Spatial Correlation-Based Collaborative Medium Access Control in Wireless Sensor Networks

Mehmet C. Vuran, Ian F. Akyildiz Member, IEEE

IEEE/ACM TRANSACTIONS ON NETWORKING 2006

Presented by Feng-Chiao Tseng

Outline

- Introduction
- INS (Iterative Node Selection)
- CC-MAC
 - E-MAC (Event MAC)
 - N-MAC (Network MAC)
- Simulation Results

Introduction

- Idea: it may not be necessary for every sensor node to transmit its data to the sink
- CCMAC aims to reduce the energy consumption by exploiting spatial correlation in WSN without compromising the latency and the distortion achieved

$$D_E(M) = \sigma_S^2 - \frac{\sigma_S^4}{M(\sigma_S^2 + \sigma_N^2)} \left(2 \sum_{i=1}^M \rho_{(s,i)} - 1 \right) + \frac{\sigma_S^6}{M^2 (\sigma_S^2 + \sigma_N^2)^2} \sum_{i=1}^M \sum_{j \neq i}^M \rho_{(i,j)}. \quad (11)$$

INS (Iterative Node Selection)

- Run at sink
- Input: statistical properties of the node distribution
- Output : correlation radius (r_{corr}) for distributed operation
- Correlation region
- Representative node
- Correlation neighbor

- Implemented at each sensor node
- It is performed when
 - Source Function ⇒ E-MAC
 - Router Function → N-MAC
- E-MAC
 - Filter out the correlated records
- N-MAC
 - Ensure prioritization of route-thru packets

- Packet structure
 - FH: to differentiate the type of packet

- E-MAC (Event MAC)
 - Filter out the correlated records by forming correlation regions based on $r_{\rm corr}$
 - FCP (First Contention Phase)
 - Two cases

Case1: R> $r_{\rm corr}$

Case2: R< $r_{\rm corr}$

 T_{nextTx} : the time when node n_i will begin the next transmission

 t_{rs} : random sleep interval

- Case2: $R < r_{corr}$
 - Problem1: there is a tradeoff between correlation filtering and protocol overhead
 - Problem2: the routing of node n_i 's packets out of the correlation region

⇒ directional sleeping technique

• N-MAC (*Network MAC*)

- Ensure prioritization of route-thru packets
- PIFS < DIFS
- PIFS: node with route-thru packet
- DIFS: node performing E-MAC

Simulation Results

- Ns2
- 50 nodes
- $500 * 500 \text{ m}^2$
- Transmission range: 100 m
- Each time last for 600s

Simulation Results

• Goodput received generated

Simulation Results

Average energy consumption

