following hematopoietic cell transplantation.

Introduction

Many complex diseases are influenced by both genetic and environmental fac-
tors. Determining the underlying genetic etiology can be diffi cult, as it may
involve single genes as well as interactions between two or more genes. While
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initial and ongoing efforts have centered on disease associations with single
genes (a single nucleotide polymorphism (SNP) or haplotypes/diplotypes of
multiple SNPs from single genes or regions), recent interest has expanded
to include examination of gene-gene interactions regardless of their location
within the genome [1− 3] , which is the focus of our present research.
A gene-gene interaction is typically detected by testing for phenotypic

effects that differ from those observed when each gene contributes indepen-
dently, e.g. departure from additivity in a logistic regression model. In most
genetic association studies the "causal" SNP is not genotyped, but rather
inference about a functional variant is made indirectly because a SNP that is
in linkage disequlibrium (LD) with the causal SNP will show association with
phenotype. When the causal SNP is part of an LD group, multiple nearby
SNPs may show an association. Similarly, we may expect that if there is an
interaction effect on a disease of two causal SNPs, pairs of SNPs in the LD
group adjacent to either of the two causal SNPs may show some association.
In a traditional logistic regression analysis, this adjacent LD is not used as
each pair of SNPs is tested separately for possible interactions, so we expect
to lose power if nearby SNPs are not considered. Here we propose to test for
interaction effects between groups of SNPs, thereby possibly gaining power.
Chatterjee et al. [2] developed a procedure to identify main effects and

interactions of groups of SNPs simultaneously using the Tukey one degree
of freedom test. However, the goal of [2] is to increase the power to identify
SNPs that have a marginal effect using interactions, rather than to identify
the interactions themselves. Zhao et al. [3] introduced a test for the inter-
action between two unlinked loci and defined interaction as deviation from
penetrance "for a haplotype at two loci from the product of the marginal
penetrance of the individual alleles that span the haplotype" [4]. The dis-
advantage of this method is that the haplotype cannot be determined with
certainty. If the joint distribution of genotype markers can be shown to de-
pend on disease status, then there is evidence that these markers (or variants
in high LD with these markers) combine to affect disease risk.
Our method summarizes and contrasts the difference in LD between cases

and controls. To measure the LD we use the composite LD (CLD), which
is advantageous because it is not necessary to phase the genotype data. If
the CLD patterns are different between cases and controls, we conclude that
there is an interaction. A disease-associated interacting locus will often be in
LD with more than one genotyped marker in the region. Therefore methods
like ours that examine a set of markers in a region collectively can potentially
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offer greater power than the traditional method of examining 2-way or 3-way
interactions in univariate logistic regression models.

Linkage disequilibrium and composite linkage
disequilibrium

Linkage disequilibrium indicates that particular alleles at nearby sites co-
occur on the same haplotype more often than is expected by chance. Lewon-
tin [6] defined the gametic LD coeffi cient as DAB = pAB − pApB, or the
simple difference between the haplotype probability and the product of the
allele frequency, when data are collected on haplotypes for diallelic loci. Weir
[7] and Weir & Cockerham [8] defined the non-gametic digenic disequilibrium
coeffi cient DA/B = pA/B − pApB, where the slash indicates that the two alle-
les occur on different chromosomes. For the phase-unknown situation where
random mating cannot be assumed, these papers introduce the composite
linkage disequilibrium (CLD)

∆AB = DAB +DA/B = pAB + pA/B − 2pApB.

In the context of association mapping, Nielsen et al. [9] presented a direct
LD comparison approach involving two bi-allelic loci and noted that a test
that directly compares the LD between the case and the control groups can be
a powerful alternative to either haplotype-based or single marker approaches.
They considered only the case of unambiguous haplotype phase. When the
haplotype phase is unknown, computational algorithms can be used to in-
fer frequencies of haplotypes and, ultimately, to assess LD. Typically this
requires the assumption of Hardy-Weinberg equilibrium (HWE) for the hap-
lotypes. Schaid [10] showed that LD estimation with use of the composite
linkage disequilibrium approach provides results similar to the haplotype re-
construction method under HWE, is computationally simpler, and avoids the
assumption of HWE for the haplotypes. Therefore we use CLD rather than
using LD to characterize the relation between SNPs.
Following Weir et al. [11] we show the relationship between LD and CLD

as follows. Let m and n be the number of cases and controls, respectively.
Let xijk = 1 if the kth, k = 1, 2, haplotype in the jth, j = 1, 2, . . . , p, SNP
for case i = 1, 2, . . . ,m, carries major allele A and 0 if it carries minor allele
a. The LD between SNPs j and j′ is the covariance of xijk and xij′k whereas
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the CLD between SNPs j and j′ is the covariance of

Xij =
xij1 + xij2

2
and Xij′ =

xij′1 + xij′2
2

.

The quantities Xij and Xij′ are the proportions of the alleles a subject in
the case group carries at SNP j and j′. LetX denote them×p matrix {Xij}.
Similarly, define yijk, Yijk, and Y for the control group, where Y is n × p.
Thus, for genotype data we can estimate the CLD by the sample covariance
between the genotypes (Xij, Xij′) without using phase information. Note that
CLD does not require HWE to hold, but when HWE holds, CLD is equal
to LD [10] , [11]. The CLD does not distinguish between the two possible
phases of the double heterozygotes, so CLD can be defined for SNPs within
the same chromosome (in cis) or between chromosomes (in trans).

Tests for equality of block interactions

In order to compare CLDs between two groups of SNPs in cases and controls,
rather than only between single pairs of SNPs, we propose two multivariate
statistics that measure differences between blocks of pairwise CLDs in cases
and controls. Let group 1 have p1 SNPs and group 2 have p2 SNPs, where
p1 + p2 = p, and let S and T be the (p1 + p2)× (p1 + p2) sample covariance
matrices for the two groups of SNPs for cases and controls, based on X and
Y respectively. Partition S as

S =

( p1 p2
p1 S11 S12
p2 S21 S22

)
, (1)

and partition T similarly. Here S11 and S22 are the sample intra-group co-
variance matrices for group 1 and for group 2 respectively, and S12(= S ′21) is
the inter-group sample covariance matrix. Denote the corresponding quan-
tities for the controls as T11, T22, and T12 (= T ′21). Note that if p1 = p2 = 1,
then S12 and T12 both reduce to CLD as defined above.
Let Σ (cases) and Ω (controls) be the population covariance matrices

that correspond to S and T respectively, partitioned according to (1). We
propose to test whether the interaction effects (= covariances) between the
two groups of SNPs are different for cases than for controls, that is, to test
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equality of the block interactions, i.e., test

H12 : Σ12 = Ω12, (2)

rather than to test for differences between single pairs of corresponding ele-
ments in Σ12 and Ω12. (In fact we shall test H12 | (H1 ∩H2) —see (7).)
To motivate our proposed multivariate test statistics, suppose for the

moment that the underlying data matricesX andY are normally distributed,
so that U ≡ mS and V ≡ nT are independent Wishart random matrices:

U ∼ Wp1+p2(m,Σ), V ∼ Wp1+p2(n,Ω),

with m and n degrees of freedom, respectively.
First consider the classical problem of testing the hypothesis

H0 : Σ = Ω vs K : Σ 6= Ω (3)

based on U and V . If

min(m,n) ≥ p1 + p2 =: p, (4)

so that U and V are nonsingular with probability one, the likelihood ratio
test (LRT, also known as Bartlett’s test; cf. Anderson [12] rejects H0 if

λ2 :=
|U + V |m+n
|U |m|V |n

is suffi ciently large. It has been noted by several authors (e.g., Chaudhuri
and Perlman [13]) that λ2 can be decomposed as follows. If we partition U
and V according to (1), define U11·2 = U11 − U12U

−1
22 U21, and define V11·2,

Σ11·2, and Ω11·2 similarly, then

λ2 =
|U11·2 + V11·2|m+n
|U11·2|m|V11·2|n

· |U22 + V22|m+n
|U22|m|V22|n

· |U11·2 + V11·2 + ∆|m+n
|U11·2 + V11·2|m+n

≡ λ1·2 · λ22 · λ21|2 , (5)

where

∆ =
(
U12U

−1
22 − (U12 + V12)(U22 + V22)

−1)U22( · · · )′
+
(
V12V

−1
22 − (U12 + V12)(U22 + V22)

−1)V22( · · · )′.
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Here λ1·2 is the LRT statistic for testing H1·2 : Σ11·2 = Ω11·2, λ2 is the LRT
statistic for testing H2 : Σ22 = Ω22, and λ1|2 is the LRT statistic for testing
H1|2 : Σ12Σ

−1
22 = Ω12Ω

−1
22 assuming thatH1·2 holds (denoted byH1|2|H1·2). We

are particularly interested in H1|2|H1·2, which, like H12, can be interpreted to
indicate that the interaction effects of the two genes in case and control are
identical. Under the overall null hypothesis that Σ = Ω, λ1·2, λ2, and λ1|2
are mutually independent with known null distributions that do not depend
on the common value of Σ = Ω, so these three statistics can be applied to
test H1·2, H2, and H1|2|H1·2. In fact, that H0 = H1·2 ∩H2 ∩H1|2.
An advantage of this approach is that if H0 is rejected, the source of the

difference between Σ and Ω is exhibited more precisely. A disadvantage is
that it presumes an asymmetric relationship between genes 1 and 2, i.e., it
presumes causal (directional) effects of SNP group 2 (from gene 2) on SNP
group 1 (from gene 1). This is because Σ12Σ

−1
22 and Ω12Ω

−1
22 are the coeffi cients

of the regression of the group 1 variables on the group 2 variables in cases
and controls respectively. Thus this method is also applicable if the reverse
causal relationships are presumed and may lead to a different conclusion,
clearly an undesirable property. In the application considered here, however,
there is no presumption of an asymmetric relation between the two genes.
Therefore we seek methods that test the hypothesis H12 without presuming
an asymmetric relationship between the genes.

Method 1: an alternative decomposition of the LRT
statistic.

Our first approach is to modify the decomposition in (5) as follows:

λ2 =
|U11 + V11|m+n
|U11|m|V11|n

· |U22 + V22|m+n
|U22|m|V22|n

·

[
|U+V |

|U11+V11||U22+V22|

]m+n
[

|U |
|U11||U22|

]m [ |V |
|V11||V22|

]n
≡ λ21 · λ22 · λ212, (6)

where λ1 is the LRT statistic for testing H1 : Σ11 = Ω11 and λ2 is again
the LRT statistic for testing H2 : Σ22 = Ω22. This suggests that λ12 is a
reasonable statistic for testing

H12 | (H1 ∩H2) : Σ12 = Ω12 given that Σ11 = Ω11, Σ22 = Ω22. (7)
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We now express λ12 in a form that justifies its suitability as a test statistic
for (7). Set

µ =
m

m+ n
, ν =

n

m+ n
(so µ+ ν = 1),

W =
U + V

m+ n
= µS + νT, (8)

the pooled estimate of Σ = Ω under H0, The statistic λ12 ≡ λ12(S, T ) can be
expressed as follows:

λ212(S, T ) =
|I −W−1

11 W12W
−1
22 W21|m+n

|I − S−111 S12S−122 S21|m|I − T−111 T12T−122 T21|n

=
|I −RWR

′
W |m+n

|I −RSR′S|m|I −RTR′T |n
, (9)

=

∏p1∧p2
i=1 (1− w2i )m+n∏p1∧p2

i=1 (1− s2i )m
∏p1∧p2

i=1 (1− t2i )n
,

where, using symmetric matrix square roots,

RS :=S
−1/2
11 S12S

−1/2
22 ,

RT :=T
−1/2
11 T12T

−1/2
22 ,

and RW :=W
−1/2
11 W12W

−1/2
22

are the matrix-valued correlations and s2i , t
2
i , and w

2
i are the squared canon-

ical correlations, both based on S, T , and W respectively, between the two
groups of SNPs.
The form (9) suggests the following justification for using λ12. UnderH1∩

H2, Σ11 = Ω11 =: Ξ11 and Σ22 = Ω22 =: Ξ22, so the population counterpart
λ212(Σ,Ω) of λ212(S, T ) assuming H1 ∩H2 is the (m+ n)-th power of∣∣∣∣I − [Ξ− 1

2
11 (µΣ12 + νΩ12) Ξ

− 1
2

22

] [
Ξ
− 1
2

11 (µΣ12 + νΩ12) Ξ
− 1
2

22

]′∣∣∣∣∣∣∣∣I − (Ξ
− 1
2

11 Σ12Ξ
− 1
2

22

)(
Ξ
− 1
2

11 Σ12Ξ
− 1
2

22

)′∣∣∣∣µ ∣∣∣∣I − (Ξ
− 1
2

11 Ω12Ξ
− 1
2

22

)(
Ξ
− 1
2

11 Ω12Ξ
− 1
2

22

)′∣∣∣∣ν .
Because

log |I − ZZ ′| ≡ log

∣∣∣∣ I Z
Z ′ I

∣∣∣∣
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is strictly concave in Z provided that I − ZZ ′ is positive definite, it fol-
lows that log λ12(Σ,Ω) = 0 when Σ12 = Ω12 and is > 0 when Σ12 6= Ω12,
so log λ12(Σ,Ω) provides a measure of the distance between Σ12 and Ω12.
Because log λ12(S, T ) provides an estimate of this distance, λ12 appears to
be a reasonable statistic for detecting departures from the null hypothesis
H12 | (H1 ∩H2). Note also that by (9), λ12 is invariant under all nonsingular
matrix scale transformations of the form A = diag(A1, A2), Ai : pi × pi, i.e.,
those linear transformations that act separately on the two groups of SNPs,
that is,

λ12(S, T ) = λ12(ASA
′, ATA′). (10)

Method 2: a quadratic distance-based method.

Our second approach uses the Nagao [14] normalized quadratic distance (NQD)

δ2 ≡ δ(S̃, T̃ ) := tr[(S̃ − T̃ )W−1(S̃ − T̃ )W−1]

applied to S̃ and T̃ , where

S̃ =

(
W11 S12
S21 W22

)
, T̃ =

(
W11 T12
T21 W22

)
.

HereW11 (resp.,W22) is the pooled estimate of Ξ11 (Ξ22) underH1 (H2) based
on S11 and T11 (S22 and T22). From (8), to insure thatW is nonsingular with
probability 1, it is only required that

m+ n ≥ p1 + p2 =: p,

which is a weaker requirement than (4). Note too that (compare to (8))

W = µS̃ + νT̃ .

In general, neither S̃ nor T̃ need be positive definite. Nonetheless, δ2 is a
valid measure of distance between S12 and T12 under H1 ∩H2 because

δ2 = tr

(
0 S12 − T12

(S12 − T12)′ 0

)
W−1

(
0 S12 − T12

(S12 − T12)′ 0

)
W−1

= tr(S12 − T12)′W−1
11·2(S12 − T12) + tr(S12 − T12)W−1

22·1(S12 − T12)′.
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Thus δ2 = 0 iff S12 = T12, a property not shared by log λ12. Furthermore we
have the equivalent expressions

δ2 = tr

(
0 Q
Q′ 0

)(
I R
R′ I

)−1(
0 Q
Q′ 0

)(
I R
R′ I

)−1
= tr(L2),

where, using symmetric matrix square roots,

Q = W
−1/2
11 (S12 − T12)W−1/2

22 ,

R = W
−1/2
11 (µS12 + νT12)W

−1/2
22 (= RW ),

L =

(
I R
R′ I

)−1/2(
0 Q
Q′ 0

)(
I R
R′ I

)−1/2
.

Note that L is a symmetric matrix and that

δ2 =

p∑
i=1

l2i ,

where l1 ≥ · · · ≥ lp are the ordered eigenvalues of L, equivalently, the ordered
eigenvalues of

(S̃ − T̃ )W−1 ≡
(

0 S12 − T12
(S12 − T12)′ 0

)
W−1.

Furthermore, like λ12, δ2 is invariant under all nonsingular matrix scale
transformations of the form A = diag(A1, A2), Ai : pi × pi (recall (10)).
Thus δ2 is another reasonable statistic for detecting departures from the null
hypothesis H12 | (H1 ∩H2).
Because CLD data is not normally distributed, the significance levels

for the test statistics λ12 and δ2 must be determined using a permutation
method.

Simulation study

We compared our proposed tests based on λ12 and δ2 to tests based on lo-
gistic regression (described below) in a simulation study. Because we wish
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to test whether multiple SNPs in two genetic regions have a non-null inter-
action effect on a phenotype, the univariate logistic regression approaches
discussed in the Introduction are not applicable. To generate our simulated
data we created an artifical population using genotype data obtained from the
hapmap project caucasian population [15]. We used PHASE [16] to estimate
haplotypes for rs7130285, rs2074040, rs3740878, rs7935586, and rs6485533
(denoted as A1, . . . , A5) from the EXT2 gene and rs2713813, rs7951391,
rs7480010, rs906625, and rs6485316 (denoted as B1, . . . , B5) from the inter-
genic region of the LRRC4CX2 gene (the haplotypes and their frequencies
are listed in the Appendix 1). We then randomly paired haplotypes to create
our population. We used interaction models developed by Marchini et al.
[17] to assign case and control status, which we have denoted IM1 (for In-
teraction Model 1), IM2, and IM3. IM1 has main effects, but no interaction,
IM2 has a multiplicative interaction, and IM3 has a threshold interaction
where the risk is increased if both SNPs have at least one copy of the minor
allele. Note that we can write the probability of being a case (D = 1) for
each of these three models in a logistic regression form:

logit (P (D = 1 | G)) = β0,0 + β0,1 (g2 = 1) + β1,0 (g1 = 1)

+ β0,2 (g2 = 2) + β2,0 (g1 = 2)

+ β1,1 (g1 = 1) (g2 = 1) + β1,2 (g1 = 1) (g2 = 2)

+ β2,1 (g1 = 2) (g2 = 1) + β2,2 (g1 = 2) (g2 = 2) .

Here β∗,0, β0,∗ quantify the additive effects, β∗,∗ measures the interactions
between two loci, and β0,0 defines the intercept, and g1 and g2 are the number
of copies of the rare allele for the two genes. The three interaction models
are obtained by

IM1: β0,1 = 2β0,2, β1,0 = 2β2,0, β1,1 = β1,2 = β2,1 = β2,2 = 0

IM2: β0,1 = β1,0,= β0,2 = β2,0 = 0, β1,1 = 4β2,2, β1,2 = 2β2,2, β2,1 = β2,2,

IM3: β0,1 = β1,0,= β0,2 = β2,0 = 0, β1,1 = β2,2, β1,2 = β2,2, β2,1 = β2,2.

In our simulations for IM1 we take β0,1 = β1,0 , and we take β0,0 = 0.01
in all models, so that each model only has one parameter β. Note that
β0,0 = 0.01 corresponds to a moderately rare disease. We show results for a
sample size of 1000 cases and 1000 controls. We examined smaller sample
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sizes, and found the results qualitatively similar. In our simulations, we used
SNPs A3 and B3 as the casual SNPs. The minor allele frequencies of A3 and
B3 are 0.2303 and 0.3090, respectively. In our simulations we consider three
scenarios.

Case 1: Only A3 and B3 are observed. This is a standard scenario investi-
gated in the literature, where the SNPs that are interacting are assumed to
be observed.

Case 2: We observe A1, . . . , A5 and B1, . . . , B5. This is the scenario in
which we observe blocks of SNPs, including the SNPs that we generated
to be causal. In this scenario we expect some power increase because the
additional SNPs are in LD with A3 and B3, but some decrease of power
because of multiple comparisons.

Case 3: We observe A1, A2, A4, A5 and B1, B2, B4, B5. We believe that this
is the most interesting scenario, as we do not observe the causal SNP, but
observe the interaction through multiple SNPs that are in LD with the casual
SNP. Our methods are specifically designed with this situation in mind.
We compare four testing methods: the likelihood ratio statistic (λ12), the

quadratic distance-based statistic (δ2), and statistics arising from two logistic
models (LM1, LM2) in which all SNPs that are considered are present in
the model, coded additively. For LM1 we consider all pairwise interactions
simultaneously, testing them using an F -test, and for LM2 we consider each of
the pairwise interactions separately, selecting the most significant one. For all
four methods, significance levels are determined using 10, 000 permutations
of case-control status. We ran each simulation scenario 1, 000 times.
The power results for Case 1, when the matrix size is 2× 2 and equality

of a single off-diagonal covariance pair is tested, are shown in Table 1. Note
that for this situation the two logistic regression statistics, LM1 and LM2,
are identical. For IM1, where there are additive effects, but there is no
interaction, we note that all approaches maintain the correct Type 1 error
of 5%. For IM2, where there is a multiplicative interaction, and M3, where
there is an interaction with threshold (dominant × dominant) effects, all
approaches have approximately the same power.
The power results for Case 2, when the matrix size is 10 × 10 and we

test equality of the two off-diagonal 5 × 5 sub-matrices, are shown in Table
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2. In this table and in Table 3 we omit the results for IM1, where there
is no interaction; as in Case 1, all approaches maintain the correct Type 1
error. For this case we note that for both IM2 and IM3, our two proposed
test statistics, λ12 and δ2, have considerably more power than both logistic
regression statistics, which have approximately the same power. It appears
that δ2 has slightly more power than λ12 but the difference is small. Com-
pared to Case 1 we notice that both logistic regression statistics have less
power because of the larger multiple comparisons penalty (note that we cor-
rect using a permutation approach, and not using a Bonferroni correction,
which would have led to even lower power). On the other hand, the power of
λ12 and δ2 increases from Case 1 to Case 2, because these statistics exploit
the entire block of CLDs between the SNPs.
The power results for Case 3, when the matrix size is 8× 8 and equality

of the two off-diagonal 4 × 4 sub-matrices is tested, are shown in Table 3.
For this case the causal SNPs are not part of the data that are analyzed. As
a result, the logistic regression methods lose almost all the power they had
in Case 2. Our proposed statistics λ12 and δ2 also lose power but the loss
is smaller, and these statistics still maintain reasonable power, especially for
IM2, where the power is not much lower than in Case 1. It apperas that for
all cases and all models δ2 is slightly more powerful than λ12.

An application to genetic data

The IL10 and IL10B receptor genes are involved in immune regulation and
suppression. A genetic polymorphism in the promoter region of the IL10
gene has a significant impact on graft versus host disease (GVHD) after allo-
geneic hematopoietic stem cell transplantation (HCT) with human leukocyte
antigen (HLA) identical sibling donors. In a previous study of SNPs among
953 HLA-identical sibling transplants (18), the presence of the IL10/-592*A
allele in the patient or the IL10RB*G allele in the donor was significantly as-
sociated with lower risk of severe acute GVHD and non-relapse mortality. It
is thought that IL10 may facilitate immune tolerance after allogeneic trans-
plantation. Higher IL10 production by ex-vivo stimulation of recipient’s cells
before transplantation is associated with reduced risk of acute GVHD and
non-relapse mortality (19). In this example our goal was to see whether an
interaction between IL10 and IL10RB has a synergistic effect on the risk
for GVHD. We tested this hypothesis using a dataset with two groups, one
of which developed GVHD (case) while the other did not (control), with a
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Parameter β in the model
0 0.1 0.5 1 2 4

IM1
λ12
δ2

LM1 = LM2

0.048
0.047
0.048

0.051
0.048
0.049

0.050
0.049
0.051

0.051
0.050
0.051

0.052
0.053
0.050

0.053
0.052
0.053

IM2
λ12
δ2

LM1 = LM2

0.048
0.053
0.049

0.068
0.068
0.061

0.104
0.106
0.102

0.178
0.184
0.176

0.644
0.653
0.615

1.000
1.000
1.000

IM3
λ12
δ2

LM1 = LM2

0.053
0.051
0.050

0.056
0.057
0.055

0.081
0.084
0.080

0.116
0.120
0.112

0.551
0.559
0.547

0.942
0.953
0.935

Table 1: Power of the proposed test statistics for Case 1. Here p1 = p2 = 1
so we test for equality of a single pair of covariances. IM1, multiplicative
within and between loci —no interaction; IM2, multiplicative model; IM3,
the threshold model. For this set of simulations, 1000 cases and 1000 controls
were sampled for each of 1000 simulation runs. We completed 10000 permu-
tations for each data set, and controlled the significance level at α = 0.05.

Parameter β in the model
0 0.1 0.5 1 2 4

IM2

λ12
δ2

LM1

LM2

0.048
0.049
0.051
0.050

0.069
0.072
0.059
0.062

0.125
0.134
0.089
0.095

0.201
0.225
0.154
0.169

0.745
0.821
0.521
0.558

1.000
1.000
1.000
1.000

IM3

λ12
δ2

LM1

LM2

0.051
0.051
0.050
0.050

0.060
0.065
0.056
0.057

0.098
0.104
0.072
0.080

0.180
0.195
0.104
0.119

0.685
0.701
0.468
0.488

1.000
1.000
0.990
1.000

Table 2: Power of the proposed test statistics for Case 2. Here p1 = p2 = 5
and we test for equality of the two 5 × 5 blocks Σ12 and Ω12. For this set
of simulations, 1000 cases and 1000 controls were sampled for each of 1000
simulation runs. We completed 10000 permutations for each data set, and
controlled the significance level at α = 0.05.
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Parameter β in the model
0 0.1 0.5 1 2 4

IM2

λ12
δ2

LM1

LM2

0.049
0.047
0.049
0.049

0.058
0.061
0.054
0.055

0.078
0.089
0.060
0.065

0.133
0.155
0.084
0.099

0.435
0.465
0.226
0.242

1
1

0.685
0.721

IM3

λ12
δ2

LM1

LM2

0.047
0.049
0.049
0.049

0.054
0.059
0.050
0.050

0.063
0.068
0.054
0.055

0.093
0.105
0.061
0.069

0.216
0.235
0.067
0.076

0.561
0.611
0.128
0.141

Table 3: Power of the proposed test statistics for Case 3. Here p1 = p2 = 4
and the interaction SNPs have been eliminated for the analysis. We test
for equality of the two 4 × 4 blocks Σ12 and Ω12. For this set of simula-
tions, 1000 cases and 1000 controls were sampled for each of 1000 simulation
runs. We completed 10000 permutations for each data set, and controlled
the significance level at α = 0.05.

sample size of 159 for each group. This data is part of a study investigating
how genetic diversity among patients and donors contributes to differences
in individual responses to tissue injury, inflammation, and severity of acute
GVHD. The IL10 gene has three SNPs (p1 = 3), and the IL10RB gene has
one SNP (p2 = 1) (see Table 4), thus the corresponding covariance matrix is
4× 4.
We apply our proposed statistics λ12 and δ2 and the two logistic regression

methods, LM1 and LM2 for testing whether there is an interaction effect of
the IL10 and IL10RB genes on GVHD. Both λ12 and δ2 result in off-diagonal

Gene Genotype 0 1 2
IL10 rs1800872 CC AC AA

rs1800890 TT AT AA
rs1800896 AA AG GG

IL10RB rs2834167 GG AG AA

Table 4: Possible SNP combinations for IL10 and IL10RB genes, by RefSNP
(rs) number, shown for the homozygous (0), heterozygous (1) and homozy-
gous variant (2) case.
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blocks that are statistically significantly different between cases and controls
with p = 0.0382 and p = 0.0374 respectively. The LM1 and LM2 also
confirms the interaction with p = 0.0451 and p = 0.0438 respectively. We
can see that the p-values of the proposed test statistics were slightly smaller
than those of the logistic regression methods. The small difference between
the two statistics is likely due to the fact that the covariance matrix is only
4×4 with just a 1×3 off diagonal matrix.Thus, all methods can successfully
detect an interaction effect of IL10 and IL10RB genes on GVHD.

Discussion

Classical methods for identifying disease-susceptibility genes focus on one
genomic area or locus at a time. They have worked well for Mendelian
disorders but appear insuffi cient for complex traits because of the presumed
multiplicity of genes involved. To facilitate the search for sets of SNPs jointly
associated with a disease phenotype, we have developed two new statistics
for testing for interaction effects between two blocks of SNPs– two genes–
based on defining a distance between sample covariance matrices. We use
a multivariate extension of CLD and compute covariance matrices for SNPs
separately for cases and controls. A test for equality of the off-diagonal block
corresponding to the covariance between the two genes of the two matrices
becomes a test of an interaction effect between the two genes on case-control
status. Our proposed methods abrogate the need for a multiple comparisons
correction as we have a single test for interaction. This offers greater power
than the traditional method of individual pairwise testing of SNPs and using
a multiple comparisons correction.
Simulation results reveal that our methods perform better than tradi-

tional logistic regression-based methods. For the matrix size two 2 × 2,
where the SNPs that are interacting are observed, the power results for the
proposed statistics λ12 and δ2 and logistic regression behave approximately
equally. When we consider multiple SNPs in a gene, and assume that the
true causal interacting SNPs are among them, the power is higher for our
statistics λ12 and δ2 than for logistic regression (Table 2). The scenario in
Table 3 is the most interesting one, as we eliminate the interaction SNPs for
the analysis. Again, here we see that power is much larger for λ12 and δ2

than logistic regression. As in this case we do not observe the causal SNP,
but rather we observe the interaction through multiple SNPs that are in LD.
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We can easily apply our proposed methods to case only design to explore
interactions between two loci, where there is gene-gene independence in the
controls (in a population with a rare disease), as we would simply set the
off-diagonal sub-matrix for the controls equal to zero. Initial simulations
suggest this significantly improves power. We are currently working on an
extension of our methods that will allow us to test whether many genes– a
network of SNPs– associate with a phenotype by comparing two complete
covariance matrices, as in H0, see (3).
To evaluate performance for detection of interactions between two loci,

the proposed λ12 and δ2 statistics were applied to data from hematopoietic
cell transplantation (HCT) patients and donors. In this example we wished
to distinguish between groups of patients, for example those who developed
GVHD and those who did not. Genetic polymorphisms in the promoter re-
gion of the IL10 gene and in a coding region of the IL10RB gene at position
c238 have been shown to significantly affect risk of GVHD after HCT with an
HLA-identical sibling donor [18] , [20]. The IL10 promoter region regulates
production of IL-10, and the IL102RB c238 SNP has been shown to regulate
transcription and cell surface expression of the IL-10 receptor β chain [21].
There is a direct functional relationship between the IL10RB gene located on
chromosome 1 and the gene encoding its ligand IL10 located on chromosome
21, and it is therefore highly plausible that there is also a genetic interac-
tions between these 2 genes even though they are on different chromosomes.
Our study population, consisting of paired patients and donors, provided a
unique opportunity to assess genome-genome interaction between recipient
and donor genomes [22] the HCT setting. Using our methods, we confirmed a
statistical interaction between these two unlinked loci, a beautiful example of
two different chromosomes showing a statistical interaction that aligns with a
known biological interaction. This is encouraging evidence that detection of
statistical interactions may lead to discovery of novel biological interactions.
While computing test statistics for many blocks of SNPs is computation-

ally intensive, it is reasonably achievable by spreading computations over
clusters of computers. In practice we would test for interactions between a
limited number of blocks of interest, either because there is biological inter-
est (as was the case for our IL10 example), or because these blocks suggest
the strongest marginal effects (using a similar approach as Kooperberg and
LeBlanc [23]). Each of these limited numbers of blocks could then be com-
pared with the complete genome in a sliding window fashion. A computation-
ally intense approach would be to carry out permutation tests separately for
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each possible interaction. Rather than separate permutation tests, we would
first "rank" all tests, and only carry out the tests for interactions with the
largest statistics, for example using the Holm step down procedure [24]. The
Box approximation for normally distributed data can be applied to obtain
the asymptotic null distribution [12]. This will be applicable when we extend
our methods for GWAS. We can obtain the first 50 significant interactions
from the parametric form and then apply the permutation-based technique
to confirm the interactions.
Novel genomic tools and computational methods have led to a dramatic

increase in the rate of discovery of disease genes. While traditional associa-
tion studies have sought single marker or single gene associations, phenotypes
are the result of complex interactions among large numbers of genes. Exten-
sions of the statistical methods we have proposed will allow the investigation
of relationships among groups of SNPs in many genes and can discriminate
between the genetic signatures of distinct groups of subjects. By identify-
ing interactions among networks of genes, we may further our understanding
of how the collective behavior of genes gives rise to phenotypes as well as
our ability to predict disease outcome. Detecting interactions among disease
associated SNPs may reveal basic biological mechanisms that are critical to
understanding development and progression of a disease state [25], and in
this way provide a powerful and promising foundation for the development
of novel diagnostics and therapeutic strategies.
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Appendix 1

Haplotype Frequency
Block 1 Block 2

0 0 0 0 1
0 0 0 1 1
0 0 1 0 1
0 0 1 1 0
0 0 1 1 1
0 1 0 0 0
0 1 0 0 1
0 1 0 1 0
0 1 0 1 1
0 1 1 0 0
0 1 1 1 0
0 1 1 1 1
1 0 0 1 1
1 0 1 0 0
1 0 1 0 1
1 0 1 1 0
1 0 1 1 1
1 1 0 0 1
1 1 0 1 0
1 1 0 1 1
1 1 1 0 0
1 1 1 0 1
1 1 1 1 0
1 1 1 1 1

0.0544
0.0163
0.0239
0.0258
0.1645

0
0.0066

0
0
0

0.0118
0

0.0413
0
0

0.0061
0.0328
0.0589
0.0252
0.0276

0
0.2832
0.0379
0.1837

0
0
0

0.0151
0.0288
0.0123

0
0.0082
0.036
0.0191

0
0.0379

0
0.0679
0.0315

0
0.0645
0.0713
0.1074
0.0737
0.0302
0.1104
0.0994
0.1862
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