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Abstract—We present a novel natural-scene-statistics-based
blind image quality assessment model that is created by training
a deep belief net to discover good feature representations that
are used to learn a regressor for quality prediction. The proposed
deep model has an unsupervised pre-training stage followed by
a supervised fine-tuning stage, enabling it to generalize over
different distortion types, mixtures, and severities. We evaluated
our new model on a recently created database of images afflicted
by real distortions, and show that it outperforms current state-
of-the-art blind image quality prediction models.

Index Terms—Perceptual quality, deep belief nets, blind image
quality assessment, natural scene statistics.

I. INTRODUCTION

Objective blind or no-reference (NR) image quality as-
sessment (IQA) models are algorithms that can automatically
predict the perceptual quality of images such that the only
information that the algorithm has available is the distorted
image whose quality is to be ascertained. Because of the surge
in visual media content across the internet, IQA algorithms
are fast gaining importance. These algorithms are used for
monitoring and controlling multimedia services on wired and
wireless networks and devices with an aim to ensure that end
users have a satisfactory quality of experience (QoE).

The most efficient NR IQA algorithms to date are founded
on natural scene statistical (NSS) models [1] that capture the
naturalness of images that are not distorted. These models are
based on the well-founded observation that good quality real-
world photographic images obey certain perceptually relevant
statistical laws that are violated by the presence of common
image distortions. State-of-the-art NSS-based NR IQA models
[2] - [6] exploit these statistical perturbations by first extracting
image features and then learning a kernel function that maps
these features to ground truth subjective quality scores. We re-
fer readers to [2] for a detailed comparison of the performance
of several blind IQA models.

To date, the performance of these techniques has been
gauged only on legacy databases such as the LIVE Image
Quality Database [7] and the TID2008 database [8], which
contain images corrupted by only one of a few synthetically
introduced distortions viz., images containing only JPEG-
compression artifacts or images corrupted by simulated camera
sensor noise. However, in practice, every image captured by a
typical mobile digital camera device passes through numerous
processing stages, each of which could potentially introduce
visual artifacts. Thus, authentically distorted images are likely
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to be impaired by a broad range of diverse quality “types,’
mixtures, and distortion severities.

Challenging image dataset: The lack of diversity and
realism of distortions in existing, widely-used image quality
databases [7], [8] impedes our goal to be able to model
and predict the perception of real image distortions. To over-
come this limitation and towards being able to design robust,
perceptually-aware image assessment models, we designed
and created a new image quality database called the LIVE
Blind Image Quality Challenge Database [9], that contains
images afflicted by diverse authentic distortions and genuine
artifacts captured using a variety of commercial devices.
Each image was collected without artificially introducing any
distortions beyond those occurring in each camera device
during the capture, processing, and storage processes. The
database consists of 1,163 images afflicted by varied artifacts
such as low-light noise and blur, motion-induced blur, over and
underexposure, compression errors, and so on. See [9] for a
more detailed description of this unique and difficult distorted
image corpus.

Better image features: Existing blind IQA models that
learn feature representations on images that contain only
single, unmixed distortions, may not perform as well when
applied on images afflicted by mixtures of distortions. The
LIVE challenge database has a high percentage of images
distorted by multiple processes. Our recently proposed IQA
model, FRIQUEE [10] alleviates this problem to some extent
by generating more informative features that predict human
quality judgments better than state-of-the-art blind IQA meth-
ods.

Deeper architecture: Shallow architectures typically con-
sist of one layer of fixed kernel functions and can sometimes
be inefficient when matching the features from the training
data with ground truth labels. On the other hand, deep archi-
tectures such as the Deep Belief Network [11] and the Deep
Boltzmann Machine [12] progressively combine lower level
inputs into more abstract and higher-level representations and
have shown remarkable performance on complex tasks such
as digit classification [11], visual object recognition [12], and
image denoising [13]. These models, which try to learn a
“deep” structure from the input data are motivated in part by
the hierarchical organization of human visual cortex.

Here, we combine recently proposed natural-scene-
statistics-based perceptual image features with a deep belief
network and a regressor to tackle the difficult problem of blind



Fig. 1. Sample images from the LIVE Blind Image Quality Challenge
Database [9].

image quality assessment on authentically distorted images.
Our chief contribution is a robust image quality assessment
model that outperforms existing techniques on a wide range
of diverse and authentic distortions, as shown by the results of
experiments on the LIVE Challenge database [9] (Table I). We
are aware of only one other very recent project [14] reporting
an effort made in the same spirit as our proposed model. There
are, however, several crucial differences that distinguish our
approach. First, we utilize a state-of-the-art image database
containing only real distortions whereas the authors of [14]
tested their model on the legacy databases [7], [8]. Second, we
use a different (thinner) architecture with many fewer input
units (330 vs. 16689 units in [14]) yielding a much shorter
total learning time. Third, under the given problem setting, we
study the representative power of image features by training
different DBNs individually on features derived from several
top-performing IQA models, which has not been studied in
[14].

II. BLIND IMAGE QUALITY ASSESSMENT

A. Images and Quality Scores

Figure 1 shows a subset of images from the new challenge
database [9]. Each of the 1163 images contained in the
challenge database is a unique content that has been rated
by many thousands of subjects via an online crowdsourcing
system that we designed for subjective quality assessment [9].
The study is on-going and we have so far gathered nearly
280,000 opinion scores from over 5,000 unique subjects. The
mean opinion score (MOS) of each image is computed by
averaging the individual ratings across subjects. These are used
as ground truth quality scores.

B. Perceptually Relevant FRIQUEE Features

We recently proposed a new quality assessment model,
FRIQUEE [10], to overcome the limitations of existing blind
IQA techniques with regard to representing mixtures of dis-
tortions, such as those contained in the LIVE Challenge
database [9]. FRIQUEE is a natural scene statistical (NSS)
model that is based on the hypothesis that different modalities
capture distinctive aspects of the loss of the perceived quality
of any given image. Figure 2 is a schematic illustration of
some of the feature maps that are built into our model. In
our framework, a total of 330 statistical features that have
been observed to contribute significant information regarding
distortion visibility and perceived perceptual quality of an
image were selected as input to the learning model.
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Fig. 2. Given any image (a) FRIQUEE first constructs several feature
maps in multiple transform domains (some of them are shown here)
and then extracts scene statistics from these maps after performing
perceptually significant divisive normalization [15] on them.

C. Our Model

Briefly, a restricted boltzmann machine (RBM) is an undi-
rected graphical model with bipartite symmetrical connections
between the stochastic binary units of the visible and hidden
layer with no inter-layer connections [11]. The weights on each
of the connections in an RBM can be efficiently learned by
first performing alternating Gibbs sampling, then employing
a contrastive divergence learning technique to update all of
the units in a given layer in parallel until the RBM reaches a
conditional equilibrium. Stacking multiple RBMs and learning
multiple weight matrices by treating the hidden activities of
one RBM as the visible input data for training a higher-
level RBM in a greedy layer-by-layer way results in a hybrid
generative model called a deep belief net (DBN).

Hinton et.al. [11] proposed an unsupervised pre-training
step where greedy layer-by-layer learning was employed to
initialize the model parameters of a DBN. This was followed
by a supervised fine-tuning phase where labeled data was
used to further update these parameters which resulted in a
model with superior classification performance than some of
the shallower architectures.

Our proposed model is a combination of a deep belief
network of three hidden layers (Figure 3) and a regressor. As
mentioned earlier, after training the RBM of a layer [ — 1, its
hidden activations serve as an input to train the next layer
l. Thus, each layer captures strong, high-order correlations
between the activities of the units in the layer below. Our
DBN model attempts to build more complex representations
of the simple statistical features provided as input, by gradually
propagating them from one layer to another.

We also employ an unsupervised pre-training strategy to
regulate the weight space of the deep network, followed by
a supervised fine-tuning step to learn the parameters of the
entire model by aligning the output of the network with the
ground truth MOS values. These two stages pertaining to DBN
are described in detail below, followed by a description of the
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Fig. 3. Configuration of our DBN model. The unit in the topmost
layer that is activated determines the class label that is used to by
the cross-entropy error function.

final regression step.

1) Unsupervised pre-training: In this phase, each layer is

treated as an RBM, the individual layers of the network are
trained and the weights are learned greedily, one layer at
a time, from the bottom up. Since the input is real-valued
continuous data (FRIQUEE features), the first layer is modeled
using a Gaussian-Binary RBM (GRBM) [16]. The rest of the
layers are modeled as Binary-Binary RBMs (Figure 3).
First Layer: A Gaussian-Binary RBM allows us to model
real-valued image features by using a Gaussian distribution to
model the observed “visible” input data (v) and a conditional
Bernoulli distribution to model the “hidden” unit values (h).
Holding either h or v fixed, we can sample from the other as
follows:
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Here N(.) is the Gaussian density function and logistic(.)
is the logistic function. The RBM is parameterized by the
network weights W, the hidden layer bias b, the visible layer
bias ¢, and by the standard deviation of the visible units 0. We
normalize the data to have zero mean and unit variance along
each feature dimension and set o to 1 in (1) and (2) while
reconstructing the hidden and visible layer probabilities.

Due to space constraints, we refer readers to [16] for tech-

nical details on computing contrastive divergence gradients to
learn and evolve weights and biases.
Higher Layers: For the three hidden layers that follow the
input layer, we followed the probabilistic model of Binary-
Binary RBMs to sample visible and hidden unit values and a
contrastive divergence step for updating the weights and biases
as explained in [11].

The weights of the RBM connecting the visible and hidden
units at every level are initialized from random samples from
a uniform distribution 2/(0, 0.1). The first layer is trained more
gently at a smaller learning rate of 0.001 for the weights as
compared with that of 0.1 for the higher layers. We split the
images from the challenge database into train and test sets and

use only the training data in the pre-training stage. To speed
up the learning process, the momentum which is 0.5 in the
initial 5 epochs is increased to 0.9 for the rest of the epochs.
We stop the training process after 3000 epochs.

2) Supervised fine-tuning phase: In this phase, we pose the
problem of predicting the perceptual quality of an image as a
classification problem, with MOS values as class labels. Since
the MOS values range from 1 — 100, each ground truth MOS
value is represented as a vector of 100 binary units with exactly
one unit that is indexed by the MOS value turned on and all
the other units turned off. This binary representation serves
as a ground truth class label and aligns well with the binary
units of an RBM. Consequently, a fourth hidden layer with the
number of hidden nodes equal to the number of classes (100)
is temporarily added at the top, only to fine-tune the system.
For a given input (FRIQUEE features computed on an image),
the probability of each unit in the top layer is given by
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where x; is the total input received (from all the lower layers)
by top unit ¢. These probabilities are binarized by turning on
the unit with maximum p; and turning off all the other units.

Thus, in the global fine-tuning phase, the weights and biases
learned at every level from pre-training are retained and the
quality labels of the training data are computed using (3).
For every training data sample, the predicted quality label
(&) generated by the top-most hidden layer (of 100 units) is
compared with the corresponding ground truth class label ;
to minimize an objective function, which is the multi-class
cross-entropy function [17] defined as follows:

CE=Y"tilog(t) )

We then employ the conjug%te gradient descent technique
to adjust each of the weight matrices. The gradients are
obtained by backpropagating the error derivatives such that the
predicted class labels from the network on the training data
align with the ground truth class labels. In our experiments,
the fine-tuning phase was run for 100 epochs.

3) Regression: This fine-tuned DBN model and its learned
weights and biases can now be used to generate feature
representations for any given image. Specifically, the train and
test sets constructed in the pre-training phase are considered,
the FRIQUEE features of each image are fed to the DBN as
input, and the probabilities of the third hidden layer (with 150
hidden nodes) are extracted, thus generating “deep features.”
These deep features, along with the corresponding MOS values
of the training set are used to train a support vector regressor
(SVR). Following this, given any test image’s deep features
as input to the trained SVR, a final quality score may be
predicted.

3)

III. EXPERIMENTS

We determined the number of hidden units in each RBM
and the number of layers in the final model by cross-validation.
Specifically, we divided the data into disjoint training and
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Fig. 4. Cross-entropy training errors (defined in (4)) with and without
the pre-training step in our model.

testing sets. Then, for each RBM layer, we varied the number
of hidden nodes and trained a series of models using the
training data and evaluated the performance of the model on
the test data. The model with a configuration of 400-150-
150 units per layer yielded the highest prediction accuracy
of the regressor and was thus chosen as the optimal model.
As mentioned earlier, a fourth hidden layer of 100 units was
added during the fine-tuning phase. The input layer has units
equal to the number of features each algorithm extracts per
image, which is 330 in the case of FRIQUEE.

Comparing different IQA techniques: We extracted the
features proposed by several other prominent blind IQA al-
gorithms (whose code was publicly available) on the images
of the LIVE Blind Image Quality Challenge Database, fed
them to the input units and trained each DBN model under the
same train/test setting. To mitigate any bias due to division of
data, we repeated this process of randomly splitting the data
over 100 iterations and computed Spearman’s rank ordered
correlation coefficient and Pearson’s correlation coefficient
between the predicted and the ground truth quality scores
at the end of every iteration. We report the median of these
correlations across 100 iterations in Table I. A higher value
for each of these metrics indicates good performance both
in terms of correlation with human opinion as well as the
performance of the entire model. From Table I, we conclude
that the performance of our proposed model on unseen test
data is significantly better than the currently top-performing
state-of-the-art methods on the LIVE Challenge database [9].
Without pre-training: Next, using FRIQUEE features as
input, we also tried skipping the unsupervised pre-training
phase and initialized the weights at each layer to random
values drawn from a uniform distribution Z/(0, 0.1). The faster
drop in the error when the pre-training step was included
in the model (Fig. 4) demonstrates that greedy layer-wise
unsupervised pre-training on unlabeled images is a crucial step
as it overcomes the challenges of deep learning by introducing
a useful prior to the supervised fine-tuning training procedure
and thus makes it possible to fine-tune the network efficiently.
Comparison with a different model architecture: A differ-
ent experiment where an SVR is trained directly on different
IQA features on the same train/test splits used earlier to report
the results in Table I is conducted and again, the median of the
correlation values across 100 iterations is reported in Table II.
The significantly better correlation values in Table I compared
to those in Table II when the same set of features are used is
indicative of the ability of a deep belief network to learn and

TABLE I
MEDIAN LCC AND MEDIAN SROCC ACROSS 100 TRAIN-TEST
COMBINATIONS ON THE LIVE CHALLENGE DATABASE.[9] WHEN
THE PROPOSED DBN WAS USED TO GENERATE “DEEP FEATURES”.

LCC SROCC
FRIQUEE [10] 0.7051 | 0.6721
BRISQUE [2] 0.6204 | 0.6018
DIIVINE [3] 0.5577 | 0.5094
BLIINDS-II [4] 0.4977 | 0.4893
TABLE I

MEDIAN LCC AND MEDIAN SROCC ACROSS 100 TRAIN-TEST
COMBINATIONS ON THE LIVE CHALLENGE DATABASE [9] WHEN
SVM WAS USED.

LCC SROCC
FRIQUEE 0.67 0.64
BRISQUE 0.56 0.53
DIIVINE 0.50 0.48
BLIINDS-II 0.45 0.40

discriminate features belonging to different distortions more
effectively than an SVR.

It can be thus be concluded that the combination of re-
cently proposed FRIQUEE features and our deep regression
model performs extremely well in comparison with all of the
other models on [9]. These results illustrate the importance
of perceptually significant features that are representative of
authentic distortions as well as the ability of a hierarchical,
non-linear model to offer the flexibility to distinctly represent
those features that belong to different mixtures of distortions
leading to a significant improvement in the final performance
of the model.

IV. CONCLUSIONS AND FUTURE WORK

We explored the problem of image quality assessment on a
challenging new database of real distorted images [9] by using
a deep belief net to derive informative feature representations
from a bag of perceptually relevant statistical image features.
These derived representations were in turn used to train a re-
gressor that predicts a quality score. We achieved a significant
improvement over previous blind IQA methods, underscoring
the benefits of perceptually significant features as well as a
densely connected deep learning model to generate complex
feature representations. We believe our work in this direction is
the first substantial effort towards designing blind IQA models
for predicting the perceptual quality of images corrupted by
complex distortion mixtures. Its success encourages us to
explore the feasibility of developing analogous powerful blind
video quality assessment models using space-time natural
video statistics based models [18], [19] and also to practically
adapt our model in real-world applications such as monitoring
the quality of streamed media content. Going forward, we
also believe that accounting for image content when predicting
quality [20] may further improve the performance of NR IQA
models.
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