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Abstract. Modern software systems, which often are concurrent and
manipulate complex data structures must be extremely reliable. We
present a novel framework based on symbolic execution, for automated
checking of such systems. We provide a two-fold generalization of tra-
ditional symbolic execution based approaches. First, we define a source
to source translation to instrument a program, which enables standard
model checkers to perform symbolic execution of the program. Second,
we give a novel symbolic execution algorithm that handles dynamically
allocated structures (e.g., lists and trees), method preconditions (e.g.,
acyclicity), data (e.g., integers and strings) and concurrency. The pro-
gram instrumentation enables a model checker to automatically explore
different program heap configurations and manipulate logical formulae
on program data (using a decision procedure). We illustrate two applica-
tions of our framework: checking correctness of multi-threaded programs
that take inputs from unbounded domains with complex structure and
generation of non-isomorphic test inputs that satisfy a testing criterion.
Our implementation for Java uses the Java PathFinder model checker.

1 Introduction

Modern software systems, which often are concurrent and manipulate complex
dynamically allocated data structures (e.g., linked lists or binary trees), must
be extremely reliable and correct. Two commonly used techniques for checking
correctness of such systems are testing and model checking. Testing is widely
used but usually involves manual test input generation. Furthermore, testing is
not good at finding errors related to concurrent behavior. Model checking, on
the other hand, is automatic and particularly good at analyzing (concurrent)
reactive systems. A drawback of model checking is that it suffers from the state-
space explosion problem and typically requires a closed system, i.e., a system
together with its environment, and a bound on input sizes [4, 6, 9, 19].

We present a novel framework based on symbolic execution [14], which au-
tomates test case generation, allows model checking concurrent programs that
take inputs from unbounded domains with complex structure, and helps com-
bat state-space explosion. Symbolic execution is a well known program analysis



technique, which represents values of program variables with symbolic values in-
stead of concrete (initialized) data and manipulates expressions involving sym-
bolic values. Symbolic execution traditionally arose in the context of checking
sequential programs with a fixed number of integer variables. Several recent ap-
proaches [3,5,7] extend the traditional notion of symbolic execution to perform
various program analyses; these approaches, however, require dedicated tools to
perform the analyses and do not handle concurrent systems with complex inputs.

We provide a two-fold generalization of traditional symbolic execution. First,
we define a source to source translation to instrument a program, which enables
symbolic execution of the program to be performed using a standard model
checker (for the underlying language) without having to build a dedicated tool.
The instrumented program can be symbolically executed by any model checker
that supports nondeterministic choice. The model checker checks the program by
automatically exploring different program heap configurations and manipulating
logical formulae on program data values (using a decision procedure).

Second, we give a novel symbolic execution algorithm that handles dynam-
ically allocated structures (e.g., lists and trees), method preconditions (e.g.,
acyclicity of lists), data (e.g., integers and strings) and concurrency. To symboli-
cally execute a method, the algorithm uses lazy initialization, i.e., it initializes the
components of the method inputs on an “as-needed” basis, without requiring a
priori bound on input sizes. We use method preconditions to initialize fields only
with valid values and method postconditions as test oracles to check method’s
correctness; this builds on our previous work on the Korat framework [2] for
specification-based testing. We also support partial correctness properties given
as assertions in the program and temporal specifications.

The main contributions of our work are:

– Providing a two-fold generalization of symbolic execution: one, to enable a
standard model checker to perform symbolic execution; two, to give a sym-
bolic execution algorithm that handles advanced programming constructs;

– Performing symbolic execution of code during explicit state model checking
• to address the state space explosion problem: we check the behavior of

code using symbolic values that represent data from very large domains
instead of enumerating and checking for a small set of concrete values;

• to achieve modularity: checking programs with uninitialized variables
allows checking of a compilation unit in isolation;

• to check strong correctness properties of concurrent programs that take
inputs from unbounded domains with complex structure;

• to exploit the model checker’s built-in capabilities, such as different
search strategies (e.g., heuristic search), checking of temporal proper-
ties, and partial order and symmetry reductions;

– Automating non-isomorphic test input generation to satisfy a testing crite-
rion for programs with complex inputs and preconditions;

– A series of examples and a prototype implementation in Java, that uses
Java PathFinder [19] for model checking, Omega library [16] as a decision
procedure, and Korat for program instrumentation; our approach extends to
other languages, model checkers, and decision procedures.



class Node {

int elem;

Node next;

Node swapNode() {

1: if(next!=null)

2: if(elem-next.elem>0){

3: Node t = next;

4: next = t.next;

5: t.next = this;

6: return t;

}

7: return this;

}

}
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Fig. 1. Code to sort the first two nodes of a list (left) and an analysis of this code using
our symbolic execution based approach (right)

Section 2 shows an example analysis in our framework. Section 3 describes
traditional symbolic execution. Section 4 gives our algorithm for generalized
symbolic execution. Section 5 describes our framework and Section 6 describes
our implementation and instrumentation. Section 7 illustrates two applications of
our implementation. We give related work in Section 8 and conclude in Section 9.

2 Example

This section presents an example to illustrate our approach. We check a method
that destructively updates its input structure. The Java code in Figure 1 declares
a class Node that implements singly-linked lists. The fields elem and next repre-
sent, respectively, the node’s integer value and a reference to the next node. The
method swapNode destructively updates its input list (referenced by the implicit
parameter this) to sort its first two nodes and returns the resulting list.

We analyze swapNode using our prototype implementation (Section 6) and
check that there are no unhandled runtime exceptions during any execution of
swapNode. The analysis automatically verifies that this property holds.

The analysis checks seven symbolic executions of swapNode (Figure 1). These
executions together represent all possible actual executions of swapNode. For
each symbolic execution, the analysis produces an input structure, a constraint
on the integer values in the input and the output structure. Thus for each row,
any actual input list that has the given structure and has integer values that
satisfy the given constraint, would result in the given output list. For an execu-
tion, the value “?” for an elem field indicates that the field is not accessed and
the “cloud” indicates that the next field is not accessed.

Each input structure represents an isomorphism partition of the input space,
e.g., the last row in the table shows an input that represents all (cyclic or acyclic)



int x, y;

1: if (x > y) {

2: x = x + y;

3: y = x - y;

4: x = x - y;

5: if (x - y > 0)

6: assert(false);

}

x: X, y: Y
PC: X<=Y

x: Y, y: X
PC: X>Y & Y−X>0

FALSE!

x: Y, y: X
PC: X>Y & Y−X<=0

x: Y, y: X
PC: X>Y

x: X+Y, y: X
PC: X>Y

x: X+Y, y: Y
PC: X>Y

x: X, y: Y
PC: X>Y

x: X, y: Y
PC: true

3

4

2

1 1

5 5

Fig. 2. Code that swaps two integers and the corresponding symbolic execution tree,
where transitions are labeled with program control points

lists with at least three nodes such that the first element is greater than the
second element; the list returned has the first two elements swapped.

If we comment out the check for null on line (1) in swapNode, the analysis
reports that for the top most input in Figure 1, the method raises an unhandled
NullPointerException. All other input/output pairs stay the same. The anal-
ysis, therefore, refutes the method’s correctness by providing a counterexample.

The analysis supports method preconditions. For example, if we add to
swapNode a precondition that the input list should be acyclic, the analysis does
not consider the three executions (Figure 1), where the input has a cycle. The
input structures and constraints can be used for test input generation.

3 Background: Symbolic execution

The main idea behind symbolic execution [14] is to use symbolic values, instead
of actual data, as input values, and to represent the values of program variables
as symbolic expressions. As a result, the output values computed by a program
are expressed as a function of the input symbolic values.

The state of a symbolically executed program includes the (symbolic) values
of program variables, a path condition (PC) and a program counter. The path
condition is a (quantifier-free) boolean formula over the symbolic inputs; it ac-
cumulates constraints which the inputs must satisfy in order for an execution
to follow the particular associated path. The program counter defines the next
statement to be executed. A symbolic execution tree characterizes the execution
paths followed during the symbolic execution of a program. The nodes represent
program states and the arcs represent transitions between states.



Consider the code fragment in Figure 2, which swaps the values of integer
variables x and y, when x is greater than y. Figure 2 also shows the corresponding
symbolic execution tree. Initially, PC is true and x and y have symbolic values
X and Y, respectively. At each branch point, PC is updated with assumptions
about the inputs, in order to choose between alternative paths. For example,
after the execution of the first statement, both then and else alternatives of the
if statement are possible, and PC is updated accordingly. If the path condition
becomes false, i.e., there is no set of inputs that satisfy it, this means that the
symbolic state is not reachable, and symbolic execution does not continue for
that path. For example, statement (6) is unreachable.

4 Algorithm

This section describes our algorithm for generalizing traditional symbolic exe-
cution to support advanced constructs of modern programming languages, such
as Java and C++. We focus here on sequential programs. Section 5 presents the
treatment of multithreaded programs.

4.1 Lazy initialization

The heart of our framework is a novel algorithm for symbolically executing a
method that takes as inputs complex data structures with unbounded data. A
key feature of the algorithm is that it starts execution of the method on inputs
with uninitialized fields and uses lazy initialization to assign values to these
fields, i.e., it initializes fields when they are first accessed during the method’s
symbolic execution. This allows symbolic execution of methods without requiring
an a priori bound on the number of input objects.

We explain how the algorithm symbolically executes a method with one in-
put object, i.e., the implicit input this. Methods with multiple parameters are
treated similarly [2]. To execute a method m in class C, the algorithm first creates
a new object o of class C with uninitialized fields. Next, the algorithm invokes
o.m() and the execution proceeds following Java semantics for operations on
reference fields and following traditional symbolic execution for operations on
primitive fields, with the exception of the special treatment of accesses to unini-
tialized fields (Figure 3).

– When the execution accesses an uninitialized reference field, the algorithm
nondeterministically initializes the field to the value null, to a reference to
a new object with uninitialized fields, or to a reference of an object created
during a prior field initialization; this systematically treats aliasing. When
the execution accesses an uninitialized primitive (or string) field, the algo-
rithm first initializes the field to a new symbolic value of the appropriate type
and then the execution proceeds. Method preconditions are used to ensure
that fields are initialized to values permitted by the precondition: when a
reference field is initialized, the algorithm checks that the precondition does
not fail for the structure and the path condition that currently constrain o;



if ( f is uninitialized ) {
if ( f is reference field of type T ) {

nondeterministically initialize f to
1. null
2. a new object of class T (with uninitialized field values)
3. an object created during a prior initialization of a field of type T

if ( method precondition is violated )
backtrack();

}
if ( f is primitive (or string) field )

initialize f to a new symbolic value of appropriate type
}

Fig. 3. Lazy initialization

– If the execution evaluates a branching condition on primitive fields, the al-
gorithm nondeterministically adds the condition or its negation to the corre-
sponding path condition and checks the path condition’s satisfiability using a
decision procedure. If the path condition becomes infeasible, the current ex-
ecution terminates (i.e., the algorithm backtracks), otherwise the execution
proceeds. This systematically updates path conditions on primitive fields.

Input generation To generate inputs that meet a given testing criterion,
the algorithm symbolically executes the paths specified by the criterion. For ev-
ery path, it generates an input structure and a path condition on the primitive
input values, which together define a set of inputs that execute the path. To han-
dle programs that perform destructive updates, the algorithm builds mappings
between objects with uninitialized fields and objects that are created when those
fields are initialized; these mappings are used to construct input structures.

Isomorph breaking and structure generation A nice consequence of
lazy initialization of input fields is that for sequential programs, the algorithm
only executes program paths on non-isomorphic4 inputs. This can be used for
systematic generation of inputs that have complex structural constraints by sym-
bolically executing a predicate that checks the structural constraints, as in [2].

4.2 Illustration

We illustrate the algorithm using our running example from Figure 1. The sym-
bolic execution tree in Figure 4 illustrates some of the paths that the algorithm
explores while symbolically executing swapNode. Each node of the execution tree
denotes a state, which consists of the state of the heap (including the symbolic
values of the elem fields) and the path condition accumulated along the branch
(path) in the tree. A transition of the execution tree connects two tree nodes

4 This definition of isomorphism views structures as edge(node)-labeled graphs.
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Fig. 4. Symbolic execution tree (excerpts), using notation described in Section 2

and corresponds to either execution of a statement of swapNode or to a lazy ini-
tialization step. Branching in the tree corresponds to a nondeterministic choice
that is introduced to handle aliasing or build a path condition.

The algorithm creates a new node object and invokes swapNode on the object.
Line (1) accesses the uninitialized next field and causes it to be initialized.
The algorithm explores three possibilities: either the field is null or the field
points to a new symbolic object or the field points to a previously created object
of the same type (with the only option being itself). Intuitively, this means
that, at this point in the execution, we make three different assumptions about
the configuration of the input list, according to different aliasing possibilities.
Another initialization happens during execution of statement (4), which results
in four possibilities, as there are two Node objects at that point in the execution.

When a condition involving primitive fields is symbolically executed, e.g.,
statement (2), the execution tree has a branch corresponding to each possible
outcome of the condition’s evaluation. Evaluation of a condition involving refer-
ence fields does not cause branching unless uninitialized fields are accessed.

If swapNode has the precondition that its input should be acyclic, the al-
gorithm does not explore the transitions marked with an “X”. The input list
corresponding to the output list pointed to by t in the bottom most tree node
is shown on the bottom row of Figure 1.
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5 Framework

This section describes our symbolic execution based framework for checking cor-
rectness of software systems. Figure 5 illustrates our basic framework. To enable
a model checker to perform symbolic execution (following the algorithm from
Section 4), we instrument the original program by doing a source to source
translation that adds nondeterminism and support for manipulating formulae
that represent path conditions. The instrumentation allows any model checker
that supports backtracking and nondeterministic choice to perform symbolic
execution. Essentially, the model checker explores the symbolic execution tree
of the program. Code instrumentation uses a correctness specification to add
precondition checking (which is performed during field initialization) and post-
condition checking (which is performed when an execution completes) to the
original program. We describe some details of the instrumentation our proto-
type implementation performs in Section 6.

The model checker checks the instrumented program using its usual state
space exploration techniques. A state includes a heap configuration, a path con-
dition on primitive fields, and thread scheduling. Whenever a path condition is
updated, it is checked for satisfiability using an appropriate decision procedure,
such as the Omega library [16] for linear integer constraints. If the path condition
is unsatisfiable, the model checker backtracks.

Correctness specifications can be given as preconditions and postconditions,
assertions or more general safety properties. Safety properties can be written in
the logical formalism recognized by the model checker or they can be specified
with code instrumentation, as in [1]. The framework can be used for correct-
ness checking and test input generation. While checking correctness, the model
checker reports counterexample(s) that violate a correctness criterion. While
generating test inputs, the model checker generates paths that are witnesses to
a testing criterion encoded in the specification. Testing criteria can be encoded as



correctness specifications as in [8,13]. For every reported path, the model checker
also reports the input heap configuration, the path condition for the primitive
input fields thread scheduling, which can be used to reproduce the error.

Multi-threaded and non-deterministic systems Our framework allows
a standard model checker to perform symbolic execution. We use the model
checker also to systematically analyze thread interleavings and other forms of
nondeterminism that might be present in the code. Our framework also exploits
the model checker’s built-in ability to combat state space explosion, e.g., by
using partial order and symmetry reductions.

Loops, recursion, method invocations We exploit the model checker’s
search abilities to handle arbitrary program control flow. We do not require the
model checker to perform state matching, since state matching is, in general,
undecidable when states represent path conditions on unbounded data. Note
also that performing (forward) symbolic execution on programs with loops can
explore infinite execution trees. Therefore, for systematic state space exploration
we use depth first search with iterative deepening (Section 7.1) or breadth first
search (Section 7.2); our framework also supports heuristic based search [10].
Our framework can be used for finding counterexamples to safety properties;
it can prove correctness for programs that have finite execution trees and have
decidable data constraints.

6 Implementation

We have implemented our approach in Java to check Java programs. For code in-
strumentation, we build on the Korat tool [2]. We use Java PathFinder(JPF) [19]
for model checking the instrumented programs. As a decision procedure, we use
a Java implementation of the Omega library [16], that manipulates sets of lin-
ear constraints over integer variables. This section outlines the instrumentation,
briefly describes JPF, and presents a critique of our approach.

6.1 Instrumentation

Conceptually, the instrumentation proceeds in two steps. First, the integer fields
and operations are instrumented. The declared type of integer fields of input
objects is changed to Expression, which is a library class we provide to support
manipulation of symbolic integer expressions. A type analysis is used to deter-
mine which integer variables have their declared types changed to Expression.
Operations involving these variables are replaced with method calls that im-
plement “equivalent” operations that manipulate objects of type Expression.
We have not yet automated the type analysis, but we could use for this the
abstraction component of the Bandera toolset [6] that performs the same kind
of analysis, but with a different purpose5.

5 Bandera performs a source to source translation to instrument a program, to reduce
the cardinality of data sets associated with program variables.



class Node {

Expression elem;

Node next;

boolean _next_is_initialized;

boolean _elem_is_initialized;

...

Node swapNode() {

1: if(_get_next() != null)

2: if(Expression._pc._update_GT(

_get_elem()._minus(

_get_next()._get_elem()),

new IntegerConstant(0)) {

3: Node t = _get_next();

4: _set_next(t._get_next());

5: t._set_next(this);

6: return t;

}

7: return this; } }

class Expression { ...

static PathCondition _pc;

Expression _minus(Expression e){

...} }

class PathCondition { ...

Constraints c;

boolean _update_GT(Expression e1,

Expression e2){

boolean result = choose_boolean();

if (result)

c.add_constraint_GT(e1,e2);

else

c.add_constraint_LE(e1,e2);

if (!c.is_satisfiable())

backtrack();

return result;

} }

Fig. 6. Instrumented code (left) and library classes (right)

Second, the field accesses are instrumented. Field reads are replaced by get
methods that return a value based on whether the field is initialized or not
(get methods implement the lazy initialization, as described in Section 4). Field
updates are replaced by set methods which update the field’s value. The get
and set methods for a field also set a flag to indicate that the field is initialized.

As an illustration of the instrumentation, consider the code from Figure 1.
Figure 6 gives part of the resulting code after instrumentation and the library
classes that we provide. The static field Expression. pc stores the (numeric)
path condition. Method update GT makes a nondeterministic choice (i.e., a call
to choose boolean) to add to the path condition the constraint or the negation
of the constraint its invocation expresses and returns the corresponding boolean.
Method is satisfiable uses the Omega library to check if the path condition
is infeasible (in which case, JPF will backtrack). Method minus constructs a
new Expression that represents the difference between its input parameters.
IntegerConstant is a subclass of Expression and wraps concrete integer values.
To keep track of uninitialized input fields we add a boolean field in the class
declaration for each field in the original declaration, e.g., next is initialized
and elem is initialized, which are set to true by get (set) methods.

To store the input objects that are created as a result of a lazy initializa-
tion, we use a variable of class java.util.Vector, for each class that is in-
strumented. The get methods use the elements in this vector to systematically
initialize input reference fields. Our implementation also provides the library
class StringExpression to symbolically manipulate strings.



6.2 Java PathFinder

Our current prototype uses the Java PathFinder model checker (JPF), an explicit-
state model checker for Java programs that is built on top of a custom-made
Java Virtual Machine (JVM). Since it is built on a JVM, it can handle all of
the language features of Java, but in addition it also treats nondeterministic
choice expressed in annotations of the program being analyzed. These features
for adding nondeterminism are used to implement the updating of path condi-
tions and the initialization of fields. JPF supports program annotations to cause
the search to backtrack when a certain condition evaluates to true—this is used
to stop the analysis of infeasible paths (when path conditions are found to be
unsatisfiable). Lastly, JPF supports various heuristics [10], including ones based
on increasing testing-related coverage (e.g., statement, branch and condition
coverage), that can be used to guide the model checker’s search.

6.3 Discussion

We use preconditions in initializing fields. In particular, a field is not initialized
to a value that violates the precondition. Notice that we evaluate a precondition
on a structure that still may have some uninitialized fields, therefore we require
the precondition to be conservative, i.e., return false only if the initialized
fields of the structure violate a constraint in the precondition. A conservative
precondition or simply undecidability of path conditions may lead our analysis
to explore infeasible program paths.

We have not provided here a treatment of arrays. Following [2], we could
systematically initialize array length when an array field is first accessed, and
then treat each array component as a field. We would like to extend our analysis
to treat array length as a symbolic integer. Our algorithm handles subclassing:
in step 3 in Figure 3 consider all objects created during a prior initialization of
a field of type T or of a type S, where S is a subclass of T.

7 Applications

This section shows two applications of our framework: correctness checking of a
distributed algorithm and test input generation for flight software.

7.1 Checking multithreaded programs with inputs

We illustrate an application of our symbolic execution framework on an example
that (incorrectly) implements a distributed algorithm for sorting linked lists
with integers in ascending order6. To sort an input list, the algorithm spawns a
number of threads proportional to the number of nodes in the list. Each thread
is assigned two adjacent list nodes and allowed a maximum number of swaps it
can perform on elements in these nodes. This example illustrates our symbolic
execution technique in the context of concurrency, structured data (linked lists),
integer values as well as method preconditions and partial correctness criteria.
6 We can correctly sort a list using this algorithm by controlling the thread scheduler.



class List {
Node header;

//@ precondition: acyclic();
void distributedSort() {
if (header == null) return;
if (header.next == null) return;
int i = 0;
Node t = header;
while (t.next != null) {

new Swapper(t, ++i).start();
t = t.next;

}
}
...

}

class Swapper extends java.lang.Thread {
//can swap current.elem,current.next.elem
Node current;
int maxSwaps;

Swapper(Node m, int n) {
current = m; maxSwaps = n;

}
public void run() {
int swapCount = 0;
for (int i = 0; i < maxSwaps; i++)

if (current.swapElem()) swapCount++;
//@ assert: if (swapCount == maxSwaps)
//@ current.inOrder();

}
}

class List { ...
boolean acyclic() {

Set visited = new HashSet();
Node current = header;
while (current != null) {

if (!visited.add(current))
return false;

current = current.next;
}
return true;

}
}

class Node {
int elem;
Node next;

synchronized boolean swapElem(){
synchronized (next) {

if (elem > next.elem) {
// actual swap
int t = elem;
elem = next.elem;
next.elem = t;
return true;

} }
return false; // do nothing

}
synchronized boolean inOrder(){

synchronized (next) {
if (elem > next.elem) return false;
return true;

} } }

Fig. 7. A distributed sorting method for singly linked lists

The Java code in Figure 7 declares a singly linked list and defines a method
for sorting lists. The method distributedSort takes an input list and spawns
several threads to sort the list. For each adjacent pair of nodes in the list,
distributedSort spawns a new thread that is responsible for swapping ele-
ments in these nodes. This method has a precondition that its input list should
be acyclic, as specified by the precondition clause.

The swapElem method returns true or false based on whether the invoca-
tion actually swapped out of order elements or whether it was simply a no-op.
Note that swapElem is different from swapNode in Figure 1, that performs de-
structive updating of the input list. We use synchronization to ensure that each
list element is only accessed by one thread at a time. The assert clause declares
a partial correctness property, which states that if a thread performs the allowed
maximum number of actual swaps, then the element in node current is in order.

We used our implementation to symbolically execute distributedSort on
acyclic lists and analyze the method’s correctness. The analysis took 11 seconds
(on a 2.2 GHz Pentium with 2GB of memory) and it produced a counterexample:

input list: [X] -> [Y] -> [Z] such that X > Y > Z

Thread-1: swaps X and Y

Thread-2: swaps X and Z

resulting list: [Y] -> [Z] -> [X]; Y and Z out of order



The input list consists of three symbolic integers X, Y, and Z such that X > Y > Z.
Thread-1 is allowed one swap and Thread-2 is allowed two swaps. Thread-1
performs its swap before Thread-2 performs any swap. Now Thread-2 performs
a swap. The resulting list after these two swaps is [Y] -> [Z] -> [X] with
Y > Z. Since Thread-1 is not allowed any more swaps, it is not possible to bring
Y and Z in order. Thus, the input list together with this thread scheduling give
a counterexample to the specified correctness property. Note that to analyze
distributedSort we did not a priori bound the size of the list (and therefore
the number of threads to spawn).

7.2 Test input generation

We applied our framework to derive test inputs for code coverage, specifically
condition coverage, of an Altitude Switch used in flight control software (1800
lines of Java code) [11]. The switch receives as input a sequence of time-stamped
messages indicating the current altitude of an aircraft as well as an indication
of whether this reading is considered accurate or not (represented by strings).
The input sequence of messages was implemented as a linked list with undefined
length. The program was instrumented to print out the input sequence as well
as the integer and string constraints, whenever a new condition, i.e. one that was
not covered before, was executed. This application presents a program that has
as input a data structure and manipulates both integer and string constraints.

We used breadth-first search during model checking to generate test inputs
that cover all the conditions within 22 minutes of running time (on a 2.2 GHz
Pentium with 2GB of memory). In contrast, we also used traditional model
checking with JPF, where we fixed the input sequence to have 3 messages and
the range of altitude values to be picked nondeterministically from 0 to 20000
feet—the model checking did not finish, and as a consequence did not generate
test inputs, for about a third of the conditions before memory was exhausted.

8 Related work

In previous work we developed Korat [2], a constraint solver for imperative
predicates. Korat implements a novel search algorithm and performs a source
to source translation to instrument a Java program and systematically handle
aliasing and subclassing. Korat provides efficient generation of non-isomorphic
inputs and was used to generate complex structures from preconditions for ex-
haustive black-box testing within a given input bound. The work we present here
additionally provides input generation for white-box testing, supports symbolic
manipulation of data values using a decision procedure, does not require bounds
on input sizes, supports checking of multi-threaded programs and adapts Korat’s
instrumentation to enable any model checker to perform symbolic execution.

King [14] developed EFFIGY, a system for symbolic execution of programs
with a fixed number of integer variables. EFFIGY supported various program
analyses (e.g., test case generation) and is one of the earliest systems of its kind.



PREfix is a bug finding tool [3] based essentially on symbolic execution.
PREfix has been used very successfully on large scale commercial applications.
PREfix analyzes programs written in C/C++ and aims to detect defects in dy-
namic memory management. It does not check rich properties, such as invariants
on data structures. PREfix may miss errors and it may report false alarms.

Several projects aim at developing static analyses for verifying program prop-
erties. The Extended Static Checker (ESC) [7] uses a theorem prover to verify
partial correctness of classes annotated with JML specifications. ESC has been
used to verify absence of such errors as null pointer dereferences, array bounds
violations, and division by zero. However, tools like ESC cannot verify properties
of complex linked data structures.

There are some recent research projects that attempt to address this issue.
The Three-Valued-Logic Analyzer (TVLA) [17] is the first static analysis sys-
tem to verify that the list structure is preserved in programs that perform list
reversals via destructive updating of the input list. TVLA performs fixed point
computations on shape graphs, which represent heap cells by shape nodes and
sets of indistinguishable runtime locations by summary nodes. The lazy initial-
ization of input fields in our framework is related to materialization of summary
nodes in TVLA. We would like to explore this connection further.

The pointer assertion logic engine (PALE) [15] can verify a large class of data
structures that can be represented by a spanning tree backbone, with possibly
additional pointers that do not add extra information. These data structures
include doubly linked lists, trees with parent pointers, and threaded trees. Shape
analyses, such as TVLA and PALE, typically do not verify properties of programs
that perform operations on primitive data values.

The Alloy constraint analyzer has been used for analyzing bounded segments
of computation sequences manipulating linked structures by translating them
into first order logic [18]. This approach requires a bound also on the input sizes
and does not treat primitive data symbolically.

There has been a lot of recent interest in applying model checking to software.
Java PathFinder [19] and VeriSoft [9] operate directly on a Java, respectively C
program. Other projects, such as Bandera [6], translate Java programs into the
input language of SPIN [12] and NuSMV [4]. They are whole program analysis
(i.e., cannot analyze a procedure in isolation). Our source to source translation
enables these tools to perform symbolic execution, and hence enables them to
analyze systems with complex inputs and to analyze procedures in isolation.

The SLAM tool [1] focuses on checking sequential C code with static data,
using well-engineered predicate abstraction and abstraction refinement tools. It
does not handle dynamically allocated data structures. Symbolic execution is
used to map abstract counterexamples on concrete executions and to refine the
abstraction, by adding new predicates discovered during symbolic execution.

The Composite Symbolic Library [20] uses symbolic forward fixed point op-
erations to compute the reachable states of a program. It uses widening to help
termination but can analyze programs that manipulate lists with only a fixed
number of integer fields and is a whole-program analysis.



9 Conclusion

We presented a novel framework based on symbolic execution, for automated
checking of concurrent software systems that manipulate complex data struc-
tures. We provided a two-fold generalization of traditional symbolic execution
based approaches. First, we defined a source to source translation to instrument
a program, which enables standard model checkers to perform symbolic execu-
tion of the program. Second, we gave a novel symbolic execution algorithm that
handles dynamically allocated structures, method preconditions, primitive data
and concurrency. We illustrated two applications of our framework: checking cor-
rectness of multi-threaded programs that take inputs from unbounded domains
with complex structure and generation of non-isomorphic test inputs that satisfy
a testing criterion. Although we illustrated our framework in the context of Java
programs, JPF, and the Omega library, our framework can be instantiated with
other languages, model checkers and decision procedures.

In the future, we plan to investigate the application of widening and other
abstraction techniques in the context of our framework. We also plan to inte-
grate different (semi) decision procedures and constraint solvers that will allow
us to handle floats and non-linear constraints. We believe performing symbolic
execution during model checking is a powerful approach to analyze software.
How well it scales to real applications remains to be seen.
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