
Journal of Integrative Bioinformatics 2006 http://journal.imbio.de/

Exact and Approximate Stochastic Simulations of the MAPK
Pathway and Comparisons of Simulations’ Results
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Summary

The MAPK (mitogen-activated protein kinase) or its synonymous ERK (extracellular sig-
nal regulated kinase) pathway whose components are Ras, Raf, and MEK proteins with
many biochemical links, is one of the major signalling systems involved in cellular growth
control of eukaryotes including cell proliferation, transformation, differentiation, and apop-
tosis. In this study we describe the MAPK/ERK pathway via (quasi) biochemical reactions
and then implement the pathway by a stochastic Markov process. A novelty of our ap-
proach is to use multiple parametrizations in order to deal with molecules for which lo-
calization in the cell is an intricate part of the dynamic process and to describe the protein
using different binding sites and various phosphorylations. We simulate the system by
exact and different approximate simulations, e.g. via the Poissonτ -leap, the Binomialτ -
leap and the diffusion methods, in which we introduce a new updating plan for dependent
columns of the diffusion matrix. Finally we compare the results of different algorithms by
the current biological knowledge and find out new relations about this complex system.

1 Introduction

The MAPK/ERK pathway whose main components are Ras, Raf, and MEK proteins (Figure1),
is one of the major signalling systems which regulates the cellular growth control of all eukary-
otes. The structure of this pathway includes a number of phosphorylations on the protein level
whose interactions are directed bypositiveandnegative feedback loops. These loops cause
either activation or inhibition of other proteins and are named asoscillatory behaviourif they
are executed as combinations with time delays. The circadian rhythm is an example of an
oscillatory behaviour which implies a series of coordinated feedbacks between transcriptional
activation and protein degradation that generates a periodic cycle (See Section3.1).

Because of its importance in cellular activation, the MAPK/ERK pathway has been intensively
studies from different laboratories [15, 12, 13, 1]. There are a number of biological sources
which give qualitative knowledge about the MAPK/ERK pathway [16, 18]. However these
sources do not describe the system by an explicit set of reactions which can be more helpful to
understand the actual structure. In this study we combine these underlying qualitative knowl-
edge to represent biochemical activations of the pathway as a list of (quasi) reactions. We
denote all components by simple notations, thereby, produce a basis for stochastic simulation.
As a novelty, moreover, we use multiple parametrizations in order to deal with molecules for
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Figure 1: Simple representation of the structure of MAPK/ERK pathway.

which localization in the cell is an intricate part of the dynamic process and to describe the pro-
tein using different binding sites and various phosphorylations. The following set of equations,
which describes the activation of the MAPK pathway by the EGF receptor, is an example from
the reaction list of the pathway with 94 reactions and 51 substrates, representing 33 proteins
and genes.

EGF + Shc−→ EGF + Shcm (translocation)

Grb2 + SOS−→ Grb2-SOS

EGF + Grb2-SOS−→ EGF + Grb2-SOSm (translocation)

Shcm + Grb2-SOSm −→ Shc-Grb2-SOSm

Shc-Grb2-SOSm + Ras.GDP−→ Shc-Grb2-SOSm + Ras.GTP

in which Grb2, SOS, Shc, EGF, Ras.GTP, and Ras.GDP are single proteins, Grb2-SOS and Shc-
Grb2-SOS are protein complexes in the cytosol, and Shc-Grb2-SOSm is a protein complex near
the membrane. As seen from the reactions, the translocation of substrates to the membrane is
expressed by the notationm. For instance the protein Shcm denotes the Shc protein translocated
from the cytosol towards the membrane. The different levels of the phosphorylation, on the
other hand, are denoted by the index p or p1 and p2 where the first two abbreviations show
the mono-phosphorylation and the latter implies the double-phosphorylation of a protein. For
example, MEK.p2, another protein from the list, represents the double-phosphorylated MEK
protein on the S218 and S222 binding sites.

Gene regulation is commonly modelled via ordinary differential equations (ODEs), which em-
ploy the law of mass action and continuous concentrations of each chemical substrate. Even
though ODEs are successful to describe several reactions such as linear production and degra-
dation, they cannot explain the small system variability of the actual reactions. For modelling
biochemical systems, stochastic processes are a natural choice [4, 20]. This dynamic formaliza-
tion takes into account the probabilistic manner of the different biological activations, such as
the transcription of certain proteins, which occurs with low frequency in biological time [14].
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2 Stochastic Simulation Algorithms (SSA)

There are various exact methods [6, 7, 5] for implementing stochastic simulations, but practi-
cally theDirect method[6], also known as theGillespie algorithm, is the most common and
usually most efficient simulator.

2.1 Gillespie algorithm

The Gillespie algorithm is strictly based on thechemical master equationwhich describes the
stochastic behavior of the system [20] by

∂

∂t
P (Y ; t) =

M∑

j=1

{aj(Y − vj, cj)P (Y − vj; t)dt− aj(Y, cj)P (Y ; t)dt}.

In this equation,M is the number of reactionsR1, R2, . . . , RM . The N -dimensional vector
Y = (Y1, Y2, . . . , YN) represents the state of the system at timet, vj denotes thejth row of
the net effect matrixV , andcj is the stochastic rate constant ofjth reaction,Rj. Accordingly,
aj(Y, cj) describes the hazard for reactionj with stochastic rate constantcj and stateY so that
the termaj(Y − vj, cj)P (Y − vj; t)dt indicates the probability that the reactionRj occurs over
time interval [t, t + dt] moving the state fromY − vj to Y .

This algorithm works well for simulating small systems, however, it is inefficient for developing
realistic complex models since the time step for the next reaction is taken so small such that
only a single reaction can occur in a given time step [5, 20]. Hence we use the following
approximation techniques for simulating the signalling pathway.

2.2 The Poisson τ -leap method

An interesting idea for an approximation is to execute several reactions simultaneously over
a larger time interval. If we define how many times each reaction is executed in each small
time interval, we can move along the system’s history axis from one time step to the next,
instead of moving along from one reaction to the next. So by using these subintervals,leaps,
a realization of state vectorY can be described. If we choose these intervals very small, the
results correspond to those of the exact SSA. However if a larger time interval is selected, the
results give us an approximation of the exact algorithm with a reduction of computational cost.

The Poissonτ -leap method is an approximation method whose aim is to increase intervals
between sampling times efficiently under theleap condition[9]. The method determines a
small time intervalτ by

τ = min
j∈[1,M ]





εa0(Y )∣∣∣∑N
i=1 ξi(Y )bji(Y )

∣∣∣





in whichaj(Y ) is thejth reaction hazard,bji = ∂aj(Y )/∂Yi (i = 1, . . . , N andj = 1, . . . , M ),
a0(Y ) =

∑M
j=1 aj(Y ), ξ(Y ) =

∑M
j=1 aj(Y )vj; ε is the specified fraction (0 < ε < 1), in the

sense that the transition probability per unit time (hazard) does not change very much, so that
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the leap condition is satisfied. Under this assumption a sample valuekj, which is the number
of times of the execution of the reactionRj in the time interval [t, t+τ ] given thatY (t) = y,
is drawn from thePoissondistribution with meanaj(Y )τ . On the other hand the net change in
the state of the system in [t, t + τ ], λ, is calculated asλ =

∑m
j kjvj. The method updates the

current state by replacingt by t := t + τ andY by Y := Y + λ [9, 10].

2.3 The Binomial τ -leap method

Similar to the Poisson alternative, the Binomialτ -leap method also uses the system’s history
axis to produce an approximate simulation. By assuming that the leap condition holds, the
maximum numberk(j)

max of thejth reaction occurring in time interval [t, t + τ ] given the state
Y (t) is determined byminvij<0bYi/|vij|c, wherebzc is the greatest integer inz, Y is the current
state vector containing the number of moleculesYi(t) of all substrates at timet, and finallyvij

stands for each entry of the net effect matrix for theith substrate and thejth reaction.

The binomialτ -leap method samples the number of thejth reactionkj from the binomial
distribution with the success probabilityp = ajτ/k(j)

max in which τ = f/
∑M

j=1 aj andf is a
coarse graining factor greater than 1. In the computation,f = 1 stands for the average time
increment of the exact SSA [9, 19] and for the choice off, like f < 103 for small steps or
f > 104 for large steps, the method controls the computational time and the accuracy of the
approximation. The method updates the timet and the stateYi by settingtnew = told + τ and
Yi(tnew) = Yi(told) + λ, whereλ = vijkj, respectively [2, 3].

The advantage of this method over the Poisson alternative is that it solves the problem of neg-
ative populations which may result in the unbounded Poissonτ -leap algorithm. This case
happens, particularly, whenkj exceeds the available population size of one or more species in a
single reaction [19, 2]. However it is unable to simulate several types of reaction, like transcrip-
tional regulation, because the update regime ofk(j)

max is based on only the substrates whose net
effects in thejth reaction are less than 0 (See Section3.1), whereas transcriptional regulation
(DNA→DNA + RNA) has no negative net-effects.

2.4 Diffusion approximation

Under the assumption that the probability distribution of the number of the molecules of each
species att depends on the continuoust and continuous number of molecules, the stochastic
model can be converted to a differential equations model. With the Fokker-Planck approach
[17], this probability distributionP (Y (t)) can be expanded via a Taylor expansion [21, 17] and
the change of state of each species att is found by a Langevin approach, in which a correlated
noise term describes the stochastic behaviour of the model over and above the drift term

dY (t) = µ(Y, Θ)dt + β
1
2 (Y, Θ)dW (t)

whereµ(Y, Θ) = V ′a(Y, Θ) andβ(Y, Θ) = V ′diag{a(Y, Θ)}V are mean, or drift, and vari-
ance, or diffusion, matrices, respectively, both depending onY and the parameter vectorΘ =
(c1, c2, . . . , cr)

′ explicitly; dW (t) represents the change of a Brownian motion over time. Practi-
cally we implement the time increment by choosing the Gillespie’s time step which is generated
according to an exponential with parameter

∑M
j=1 aj. The algorithm computes the next state at

t + dt by replacingY (t) by Y (t) + dY (t) [8, 11].
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2.5 The new updating regime for diffusion approximation

In large stochastic systems, we have observed that the distribution of the number of molecules
of substrates exhibits high dependency when the system converges to the stationary distribu-
tion. This dependency structure causes a singularity in the diffusion matrixβ and makes cal-
culation of dY (t) via a multivariate normal impossible. Effectively, the variance structure
β

1
2 (Y, Θ)dW (t) “ lives ” in a lower dimensional space. To unravel this problem we propose the

following updating regime:

1. By checking the columns ofβ from left to right, each linearly dependent columnβi is
identified.

2. The dependent columnsS, totally |S|, are described as the linear combination of inde-
pendent columns so that everyβ.i =

∑
j 6∈S,j<i αijβ.j The α vector shows the linear re-

lationship between the underlying dependent column and previous independent columns
and is stored for eachi(i ∈ S).

3. A new (N − |S|)× (N − |S|) dimensional diffusion matrixβ∗ is defined by eliminating
|S| dependent columns and rows fromβN×N .

4. N−|S| samples∆−S are generated from normal distribution with mean zero and variance
β∗1/2dt for updatingN − |S| linearly independent substrates viaYj(t + dt) = Yj(t) +
µj(t)dt + ∆j wherej 6∈ S.

5. The dependent columns ofY , ∆S, are generated as∆i =
∑

j 6∈S,j<i αij∆j (i ∈ S) using
theαs from before and are updated asYi(t + dt) = Yi(t) + µi(t)dt + ∆i.

Under this new updating regime, it can be shown that the covariance structureβ of the changes
dY (t) is preserved: Fori ∈ S andj 6∈ S

Cov(∆i, ∆j) = Cov(
∑

k 6∈S,k<i

αik∆k, ∆j)

=
∑

k 6∈S,k<i

αikCov(∆k, ∆j)

=
∑

k 6∈S,k<i

αikβkj

= βij

for i ∈ S

Cov(∆i, ∆i) = Cov(
∑

k 6∈S,k<i

αik∆k, ∆i)

=
∑

k 6∈S,k<i

αikCov(∆k, ∆i)

=
∑

k 6∈S,k<i

αikβki

= βii.

The results of the new algorithm are shown in Section3.1.
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3 Results

We have simulated the MAPK pathway by using exact and approximate methods mentioned
above. In our computations, we have assumed that the hazards are constant for each level.
We choose 3 gradations of reaction time speed, namely slow, normal, and fast. The stochastic
rate constants have been calculated according to the order of each reaction, the given hazards,
and the number of molecules which is initialized at 100 for all substrates. Then we have run
the algorithms under three different scenarios: (i) excluding all reactions of degradation, (ii)
merely including EGF degradation, and (iii) initializing the number of molecules of EGF at
zero, respectively. Indeed in biochemical reactions protein degradation is much slower than
the time periods during which biochemical activation and de-activation processes take place.
Therefore ignoring these reactions in the MAPK pathway is realistic in simulation. Under the
second scenario, we have added thedegradationof EGF, which is a direct result of the activation
of the MAPK pathway via the internalization of this receptor into vesicles. Finally under the
third scenario without the presence of EGF we aim to unravel the steady state behaviour of
the system, since EGF is the only protein that triggers the activation of the pathway and its
inactivation has not yet been fully understood [18].

3.1 Comparison of simulation results
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Figure 2: (a) Total hazards of Gillespie algorithm, Poissonτ -leap method with δ = 0.6, Binomial
τ -leap method with f = 102, and diffusion approximation with new update plan under the first
scenario andt = 5. (b) Gillespie and diffusion approximation with new updating regime of active
MEK-RKIP complex in cytosol under the first scenario and t = 20. The y-axis indicates the
number of molecules of this complex for the timet.

We have run simulations of the system under all simulation methods, and have compared the
differences of their total hazards and changes in activities of substrates through time under
the first scenario. Figure2 shows that the Poissonτ -leap and the diffusion method with the
new updating regime seem relatively smoother, whereas the Binomialτ -leap gives the worst
approximation of the exact Gillespie algorithm. The comparison of number of iterations of all
methods in Table1 illustrates that the Binomialτ -leap has time increments that are too large.
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Table 1: Comparison of computational times (2st column) and total number of iterations (3rd
column) of the Gillespie algorithm, the Poissonτ -leap method, the Binomialτ -leap method, and
the diffusion approximation with new update plan, respectively under the first scenario andt = 5.

Total time Total iteration
Gillespie algorithm 1 hr 30625
Poissonτ -leap method 1 hr 28 min 27851
Binomial τ -leap method 28 sec 3516
Diffusion approximation with new update plan 1 hr 30731

In this method the time stepτ is decided with respect to the success probabilityp = ajτ/k(j)
max

(Section2.3). If ajτ is bigger thank(j)
max, τ is automatically made large, like in our example.

Under this condition the only variable which can be adjusted for the computation ofτ is the
value of the coarse gaining factorf . Although for an appropriate choice off , the result can be
improved significantly, the decision aboutf is based on ad hoc calculations.

Furthermore if the system has many reactions of transcriptional regulation or the reaction of
production, the method can not simulate the network properly because ofk(j)

max updating step
(Section2.3). For instance the following reaction of transcription,

ERK.p2-TF.p2+ MKP.DNA −→ ERK.p2-TF.p2+ MKP.DNA + MKP.RNA

in which ERK.p2-TF.p2 is the active ERK in the nucleus, MKP.DNA and MKP.RNA are the
DNA and the transcripted RNA sequences of MKP protein, respectively, cannot be executed
during the algorithm since the net effect vector of the reactionvj = (0, . . . , 0, 1, 0, . . . , 0) has
only positive entries (Figure3b).

As seen from Table1, on the other hand, the Poissonτ -leap method is computationally more
expensive than other approximations. Indeed its result is highly dependent on the choice of
ε which affectsτ . Even though the method does not use any ad hoc calculations, it can give
negative population numbers [19, 2, 3], particularly in the log-run simulation.

From the Table1, it is also observed that the computational time of both Gillespie and diffu-
sion algorithms are equal fort = 5. However since the number of iterations of the diffusion
approximation is greater than that of Gillespie algorithm, it can be concluded that the speed
of the former is slightly faster than the latter per iteration. Additionally from the simulation
with longer time interval, it has been found that as the network becomes more complex, the
computational efficiency of the diffusion approximation becomes considerably faster than the
Gillespie algorithm. For instance the running time of the MAPK pathway fort = 20 is com-
pleted in 21 hours with Gillespie algorithm, on the other hand, the simulation takes 10 hours
with diffusion approximation.

In this study because of the underlying problems of the Poisson and Binomialτ -leap methods,
we have chosen the diffusion approximation to analyze the pathway as a smooth approximation
of the exact simulation. Figure2b shows the results of the active MEK-RKIP complex in
cytosol produced by diffusion approximation with new updating regime. As seen from the
graph, the diffusion with new updating step fits the exact result (Gillespie’s results) well. The
accuracy of the new procedure comes from the step that is very sensitive to the singularity of
the diffusion matrix.
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Figure 3: (a) Inactive, mono-phosphorylated MEK and RKIP complex in cytosol and (b) RNA
sequence of MKP in nucleus simulated by the Gillespie algorithm and Binomialτ -leap method
with f = 102 under the first scenario andt = 5. The y-axes stand for the number of molecules of
the underlying substrates for the timet.

3.2 Comparison of conditions and translocation of proteins

In order to compare the results under the three conditions, we have listed changes in activities
of substrates with respect to their activations when EGF degradation is included. As shown in
Table2, we have found that single MEK and ERK proteins, all kinds of MEK-RKIP and ERK-
RSK complexes as well as c-Fos, MKP proteins are unrelated to the availability of EGF protein
in the system. Indeed a non-linear functionality between ERK and EGF has been already
mentioned by earlier studies of Wiley et al. [22] and Hornberg et al. [13]. On the other hand
inactive/active Ras, Raf, SOS, Shc, Grb2 proteins and their complexes either in cytosol or near
the cell membrane are highly dependent on the EGF activation. Moreover as seen from Table2,
it has been observed that under the first (excluding all reactions of degradations) and the third
(initializing the number of molecules of EGF to zero) scenarios, the proteins indicate exactly
the same changes if the second (merely including EGF degradation) scenario is chosen as the
basis condition of the pathway. This interesting finding can be explained by the oscillatory
behavior of ERK which is still unclear but possibly due to the negative feedback through the
induction of the expression of MAPK phosphatises [16].

Moreover co-regulation plots of biologically important pairs of substrates through time, have re-
vealed a bi-activation relations within RSK vs c-Fos, ERK.p2 vs c-Fos, c-Fos.RNA vs ERK.p2-
RSK.A, and EGF vs c-Fos proteins. The plot of the last pair is shown in Figure4 as an illustra-
tion. These findings can imply the oscillatory behaviour of proteins like in the case of the ERK
activation [16].

On the other hand for investigating the effects of the translocation of proteins under all con-
ditions, we have plotted changes in activities of substrates with different localizations through
time. We have found that the localization of molecules by multiple parametrization is necessary
for explaining the dynamic behavior of the system. For instance Figure5a and Figure5b show
different activation of Grb2-SOS protein in cytosol and near the cell membrane, respectively.
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Figure 4: Plot of the co-regulation of EGF versus c-Fos proteins in the MAPK pathway under the
second scenario andt = 20. The axes show the number of molecules of substrates through time.
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Figure 5: Change in activities of Grb2-SOS complex (a) in cytosol and (b) near membrane, respec-
tively including the degradation of EGF by using both Gillespie algorithm and diffusion approx-
imation under the second scenario andt = 20. The y-axes illustrate the number of molecules of
the Grb2-SOS complexes for the timet.
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Table 2: Changes in activities of each protein of the MAPK pathway under the first and the third
scenario when the second scenario is accepted as the natural activation of the cell andt = 20.

Types of proteins
Decrease in activation Ras.GDP, Raf.I, Shc, Grb2, Grb2-SOS, MKP.RNA
Stability in activation Raf.I-RKIP, Raf.I-RKIPm, Raf.I-RKIP-Ras.GTPm,

MEK, MEKF , MEKS, MEK.p2, MEK-RKIP, RKIP,
MEKF -RKIP, MEKS-RKIP, MEK.p2-RKIP, ERK,
ERK.p1, ERK.p2, ERK.p2-TF.p2, ERK.p2-RSK.A,
ERK.p2-RSK.A-TF.p2, c-Fos, c-Fos.DNA, c-Fos.RNA,
c-Fos.p, MKP, MKP.DNA, TF, GAP, PP2A, PAK, PP5,
RKIP.p, PKC, RSK

Increase in activation Ras.GTP, Raf, Raf.Im, Raf.I-Ras.GTPm, Raf.Am, Grb2m,
Raf.A-Ras.GTPm, Shcm, SOS, Grb2-SOSm, Shc-Grb2m,
Shc-Grb2-SOSm

3.3 Dynamic profiles

In order to find out highly variable substrates in the MAPK/ERK pathway, we have applied
principal component analysis. The results from both diffusion and Gillespie algorithms show
that inactive Raf (Raf.I), active MEK (MEK.p2), c-Fos phosphorylated by ERK (c-Fos.p), and
RKIP phosphorylated by either PKC or ERK (RKIP.p) are associated with the most of the
variability of the network. Indeed a similar conclusion was obtained in the study of Hornberg
et al. (2005a): only a small group of reactions, which involve Raf, MEK, and ERK, directs the
behaviour of the pathway.

For finding homogeneous subsets of substrates in the system, we have applied PAMSAM clus-
tering [23] whose dissimilarity measure is defined via pairwise correlations. Figure6 shows
the resulting 8 clusters. The results with EGF degradation indicate that both simulation tech-
niques partition most of the proteins in the same clusters and the substrates whose activations
are similar like in the Table2 are the members of the same or close clusters. Similarly the
substrates whose activations are linear under the same conditions are gathered in the same or
close classes. However the diffusion approximation has more correlated proteins than Gillespie
algorithm. The reason is that the former is much smoother than the latter.

4 Conclusion

In this study, we have implemented the stochastic simulation of the MAPK pathway by using
both exact and approximation algorithms. We have compared the simulation results according
to their computational times and accuracies. The results show that although the Poissonτ -
leap method can be accelerated by several improvements in time increments [10], it can give
negative population sizes in the long-run. On the other hand the Binomialτ -leap method is fast
in calculation, but it is not accurate enough to get smooth approximation of the exact algorithm
and has ad hoc choices for updating states and determining the time increments.

In order to unravel the singularity problem ofβ, the diffusion matrix, in the diffusion approxi-
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Figure 6: PAMSAM clustering of 45 substrates (excluding c-Fos.DNA, GAP, PP2A, PAK, PP5,
PKC) by using (a) Gillespie algorithm and (b) diffusion approximation under the second scenario
and t = 20.

mation, we have proposed a new updating regime. The results show that our method sorts the
singularity problem and gives an exact solution.

For simulating the MAPK pathway, as a novelty we have used multiple parameterizations to
describe the translocation and the different levels of phosphorylation of the protein and have
combined the different biological sources, which represent the pathway qualitatively, as a list
of (quasi) reactions with simple notations. The analysis indicates that such kind of description,
indeed, is essential to better understand the structure of the complex system and suitable for
generating a stochastic simulation. Finally we have checked our conclusions with the biological
knowledge about the pathway and found out several new features of the MAPK signalling
system.
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