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Abstract

Network inference is the problem of infer-
ring edges between a set of real-world ob-
jects, for instance, interactions between pairs
of proteins in bioinformatics. Current kernel-
based approaches to this problem share a set
of common features: (i) they are supervised
and hence require labeled training data; (ii)
edges in the network are treated as mutu-
ally independent and hence topological prop-
erties are largely ignored; (iii) they lack a sta-
tistical interpretation. We argue that these
common assumptions are often undesirable
for network inference, and propose (i) an un-
supervised kernel method (ii) that takes the
global structure of the network into account
and (iii) is statistically motivated. We show
that our approach can explain commonly
used heuristics in statistical terms. In exper-
iments on social networks, different variants
of our method demonstrate appealing predic-
tive performance.

1 Introduction

Graphs are the data structure of choice for model-
ing objects and their relationships. Applications span
a large range from bioinformatics, systems biology,
chemoinformatics to social network analysis and In-
ternet studies. Here, graphs are used to model protein
structures, cellular networks, chemical compounds,
groups of individuals or groups of websites.

In these applications the structure of graphs captures
different aspects. On the one hand, if the graph rep-
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resents a graphical model, it describes a probabilistic
model of the data, with nodes corresponding to ran-
dom variables and the structure of the graph encod-
ing their statistical dependence. On the other hand,
the structure of the graph can correspond to a set of
(physical) interactions between real-world objects rep-
resented by the nodes. These could be individuals in a
social network who are communicating or proteins in
a regular network that are interacting. In this latter
case, a graph is often referred to as a network.

In this article, we are concerned with networks rather
than graphical models. In particular, we are inter-
ested in learning problems where the task is to infer
the structure, i.e. the edges, of a network from the set
of nodes and their attributes. This problem is of great
relevance in many fields. For example in bioinformat-
ics we may want to predict the interactions between
proteins solely based on a set of attributes.

We focus on kernel methods for network inference.
They provide a unified framework for handling the
variety of data types that we encounter as node at-
tributes, such as vectors, strings or time series, by
mapping them into a feature space. Previous kernel
approaches to network inference exhibit at least one
of the following three properties (Ben-Hur & Noble,
2005; Vert et al., 2007):

e They are supervised.

e They assume the likelihood of individual edges to be
independent, and hence do not consider the global
structure of the inferred graph and its topological
properties.

e This independence assumption is heuristic and the
network strategy it implies has no clear statistical
interpretation.

We feel that these three characteristics are not neces-
sarily beneficial for network inference:

First, ground truth network data from bioinformat-
ics and other application domains are often hard to
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obtain, noisy, or even contradictory (Jansen et al.,
2003), For example the experimental determination
of protein-protein interactions is expensive and prone
to false positives. Similarly gathering information
about links in social networks is a tedious and time-
consuming task. Often, detailed data and information
about the nodes in a network (for instance, protein
sequence, structure, physical features) are available
long before a reliable set of interactions is established.
When such ground truth network data is available, su-
pervised network inference has been shown to be su-
perior to unsupervised approaches (Ben-Hur & Noble,
2005; Vert et al., 2007). But unsupervised approaches
to network inference can indeed be appealing, when
such reliable training data is not available for protein-
protein interaction prediction in a specific species.

Second, the independence assumption of the existence
of edges in a graph contradicts the nature of most real-
world networks. Graphs commonly exhibit a particu-
lar global structure and topology, such as being small-
world or scale-free (Barabasi & Albert, 1999). Often
these global properties of the network are reflected by
node attributes in the graph, and it is desirable to
exploit this correlation in network inference. For ex-
ample, measurements on the essentiality of a protein
— that is whether it is indispensable to the survival
or reproduction of the organism — have been found to
be correlated with its number of interaction partners,
i.e. its degree in the interaction network (Jeong et al.,
2001). Ignoring such information seems wasteful.

Third, as edges are treated as independent events, cur-
rent methods predict edges solely based on the at-
tributes of two nodes and ignore the rest of the graph;
typically, the nodes which score highest according to a
(dis-)similarity measure are predicted to be connected.
From a theoretical point of view, it is unsatisfying that
we do not understand which statistical criterion is op-
timized when following this strategy of drawing edges
between the most (dis-)similar pairs of nodes.

In contrast to kernel methods, the statistical relational
learning community employs graphical models for net-
work inference and Bayesian methods such as Gaussian
processes for link (edge) prediction ((Getoor & Taskar,
2007) and references therein). Although these meth-
ods have a clear statistical interpretation, they also
tend to be based on supervised learning and indepen-
dent link predictions.

In the following we will try to overcome these limita-
tions. This article is structured as follows:

e In Section 2.2 we define an wunsupervised kernel-
framework for network inference based on statistical
dependence maximization. We show that existing
heuristic approaches to network inference can be in-

terpreted as special cases of this statistical learning
framework (see Section 3.1).

e In Section 3.2 we extend this class of existing ap-
proaches by introducing a new family of network in-
ference algorithms that do not make assumptions
about the independence of edges between nodes.
Rather by considering non-local graph kernels such
as based on node degrees, we can relate complex net-
work properties to node attributes.

e In Section 4 we demonstrate the practical useful-
ness of our new approach in applications to social
network analysis.

2 Network inference using HSIC

The tool at the core of our kernel method for unsu-
pervised network inference is the Hilbert-Schmidt In-
dependence Criterion (Gretton et al., 2005), and the
feature selection method BAHSIC (Song et al., 2007)
building on this criterion. We first briefly review HSIC
for feature selection and then explain how it can be
adapted to the problem of network inference.

2.1 Hilbert-Schmidt Independence Criterion

Intuitively, the Hilbert Schmidt Independence Crite-
rion (HSIC) is based on the concept that two random
variables x and y are independent iff all functions f(x)
and ¢(y) from ‘large enough’ function classes F and G
are uncorrelated. The attractiveness of HSIC stems
from the fact that an empirical estimate of the crite-
rion can be expressed purely in terms of kernels.

In more detail, let sets of pairs of observations from
two random variables, X ~ x and Y ~ 1y, be
drawn from a joint distribution Pr,,: (X,Y) =
{(z1,91)s- -+, (@n,yn)}. The Hilbert-Schmidt Inde-
pendence Criterion (Gretton et al., 2005) measures the
dependence between the two random variables, z and
y, based on the empirical sample distribution of pairs
from X and Y.

Let F and G be the reproducing kernel Hilbert Spaces
(RKHS) on X and Y with associated kernels k : X' x
X — Rand!:)Y x)Y — R respectively, and associated
mappings ¢ : X — F and ¢ : Y — G to the feature
spaces. The cross-covariance operator Cyy : G — F is
defined as (Fukumizu et al., 2004)

Coy = Bay [(9(2) = 1) @ (P(y) — )], (1)

where i, = E[¢(z)] and p, = E[(y)]. HSIC is then
defined as the square of the Hilbert-Schmidt norm! of
Cuy. that is HSIC(F, G, Pryy) == [|Cuy 7 -

'For a finite-dimensional matrix A, |Allas =

\/2_i.; A7 ;» which is known as the Frobenius norm.
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An empirical estimate of HSIC in terms of kernels on
X and Y can be computed as (Gretton et al., 2005)

HSIC(F,G,Z) = (n—1)"*tr KHLH, (2)

where Kij = k(l‘i,l‘j) = <¢($1),¢($3)> and Lij =
Uyi,y;) = (¥(ys), ¥(y;)) are kernel matrices on X and
Y respectively, and H;; = d;; — n~! centers the ker-
nel matrices in feature space. For a particular class of
kernels, so-called universal kernels (Steinwart, 2002),
HSIC can be shown to equal zero iff x and y are in-
dependent. In general, the larger HSIC, the larger
the dependence between x and y. This property is
exploited in BAHSIC for feature selection. In greedy
forward selection, features are added to maximize the
dependence between y (the class labels) and x (the
data objects). We adapt this idea to network inference
and refer to the resulting algorithm as NETHSIC.

2.2 NETHSIC

Let us now turn our attention to the question of how
HSIC can be used as a tool for network inference. We
are given the nodes V of a graph G and their at-
tributes, but not its edges configuration E. In this
case, X and Y have a different meaning than in fea-
ture selection: both represent the set of nodes in our
network. z; € X describes the attributes of node ¢ in
the network, y; — intuitively speaking — its location
within the network. Kj; = k(z;,2;) is then a kernel
(matrix) on the node attributes, which we refer to as
the attribute kernel. L;; = l(y;, y;) is a kernel (matrix)
on the locations of the nodes in the graph, which we
call the node kernel. It will become clearer what is
meant by ‘location in the graph’ in the following.

The location of a node within a graph is defined by
its neighbors or other topological features. Hence the
kernel [ on these locations of nodes depends on the set
of edges F of the graph. We make this dependence on
FE explicit by denoting the node kernel matrix by Lg.

After defining K and Lg, the network inference prob-
lem via HSIC (NETHSIC) can now be cast in the fol-
lowing form:

argmax tr KHLpH, (3)

EC(VXV)A|E|l=m (n—1)2
where m is the number of edges of the graph that is
to be learnt. In other words, we maximize over edge-
configurations F, such that the attributes of the nodes
and their locations in the graph maximally depend on
each other (as determined by HSIC).

By maximizing the dependence between the attributes
and the locations of nodes, we implicitly infer the set of
edges E (because it defines the locations of the nodes).
How the location of a node in a graph is defined de-
pends on the node kernel | — we will elaborate on

Input: The set of nodes V,
number of edges m,
attribute kernel k and node kernel [
Output: A subset F of V x V of size m
E—0
repeat
e =argmaxecyxy it KHLpyfen H
E — FuU{e}
until |[E| =m

Algorithm 1: NETHSIC forward selection

this point in the following sections, as our ability to
learn complex graph structure relies on the freedom to
pick [. Different choices for the node kernel [ result in
different solution to (3), and therefore correspond to
different network structures.

Search strategy A naive approach to solve prob-
lem (3) is exhaustive enumeration of all possible sets
of V x V of size m, computing the objective function
in (3) for each set. This would require an effort expo-
nential in the size of the graph, n, however. To avoid
exponential runtime, we employ greedy optimization
strategies (Song et al., 2007). One approach is for-
ward selection of edges (see Algorithm 1). Starting
with a completely unconnected graph we iteratively
add edges that increases HSIC the most, until the de-
sired number of m target edges is reached. When in-
ferring a sparse network, the number of edges m will
be m << n? and often even m € O(n). The run-
time of the resulting algorithm is O(n?mR(L)), where
R(L) is the effort of recomputing L, is appealing and
renders medium scale graphs with hundreds of nodes
tractable. For smaller scale graphs it might be de-
sired to perform backward feature selection. It has
been shown that backward elimination can lead to
more accurate answers (Song et al., 2007), however
at considerably higher computational cost scaling as
O(n?(n? —m)R(L)). Note that depending on the em-
ployed node kernel NETHSIC can be even faster. For
instance on kernels where single edge additions or re-
movals have only local effects, parts of the kernel can
be cached. This principle allows the degree kernel to
be evaluated in O(n?m), which will be applied in our
experiments (see Section 4).

Alternative search strategies are also possible. We use
greedy selection, because it yields the optimal solu-
tion for certain kernels, and it generates a ranking of
edges in a graph that an be used as an evaluation crite-
rion in experiments. This ranking can be assessed by
comparison to a reference network yielding an ROC
curve. However particular for global graph kernels al-
ternative search strategies might be an interesting con-
sideration. One may think of include, for instance, a
random walk or Simulated Annealing or iterations of
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adding and deleting edges during the greedy search.

Objective of greedy selection Assume £k is a kernel
on node attributes, giving rise to a kernel matrix K.
Let K = HKH be the centered version of K. Then
since tr KHLpH =tr HKHLg = tr KL in each it-
eration of greedy NETHSIC we maximize

argmaxtr([N(LE Ufery) — tr(IN(LE) = (4)
e'cVxV

argmax § : § K(lvj) (LE' U{e’}(ivj) - LE'(%]))
e'eVxV i=1 j=1

over possible edges ¢’ € V' xV. The node attributes are
fixed and hence K is unchanged whatever E currently
looks like. To solve problem (4), we hence have to look
only at those entries (i, j) of Lg(i,j) and Lg ugey (4, 5)
that are not identical, or in other terms: at those pairs
of nodes 7 and j whose kernel value (4, j) changes when
we remove edge e.

How to determine m, the number edges A key
difference between NETHSIC and the common ap-
proach to graph inference — which draws an edge be-
tween nodes whose similarity exceeds a threshold 6
— is the setting of parameters. While in direct ap-
proaches the number of inferred edges is implicitly de-
fined by means of the threshold value 6, NETHSIC
requires the number of edges m as a pre-specified pa-
rameter.

If this property is undesired, it is also possible to de-
termine m by means of statistical significance testing.
This procedure is based on idea recently proposed in
(Gretton et al., 2008): By randomly permuting the
attributes of the nodes and recomputing the kernel
matrix K we can generate an artificial false dataset.
Dependence estimations between any such randomized
K and L are purely random and can be used to calcu-
late a p-value for the dependence test. This approach
has the advantage that we only have to choose a sta-
tistical significance level (usually 0.05 or 0.01) rather
than an explicit number of edges that we wish to infer.

3 Special instances of NETHSIC

Network inference via NETHSIC requires two kernel
functions: an attribute kernel k and a node kernel .
The choice of [ allows us to influence the structure of
the network that we aim to learn. Here we present a
selection of node kernels that possess interesting prop-
erties for network inference.

3.1 1-step random walks

The (unnormalized) Laplacian of a graph G is defined
as L = D — A where A is the adjacency matrix of

G, and D(i,i) = >, A(i,j). A p-step random walk
on the normalized graph Laplacian L =D LD
gives rise to a kernel on nodes L = (al — £)?, where
a > 2 and p € N and [ is the identity matrix of size
n x n (Smola & Kondor, 2003). The eigenspectrum
of £ is upper-bounded by 2 and lower-bounded by 0,
and positive semi-definiteness is hence guaranteed by
choosing a > 2. It will turn out to be useful to deal
with 1-step random walks on the unnormalized graph
Laplacian. A p-step random walk on the unnormalized
graph Laplacian can be defined analogously as L =
(al — L£)P, however for odd choices of p, a > 2 does
not guarantee positive semi-definiteness. For a 1-step
random walk via (al — £) we therefore have to set
a > 2n — 2 to guarantee positive semi-definiteness, as
stated by Theorem 1:

Theorem 1 Let L be the unnormalized graph Lapla-
cian on graph G of size n. Then (al — L) is positive
semi-definite if a > 2n — 2.

Proof As L is positive semi-definite, its eigenvalues
Ai[L] are non-negative. It is a well-known fact from
linear algebra that the eigenvalues of (£ — al) are
AL —al]l = N[L] — a, and the eigenvalues of (al — L)
are A\;[al — L] = a — A\[L]. As a consequence, the
eigenvalues of (eI — L) are nonnegative iff a > A0 (L]
It follows from Gershgorin’s circle theorem, however,
that Apaz[£] < 2n — 2 for a graph of size n. Hence
a > 2n — 2 guarantees the positive semi-definiteness
of (aI — L). |

Let us now assume our kernel matrix Lg is al — £ on
our graph G = (V, E), where a > 2n—2. When we add
edge e = (i, j) to E, the following entries change in Lg:
LEU{G}(Z" Z) = LE(l, Z) -1 LEU{e}(J7J) = LE(Jm?) -1
LEU{e}(imj) = LE(Za.j) +1; LEU{&} (-77 Z) = LE(.]a Z) +1.
All other entries remain unchanged. Hence we can
rewrite (4) as

argmax — K (i,4) — K (j, j) + 2K (i, ) =

e'=(1,5)

argmax —d(i, j)* = argmin d(i, j)?, (5)
e/=(i,5) e=(1,5)

where d is the distance induced by kernel K. Hence
the edge e = (7, j) that maximizes the objective in (4)
is the one for which the distance between i and j is
minimal according to K — this is the edge we add to
E in each iteration of NETHSIC.

Theorem 2 Greedy network inference using NETH-
SIC on L = al — L finds the optimal solution to prob-
lem (3).
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Proof For this kernel, problem (3) is equivalent
to argming >, ercy v d(i,7)? , which decomposes
into an optimization problem over individual edges.
By greedily selecting the m edges whose nodes are clos-
est to each other (distance induced by K), we obtain
the optimal solution to (3). ]

As a consequence NETHSIC with 1-step random walks
is exactly the same as the common ad-hoc approach to
graph inference, which is to compute a distance func-
tion d between pairs of nodes and to then threshold
these distances compared to some score: If and only if
the distance d(i,j) < 6, an edge is predicted to exist
between nodes i and j. While the statistical founda-
tions of this strategy were somehow obscure so far,
NETHSIC now allows us to interpret this strategy:

Lemma 3 By predicting edges between nodes whose
attributes are most similar, one maximizes the depen-
dence, as measured by the Hilbert-Schmidt Indepen-
dence Criterion, between the node attributes and a 1-
step random walk on the predicted graph.

As a direct consequence, NETHSIC with a 1-step ran-
dom walk kernel on the unnormalized graph Laplacian
is optimally solvable in O(n?logn), which is the cost
of computing the kernel matrices L and K and sorting
their entries.

We note that the exact opposite strategy — con-
necting nodes with most dissimilar attributes — is
equivalent to choosing the Laplacian of a graph as
the node kernel in NETHSIC. Analogous to the 1-
step random walk, greedy selection is again optimal
and the runtime is O(n?logn) (proofs omitted). This
kernel is useful when inferring a network in which
nodes with dissimilar roles (and hence attributes) tend
to interact: for instance, professor/student or posi-
tively /negatively charged molecules. Our experiments
on social networks show that such a dissimilar kernel
indeed often describes social relationships (Section 4).

3.2 Node kernels with global effects

The two kernels we have presented so far possess the
property that (3) decomposes into an optimization
problem over individual edges. We refer to such a ker-
nel as a kernel with local effects. In general, if adding
the edge (1, ) affects kernel values other than L(i, j),
L(j,i), L(i,4), or L(j,7), then we observe more than
local effects. Indeed, the selection of an edge then
has a global effect, i.e. it changes the similarities be-
tween other pairs of nodes in the graph, not just ¢
and j. While kernels with global effects make it more
difficult to solve (3), as we have to update L in each
iteration of NETHSIC, they also exhibit a desirable
property, namely that the existence of edges are not
independent events any more. Hence by choosing a

node kernel with global effects, we make NETHSIC
learn graphs with interdependencies between edges.

As a first example, let our kernel matrix Lg be the
squared adjacency matrix A2 of our graph G = (V, E).
Let A (4) denote the neighbours of node 7 in graph G.
Intuitively, this kernel on nodes counts the number of
common neighbours of two nodes i and j: A%(i,j) =

V(@) NN (G-

When we add edge e = (i, j) to E, the following entries
change in Lg:

vk 6./\/( E LEU{E}(]{Z,Z) Lg(k,i)+1;
Yk e N(j K LEU{S}(’L,]C) Lg(i,k)+1;
Vk € N(Z) LEU{@} (k‘,]) LE(k’,j) + 1;
VkGN( ) LEU{E}(]ak):LE(J7k)+1’
Lpugey(i i) = LE(Z z) +1;

The intuitive interpretation of these changes is that
by adding edge (4, j), we create walks of length 2 from
node ¢ via j to the neighbours of j and from node j
via ¢ to the neighbours of i.

All other entries remain unchanged. Hence the greedy
optimization criteria (4) can be rewritten as

argmax| ZK@ k) —I—QZK ik
e=(10) ren(j) kKEN (i)

N+K (i) +K (5, 7)-

This adds edges (i,j) where 4 is similar to the neigh-
bourhood of j, and j is similar to the neighbourhood
of i, whereas the direct similarity of (4,7) is ignored.
Greedy selection is not optimal in this case, as the
neighbourhoods of nodes change in consecutive itera-
tions of NETHSIC and the objective above cannot be
evaluated for each edge irrespective of the existence of
other edges.

Other examples include kernels defined on the nor-
malized graph Laplacian (see Equations (17)—(20) in
(Smola & Kondor, 2003)). For this kernel L(i,j) de-
pends on the degree of node 7 and node j, hence all ker-
nel values L(7, k) between 7 and k € NV (i), and L(j, k)
between j and k € N (j) change (and correspondingly
L(k,i) and L(k,j)), when removing edge (i, ).

A simple, yet useful class of node kernels with global
effects can be defined by looking at classic topologi-
cal descriptors: These are scalars or vectors describing
some topological property of a node in a graph. An
associated node kernel can easily be derived, for in-
stance, in terms of a linear kernel on the topological
properties of two nodes. In our experiments, we will
use linear kernels on four such topological properties
of nodes: node degree, closeness centrality, between-
ness centrality, and shortest path vectors®.

2We provide the definitions of these topological proper-
ties for connected graphs here.
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Degree As commonly known, the degree § of a node
i in an undirected graph G is defined as §(i) = [N (4)|.
We define an associated kernel ks between vertices i
and j as ks(i,7) = (0(¢),0(4)), which is referred to as
degr in our experiments.

Closeness centrality is defined as the mean shortest
path length between a vertex ¢ and all other vertices
reachable .from it: Co(i) = (n—1)"1 DotV i} d(;(i,.t)
where d¢ is the shortest path length between all pairs
of nodes in G. We define an associated kernel k¢, be-
tween vertices i and j as ke, (i,7) = (Cc(i), Co(4)),
called close in our experiments.

Betweenness centrality is defined as the number
of shortest paths passing through node i: Cp(i) =
Zs¢i§ttev agt—(:) where o4 is the number of shortest

paths from node s to ¢, and o4(¢) is the number of
shortest paths from s to ¢ passing through vertex i.
We define an associated kernel k¢, between vertices ¢
and j as kcy (i,7) = (Cp(i),Cp(4)), which is referred
to as betw in our experiments.

The shortest path vector s(i) of size 1 x n of a
node i is simply its row in the matrix of shortest
path distances: s(i) = [dg(4,v1),...,dg (i, vyn)], where
V ={v1,...,v,}. We define an associated kernel k;
between vertices i and j as ks (4, ) = (s(4), s(j)), called
sp in our experiments.

4 Experiments and discussion

In this section, we apply NETHSIC to social net-
work analysis. We compare to three unsupervised
network inference methods: correlation relevance net-
works (Butte et al., 2000), mutual information rele-
vance networks (Butte & Kohane, 2000), and graphi-
cal Gaussian models (Toh & Horimoto, 2002).

4.1 Social network analysis

For this evaluation we obtained four social network
data sets: Krackhardt’s High-tech managers data set,
Padgett’s Florentine Families, Freeman’s EIES net-
work, and Countries trade data set (Wasserman &
Faust, 1994). The Countries data set contains in-
formation on 24 countries, comprising 4 numeric at-
tributes: population size, the GNP per capita, the
average education level (as expressed by scalars), as
well as energy consumption. We used NETHSIC to
learn the network of trade relationships between these
countries, based on these 4 numeric node attributes.

For experiments, NETHSIC requires:

e An attribute kernel: for each data set we computed
n X n kernel matrices for all of the numeric at-
tributes, using a linear kernel.

e A node kernel: we ran NETHSIC with eight differ-

ent node kernels: the graph Laplacian, the 1-step
random walk on the unnormalized graph Laplacian
(Section 3.1), the squared adjacency matrix, a linear
kernel on shortest path vectors, closeness, degrees
and betweenness of the nodes (all from Section 3.2),
and a A-kernel on the degrees of the nodes.

e The number of desired edges m: We set m = %(n2 -

n), where n is the number of nodes in the respective
graph, such that all possible edges are consecutively
added to the graph. This approach yields a ranking
over all edges, namely the inverse order in which
they were added to the graph.

To evaluate the quality of NETHSIC’s output we need:

e A gold reference network that we can compare to.
The Countries trade data includes five such refer-
ence networks, the network of trade of 1) food, 2)
crude materials, 3) mineral fuels, 4) manufactured
goods, and 5) exchange of diplomats (Wasserman &
Faust, 1994) .

o A strategy for comparing NETHSIC’s output to the
gold reference network: To compare the two, we
transformed the gold reference network into a rank-
ing of pairs of nodes. All pairs of nodes that are
connected by an edge are ranked higher than those
that are not connected. In this way, we obtain a
ranking of edges from NETHSIC and from the gold
reference. The quality of the NETHSIC output can
be measured in terms of an ROC curve and AUC
value (where we treat the gold reference as the true
“class labels” and NETHSIC’s ranking as the pre-
dictions).

We ran NETHSIC (in its forward selection variant)
for all combinations of attributes in each dataset and
the eight node kernels, and compared the inferred net-
work to each of the reference networks. For compar-
ison we applied three unsupervised network inference
methods from the literature: Mutual information rele-
vance networks connect the nodes with a high pairwise
mutual information (Butte & Kohane, 2000). Correla-
tion relevance networks draw edges between nodes that
have correlated features (Butte et al., 2000). Graphi-
cal Gaussian models are similar to relevance networks
but account for indirect or partial correlation due to
existing edges (Toh & Horimoto, 2002). As both cor-
relation relevance networks and Graphical Gaussian
models rely on correlations and partial correlations be-
tween the attributes, respectively, these methods do
not provide meaningful results for a single node at-
tribute. For this reason, we also ran all the methods
on a combination of all attributes of each data set. For
NETHSIC we chose an attribute kernel which is a sum
over linear kernels on the individual attributes.
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node attribute | reference network NETHSIC with node kernel \ method random
input output reference lapl ‘ 1step ‘ sp ‘ betw ‘ close ‘ adj ‘ degr ‘ Adegr ‘ GGM ‘ corr mi a=5%
Krackhardt’s High-tech managers (21 nodes)
age advise relation 415% | 58.8% | 57.6% | 47.6% | 59.3% | 42.6% | 49.9% | 62.2% 57.6% 57.1%
age friendship 42.7% | 57.1% | 57.7% | 55.0% | 52.2% | 43.4% | 39.9% | 47.7% 51.2% 57.0%
age who reports whom 52.7% | 47.4% | 42.9% | 54.5% | 44.9% | 47.9% | 57.5% | 58.5% 52.4% 61.2%
tenure advise relation 43.5% | 56.6% | 51.8% | 456.9% | 55.5% | 43.6% | 54.5% | 59.7% — — 55.3% 57.1%
tenure friendship 49.7% 50.3% | 46.2% | 58.0% | 48.6% 51.3% 56.1% 55.9% — — 51.2% 57.0%
tenure who reports whom 51.4% | 48.6% | 46.5% | 48.3% | 44.7% | 52.1% | 61.7% | 59.0% — — 48.0% 61.2%
level advise relation 50.5% | 46.8% | 49.2% | 45.0% 40.6% 49.1% 60.9% | 47.9% — — 57.5% 57.1%
level friendship 40.8% | 61.0% | 56.5% | 45.1% 49.7% 39.1% 40.1% | 61.3% — — 54.4% 57.0%
level who reports whom 79.3% | 18.4% | 30.4% | 66.1% | 28.6% | 66.2% | 78.4% | 29.5% — — 50.3% 61.2%
department advise relation 40.5% | 59.2% | 57.9% | 47.0% 42.5% | 37.9% 57.8% | 60.7% — — 44.8% 57.1%
department friendship 39.4% | 60.4% | 56.5% | 47.6% | 47.7% | 43.6% | 51.8% | 52.2% 50.8% 57.0%
department who reports whom 22.0% | 80.7% | 76.2% | 51.9% | 57.8% | 30.0% | 42.1% | 55.1% 46.5% 61.2%
Freeman’s EIES network (32 nodes)
citations aquaintanceship at time 1 54.4% | 45.4% | 42.5% | 50.2% | 42.1% | 36.4% | 63.0% | 58.8% — — 59.7% | 54.7%
citations aquaintanceship at time 2 53.7% | 46.3% | 46.0% | 55.1% | 38.4% | 38.1% | 60.7% | 56.7% — — 64.2% 55.5%
citations messages 38.9% | 61.3% | 57.8% | 48.5% | 56.6% | 59.0% | 41.1% | 60.1% — — 52.7% 54.2%
discipline aquaintanceship at time 1 40.4% | 58.2% | 56.7% | 45.0% | 49.3% | 40.3% 44.5% 51.1% — — 57.7% 54.7%
discipline aquaintanceship at time 2 48.5% | 53.5% | 51.2% | 47.7% | 47.7% | 46.7% 48.0% 51.6% — — 52.5% 55.5%
discipline messages 51.3% | 49.0% | 50.8% | 47.0% | 44.9% | 46.4% | 55.5% | 51.3% — — 51.6% 54.2%
Countries trade data (24 nodes)
population size food and live animals 63.1% | 37.4% | 31.2% | 59.2% | 26.2% | 61.0% | 79.4% | 62.9% 54.7% 56.4%
population size crude materials 57.4% | 43.1% | 32.0% | 60.3% | 22.7% | 59.8% | 84.5% | 70.4% — — 56.2% 56.3%
population size mineral fuels 54.1% | 46.6% | 40.3% | 61.1% | 34.1% | 54.0% | 68.9% | 57.3% — — 48.5% 56.0%
population size basic manufactured goods 66.4% | 33.9% | 23.4% | 58.0% | 20.7% | 66.7% | 88.2% | 68.8% — — 62.1% 56.3%
population size exchange of diplomats 54.3% | 45.7% | 38.8% | 56.3% 30.1% 54.4% | 76.3% | 67.0% — — 56.2% 56.3%
GNP per capita food and live animals 39.8% | 60.5% | 53.7% | 54.3% | 62.3% | 48.2% 35.4% | 57.1% — — 47.3% 56.4%
GNP per capita crude materials 42.6% | 57.6% | 50.6% | 52.0% | 62.4% | 53.5% 38.4% | 60.3% — — 48.7% 56.3%
GNP per capita | mineral fuels 45.4% | 54.8% | 52.8% | 56.6% | 57.0% | 50.2% | 43.8% | 57.6% — — 42.3% 56.0%
GNP per capita | basic manufactured goods 38.9% | 61.3% | 57.0% | 54.6% | 58.4% | 48.6% | 40.7% | 64.7% 49.7% 56.3%
GNP per capita | exchange of diplomats 41.0% | 59.1% | 52.4% | 49.3% | 62.8% | 50.6% | 36.3% | 55.9% 48.7% 56.3%
education food and live animals 56.2% | 44.1% | 46.4% | 62.0% | 29.2% | 59.4% | 81.5% | 62.7% 49.5% 56.4%
education crude materials 61.6% | 38.6% | 43.8% | 59.5% | 26.0% | 61.0% | 82.0% | 58.6% — — 48.5% 56.3%
education mineral fuels 58.0% | 42.2% | 47.7% | 60.8% | 29.7% | 53.3% | 7T4.0% | 52.4% — — 48.4% 56.0%
education basic manufactured goods 59.2% | 40.9% | 44.7% | 59.6% | 27.2% | 58.9% | 79.5% | 57.0% — — 50.0% 56.3%
education exchange of diplomats 54.7% | 45.3% | 471% | 56.7% | 32.0% | 56.5% | 71.0% | 60.9% — — 48.5% 56.3%
energy use food and live animals 73.1% | 26.9% | 25.5% | 57.2% | 38.4% | 62.0% | 81.9% | 61.1% — — 65.1% 56.4%
energy use crude materials 72.2% | 27.8% | 27.9% | 56.6% | 31.7% | 57.3% | 81.3% | 62.5% — — 63.8% 56.3%
energy use mineral fuels 62.6% | 37.4% | 39.1% | 65.6% | 40.1% | 50.9% | 69.3% | 54.3% — — 49.2% 56.0%
energy use basic manufactured goods 76.1% | 23.9% | 23.6% | 61.3% | 30.5% | 61.7% | 83.8% | 57.4% 65.5% 56.3%
energy use exchange of diplomats 63.5% | 36.5% | 37.8% | 53.1% | 40.3% | 524% | 70.0% | 59.1% 63.8% 56.3%
Padgett’s Florentine Families (16 nodes)

wealth business relation 44.5% | 55.6% | 54.6% | 47.4% | 54.3% | 45.7% | 48.0% | 58.3% — — 47.9% 61.8%
wealth marriage relation 52.8% | 46.5% | 42.0% | 48.3% | 43.6% | 54.3% | 58.4% | 53.2% — — 51.3% 63.2%
priors business relation 55.0% | 44.2% | 43.2% | 48.0% 55.5% | 60.1% 39.9% | 33.4% — — 41.7% 61.8%
priors marriage relation 46.6% | 51.0% | 48.0% | 39.1% | 66.2% | 51.5% 35.8% | 41.7% — — 48.9% 63.2%
ties business relation 49.7% | 51.2% | 51.6% | 50.2% 50.9% 58.6% 45.5% 58.6% — — 54.0% 61.8%
ties marriage relation 43.6% | 54.7% | 55.4% | 44.3% | 53.1% | 44.2% | 53.7% | 71.4% — — 68.8% 63.2%
mean AUC 51.7% | 48.3% | 46.5% | 53.1% | 44.0% | 51.1% | 59.3% | 56.9% 53.1%
percentage of values better than random | 27.3% | 27.3% | 15.9% | 36.4% | 18.2% | 27.3% | 50.0% | 54.6% 25.0%

rooted mean L,-deviation from best AUC | 0.187 | 0.271 0.280 | 0.165 0.312 0.187 0.135 0.156 — — 0.176

node attribute | reference network NETHSIC with node kernel method random
input output reference lapl ‘ istep ‘ sp ‘ betw ‘ close adj ‘ degr ‘ Adegr | GGM ‘ corr mi a=5%

Krackhardt’s High-tech managers (21 nodes)
all normalized advise relation 425% | 57.5% | 48.2% | 45.0% | 43.7% | 47.5% | 45.6% | 49.0% | 51.6% | 56.5% | 50.4% 57.1%
all normalized friendship 34.8% | 65.2% | 60.5% | 45.1% 54.9% 36.2% 53.4% | 60.9% | 55.3% | 61.5% | 44.1% 57.0%
all normalized who reports whom 26.6% | 73.4% | 77.4% | 66.1% | 37.3% | 12.2% | 58.2% | 70.9% | 55.0% | 56.5% | 55.7% 61.2%
Freeman’s EIES network (32 nodes)
all normalized aquaintanceship at time 1 42.9% | 57.1% | 55.6% | 50.2% | 60.7% | 40.8% 45.9% 53.9% | 53.3% | 54.9% | 58.1% 54.7%
all normalized aquaintanceship at time 2 48.3% | 51.8% | 51.1% | 55.1% | 61.4% | 46.6% | 47.9% | 55.5% | 46.7% | 49.2% | 63.0% 55.5%
all normalized messages 47.3% | 52.7% | 51.5% | 48.5% | 49.3% | 47.8% | 55.0% | 52.6% | 48.6% | 57.0% | 53.1% 54.2%
Countries trade data (24 nodes)
all normalized food and live animals 58.9% | 41.2% | 37.8% | 56.5% | 27.5% | 62.5% | 84.5% | 58.0% | 59.0% | 34.5% 38.1% 56.4%
all normalized crude materials 59.9% | 40.1% | 40.6% | 55.0% | 25.9% | 60.6% | 86.3% | 60.9% | 58.4% | 34.1% | 40.0% 56.3%
all normalized mineral fuels 59.1% | 40.9% | 44.2% | 53.8% | 31.1% | 53.8% | 7T4.0% | 51.0% | 63.1% | 42.3% | 47.3% 56.0%
all normalized basic manufactured goods 62.3% | 37.7% | 37.6% | 59.7% | 24.1% | 63.7% | 87.9% | 57.5% | 54.1% 29.0% | 43.8% 56.3%
all normalized exchange of diplomats 54.0% | 46.0% | 43.1% | 45.0% 33.6% 54.7% | 76.0% | 57.3% | 58.4% | 34.1% | 40.0% 56.3%
Padgett’s Florentine Families (16 nodes)

all normalized business relation 49.3% | 50.7% | 49.0% | 47.0% | 54.2% | 57.3% | 40.1% | 42.6% | 52.7% | 45.4% | 49.2% 61.8%
all normalized marriage relation 44.7% | 55.2% | 51.9% | 45.5% | 60.6% | 53.5% | 41.0% | 44.6% | 38.9% | 51.9% | 50.8% 63.2%
mean AUC 48.5% | 51.5% | 49.9% | 51.7% | 43.4% | 49.0% | 61.2% | 55.0% | 53.5% | 46.7% | 48.7%
percentage of values better than random | 30.8% | 30.8% | 23.1% | 23.1% | 15.4% | 23.1% | 46.2% | 46.2% | 30.8% | 23.1% | 15.4%

rooted mean Lo-deviation from best AUC | 0.238 | 0.260 | 0.266 | 0.200 0.357 0.257 0.117 0.173 0.186 0.308 0.269

Table 1: NETHSIC in social network analysis. Shown are the AUC values reached by NETHSIC for various combinations
of attribute kernel (column 1), node kernel (one from column 3-10), and gold reference network (column 2). For comparison
we applied correlation relevance networks (corr), graphical Gaussian models (GGM) and mutual information relevance
networks (mi) (column 11-13). Note that correlation relevance networks and graphical Gaussian models are not applicable
for individual attributes as these methods rely on correlations respective partial correlations within multiple attributes.
Results significantly better than random (a = 0.05) (column 14) are shown in bold. (Abbreviations of node kernels:
1step l-step random walk on unnormalized Laplacian, lapl Laplacian; sp linear kernel on shortest path vectors; betw
linear kernel on betweenness centrality; close linear kernel on closeness centrality; adj squared adjacency matrix; degr
linear kernel on node degrees; Adegr delta kernel on node degrees)
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4.2 Results

We report AUC values on the reference networks for
both individual features (top) and the combination of
features (bottom) in Table 1. We assessed whether
an AUC-value is significant by randomly shuffling its
predictions 10* times and checking whether its result
was among the best 5% of these random permutations
which corresponds to a significance level of & = 5%. In
the tables significant results are listed in bold. Further,
the rooted mean Ls-deviation from the best AUC on
each data set for each of the methods was determined.
This statistics rewards methods that perform close to
the best-performing method across all data sets.

What we found most interesting is that NETHSIC did
not reach its highest or most significant AUC values
when we used the 1-step random walk kernel (1step),
but for the linear and delta kernels on the degree
(degr, Adegr). This means that especially on the
Countries data set, it is not a good strategy to assume
that nodes with similar attributes must be connected,
but rather that they share a similar node degree in
the underlying network. Across all 4 data sets, the de-
gree kernel, which is a node kernel with global effects,
reached AUC values that were better than random.
The general message is: In these social networks, sim-
ilar node attributes mostly indicate that these nodes
have a similar degree in the network. Note also that
neither mutual information or correlation based net-
work inference nor graphical Gaussian models could
reach the same mean AUC score as NETHSIC in com-
bination with the degree kernel. The number of mea-
surements per node (1-4 attributes) seems to be in-
sufficient for accurate network inference using these
methods, and at the same time, they cannot model an
explicit link between node attributes and particular
topological properties of the nodes.

5 Conclusions

In this paper we define a kernel-based framework for
unsupervised structured network inference. We can in-
terpret existing heuristic-based algorithms in our sta-
tistical framework and demonstrate the utility of ad-
vanced graph scoring functions taking the graph topol-
ogy into account. In future work, we will focus on
extending this framework to semi-supervised settings:
Given some edges, the task is to complete the net-
work, while observing constraints on network topology.
Speeding up runtime for kernels with global effects is
another algorithmic challenge that will be addressed
in future work. The theoretical computer science com-
munity has studied the problem of updating centrality
scores and shortest paths in a dynamically changing
network, which will alleviate this problem for kernels
based on these types of topological indices.
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