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Nanomechanic16. Nanomechanical Cantilever Array Sensors

Microfabricated cantilever sensors have attracted
much interest in recent years as devices for the
fast and reliable detection of small concentrations
of molecules in air and solution. In addition to
application of such sensors for gas and chemical-
vapor sensing, for example as an artificial nose,
they have also been employed to measure phys-
ical properties of tiny amounts of materials in
miniaturized versions of conventional standard
techniques such as calorimetry, thermogravimetry,
weighing, photothermal spectroscopy, as well as
for monitoring chemical reactions such as catal-
ysis on small surfaces. In the past few years, the
cantilever-sensor concept has been extended to
biochemical applications and as an analytical de-
vice for measurements of biomaterials. Because
of the label-free detection principle of cantilever
sensors, their small size and scalability, this kind of
device is advantageous for diagnostic applications
and disease monitoring, as well as for genomics
or proteomics purposes. The use of microcantilever
arrays enables detection of several analytes si-
multaneously and solves the inherent problem of
thermal drift often present when using single mi-
crocantilever sensors, as some of the cantilevers
can be used as sensor cantilevers for detection,
and other cantilevers serve as passivated refer-
ence cantilevers that do not exhibit affinity to the
molecules to be detected.
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16.1 Technique

Sensors are devices that detect, or sense, a sig-
nal. Moreover, a sensor is also a transducer, i. e. it
transforms one form of energy into another or re-
sponds to a physical parameter. Most people will
associate sensors with electrical or electronic devices
that produce a change in response when an external
physical parameter is changed. However, many more
types of transducers exist, such as electrochemical
(pH probe), electromechanical (piezoelectric actuator,
quartz, strain gauge), electroacoustic (gramophone pick-

up, microphone), photoelectric (photodiode, solar cell),
electromagnetic (antenna), magnetic (Hall-effect sen-
sor, tape or hard-disk head for storage applications),
electrostatic (electrometer), thermoelectric (thermocou-
ple, thermoresistors), and electrical (capacitor, resistor).
Here we want to concentrate on a further type of sensor
not yet mentioned: the mechanical sensor. It responds
to changes of an external parameter, such as tempera-
ture changes or molecule adsorption, by a mechanical
response, e.g. by bending or deflection.
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16.1.1 Cantilevers

Mechanical sensors consist of a fixed and a movable
part. The movable part can be a thin membrane, a plate
or a beam, fixed at one or both ends. The structures
described here are called cantilevers. A cantilever is re-
garded here as a microfabricated rectangular bar-shaped
structure that is longer than it is wide and has a thick-
ness that is much smaller than its length or width. It is
a horizontal structural element supported only at one end
on a chip body; the other end is free (Fig. 16.1). Most
often it is used as a mechanical probe to image the to-
pography of a sample using a technique called atomic
force microscopy (AFM) or scanning force microscopy
(SFM) [16.1], invented by Binnig, Quate and Gerber in
the mid 1980s [16.1]. For AFM a microfabricated sharp
tip is attached to the apex of the cantilever and serves
as a local probe to scan the sample surface. The dis-
tance between tip and surface is controlled via sensitive
measurement of interatomic forces in the piconewton
range.

By scanning the tip across a conductive or non-
conductive surface using an x-y-z actuator system (e.g.
a piezoelectric scanner), an image of the topography is
obtained by recording the correction signal that has to be
applied to the z-actuation drive to keep the interaction
between tip and sample surface constant. SFM meth-
ods are nowadays well established in scientific research,
education and, to a certain extent, also in industry. Be-
yond imaging of surfaces, cantilevers have been used for
many other purposes. However, here we focus on their
application as sensor devices.
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Fig. 16.1 Schematic of a cantilever: (1) rigid chip body, (2)
solid cantilever-support structure, (3) hinge of cantilever,
(4) upper surface of the cantilever, which is usually func-
tionalized with a sensor layer for detection of molecules,
(5) lower surface of the cantilever, usually passivated in or-
der not to show affinity to the molecules to be detected. The
geometrical dimensions, length l, width w and thickness t,
are indicated

16.1.2 History of Cantilever Sensors

The idea of using beams of silicon as sensors to mea-
sure deflections or changes in resonance frequency
is actually quite old. First reports go back to 1968,
when Wilfinger et al. [16.2] investigated silicon can-
tilever structures of 50 mm × 30 mm × 8 mm, i. e. quite
large structures, for detecting resonances. On the one
hand, they used localized thermal expansion in diffused
resistors (piezoresistors) located near the cantilever
support to create a temperature gradient for actuat-
ing the cantilever at its resonance frequency. On the
other hand, the piezoresistors could also be used to
sense mechanical deflection of the cantilever. This early
report already contains concepts for sensing and actu-
ation of cantilevers. In the following years only a few
reports are available on the use of cantilevers as sen-
sors, e.g. Heng [16.3], who fabricated gold cantilevers
capacitively coupled to microstrip lines in 1971 to me-
chanically trim high-frequency oscillator circuits. In
1979, Petersen [16.4] constructed cantilever-type mi-
cromechanical membrane switches in silicon that should
have filled the gap between silicon transistors and
mechanical electromagnetic relays. Kolesar [16.5] sug-
gested the use of cantilever structures as electronic
nerve-agent detectors in 1985.

Only with the availability of microfabricated can-
tilevers for AFM [16.1] did reports on the use of
cantilevers as sensors become more frequent. In 1994,
Itoh et al. [16.6] presented a cantilever coated with a thin
film of zinc oxide and proposed piezoresistive deflec-
tion readout as an alternative to optical beam-deflection
readout. Cleveland et al. [16.7] reported the tracking
of cantilever resonance frequency to detect nanogram
changes in mass loading when small particles are de-
posited onto AFM probe tips. Thundat et al. [16.8]
showed that the resonance frequency as well as static
bending of microcantilevers are influenced by ambient
conditions, such as moisture adsorption, and that deflec-
tion of metal-coated cantilevers can be further influenced
by thermal effects (bimetallic effect). The first chem-
ical sensing applications were presented by Gimzewski
et al. [16.9], who used static cantilever bending to
detect chemical reactions with very high sensitivity.
Later Thundat et al. [16.10] observed changes in the
resonance frequency of microcantilevers due to adsorp-
tion of analyte vapor on exposed surfaces. Frequency
changes have been found to be caused by mass loading
or adsorption-induced changes in the cantilever spring
constant. By coating cantilever surfaces with hygro-
scopic materials, such as phosphoric acid or gelatin, the

Part
B

1
6
.1



Nanomechanical Cantilever Array Sensors 16.2 Cantilever Array Sensors 445

cantilever can sense water vapor with picogram mass
resolution.

The deflection of individual cantilevers can easily
be determined using AFM-like optical beam-deflection
electronics. However, single cantilever responses can be
prone to artifacts such as thermal drift or unspecific ad-

sorption. For this reason the use of passivated reference
cantilevers is desirable. The first use of cantilever ar-
rays with sensor and reference cantilevers was reported
in 1998 [16.11], and represented significant progress
for the understanding of true (difference) cantilever
responses.

16.2 Cantilever Array Sensors

16.2.1 Concept

For the use of a cantilever as a sensor, neither a sharp tip
at the cantilever apex nor a sample surface is required.
The cantilever surfaces serve as sensor surfaces and al-
low the processes taking place on the surface of the
beam to be monitored with unprecedented accuracy, in
particular the adsorption of molecules. The formation of
molecule layers on the cantilever surface will generate
surface stress, eventually resulting in a bending of the
cantilever, provided the adsorption preferentially occurs
on one surface of the cantilever. Adsorption is controlled
by coating one surface (typically the upper surface) of
a cantilever with a thin layer of a material that exhibits
affinity to molecules in the environment (sensor surface).
This surface of the cantilever is referred to as the func-
tionalized surface. The other surface of the cantilever
(typically the lower surface) may be left uncoated or be
coated with a passivation layer, i. e. a chemical surface
that does not exhibit significant affinity to the molecules
in the environment to be detected. To enable function-
alized surfaces to be established, often a metal layer is
evaporated onto the surface designed as sensor surface.
Metal surfaces, e.g. gold, may be used to covalently bind
a monolayer that represents the chemical surface sensi-
tive to the molecules to be detected from environment.
Frequently, a monolayer of thiol molecules covalently
bound to a gold surface is used. The gold layer is also
favorable for use as a reflection layer if the bending of
the cantilever is read out via an optical beam-deflection
method.

16.2.2 Compressive and Tensile Stress

Given a cantilever coated with gold on its upper surface
for adsorption of alkanethiol molecules and left uncoated
on its lower surface (consisting of silicon and silicon ox-
ide), the adsorption of thiol molecules will take place on
the upper surface of the cantilever, resulting in a down-
ward bending of the cantilever due to the formation of
surface stress. We will call this process development of

compressive surface stress, because the forming self-
assembled monolayer produces a downward bending of
the cantilever (away from the gold coating). In the op-
posite situation, i. e. when the cantilever bends upwards,
we would speak of tensile stress. If both the upper and
lower surfaces of the cantilevers are involved in the re-
action, then the situation will be much more complex,
as a predominant compressive stress formation on the
lower cantilever surface might appear like tensile stress
on the upper surface. For this reason, it is of utmost im-
portance that the lower cantilever surface is passivated
in order that ideally no processes take place on the lower
surface of the cantilever.

16.2.3 Disadvantages
of Single Microcantilevers

Single microcantilevers are susceptible to parasitic de-
flections that may be caused by thermal drift or chemical
interaction of a cantilever with its environment, in
particular if the cantilever is operated in a liquid. Of-
ten, a baseline drift is observed during static-mode
measurements. Moreover, nonspecific physisorption of
molecules on the cantilever surface or nonspecific bind-
ing to receptor molecules during measurements may
contribute to the drift.

16.2.4 Reference and Sensor Cantilevers
in an Array

To exclude such influences, simultaneous measurement
of reference cantilevers aligned in the same array as
the sensing cantilevers is crucial [16.11]. As the differ-
ence in signals from the reference and sensor cantilevers
shows the net cantilever response, even small sensor
responses can be extracted from large cantilever de-
flections without being dominated by undesired effects.
When only single microcantilevers are used, no thermal-
drift compensation is possible. To obtain useful data
under these circumstances, both microcantilever sur-
faces have to be chemically well defined. One of the
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Fig. 16.2 (a) Single cantilever; (b) a pair of cantilevers, one to be
used as a sensor cantilever, the other as a reference cantilever,
and (c) an array of cantilevers with several sensor and reference
cantilevers

surfaces, typically the lower one, has to be passivated;
otherwise the cantilever response will be convoluted
with undesired effects originating from uncontrolled re-
actions taking place on the lower surface (Fig. 16.2a).
With a pair of cantilevers, reliable measurements are
obtained. One cantilever is used as the sensor cantilever
(typically coated on the upper side with a molecule

layer exhibiting affinity to the molecules to be detected),
whereas the other cantilever serves as the reference can-
tilever. It should be coated with a passivation layer on the
upper surface so as not to exhibit affinity to the molecules
to be detected. Thermal drifts are canceled out if differ-
ence responses, i. e. difference in deflections of sensor
and reference cantilevers, are taken. Alternatively, both
cantilevers are used as sensor cantilevers (sensor layer
on the upper surfaces), and the lower surface has to be
passivated (Fig. 16.2b). It is best to use a cantilever ar-
ray (Fig. 16.2c), in which several cantilevers are used
either as sensor or as reference cantilevers so that multi-
ple difference signals can be evaluated simultaneously.
Thermal drift is canceled out as one surface of all can-
tilevers, typically the lower one, is left uncoated or
coated with the same passivation layer.

16.3 Modes of Operation

In analogy to AFM, various operating modes for can-
tilevers are described in the literature. The measurement
of static deflection upon the formation of surface stress
during adsorption of a molecular layer is termed the
static mode. Ibach used cantilever-like structures to
study adsorbate-induced surface stress [16.12] in 1994.
Surface-stress-induced bending of cantilevers during the
adsorption of alkanethiols on gold was reported by
Berger et al. in 1997 [16.13]. The mode corresponding
to noncontact AFM, termed the dynamic mode, in which
a cantilever is oscillated at its resonance frequency, was
described by Cleveland et al. [16.7]. They calculated
mass changes from shifts in the cantilever resonance
frequency upon the mounting of tiny tungsten particle
spheres at the apex of the cantilever. The so-called heat
mode was pioneered by Gimzewski et al. [16.9], who
took advantage of the bimetallic effect that produces
a bending of a metal-coated cantilever when heat is
produced on its surface. Therewith they constructed
a miniaturized calorimeter with picojoule sensitivity.
Further operating modes exploit other physical effects
such as the production of heat from the absorption of
light by materials deposited on the cantilever (photother-
mal spectroscopy) [16.14], or cantilever bending caused
by electric or magnetic forces.

16.3.1 Static Mode

The continuous bending of a cantilever with increas-
ing coverage by molecules is referred to as operation in
the static mode, see Fig. 16.3a. Adsorption of molecules

onto the functional layer produces stress at the interface
between the functional layer and the molecular layer
forming. Because the forces within the functional layer
try to keep the distance between molecules constant, the
cantilever beam responds by bending because of its ex-
treme flexibility. This property is described by the spring
constant k of the cantilever, which for a rectangular mi-
crocantilever of length l, thickness t and width w is
calculated as

k = Ewt3

4l3
, (16.1)

where E is the Young’s modulus [ESi = 1.3 × 1011 N/m2

for Si(100)].
As a response to surface stress, e.g. owing to adsorp-

tion of a molecular layer, the microcantilever bends, and
its shape can be approximated as part of a circle with
radius R. This radius of curvature is given by [16.15,16]

1

R
= 6(1−ν)

Et2 . (16.2)

The resulting surface stress change is described using
Stoney’s formula [16.15]

∆σ = Et2

6R(1−ν)
, (16.3)

where E is Young’s modulus, t the thickness of the
cantilever, ν the Poisson’s ratio (νSi = 0.24), and R the
bending radius of the cantilever.

Static-mode operation has been reported in various
environments. In its simplest configuration, molecules
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Fig. 16.3a–i Basic cantilever operation modes: (a) static bending of a cantilever on adsorption of a molecular layer.
(b) Diffusion of molecules into a polymer layer leads to swelling of the polymer and eventually to a bending of the
cantilever. (c) Highly specific molecular recognition of biomolecules by receptors changes the surface stress on the upper
surface of the cantilever and results in bending. (d) Oscillation of a cantilever at its resonance frequency (dynamic mode)
allows information on mass changes taking place on the cantilever surface to be obtained (application as a microbalance).
(e) Changing the temperature while a sample is attached to the apex of the cantilever allows information to be gathered
on decomposition or oxidation process. (f) Dynamic-mode measurements in liquids yield details on mass changes during
biochemical processes. (g) In the heat mode, a bimetallic cantilever is employed. Here bending is due to the difference in
the thermal expansion coefficients of the two materials. (h) A bimetallic cantilever with a catalytically active surface bends
due to heat production during a catalytic reaction. (i) A tiny sample attached to the apex of the cantilever is investigated,
taking advantage of the bimetallic effect.Tracking the deflection as a function of temperature allows the observation of
phase transitions in the sample in a calorimeter mode

from the gaseous environment adsorb on the func-
tionalized sensing surface and form a molecular layer
(Fig. 16.3a), provided the molecules exhibit some affin-
ity to the surface. In the case of alkanethiol covalently
binding to gold, the affinity is very high, resulting in
a fast bending response within minutes [16.13]. Poly-
mer sensing layers only exhibit a partial sensitivity, i. e.
polymer-coated cantilevers always respond to the pres-
ence of volatile molecules, but the magnitude and tempo-
ral behavior are specific to the chemistry of the polymer.
Molecules from the environment diffuse into the poly-
mer layer at different rates, mainly depending on the
size and solubility of the molecules in the polymer layer
(Fig. 16.3b). A wide range of hydrophilic/hydrophobic
polymers can be selected, differing in their affinity to po-
lar/unpolar molecules. Thus, the polymers can be chosen
according to what an application requires.

Static-mode operation in liquids, however, usually
requires rather specific sensing layers, based on molecu-
lar recognition, such as DNA hybridization [16.17] or

antigen–antibody recognition (Fig. 16.3c). Cantilevers
functionalized by coating with biochemical sensing
layers respond very specifically using biomolecular
key–lock principles of molecular recognition. How-
ever, whether molecular recognition will actually lead
to a bending of the cantilever depends on the efficiency
of transduction, because the surface stress has to be
generated very close to the cantilever surface to pro-
duce bending. By just scaling down standard gene-chip
strategies to cantilever geometry utilizing long spacer
molecules so that DNA molecules become more acces-
sible for hybridization, the hybridization takes place at
a distance of several nanometers from the cantilever sur-
face. In such experiments, no cantilever bending was
observed [16.18].

16.3.2 Dynamic Mode

Mass changes can be determined accurately by us-
ing a cantilever actuated at its eigenfrequency. The
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eigenfrequency is equal to the resonance frequency
of an oscillating cantilever if the elastic proper-
ties of the cantilever remain unchanged during the
molecule-adsorption process and if damping effects are
insignificant. This mode of operation is called the dy-
namic mode (e.g., the use as a microbalance, Fig. 16.3d).
Owing to mass addition on the cantilever surface, the
cantilever’s eigenfrequency will shift to a lower value.
The frequency change per mass change on a rectangular
cantilever is calculated [16.19] according to

∆ f/∆m = 1

4πnll3w
×

√
E

ρ3 , (16.4)

where ρ = m/lwt is the mass density of the mi-
crocantilever and the deposited mass, and nl ≈ 1 is
a geometrical factor.

The mass change is calculated [16.8] from the fre-
quency shift using

∆m = k

4π2
×

(
1

f 2
1

− 1

f 2
0

)
, (16.5)

where f0 is the eigenfrequency before the mass change
occurs, and f1 the eigenfrequency after the mass change.

Mass-change determination can be combined
with varying environment temperature conditions
(Fig. 16.3e) to obtain a method introduced in the lit-
erature as micromechanical thermogravimetry [16.20].
A tiny piece of sample to be investigated has to be
mounted at the apex of the cantilever. Its mass should
not exceed several hundred nanograms. Adsorption, des-
orption and decomposition processes, occurring while
changing the temperature, produce mass changes in the
picogram range that can be observed in real time by
tracking the resonance-frequency shift.

Dynamic-mode operation in a liquid environment is
more difficult than in air, because of the large damping
of the cantilever oscillation due to the high viscosity
of the surrounding media (Fig. 16.3f). This results in
a low quality factor Q of the oscillation, and thus the
resonance frequency shift is difficult to track with high
resolution. The quality factor is defined as

Q = 2∆ f/ f0 . (16.6)

Whereas in air the resonance frequency can easily
be determined with a resolution of below 1 Hz, only
a frequency resolution of about 20 Hz is expected for
measurements in a liquid environment.

The damping or altered elastic properties of the
cantilever during the experiment, e.g. by a stiffening
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Fig. 16.4 (a) Resonance curve with no damping (0), and
increasing damping (1)–(3). The undamped curve with
resonance frequency f0 exhibits a very high amplitude,
whereas the resonance peak amplitude decreases with
damping. This also involves a shift in resonance frequen-
cies from f1 to f3 to lower values. (b) Corresponding phase
curves showing no damping (0), and increasing damp-
ing (1)–(3). The step-like phase jump at resonance of the
undamped resonance gradually broadens with increasing
damping

or softening of the spring constant caused by the ad-
sorption of a molecule layer, result in the fact that the
measured resonance frequency will not be exactly equal
to the eigenfrequency of the cantilever, and therefore
the mass derived from the frequency shift will be in-
accurate. In a medium, the vibration of a cantilever is
described by the model of a driven damped harmonic
oscillator:

m∗ d2x

dt2
+γ

dx

dt
+ kx = F cos(2π ft) , (16.7)
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where m∗ = const(mc +ml) is the effective mass of the
cantilever (for a rectangular cantilever the constant is
0.25). Especially in liquids, the mass of the co-moved
liquid ml adds significantly to the mass of the cantilever
mc. The term γ dx

dt is the drag force due to damping,
F cos(2π ft) is the driving force executed by the piezo-
oscillator, and k is the spring constant of the cantilever.

If no damping is present, the eigenfrequencies of the
various oscillation modes of a bar-shaped cantilever are
calculated according to

fn = α2
n

2π

√
k

2(mc +ml)
, (16.8)

where fn are the eigenfrequencies of the n-th
mode, αn are constants depending on the mode:
α1 = 1.8751, α2 = 4.6941, αn = π(n −0.5); k is the
spring constant of the cantilever, mc the mass of the
cantilever, and ml the mass of the medium surrounding
the cantilever, e.g. liquid [16.21].

Addition of mass to the cantilever due to adsorption
will change the effective mass as follows:

m∗ = const(mc +ml +∆m) , (16.9)

where ∆m is the additional mass adsorbed. Typically,
the co-moved mass of the liquid is much larger than the
adsorbed mass.

Figure 16.4 clearly shows that the resonance fre-
quency is only equal to the eigenfrequency if no damping
is present. With damping, the frequency at which the
peak of the resonance curve occurs is no longer identi-
cal to that at which the turning point of the phase curve
occurs. For example, resonance curve 2 with damping
γ2 has its maximum amplitude at frequency f2. The cor-
responding phase would be ϕres(γ2), which is not equal
to π/2, as would be expected in the undamped case. If
direct resonance-frequency tracking or a phase-locked
loop is used to determine the frequency of the oscillating
cantilever, then only its resonance frequency is detected,
but not its eigenfrequency. Remember that the eigenfre-
quency, and not the resonance frequency, is required to
determine mass changes.

16.3.3 Heat Mode

If a cantilever is coated with metal layers, thermal
expansion differences in the cantilever and the coat-
ing layer will further influence cantilever bending as
a function of temperature. This mode of operation is
referred to as the heat mode and causes cantilever

bending because of differing thermal expansion coeffi-
cients in the sensor layer and cantilever materials [16.9]
(Fig. 16.3g):

∆z = 5

4
(α1 −α2)

t1 + t2
t2
2κ

l3

(λ1t1 +λ2t2)w
P . (16.10)

Here α1, α2 are the thermal expansion coefficients of
the cantilever and coating materials, respectively, λ1, λ2
their thermal conductivities, t1, t2 the material thick-
nesses, P is the total power generated on the cantilever,
and κ is a geometry parameter of the cantilever de-
vice.

Heat changes are either caused by external influ-
ences (change in temperature, Fig. 16.3g), occur directly
on the surface by exothermal, e.g. catalytic, reac-
tions (Fig. 16.3h), or are due to material properties of
a sample attached to the apex of the cantilever (mi-
cromechanical calorimetry, Fig. 16.3i). The sensitivity
of the cantilever heat mode is orders of magnitude
higher than that of traditional calorimetric methods
performed on milligram samples, as it only requires
nanogram amounts of sample and achieves nano-
joule [16.20], picojoule [16.22] and femtojoule [16.23]
sensitivity.

These three measurement modes have established
cantilevers as versatile tools to perform experiments in
nanoscale science with very small amounts of material.

16.3.4 Further Operation Modes

Photothermal Spectroscopy
When a material adsorbs photons, a fraction of
the energy is converted into heat. This photother-
mal heating can be measured as a function of
the light wavelength to provide optical absorption
data of the material. The interaction of light with
a bimetallic microcantilever creates heat on the
cantilever surface, resulting in a bending of the can-
tilever [16.14]. Such bimetallic-cantilever devices are
capable of detecting heat flows due to an optical
heating power of 100 pW, which is two orders of
magnitude better than in conventional photothermal
spectroscopy.

Electrochemistry
A cantilever coated with a metallic layer (measure-
ment electrode) on one side is placed in an electrolytic
medium, e.g. a salt solution, together with a metallic
reference electrode, usually made of a noble metal. If
the voltage between the measurement and the refer-
ence electrode is changed, electrochemical processes
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on the measurement electrode (cantilever) are induced,
such as adsorption or desorption of ions from the
electrolyte solution onto the measurement electrode.
These processes lead to a bending of the cantilever
due to changes in surface stress and in the electrostatic
forces [16.24].

Detection of Electrostatic and Magnetic Forces
The detection of electrostatic and magnetic forces is
possible if charged or magnetic particles are deposited

on the cantilever [16.25, 26]. If the cantilever is placed
in the vicinity of electrostatic charges or magnetic par-
ticles, attractive or repulsion forces occur according to
the polarity of the charges or magnetic particles present
on the cantilever. These forces will result in an upward
or a downward bending of the cantilever. The mag-
nitude of the bending depends on the distribution of
charged or magnetic particles on both the cantilever and
in the surrounding environment according to the laws of
electrostatics and magnetism.

16.4 Microfabrication

Silicon cantilever sensor arrays have been microfab-
ricated using a dry-etching silicon-on-insulator (SOI)
fabrication technique developed in the micro-/nano-
mechanics department at the IBM Zurich Research
Laboratory. One chip comprises eight cantilevers, hav-
ing a length of 500 µm, a width of 100 µm, and
a thickness of 0.5 µm, and arranged on a pitch of 250 µm.
For dynamic-mode operation, the cantilever thickness
may be up to 7 µm. The resonance frequencies of the
cantilevers vary by 0.5% only, demonstrating the high
reproducibility and precision of cantilever fabrication.
A scanning electron microscopy image of a cantilever
sensor-array chip is shown in Fig. 16.5.

�		

Fig. 16.5 Scanning electron micrograph of a cantilever-
sensor array. Image courtesy of Viola Barwich, University
of Basel, Switzerland

16.5 Measurement Set-Up

16.5.1 Measurements in Gaseous or Liquid
Environments

A measurement set-up for cantilever arrays consists of
four major parts: (1) the measurement chamber contain-
ing the cantilever array, (2) an optical or electrical system
to detect the cantilever deflection (e.g. laser sources, col-
limation lenses and a position-sensitive detector (PSD),
or piezoresistors and Wheatstone-bridge detection elec-
tronics), (3) electronics to amplify, process and acquire
the signals from the detector, and (4) a gas- or liquid-
handling system to inject samples reproducibly into the
measurement chamber and purge the chamber.

Figure 16.6 shows the schematic set-up for experi-
ments performed in a gaseous (Fig. 16.6(a)) and a liquid,
biochemical (Fig. 16.6(b)) environment for the optical
beam-deflection embodiment of the measurement set-
up. The cantilever sensor array is located in an analysis

chamber with a volume of 3–90 µl, which has inlet and
outlet ports for gases or liquids. The cantilever deflection
is determined by means of an array of eight vertical-
cavity surface-emitting lasers (VCSELs) arranged at
a linear pitch of 250 µm that emit at a wavelength of
760 nm into a narrow cone of 5 to 10◦.

The light of each VCSEL is collimated and focused
onto the apex of the corresponding cantilever by a pair
of achromatic doublet lenses, 12.5 mm in diameter. This
size has to be selected in such a way that all eight
laser beams pass through the lens close to its center to
minimize scattering, chromatic and spherical aberration
artifacts. The light is then reflected off the gold-coated
surface of the cantilever and hits the surface of a position-
sensing detector (PSD). PSDs are light-sensitive
photo-potentiometer-like devices that produce photocur-
rents at two opposing electrodes. The magnitude of the
photocurrents depends linearly on the distance of the
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Fig. 16.6 Schematic of measurement
set-ups for (a) a gaseous (artificial
nose) and (b) a liquid environment
(biochemical sensor)

impinging light spot from the electrodes. Thus the posi-
tion of an incident light beam can easily be determined
with micrometer precision. The photocurrents are trans-
formed into voltages and amplified in a preamplifier. As
only one PSD is used, the eight lasers cannot be switched
on simultaneously. Therefore, a time-multiplexing pro-
cedure is used to switch the lasers on and off sequentially
at typical intervals of 10–100 ms. The resulting deflec-
tion signal is digitized and stored together with time
information on a personal computer (PC), which also
controls the multiplexing of the VCSELs as well as the
switching of the valves and mass flow controllers used
for setting the composition ratio of the analyte mixture.

The measurement set-up for liquids (Fig. 16.6b) con-
sists of a poly-etheretherketone (PEEK) liquid cell,
which contains the cantilever array and is sealed by
a viton O-ring and a glass plate. The VCSELs and the
PSD are mounted on a metal frame around the liquid
cell. After preprocessing the position of the deflected
light beam in a current-to-voltage converter and ampli-

fier stage, the signal is digitized in an analog-to-digital
converter and stored on a PC. The liquid cell is equipped
with inlet and outlet ports for liquids. They are connected
via 0.18-mm-inner-diameter Teflon tubing to individual
thermally equilibrated glass containers, in which the bio-
chemical liquids are stored. A six-position valve allows
the inlet to the liquid chamber to be connected to each
of the liquid-sample containers separately. The liquids
are pulled (or pushed) through the liquid chamber by
means of a syringe pump connected to the outlet of the
chamber. A Peltier element is situated very close to the
lumen of the chamber to allow temperature regulation
within the chamber. The entire experimental set-up is
housed in a temperature-controlled box regulated with
an accuracy of 0.01 K to the target temperature.

16.5.2 Readout Principles

This section describes various ways to determine the de-
flection of cantilever sensors. They differ in sensitivity,
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effort for alignment and set-up, robustness and ease of
readout as well as their potential for miniaturization.

Piezoresistive readout
Piezoresistive cantilevers [16.6, 20] are usually U-
shaped, having diffused piezoresistors in both of the
legs close to the hinge (Fig. 16.7a). The resistance in
the piezoresistors is measured by a Wheatstone-bridge
technique employing three reference resistors, one of
which is adjustable. The current flowing between the
two branches of the Wheatstone bridge is initially nulled
by changing the resistance of the adjustable resistor.
If the cantilever bends, the piezoresistor changes its
value and a current will flow between the two branches
of the Wheatstone bridge. This current is converted
via a differential amplifier into a voltage for static-
mode measurement. For dynamic-mode measurement,
the piezoresistive cantilever is externally actuated via
a frequency generator connected to a piezocrystal. The
alternating current (AC) actuation voltage is fed as ref-
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Fig. 16.7 (a) Piezoresistive readout: (1) cantilever, (2) piezoresistors, (3) Au contact pads, (4) external piezocrystal for
actuation, (5) Wheatstone-bridge circuit, (6) differential amplifier, (7) lock-in amplifier, (8) function generator. (b) Piezo-
electric readout. (c) Capacitive readout: (1) solid support, (2) rigid beam with counter-electrode, (3) insulation layer
(SiO2), (4) flexible cantilever with electrode. (d) Interferometric readout: (1) laser diode, (2) polarizer, (3) nonpolarizing
beam splitter, (4) Wollaston prism, (5) focusing lens, (6) cantilever, (7) reference beam (near cantilever hinge), (8) ob-
ject beam (near cantilever apex), (9) diaphragm and λ/4 plate, (10) focusing lens, (11) Wollaston prism, (12) quadrant
photodiode, (13) differential amplifier. (e) Beam-deflection readout

erence voltage into a lock-in amplifier and compared
with the response of the Wheatstone-bridge circuit. This
technique allows one to sweep resonance curves and to
determine shifts in resonance frequency.

Piezoelectric Readout
Piezoelectric cantilevers [16.27] are actuated by apply-
ing an electric AC voltage via the inverse piezoelectric
effect (self-excitation) to the piezoelectric material (PZT
or ZnO). Sensing of bending is performed by recording
the piezoelectric current change due to the fact that the
PZT layer may produce a sensitive field response to weak
stress through the direct piezoelectric effect. Such can-
tilevers are multilayer structures consisting of an SiO2
cantilever and the PZT piezoelectric layer. Two electrode
layers, insulated from each other, provide electrical con-
tact. The entire structure is protected using passivation
layers (Fig. 16.7b). An identical structure is usually in-
tegrated into the rigid chip body to provide a reference
for the piezoelectric signals from the cantilever.
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Capacitive Readout
For capacitive readout (Fig. 16.7c), a rigid beam
with an electrode mounted on the solid support and
a flexible cantilever with another electrode layer are
used [16.28, 29]. Both electrodes are insulated from each
other. Upon bending of the flexible cantilever the capac-
itance between the two electrodes changes and allows
the deflection of the flexible cantilever to be deter-
mined. Both static- and dynamic-mode measurements
are possible.

Optical (Interferometric) Readout
Interferometric methods [16.30, 31] are most accurate
for the determination of small movements. A laser beam
passes through a polarizer plate (polarization 45◦) and
is partially transmitted by a nonpolarized beam split-
ter (Fig. 16.7d). The transmitted beam is divided in
a Wollaston prism into a reference and an object beam.
These mutually orthogonally polarized beams are then
focused onto the cantilever. Both beams (the reference
beam from the hinge region and the object beam from
the apex region of the cantilever) are reflected back
to the objective lens, pass the Wollaston prism, where
they are recombined into one beam, which is then re-
flected into the other arm of the interferometer, where
after the λ/4 plate a phase shift of a quarter wave-
length between object and reference beam is established.
Another Wollaston prism separates the reference and
object beams again for analysis with a four-quadrant
photodiode. A differential amplifier is used to obtain
the cantilever deflection with high accuracy. However,
the interferometric set-up is quite bulky and difficult to
handle.

Optical (Beam-Deflection) Readout
The most frequently used approach to read out cantilever
deflections is optical beam deflection [16.32], because
it is a comparatively simple method with an excellent
lateral resolution. A schematic of this method is shown
in Fig. 16.7e.

The actual cantilever deflection ∆x scales with the
cantilever dimensions; therefore the surface stress ∆σ

in N/m is a convenient quantity to measure and compare
cantilever responses. It takes into account the cantilever
material properties, such as Poisson’s ratio ν, Young’s
modulus E and the cantilever thickness t. The radius of
curvature R of the cantilever is a measure of bending,
(16.2). As shown in the drawing in Fig. 16.7e, the actual
cantilever displacement ∆x is transformed into a dis-
placement ∆d on the PSD. The position of a light spot
on a PSD is determined by measuring the photocurrents
from the two facing electrodes. The movement of the
light spot on the linear PSD is calculated from the two
currents I1 and I2 and the size L of the PSD by

∆d = I1 − I2

I1 + I2
· L

2
. (16.11)

As all angles are very small, it can be assumed that the
bending angle of the cantilever is equal to half of the an-
gle θ of the deflected laser beam, i. e. θ/2. Therefore, the
bending angle of the cantilever can be calculated to be

θ

2
= ∆d

2s
, (16.12)

where s is the distance between the PSD and the can-
tilever. The actual cantilever deflection ∆x is calculated
from the cantilever length l and the bending angle θ/2 by

∆x = θ/2

2
· l . (16.13)

Combination of (16.12) and (16.13) relates the actual
cantilever deflection ∆x to the PSD signal:

∆x = l∆d

4s
. (16.14)

The relation between the radius of curvature and the
deflection angle is

θ

2
= l

R
, (16.15)

and after substitution becomes

R = 2ls

∆d
, (16.16)

or R = 2∆x
l2 .

16.6 Functionalization Techniques

16.6.1 General Strategy

To serve as sensors, cantilevers have to be coated with
a sensor layer that is either highly specific, i. e. is able

to recognize target molecules in a key–lock process, or
partially specific, so that the sensor information from
several cantilevers yields a pattern that is characteristic
of the target molecules.
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To provide a platform for specific functionalization,
the upper surface of these cantilevers is typically coated
with 2 nm of titanium and 20 nm of gold, which yields
a reflective surface and an interface for attaching func-
tional groups of probe molecules, e.g. for anchoring
molecules with a thiol group to the gold surface of the
cantilever. Such thin metal layers are believed not to
contribute significantly to bimetallic bending, because
the temperature is kept constant.

16.6.2 Functionalization Methods

There are numerous ways to coat a cantilever with ma-
terial, both simple and more advanced ones. The method
of choice should be fast, reproducible, reliable and allow
one or both of the surfaces of a cantilever to be coated
separately.

Simple Methods
Obvious methods to coat a cantilever are thermal or
electron-beam-assisted evaporation of material, elec-
trospray or other standard deposition methods. The
disadvantage of these methods is that they only are suit-
able for coating large areas, but not individual cantilevers
in an array, unless shadow masks are used. Such masks
need to be accurately aligned to the cantilever structures,
which is a time-consuming process.

Other methods to coat cantilevers use manual place-
ment of particles onto the cantilever [16.9, 20, 33–35],
which requires skillful handling of tiny samples. Can-
tilevers can also be coated by directly pipetting solutions
of the probe molecules onto the cantilevers [16.36] or
by employing air-brush spraying and shadow masks to
coat the cantilevers separately [16.37].

All these methods have only limited reproducibil-
ity and are very time-consuming if a larger number of
cantilever arrays has to be coated.
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Fig. 16.8 (a) Cantilever functionalization in microfluidic networks.
(b) Incubation in dimension-matched microcapillaries. (c) Coat-
ing with an inkjet spotter: (1) cantilever array, (2) reservoir wells,
(3) microfluidic network with channels, (4) PDMS cover to avoid
evaporation, (5) microcapillaries, (6) inkjet nozzle, (7) inkjet x-y-z
positioning unit

Microfluidics
Microfluidic networks (µFN) [16.38] are structures of
channels and wells, etched several ten to hundred mi-
crometer deep into silicon wafers. The wells can be
filled easily using a laboratory pipette, so that the fluid
with the probe molecules for coating the cantilever is
guided through the channels towards openings at a pitch
matched to the distance between individual cantilevers
in the array (Fig. 16.8a).

The cantilever array is then introduced into the open
channels of the µFN that are filled with a solution of
the probe molecules. The incubation of the cantilever
array in the channels of the µFN takes from a few
seconds (self-assembly of alkanethiol monolayers) to
several tens of minutes (coating with protein solutions).
To prevent evaporation of the solutions, the channels are
covered by a slice of poly(dimethylsiloxane) (PDMS).
In addition, the microfluidic network may be placed in
an environment filled with saturated vapor of the solvent
used for the probe molecules.

Array of Dimension-matched Capillaries
A similar approach is insertion of the cantilever ar-
ray into an array of dimension-matched disposable
glass capillaries. The outer diameter of the glass cap-
illaries is 240 µm so that they can be placed neatly
next to each other to accommodate the pitch of the
cantilevers in the array (250 µm). Their inner diam-
eter is 150 µm, providing sufficient room to insert the
cantilevers (width: 100 µm) safely (Fig. 16.8b). This
method has been successfully applied for the depo-
sition of a variety of materials onto cantilevers, such
as polymer solutions [16.37], self-assembled monolay-
ers [16.39], thiol-functionalized single-stranded DNA
oligonucleotides [16.40], and protein solutions [16.41].

Inkjet Spotting
All of the above techniques require manual align-
ment of the cantilever array and functionalization
tool, and are therefore not ideal for coating a large
number of cantilever arrays. The inkjet-spotting tech-
nique, however, allows rapid and reliable coating of
cantilever arrays [16.42, 43]. An x-y-z positioning sys-
tem allows a fine nozzle (capillary diameter: 70 µm)
to be positioned with an accuracy of approximately
10 µm over a cantilever. Individual droplets (diameter:
60–80 µm, volume 0.1–0.3 nl) can be dispensed indi-
vidually by means of a piezo-driven ejection system
in the inkjet nozzle. When the droplets are spotted
with a pitch smaller than 0.1 mm, they merge and
form continuous films. By adjusting the number of
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droplets deposited on the cantilevers, the resulting
film thickness can be controlled precisely. The inkjet-
spotting technique allows a cantilever to be coated within
seconds and yields very homogeneous, reproducibly
deposited layers of well-controlled thickness. Success-
ful coating of self-assembled alkanethiol monolayers,

polymer solutions, self-assembled DNA single-stranded
oligonucleotides [16.43], and protein layers has been
demonstrated. In conclusion, inkjet spotting has turned
out to be a very efficient and versatile method for func-
tionalization, which can even be used to coat arbitrarily
shaped sensors reproducibly and reliably [16.44, 45].

16.7 Applications

In recent years the field of cantilever sensors has
been very active, as the bar chart in Fig. 16.9 of the
number of publications between 1993 and 2004 on
microcantilevers, cantilever sensors and cantilever ar-
rays demonstrates. This section gives a short overview
of the research topics in the field of microcantilever
sensors in the literature. Early reports involve the
adsorption of alkyl thiols on gold [16.13, 46], detec-
tion of mercury vapor and relative humidity [16.47],
dye molecules [16.34], monoclonal antibodies [16.48],
sugar and proteins [16.49], solvent vapors [16.36,
37, 50, 51], fragrance vapors [16.52] as well as the
pH-dependent response of carboxy-terminated alkyl
thiols [16.39], label-free DNA hybridization detec-
tion [16.17, 40], and biomolecular recognition of
proteins relevant in cardiovascular diseases [16.41].
The more recent literature is reviewed in [16.53–56].
Major topics published in 2003 and 2004 include
the following studies: fabrication of silicon, piezore-
sistive [16.57, 58] or polymer [16.59] cantilevers,
detection of vapors and volatile compounds, e.g. mer-
cury vapor [16.60], HF vapor [16.61, 62], chemical
vapors [16.63], as well as the development of gas
sensors utilizing the piezoresistive method [16.64].
Pd-based sensors for hydrogen [16.65], deuterium
and tritium [16.66] are reported, as well as sen-
sors based on hydrogels [16.67] or zeolites [16.68].
A humidity sensor is suggested in [16.69]. Further
topics include the detection of explosives [16.70],
pathogens [16.71], nerve agents [16.72], viruses [16.73],
bacteria, e.g. E. coli [16.74], and pesticides such
as dichlorodiphenyltrichloroethane(DDT) [16.75]. The
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Fig. 16.9 Number of publications from 1993 to 2004 in the
field of microcantilevers, cantilever sensors and cantilever
arrays

issues of detection of environmental pollutants are dis-
cussed in [16.76]. A chemical-vapor sensor based on
the bimetal technique is described in [16.77]. Also
electrochemical redox reactions have been measured
with cantilevers [16.78]. In biochemical applica-
tions, detection of DNA [16.18, 79], proteins [16.80],
prostate-specific antigen (PSA) [16.81], peptides us-
ing antibodies [16.82] and living cells [16.83] has
been reported. Medical applications include diagnos-
tics [16.84], drug discovery [16.85], and detection
of glucose [16.86]. To increase the complexity of
microcantilever applications, two-dimensional micro-
cantilever arrays have been proposed for multiplexed
biomolecular analysis [16.87, 88].

16.8 Conclusions and Outlook

Cantilever-sensor array techniques have turned out to
be a very powerful and highly sensitive tool to study
physisorption and chemisorption processes, as well as

to determine material-specific properties such as heat
transfer during phase transitions. Experiments in liquids
have provided new insights into such complex biochem-
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ical reactions as the hybridization of DNA or molecular
recognition in antibody–antigen systems or proteomics.
Future developments must go towards technological
applications, in particular to find new ways to char-
acterize real-world samples such as clinical samples.
The development of medical diagnosis tools requires an

improvement of the sensitivity of a large number of ge-
netic tests to be performed with small amounts of single
donor-blood or body-fluid samples at low cost. From
a scientific point of view, the challenge lies in optimiz-
ing cantilever sensors to improve their sensitivity to the
ultimate limit: the detection of individual molecules.
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