

Composition Operators on Lorentz-Karamata-Bochner Spaces

ANURADHA GUPTA¹, NEHA BHATIA^{2,*}

¹Department of Mathematics, Delhi College of Arts and Commerce, University of Delhi, Delhi-110023, India ²Department of Mathematics, University of Delhi, Delhi -110007, India ^{*}Corresponding author: nehaphd@yahoo.com

Received January 10, 2015; Revised February 10, 2015; Accepted February 27, 2015

Abstract In this paper, study of the composition operators on Lorentz-Karamata-Bochner spaces and characterization of the properties like boundedness, closedness and essential range of these operators on the space has been made.

Keywords: slowly varying function, Lorentz-Karamata-Bochner spaces, composition operators, closed range, essential range

Cite This Article: ANURADHA GUPTA, and NEHA BHATIA, "Composition Operators on Lorentz-Karamata-Bochner Spaces." *American Journal of Mathematical Analysis*, vol. 3, no. 1 (2015): 21-25. doi: 10.12691/ajma-3-1-5.

1. Introduction

Let $(\Omega, \mathcal{A}, \mu)$ be a σ -finite measure space. A measurable transformation T is said to be non-singular if $\mu(T^{-1}(A)) = 0$ whenever $\mu(A) = 0$ for every $A \in \mathcal{A}$.

If *T* is non-singular, then we say that μT^{-1} is absolutely continuous with respect to μ . Hence, by Radon-Nikodym theorem there exists a unique non-negative essentially bounded function f_T such that

$$\mu(T^{-1})(A) = \int_A f_T d\mu \text{ for } A \in \mathcal{A}.$$

Let *f* be any complex-valued measurable function. For *s* ≥ 0 , the *distribution function* μ_f of *f* is defined as

$$\mu_f(s) = \mu \{ \omega \in \Omega : |f(\omega)| > s \}.$$

The non-increasing rearrangement f^* of f is defined as

$$f^{*}(t) = \inf \{s > 0 : \mu_{f}(s) \le t\}, \text{ for all } t \ge 0.$$

The maximal (average) operator is given by

$$f^{**}(t) = \frac{1}{t} \int_0^t f^*(s) ds \, .$$

One can refer to [4] for the properties of these functions. **Definition 1.** A positive and Lebesgue measurable function b is said to be slowly varying (s.v.) on $(0, \infty)$ if, for each $\epsilon > 0$, tcb(t) is equivalent to a non-decreasing function and t-cb(t) is equivalent to a non-increasing function on $(0, \infty)$.

Given a s.v. function b on $(0, \infty)$, we denote by γ_b the positive function defined by

$$\gamma_b(t) = b\left(\max\left\{t, \frac{1}{t}\right\}\right)$$

For various properties of slowly varying function we can refer to [4,10].

For $1 , <math>1 \le q < \infty$ and for a measurable function *f* on Ω , define

$$\| f \|_{p,q;\alpha} = \left\| t^{\frac{1}{p-q}} \gamma_b(t) f^{**}(t) \right\|_{q;(0,\infty)}$$
$$= \left(\int_0^\infty \left(t^{\frac{1}{p-q}} \gamma_b(t) f^{**}(t) \right)^q dt \right)^{\frac{1}{q}}$$

The Lorentz-Karamata space $L_{p,q;b}$ introduced in [4] is the set of all measurable functions f on Ω such that

$$\left\|f\right\|_{p,q;b} < \infty \ .$$

Let $f: \Omega \to X$ be a strongly measurable function on a Banach space X. Define a function ||f|| as

$$\|f\|(w) = \|f(w)\|$$

for all $\omega \in \Omega$. Then the Lorentz-Karamata-Bochner space $L_{p,q;b}(\Omega, X)$ is a rearrangement invariant-Bochner space for $p, q \in (0, \infty)$ where the norm is given as

$$\|f\|_{p,q;b} = \left\| t^{\frac{1}{p-q}} \gamma_{b}(t) \right\| f^{**} \|(t)\|_{q;(0,\infty)}$$

The Lorentz-Karamata space $L_{p,q;b}$ is a Banach space and we still have the density of simple functions in it and its dual is

$$L_{p,q;b}^{*}\left(\Omega,X\right) = L_{p',q';b^{-1}}\left(\omega,X^{*}\right)$$

where X^* has the Radon-Nikodym property. For every $g \in L_{p',q';b^{-1}}$, we can find a bounded linear functional $F_g \in (L_{p,q;b})^* = L_{p',q';b^{-1}}$ defined as $F_g(f) = \int f g d\mu$

for all $f \in L_{p,q;b}(\Omega, X)$. For each $g \in L_{p',q';b^{-1}}(\omega, X^*)$,

there exists a unique $T^{-1}(\mathcal{A})$ measurable function E(g) such that

$$\int f g d\mu = \int f E(g) d\mu,$$

for each $T^{-1}(\mathcal{A})$ measurable function *f* for which the left integral exists. E(g) is called the conditional expectation [11] of *g* with respect to $T^{-1}(\mathcal{A})$. The operator P_T defined as

$$P_T g = f_T \cdot E(g) \circ T^{-1}$$

is called Frobenius Perron and f_T is the Radon-Nikodym derivative of μT^{-1} with respect to μ . It satisfies the property

$$E(g) \circ T^{-1} = f$$
 if and only if $E(g) = f \circ T$

Let T be a non-singular measurable transformation on Ω then the composition operator C_T from $L_{p,q;b}(\Omega, X)$ into the space of strongly measurable functions $L(\Omega, X)$ is given by

$$(C_T f)(\omega) = f(T(\omega))$$

for all $\omega \in \Omega$. An operator *T* is called Fredholm if R(T) is closed, dim $N(T) < \infty$ and dim $N(T^*) < \infty$ where R(T), N(T) and $N(T^*)$ denote the range, kernel and cokernel of *T*. **B**(X) denotes the space of all bounded linear operators on X. Multiplication operators on this space are already studied in [5] and on different spaces in [1,2,3,6,7,8,9,12]. In this paper, we discuss about the composition operators on the Lorentz-Karamata-Bochner space and study its various properties like boundedness, closedness and compactness.

2. Composition Operators

Theorem 2.1. A non-singular transformation $T: \Omega \rightarrow \Omega$ induces the composition operator C_T if and only if for some k > 0,

$$\mu T^{-1}(A) \leq k \, \mu(A)$$

for $A \in \mathcal{A}$.

Proof. Suppose that the composition operator is bounded on $L_{p,q;b}(\Omega, X)$. Then there exists K > 0 such that

$$\left\|C_T f\right\|_{p,q;b} \le K \left\|f\right\|_{p,q;b}$$

Let x_0 be the fixed element of X with $||x_0|| = 1$. Define the characteristic function χ_A for each measurable subset A of \mathcal{A} by,

$$\chi_A(\omega) = \begin{cases} x_0, & \text{if } \omega \in A \\ 0, & \text{otherwise} \end{cases}$$

Then we find that

$$\left\|\chi_{A}\right\|^{*}(t) = \chi_{\left[0,\mu(A)\right]}(t)$$

$$\left\|\chi_{A}\right\|^{**}\left(t\right) = \begin{cases} 1, & \text{if } \mu(A) \leq t \\ \frac{\mu(A)}{t}, & \text{if } \mu(A) \leq t \end{cases}$$

This gives

$$\|\chi_A\|_{p,q;b} \approx (\mu(A))^{\frac{1}{p}} (\gamma_b^m(\mu(A))).$$

and

and

$$\left\|C_T \chi_A\right\|_{p,q;b} \approx \left(\mu\left(T^{-1}\left(A\right)\right)\right)^{\frac{1}{p}} \left(\gamma_b^m\left(\mu\left(T^{-1}\left(A\right)\right)\right)\right).$$

Thus, we get

$$\begin{aligned} \|C_T \chi_A\|_{p,q;b} &\leq K \|\chi_A\|_{p,q;b} \\ \left(\mu \left(T^{-1}(A)\right)\right)^{\frac{1}{p}} \left(\gamma_b^m \left(\mu \left(T^{-1}(A)\right)\right)\right) \\ &\leq K \left(\mu(A)\right)^{\frac{1}{p}} \left(\gamma_b^m \left(\mu(A)\right)\right) \\ &\mu \left(T^{-1}(A)\right) &\leq k \mu(A), \text{where} \\ &k = \left(\frac{\left(\gamma_b^m \left(\mu(A)\right)\right)}{\left(\gamma_b^m \left(\mu \left(T^{-1}(A)\right)\right)\right)}\right)^p. \end{aligned}$$

Conversely, suppose the given condition holds. Then

$$\mu_{C_T f}(s) = \mu \{ \omega \in \Omega : \|C_T f\|(\omega) > s \}$$

= $\mu \{ \omega \in \Omega : \|f \circ T\|(\omega) > s \}$
= $\mu T^{-1} \{ \omega \in \Omega : \|f\|(\omega) > s \}$
 $\leq k \mu \{ \omega \in \Omega : \|f\|(\omega) > s \}$
= $\mu_f(s)$

and

$$\|C_T f\|^*(t) = \inf \{s > 0 : \mu_{C_T f}(s) \le t\}$$

\$\le \inf \{s > 0 : k\mu_f(s) \le t\} = k \|f\|^*(t)\$

Thus

$$|C_T f||^*(t) \le k ||f||^*(t)$$

Also

$$\|C_T f\|^{**} \le k \|f\|^{**} (t)$$

Therefore

$$\|C_T f\|_{p,q;b} = \left\| t^{\frac{1}{p-q}} \gamma_b(t) \|C_T f\|^{**}(t) L_q(0,\infty) \right\|$$

$$\leq \left\| t^{\frac{1}{p-q}} \gamma_b(t) k \|f\|^{**}(t) L_q(0,\infty) \right\| = k \|f\|_{p,q;b}.$$

Thus, C_T is a bounded operator on $L_{p,q;b}(\Omega, X)$.

Corollary 2.2. A measurable transformation T induces the composition operator C_T on $L_{p,q;b}(\Omega, X)$ if and only if μT^{-1} is absolutely continuous with respect to μ and f_T

belongs to $L^{\infty}(\Omega)$.

Theorem 2.3. If C_T is the composition operator on $L_{p,q;b}(\Omega, X)$. Then C_T is measure preserving if and only if C_T is an isometry.

Proof. Suppose that T is measure preserving them

 $\mu T^{-1}(A) = \mu(A)$

for all $A \in \mathcal{A}$.

The distribution function of C_T becomes

$$\mu_{C_T f}(s) = \mu \{ \omega \in \Omega : ||C_T f||(\omega) > s \}$$

= $\mu \{ \omega \in \Omega : ||f \circ T||(\omega) > s \}$
= $\mu \{ \omega \in \Omega : ||f||(\omega) > s \}$
= $\mu_f(s)$

and

$$\|C_T f\|^*(t) = \|f\|^*(t)$$

Also

$$\|C_T f\|^{**} = \|f\|^{**}(t)$$

This gives

$$\begin{split} & \left\| C_T f \right\|_{p,q;b} = \left\| t^{\frac{1}{p-q}} \gamma_b(t) \left\| C_T f \right\|^{**}(t) L_q(0,\infty) \right\| \\ & = \left\| t^{\frac{1}{p-q}} \gamma_b(t) \left\| f \right\|^{**}(t) L_q(0,\infty) \right\| \\ & = \left\| f \right\|_{p,q;b}. \end{split}$$

Converse of the theorem is obvious.

Example 1. Let $\Omega = \mathbb{R}$ with Lebesgue measure and X be any Banach space. Define

$$T(\omega) = a\omega + b \ a \neq 0,1$$

Then T is a non-singular transformation on Ω which is not measure preserving. Hence C_T is not an isometry on $L_{p,q;b}(\Omega, X)$.

Theorem 2.4. If C_T is a composition operator on $L_{p,q;b}(\Omega, X)$. Then C_T has closed range if and only if there exists $\epsilon > 0$ such that $f_T(\omega) \ge \epsilon$ for almost all $\omega \in S$, the support of f_T .

Proof. Suppose f_T is bounded away from zero then there exists a positive real number ϵ , such that

$$f_T(\omega) \ge \epsilon$$

for almost all $\omega \in S$.

$$\mu \circ T^{-1}(A) = \int_{A} f_{T}(\omega) d\mu \ge \epsilon \mu(A)$$

where

$$A = \left\{ \omega \in S : |f(\omega)| > s \right\}$$
$$\mu_{C_T f}(s) = \mu \left\{ \omega \in \Omega : |f \circ T(\omega)| > s \right\}$$
$$= \mu T^{-1} \left\{ \omega \in S : |f(\omega)| > s \right\}$$
$$\geq \epsilon \mu \left\{ \omega \in S : |f(\omega)| > s \right\}$$
$$\mu_{C_T f}(s) \geq \epsilon \mu_f(s)$$

and

$$\left| f \circ T \right| ^{*} (\epsilon t) \geq \left\| f \right\| ^{*} (t)$$
, for all $t \geq 0$

and

$$\left\| f \circ T \right\|^{**} \left(\epsilon t \right) \ge \left\| f \right\|^{**} \left(t \right), \text{ for all } t \ge 0$$

This gives

$$\left\|C_{T}f\right\|_{p,q;b} \geq \epsilon^{\frac{1}{p}} \left\|f\right\|_{p,q;b}.$$

Thus, C_T has closed range.

Conversely, C_T has closed range then there exists $\epsilon > 0$ such that

$$\left\|C_{T}f\right\|_{p,q;b} \ge \epsilon \left\|f\right\|_{p,q;b}$$

for all $f \in L_{p,q;b}(S)$.

Choose a natural number *n* such that
$$\frac{1}{n} < \epsilon$$
. Let if
possible, $\mu(B) > 0$ where $B = \left\{ x \in S : f_T(x) < \frac{1}{n^p} \right\}$.
Then $\mu(B) < \frac{1}{n^p} \mu(B)$. Then

$$\left\|\chi_{B}\circ T\right\|^{*}(t) \leq \frac{1}{n^{p}} \left\|\chi_{B}\right\|^{*}(n^{p}T), \text{ for all } t > 0$$

and

$$\left\|\chi_B \circ T\right\|^{**}(t) \leq \frac{1}{n^p} \left\|\chi_B\right\|^{**} \left(n^p T\right), \text{ for all } t > 0$$

This gives

$$\left\|C_T \chi_B\right\|_{p,q;b}^q \leq \frac{1}{n^p} \left\|\chi_B\right\|_{p,q;b}^q$$

which is a contradiction. Hence f_T is bounded away from zero.

Theorem 2.5. If C_T is a composition operator on $L_{p,q;b}(\Omega, X)$. Then C_T has dense range in $L_{p,q;b}(\Omega, T^{-1}(\mathcal{A}), \mu)$.

Proof. We will consider two cases:

Case 1. When $\mu(\Omega) < \infty$. Then $\chi_A \in L_{p,q;b}\left(\Omega, T^{-1}(\mathcal{A}), \mu\right)$ so we can obtain $B \in \mathcal{A}$ such that

$$\chi_A = \chi_{T^{-1}(B)} = C_T \chi_B$$

Thus C_T belong to the range of C_T and hence all simple functions of $L_{p,q;b}\left(\Omega, T^{-1}(\mathcal{A}), \mu\right)$ belong to $R(C_T)$ where $R(C_T)$ denotes the range of C_T . Hence, range of C_T is dense in $L_{p,q;b}\left(\Omega, T^{-1}\mathcal{A}, \mu\right)$.

Case 2. When $\mu(\Omega) = \infty$. Let $g \in R(C_T)$ then there is a sequence of functions $\langle g_n \rangle$ in $R(C_T)$ converging to gin $L_{p,q;b}(\Omega, \mathcal{A}, \mu)$. Since $g_n \in R(C_T)$,

 $g_n = C_T f_n$.

Clearly, each g_n is $T^{-1}(\mathcal{A})$ measurable and hence g is also $T^{-1}(\mathcal{A})$ measurable. Now suppose $g = \chi_A$. By adjusting f on a set of measure zero, suppose $A = T^{-1}(B)$ for some $B \in \Omega$. Since $(\Omega, \mathcal{A}, \mu)$ is a σ -finite space

$$B = \bigcup_{n=1}^{\infty} B_n$$

where $\mu(B_n) < \infty$ for each *n* and $\langle B_n \rangle$ is an increasing sequence of measurable sets.

This gives

$$\left\|C_{T}\chi_{B_{n}}-f\right\|=\left\|C_{T}\chi_{B_{n}}-C_{T}\chi_{B}\right\|=\left\|\left(\chi_{B_{n}}-\chi_{B}\right)\circ T\right\|$$

which converges to zero. Thus $R(C_T)$ is dense in $L_{p,q;b}(\Omega, T^{-1}(\mathcal{A}), \mu)$.

Theorem 2.6. *T* inducing the composition operator C_T on $L_{p,q;b}(\Omega, \mathcal{A}, \mu)$ is a surjection if and only if f_T is bounded away from zero on its support and $T^{-1}(\mathcal{A}) = \mathcal{A}$.

Proof. Suppose C_T is a surjection. Then from the last theorem C_T has closed range if and only if f_T is bounded away from zero on its support. Let $A \in \mathcal{A}$ be of finite measure. Since C_T is a surjection there exist $f \in L_{p,q;b}(\Omega, \mathcal{A}, \mu)$ such that $C_T f = \chi_A$. Let

$$B = \left\{ \omega : \omega \in \Omega \text{ and } f(\omega) = 1 \right\}$$

$$C_T \chi_B = \chi_A$$

Hence, $T^{-1}(B) = A$. Thus $\mathcal{A} \subseteq T^{-1}(\mathcal{A})$. Thus $\mathcal{A} = T^{-1}(\mathcal{A})$. Converse is obvious.

Corollary 2.7. A composition operator C_T on $\mathbf{B}(\Omega, X)$, has dense range if and only if $T^{-1}(\mathcal{A}) = \mathcal{A}$.

Theorem 2.8. If *T* induces a composition operator on $\doteq (\Omega, X)$, then C_T^* , the adjoint of C_T is P_T .

Proof. Let $A \in \mathcal{A}$ be such that $\mu(A) < \infty$. Then for $g \in L_{p',q';b^{-1}}$

$$\begin{pmatrix} C_T^* Fg \end{pmatrix} (\chi_A) = F_g (C_T \chi_A) = \int (\chi_A \circ T) \cdot g d\mu$$

= $\int E(g) \cdot \chi_A \circ T d\mu = \int E(g) \circ T^{-1} \cdot \chi_A d\mu T^{-1}$
= $\int E(g) \circ T^{-1} \cdot \chi_A f_T d\mu = \int F_{E(g) \circ T^{-1} f_T(\chi_A)}$

By identifying $g \in L_{p',q';b^{-1}}$ with the functional

$$F_g \in (L_{p,q;b})^* = L_{p',q';b^{-1}}, \text{ we get}$$
$$C_T^* g = (E(g) \circ T^{-1}) \cdot f_T = P_T g$$

Theorem 2.9. If T induces a composition operator on $\mathcal{B}(\Omega, X)$, then $N(C_T^*)$ is either zero dimensional or infinite dimensional.

Proof. Suppose $g \in N(C_T^*)$ and $g \neq 0$. Let

$$A = \left\{ \omega \in \Omega : g(\omega) \neq 0 \right\}$$

then $\mu(A) \neq 0$. Let $\langle A_n \rangle$ be a sequence of disjoint measurable subsets of A such that

$$A = \bigcup_{n=1}^{\infty} A_n$$

where $\mu(A_n) < \infty$. For each $n \in \mathbb{N}$, let $g_n = g \cdot \chi_A \circ T$. For each n,

$$C_T^*(g_n)f = \int (g \cdot \chi_A \circ T)(f \circ T)d\mu$$
$$= \int g \cdot (\chi_A f \circ T)d\mu = C_T^*(g)(\chi_A f) = 0$$

Therefore $\{g_n : n \ge 1\}$ is a linearly independent subset of $N(C_T^*)$. Hence, if $N(C_T^*)$ is not zero dimensional, it is infinite dimensional.

Theorem 2.10. If T induces a composition operator on $\mathcal{B}(\Omega, X)$. Then C_T is invertible if and only if C_T is Fredholm.

Proof. If C_T is invertible then C_T is Fredholm. Conversely, let C_T be Fredholm then $N(C_T)$ and $N(C_T^*)$ are both finite dimensional and are of zero dimension. Therefore C_T is injective and has dense range. Since $R(C_T)$ is closed, therefore C_T is surjective. Thus C_T is invertible.

Then

Definition 2. For a strongly measurable function $f: \Omega \rightarrow B(X)$, the set

$$ess_{f} = \left\{ \lambda \in \Omega : \mu(\left\| f(\omega) - \lambda \right\| < \epsilon) \neq 0 \ \forall \ \epsilon > 0 \right\}$$

is called the essential range of f.

Theorem 2.11. [11] If C_T is a composition operator on $L_{n,a;b}(\Omega, X)$, then the following are equivalent:

(i) C_T is injective.

(ii) f and $f \circ T$ have the same essential ranges for every $f \in L_{p,a;b}(\Omega, X)$.

(iii) μ is absolutely continuous with respect to $\mu \circ T^{-1}$.

(iv) f_T is different from zero almost everywhere.

References

- S.C. Arora, G. Datt and S. Verma, Multiplication and composition operators on Lorentz-Bochner spaces, Osaka J. Math. 45 (2008), 629-641.
- [2] S.C Arora, G. Datt and S. Verma, Multiplication operators on Lorentz spaces, Indian J. Math. 48 (2006), 317-329.

- [3] P. Bala, A. Gupta, N. Bhatia, Multiplication operators on Orlicz-Lorentz sequence spaces, Int. Journal of Math. Analysis 7 (2013), no. 30, 1461-1469.
- [4] D.E. Edmunds and W.D. Evans, Hardy operators, function spaces and embeddings, Springer Monographs in Mathematics Springer-Verlag, Belin, 2004.
- [5] I. Eryilmaz, Multiplication operators on Lorentz-Karamata-Bochner spaces, Math. Slovaca 62 (2012), no. 2, 293-300.
- [6] B.S. Komal and S. Gupta, Multiplication operators between Orlicz spaces, Integral Equations Operator Theory 41 (2001), 324-330.
- [7] V.N. Mishra, Some problems on Approximations of Functions in Banach spaces, PhD Thesis (2007) Indian Institute of Technology, Roorkee-247 667, Uttarakhand, India.
- [8] V. N. Mishra, K. Khatri, L. N. Mishra, and Deepmala, Inverse result in simultaneous approximation by Baskakov-Durrmeyer-Stancu operators, Journal of Inequalities and Applications 2013, 2013: 586.
- [9] V. N. Mishra and L. N. Mishra, "Trigonometric Approximation of Signals (Functions) in Lp (p≥1)-Norm," International Journal of Contemporary Mathematical Sciences, Vol. 7, No. 19, 2012, pp. 909-918.
- [10] E.Seneta, Regularly Varying Functions, Lecture Notes in Math. 508, Springer-Verlag, Berlin, 1976.
- [11] R.K. Singh and J.S. Manhas. Composition operators on function spaces, North Holland Math. Studies 179, North Holland, Amsterdam, 1993.
- [12] H. Takagi and K. Yokouchi, Multiplication and composition operators between two Lp-spaces, In: Function Spaces (Edwardsville, IL, 1998). Contemp. Math. 232, Amer. Math. Soc., Providence, RI, 1999, pp. 321-338.