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Abstract

We consider perceptual learning: experience-induced changes in the way perceivers extract information. Often neglected in
scientific accounts of learning and in instruction, perceptual learning is a fundamental contributor to human expertise and is crucial
in domains where humans show remarkable levels of attainment, such as language, chess, music, and mathematics. In Section 2,
we give a brief history and discuss the relation of perceptual learning to other forms of learning. We consider in Section 3 several
specific phenomena, illustrating the scope and characteristics of perceptual learning, including both discovery and fluency effects.
We describe abstract perceptual learning, in which structural relationships are discovered and recognized in novel instances that
do not share constituent elements or basic features. In Section 4, we consider primary concepts that have been used to explain and
model perceptual learning, including receptive field change, selection, and relational recoding. In Section 5, we consider the scope
of perceptual learning, contrasting recent research, focused on simple sensory discriminations, with earlier work that emphasized
extraction of invariance from varied instances in more complex tasks. Contrary to some recent views, we argue that perceptual
learning should not be confined to changes in early sensory analyzers. Phenomena at various levels, we suggest, can be unified
by models that emphasize discovery and selection of relevant information. In a final section, we consider the potential role of
perceptual learning in educational settings. Most instruction emphasizes facts and procedures that can be verbalized, whereas
expertise depends heavily on implicit pattern recognition and selective extraction skills acquired through perceptual learning. We
consider reasons why perceptual learning has not been systematically addressed in traditional instruction, and we describe recent
successful efforts to create a technology of perceptual learning in areas such as aviation, mathematics, and medicine. Research
in perceptual learning promises to advance scientific accounts of learning, and perceptual learning technology may offer similar
promise in improving education.
© 2008 Elsevier B.V. All rights reserved.
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1. Introduction

On a good day, the best human chess grandmaster can beat the world’s best chess-playing computer. The computer
program is no slouch; every second, it examines upwards of 200 million possible moves. Its makers incorporate
sophisticated methods for evaluating positions, and they implement strategies based on advice from grandmaster
consultants. Yet, not even this formidable array of techniques gives the computer a clear advantage over the best
human player.

If chess performance were based on raw search, the human would not present the slightest problem for the com-
puter. Estimates of human search through possible moves in chess suggest that even the best players examine on the
order of 4 possible move sequences, each about 4 plies deep (where a ply is a pair of turns by the two sides). That
estimate is per turn, not per second, and a single turn may take many seconds. Assuming the computer were limited
to 10 sec of search per turn, the human would be at a disadvantage of about 1 999 999 984 moves searched per turn.

Given this disparity, how is it possible for the human to outplay the machine? The accomplishment suggests infor-
mation processing abilities of remarkable power but mysterious nature. Whatever the human is doing, it is, at its best,
roughly equivalent to 2 billion moves per sec of raw search. “Magical” would not seem too strong a description for
such abilities.

We have not yet said what these abilities are, but before doing so, we add one more striking observation. Biological
systems often display remarkable structures and capacities that have emerged as evolutionary adaptations to serve
particular functions. Compared to machines that fly, for example, the capabilities of a dragonfly or hummingbird (or
even the lowly mosquito) are astonishing. Yet the information processing capabilities we are considering may be seen
as all the more remarkable because they do not appear to be adaptations specialized for one particular task. We did not
evolve to play chess. In other words, it is likely that human attainments in chess are consequences of highly general
abilities that contribute to learned expertise in many domains. Such abilities may have evolved for more ecological
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tasks, but they are of such power and generality that humans can become remarkably good in almost any domain
involving complex structure.

What abilities are these? They are abilities of perceptual learning. The effects we are describing arise from
experience-induced changes in the way perceivers pick up information. With practice in any domain, humans be-
come attuned to the relevant features and structural relations that define important classifications, and over time we
come to extract these with increasing selectivity and fluency. As a contrast, consider: Most artificial sensing devices
that exist, or those we might envision, would have fixed characteristics. If they functioned properly, their performance
on the 1000th trial of picking up some information would closely resemble their performance on the first trial. Not
so in human perception. Rather, our extraction of information changes adaptively to optimize particular tasks. A large
and growing research literature suggests that such changes are pervasive in perception and that they profoundly affect
tasks from the pickup of minute sensory detail to the extraction of complex and abstract relations that underwrite
symbolic thought. Perceptual learning thus furnishes a crucial basis of human expertise, from accomplishments as
commonplace as skilled reading to those as rarified as expert air traffic control, radiological diagnosis, grandmaster
chess, and creative scientific insight.

In this paper, we give an overview of perceptual learning, a long-neglected area of learning, both in scientific theory
and research, as well as in educational practice. Our consideration of perceptual learning will proceed as follows. In
the second section, we provide some brief historical background on perceptual learning and some taxonomic con-
siderations, contrasting and relating it to other types of learning. In the third section, we consider some instructive
examples of perceptual learning, indicating its influence in a range of levels and tasks, and arguing that the informa-
tion processing changes brought about by perceptual learning can be usefully categorized as discovery and fluency
effects. In the fourth section, we consider explanations and modeling concepts for perceptual learning, and we use this
information to consider the scope of perceptual learning in the fifth section. As its role and scope in human expertise
become clearer, its absence from conventional instructional settings becomes more paradoxical. In a final section, we
discuss these issues and the potential for improving education by using perceptual learning techniques.

2. Perceptual learning in context

2.1. Perceptual learning and taxonomies of learning

Perceptual learning can be defined as “an increase in the ability to extract information from the environment, as
a result of experience and practice with stimulation coming from it” [34, p. 3]. With sporadic exceptions, this kind
of learning has been neglected in scientific research on learning. Researchers in animal learning have focused on
conditioning – associative learning phenomena – involving connections between responses and stimuli. Most work on
human learning and memory has focused on encoding of items in memory (declarative learning) or learning sequences
of actions (procedural learning).

Perceptual learning is not encompassed by any of these categories. It works synergistically with them all, so much
so that it often comprises a missing link, concealed in murky background issues of other learning research. In stimulus-
response approaches to animal and human learning, it is axiomatic that the “stimulus” is part of the physical world
and can be described without reference to internal variables in the organism. Used in this way “stimulus” omits a set
of thorny issues. For an organism, a physical event is not a stimulus unless it is detected. And what kind of stimulus
it is will depend on which properties are registered and how it is classified. Like the sound made (or not) by the
proverbial tree falling in the forest, “stimulus” has two meanings, and they are not interchangeable. The tone or light
programmed by the experimenter is a physical stimulus, but whether a psychological stimulus is present and what its
characteristics are depends on the organism’s perceptual capacities.

When stimuli are chosen to be obvious, work in associative learning can occur without probing the fine points
of perception and attention. The problem of perceptual learning, however, is that with experience, the organism’s
pick-up of information changes. In its most fascinating instances, perceptual learning leads the perceiver to detect and
distinguish features, differences, or relations not previously registered at all. Two initially indistinguishable stimuli
can come to be readily distinguished, even in basic sensory acuities, such as those tested by your optometrist. In higher
level tasks, the novice chess player may be blind to the impending checkmate that jumps out at the expert, and the
novice art critic may lack the expert’s ability to detect the difference between the brush strokes in a genuine Renoir
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painting and those in a forgery. Perceptual learning is not the attachment of a stimulus to a response, but rather the
discovery of new structure in stimulation.

Perceptual learning is also not procedural knowledge. Some learned visual scanning routines for specialized tasks
may be procedural, but much perceptual learning can be shown in improved pickup of information in presentations
so brief that no set of fixations or scan pattern could drive the relevant improvements. In general, the relation between
perceptual learning and procedures is flexible. The perceptual expertise of an instrument flight instructor, for example,
may allow her to notice at a glance that the aircraft has drifted 200 feet above the assigned altitude. If she is flying the
plane, the correct procedure would be to lower the nose and descend. If she is instructing a student at the controls, the
proper procedure may be a gentle reminder to check the altimeter. In examples like this one, the perceptual information
so expertly extracted can be mapped onto various responses. Another difference is that in many descriptions (e.g., [4]),
procedures consist of sets of steps that are conscious, at least initially in learning. Changes in sensitivity that arise in
perceptual learning do not consist of conscious procedures.

Finally, it should be obvious that perceptual learning does not consist of learning declarative information – facts
and concepts that can be verbalized. Besides the fact that structures extracted by experts in a domain often cannot be
verbally explained, the effect of learning is to change the capacity to extract. This idea has been discussed in instruc-
tional contexts [7]. Most formal learning contexts implicitly follow a “mind as container” metaphor (see Section 6
below), with learning as the transfer of declarative knowledge – facts and concepts that can be verbalized. Perceptual
learning effects involve “mind as pattern recognizer” [7].

Looking back at our example of chess, some readers may be puzzled by our emphasis on perceptual processes
in what appears to be a high-level domain involving explicit reasoning and perhaps language. Although reasoning
is certainly involved in chess expertise, it is precisely the difficulty of accounting for human competence within the
computational limitations of human reasoning that makes chess, and many other domains of expertise, so fascinating.
The most straightforward ideas about explicit reasoning in chess are those that have been successfully formalized and
implemented in classic artificial intelligence work. Given a position description (a node in a problem space), certain
moves are allowable and these may be considered in terms of their value via some evaluation function. Search through
the space for the best move is computationally unwieldy but may be aided by heuristics that prune the search tree.
Yet as we noted earlier, human search of this sort is severely limited and easily dwarfed by computer chess programs.
Perhaps more fertile efforts to connect these concepts to human chess playing lie in reasoning about positions as a
basis for heuristically guiding search. It is unlikely, however, that the synergy of pattern recognition and reasoning
can be explained by explicit symbolic processes, such as those mediated by language. If chess expertise were based
on explicit knowledge, the grandmaster consultants to the developers of chess-playing programs would have long
since incorporated the relevant patterns used by the best human players. This has not been feasible because much of
the relevant pattern knowledge is not verbally accessible. These are some of the reasons that classic studies of chess
expertise (e.g., [14,19]) have pointed to the crucial importance of perception of structure and a more limited role for
explicit reasoning (at least relative to our preconceptions!). Similar conclusions apply to many high-level domains of
human competence.

The counterintuitive aspects of perception vs. reasoning in expertise derive both from excessive expectations of
reasoning and misunderstandings of the nature of perception. These issues are not new. Max Wertheimer, in his
classic work Productive Thinking, discussed formal logical and associative approaches to reasoning and argued that
neither encompasses what is perhaps the most crucial process: the apprehension of relations. It was the belief of the
Gestalt psychologists, such as Wertheimer, that this apprehension is rooted in perception. Although the point is still
not sufficiently appreciated, perception itself is abstract and relational. If we see two trees next to each other, one twice
as tall as the other, there are many accurate descriptions that may be extracted via perception. The shade of green of
the leaves and the texture of the bark are concrete features. But more abstract structure, such as the ratio of the height
of one tree to the other, are just as “real”, as are informational variables in stimulation that make them perceivable.
This is a deeply important point, one that has proven decisive in modern theories of perception [34,35,74,78]. Human
perceptual abilities to recover the connectivity of a non-rigid, moving entity from otherwise meaningless points of
light [53] or perceive causal relations from stimulus changes [78] indicate that apprehending the abstract structure of
objects, arrangements and events is an important, perhaps the most important, goal of perceptual processing.

Still the foregoing analyses leave some questions unanswered. One might ask why humans play chess (and under-
stand chemistry, etc.) whereas animals do not. Some answers to this question are peripheral to our interests here, such
as the fact that instructing new players about rules, procedures, and basic strategy is greatly facilitated by language.
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Here again, however, the fact that one can produce in a short time novice players who can recite the rules and moves
of chess flawlessly contrasts with the fact that no verbal instruction suffices to produce grandmasters. More pertinent,
however, is the issue of the pickup of abstract structural relations in perception. Might this faculty differ between
humans and most animals? Might humans be more disposed to find abstract structure than animal perceivers? Might
language and symbolic functions facilitate the salience of information and help guide pattern extraction? These are
fascinating possibilities, which we take up below.

2.2. Perceptual learning and the origins of perception

The phrase “perceptual learning” has been used in a number of ways. In classical empiricist views of perceptual
development, all meaningful perception (e.g., perception of objects, motion, and spatial arrangement) was held to
arise from initially meaningless sensations. Meaningful perception was thought to derive from associations among
sensations (e.g., [8,72,114]) and with action [87]. On this account, most perceptual development early in life consists
of perceptual learning. Dominant through most of the history of philosophy and experimental psychology, this point of
view was based primarily on logical arguments (about the ambiguity of visual stimuli) and on the apparent helplessness
of human infants in the first 6 months of life. Young infants’ lack of coordinated activity was at once an ingredient of
a dogma about early perception and at the same time an obstacle to its direct study.

In recent decades, experimental psychologists developed methods of testing infant perception directly. Although
infants do not do much, they perceive quite a lot. And they do deploy visual attention, via eye and head movements.
With appropriate techniques, these tendencies, as well as electrophysiological and other methods, can be used to reveal
a great deal about early perception (for a review see [59]).

What this research has shown is that the traditional empiricist picture of perceptual development is incorrect. Al-
though perception becomes more precise with age and experience, basic capacities of all sorts – such as the abilities to
perceive objects, faces, motion, three-dimensional space, the directions of sounds, coordinate the senses in perceiving
events, and other abilities – arise primarily from innate or early-maturing mechanisms [13,36,45,63,75,109].

Despite its lack of viability as an account of early perceptual development, the idea that learning may allow us to
attach meaning to initially meaningless sensations has been suggested to characterize perceptual learning throughout
the lifespan. In a classic article, Gibson and Gibson [37] criticized this view and contrasted it with another.

They called the traditional view – that of adding meaning to sensations via associations and past experience – an
enrichment view. We must enrich and interpret current sensations by adding associated sensations accumulated from
prior experience. In Piaget’s [87,88] more action-oriented version of this account, it is the association of perception
and action that leads to meaningful perception of objects, space and events.

The Gibsons noticed a curious fact about enrichment views: The more learning occurs, the less perception will be
in correspondence with the actual information present in a situation. This is the case because with more enrichment,
the current stimuli play a smaller role in determining the percept: more enrichment means more reliance on previously
acquired information. Such a view has been held by generations of scholars who have characterized perception as a
construction [8,72], an hypothesis [40], an inference [10] or an act of imagination based on past experience [46].

The Gibsons suggested that the truth may be quite the opposite. Experience might make perceivers better at us-
ing currently available information. With practice perception might become more, not less, in correspondence with
the given information. They called this view of perceptual learning differentiation. Differentiation, or the discovery
of distinguishing features, may play an important role in various creative and cognitive processes. Through discov-
ery, undifferentiated concepts come to have better-defined boundaries [54]. Creativity, it has been argued, involves
connecting various well differentiated concepts to unconscious representations of knowledge, like instincts and emo-
tion [85]. In any situation, there is a wealth of available information to which perceivers might become sensitive.
Learning as differentiation is the discovery and selective processing of the information most relevant to a task. This
includes filtering relevant from irrelevant information, but also discovery of higher-order invariants that govern some
classification. Perceptual learning is conceived of as a process that leads to task-specific improvement in the extraction
of what is really there.

In our review, we focus on this notion of perceptual learning, that is, learning of the sort that constitutes an im-
provement in the extraction of information. Most contemporary perceptual learning research, although varying on
other dimensions, fits squarely within the differentiation camp and would be difficult to interpret as enrichment.
Although contemporary computational vision approaches that emphasize use of Bayesian priors in determining per-
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ceptual descriptions may be considered updated, more quantitative, versions of traditional enrichment views, the use
of enrichment as an account of learning by the individual is rare in perceptual learning research today. This is partly
due to the consistent emphasis on perceptual learning phenomena that involve improvements in sensitivity (rather
than changes in bias). Also, enrichment is not much reflected in contemporary perceptual learning work because there
is little evidence of perception being substantially influenced by accumulation of priors ontogenetically (i.e., during
learning by the individual). Current Bayesian approaches to perception often suggest that priors have been acquired
during evolutionary time (e.g., [91]). This emphasis on evolutionary origins is much more consistent with what is
known about early perceptual development [59].

The contemporary focus on differentiation in perceptual learning can also understood in terms of signal detection
theory (SDT). SDT is a psychological model of how biological systems can detect signals in the presence of noise. It
is closely related to the concept of signal to noise ratio in telecommunications (e.g., [17]), but also considers potential
response biases of subjects that can arise due to, for example, the costs associated with failing to detect a signal
or mistaking noise for a signal. More specifically, SDT offers mathematical techniques for quantifying sensitivity
independent of response bias from perceptual data, where sensitivity represents accuracy in detecting or discriminating
and response bias represents the tendencies of an observer to use the available response categories in the presence of
uncertainty.

A well-established fact of SDT is that stimulus frequency affects response bias, not sensitivity (e.g., [127]). Con-
sider an experiment in which the observer must say red or blue for a stimulus pattern presented on each trial, and
the discrimination is difficult (so that accuracy is well short of perfect). For an ambiguous stimulus, observers will be
more likely to respond blue if “blue” is the correct answer on 90% of trials than if “blue” is the correct answer on 50%
of trials. SDT analysis will reveal that sensitivity is the same in these cases. What has changed is response bias. Such
frequency effects contain the essential elements both of associative “enrichment” theories of perceptual learning and
of the use of Bayesian priors in generating perceptual responses.

Although there are interesting phenomena associated with such changes in response bias (including optimizing
perceptual decisions), perceptual learning research today is much more concerned with the remarkable fact that prac-
tice actually changes sensitivity. Sensitivity in SDT is a function of the difference between the observer’s probability
of saying blue given a blue stimulus and the probability of saying “blue” given a red stimulus. The perceptual learning
effects we will consider are typically improvements in sensitivity or facility in dealing with information available to
the senses. As we will see, such improvements can come in the form of finer discriminations or discovery and selective
use of higher-order structure.

2.3. A brief history of perceptual learning

This notion of perceptual learning as improvement in the pick-up of information has not been a mainstay in the
psychology of learning, but it has made cameo appearances. William James devoted a section of his Principles of
Psychology to “the improvement of discrimination by practice [52, vol. I, p. 509]”. Clark Hull, the noted mathematical
learning theorist, did his dissertation in 1918 on a concept learning task using slightly deformed Chinese characters.
In each of twelve categories of characters, differing exemplars shared some invariant structural property. Subjects
learned to associate a sound (as the name of each category) using 6 instances of each category and were trained to
a learning criterion. A test phase with 6 new instances showed that learning had led to the ability to classify novel
instances accurately [51]. This ability to extract invariance from instances and to respond selectively to classify new
instances mark Hull’s study as not only a concept formation experiment but as a perceptual learning experiment.

Hull’s later contributions to learning theory had little to do with this early work, a bit of an irony, as Eleanor
Gibson, who did the most to define the modern field of perceptual learning, was later a student in Hull’s laboratory.
She found Hull’s laboratory preoccupied with conditioning phenomena when she did her dissertation there in 1938
[112]. It was Gibson and her students who made perceptual learning a highly visible area of research in the 1950s and
1960s, much of it summarized in a classic review of the field [34]. By the mid-1970s, this area had become quiescent.
One reason was a shift of focus to perceptual and cognitive development in infancy. Most of this research focused
on characterizing basic perceptual capacities of young infants rather than on perceptual learning processes. Research
specifically directed at perceptual learning in infancy has become more common recently, however (e.g., [29,39,99]).

In the last decade and a half, there has been an explosion of research on perceptual learning. This newest period
of research has distinctive characteristics. It has centered almost exclusively on learning effects involving elementary
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sensory discriminations. The research has produced findings of remarkable improvements on almost any sensory task
brought about by discrimination practice. The focus on basic sensory discriminations has been motivated by interest
in cortical plasticity and attempts to connect behavioral and physiological data. This focus differs from earlier work on
perceptual learning, as we consider below, and relating perceptual learning work spanning different tasks and levels
poses interesting challenges and opportunities. One goal of this review is to highlight phenomena and principles
appearing at different levels and tasks that point toward a unified understanding of perceptual learning.

3. Some perceptual learning phenomena

To give some idea of its scope and characteristics, we consider a few examples of perceptual learning phenomena.
Our examples come primarily from visual perception. They span a range of levels, from simple sensory discriminations
to higher-level perceptual learning effects more relevant to real-world expertise.

Highlighting these examples may also illustrate that perceptual learning phenomena can be organized into two
general categories – discovery and fluency effects [58]. Discovery involves some change in the bases of response:
Selecting new information relevant for a task, amplifying relevant information, or suppressing information that is
irrelevant [121] are cases of discovery. Fluency effects involve changes, not in what is extracted, but in the ease
of extraction. When relevant information has been discovered, continued practice allows its pickup to become less
demanding of attention and effort. In the limit, it becomes automatic – relatively insensitive to attentional load [101].

The distinction between discovery and fluency is not always clearcut or easily assessed, as these effects typically
co-occur in learning. Particular dependent variables may be sensitive to both. Improved sensitivity to a feature or
relation would characterize discovery, whereas improved speed, load insensitivity, or dual-task performance would
naturally seem to be fluency effects. But improved speed may also be a consequence of discovering a higher-order
invariant that provides a shortcut for the task (a discovery effect). Conversely, when performance is measured under
time constraints, fluency improvements may influence measures of sensitivity or accuracy, because greater fluency
allows more information to be extracted in a fixed time. The distinction between discovery and fluency is nevertheless
important; understanding perceptual learning will require accounts of how new bases of response are discovered and
how information extraction becomes more rapid and less demanding with practice.

The examples we consider illustrate a variety of perceptual learning effects but do not comprise a comprehensive
treatment of phenomena in the field. Also, there are a number of interesting issues in the field that fall outside the
scope of this article. These include several factors that affect perceptual learning, including the effects of sleep (e.g.
[56,111]), the importance or irrelevance of feedback (e.g. [25,86,105]), and even whether or not subjects need to be
perceptually aware of the stimuli [103,122]. For these and other issues not treated here, we refer the interested reader
to more inclusive reviews [27,34,38,58].

3.1. Basic visual discriminations

What if someone were to tell you that your visual system’s maximal ability to resolve fine detail could improve
with practice – by orders of magnitude? This may surprise you, as you might expect that basic limits of resolution,
such as discriminating two lines with slightly different orientations, would rest on mechanisms that are fixed. Because
basic characteristics of resolution affect many higher-level processes, we might expect on evolutionary grounds that
observers’ efficiency for extracting detail is optimal within biophysical constraints. In fact, this is not the case – not for
orientation sensitivity or for a variety of other basic, visual sensitivities. Appropriately structured perceptual learning
tasks can produce dramatic changes in basic sensitivities.

Vernier acuity – judging the alignment of two small line segments – is a frequently studied task that reveals the
power of perceptual learning. In a typical Vernier task, two lines, one above the other, are shown on each trial, and
the observer indicates whether the upper line is to the left or right of the lower line. In untrained subjects, Vernier
acuity is already remarkably precise. It is so precise, in fact, that it is not uncommon for subjects to be able to detect
misalignments of less than 10 arc secs [125]. Because this detection threshold is smaller than the aperture diameter of
one foveal cone photoreceptor, this acuity, along with others, has been labeled a “hyperacuity” [124].

Hyperacuity phenomena have posed challenges to vision modelers. Recent modeling efforts suggest that the basic
acuity limits of the human visual system are achieved in part by exploiting sources of information that arise due to
the non-linear response properties of retinal and cortical cells responding to near-threshold signals in the presence of
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Fig. 1. Practice-induced improvements in visual search [56]. All data are from a single subject. Top: On each session (spaced 1–3 days apart),
subjects showed significant improvement in the amount of exposure time (SOA) necessary to discriminate between two targets presented among
distractors. Separate curves represent performance during different sessions. The leftward shift of the curves with practice indicates that perfor-
mance of the task required progressively shorter presentations to achieve a given accuracy level. Between sessions, performance remained relatively
constant, and was unchanged 32 months after the final training session. Bottom: Exposure time (SOA) necessary to reach threshold performance
(∼80% correct) as a function of training session.

noise [44,47]. Despite the neural complexity already involved in achieving hyperacuity, with training over thousands
of trials, Vernier thresholds improve substantially. Saarinen and Levi [97], for example, found as much as a 6-fold
decrease in threshold after 8000 trials of training. Similar improvements have been found for motion discrimination
[5] and simple orientation sensitivity [105,118].

3.2. Visual search

A task with more obvious ecological relevance is visual search. Finding or discriminating a target object hidden
among distractors, or in noise, characterizes a number of tasks encountered by visually guided animals, including
detection of food and predators. Studies of perceptual learning in various visual search tasks show that experience
leads to robust gains in sensitivity and speed. Karni and Sagi [56] had observers search for obliquely oriented lines
in a field of horizontal lines. The target, always in one quadrant of the visual field, consisted of a set of three oblique
lines arrayed vertically or horizontally. (The subject’s task was to say on each trial whether the vertical or horizontal
configuration was present.) The amount of time needed to reliably discriminate decreased from about 200 ms on
session 1 to about 50 ms on session 15. Sessions were spaced 1–3 days apart, and training effects persisted even years
later. Data from their study are shown in Fig. 1.

The learning observed by Karni and Sagi was specific to location and orientation (of the background elements). This
specificity is observed in many perceptual learning tasks using basic discriminations, a small number of unchanging
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stimulus patterns, and fixed presentation characteristics. The lack of transfer to untrained retinal locations, across eyes,
and to different stimulus values is often argued to indicate a low-level locus of learning. Learning that is specific to a
retinal position, for example, may involve early cortical levels in which the responses of neural units are retinotopic –
mapped to particular retinal positions – rather than units in higher level areas which show some degree of positional
invariance [55]. On the other hand, other studies of perceptual learning have shown robust transfer. In visual search
studies, Ahissar and Hochstein [1] showed that learning to detect a single line element hidden in an array of parallel,
differently-oriented line segments could generalize to positions at which the target was never presented. Sireteanu
and Rettenback [68,108] discussed learning effects in which learning leads serial (sequential) search tasks to become
parallel or nearly so; such effects often generalize across eyes, retinal locations, and tasks. Inconsistency of results
regarding specificity of transfer have complicated the idea that lack of transfer implies a low-level site of learning.
The basic inference that specificity indicates that learning occurs at early processing levels has also been argued to be
a fallacy [80]. We discuss this issue in relation to general views of perceptual learning in Section 5.

3.3. Automaticity in search

Earlier work involving perceptual learning in visual search provides a classic example of improvements in fluency.
In a series of studies, Schneider and Shiffrin [101] had subjects judge whether any letters in a target set appeared at
the corners of rectangular arrays that appeared in sequence. Attentional load was manipulated by varying the number
of items in the target set and the number of items on each card in the series of frames. (Specifically, load was defined
as the product of the number of possible target items and the number of possible locations to be searched.) Early in
learning, or when targets and distractors were interchangeable across trials, performance was highly load-sensitive:
Searching for larger numbers of items or checking more locations took longer. For subjects trained with a consistent
mapping between targets and distractors (i.e., an item could appear as one or the other but not both), subjects not only
became much more efficient in doing the task, but they came to perform the task equally well over a range of target
set sizes and array sizes [101]. The fact that performance became load-insensitive led Schneider and Shiffrin to label
this type of performance automatic processing.

3.4. Unitization in shape processing

Some perceptual learning effects on visual search suggest that the representation of targets, distractors, or both, can
change due to experience. Consider the results of Sireteanu and Rettenback [108], in which a previously serial visual
search comes to be performed in parallel as a result of training. The classic interpretation of this result is that training
caused the target of the visual search to become represented as a visual primitive, or feature [116]. More generally,
this result suggests that conjunctions of features can become represented as features themselves, i.e., they become a
unit.

Unitization, like “chunking” [79], describes a process allowing information to be encoded or processed more effi-
ciently. The idea is that the information capacity of certain cognitive functions, such as working memory, is fixed. We
can, however, learn to utilize the available capacity more efficiently by forming higher-level units based on relations
discovered through learning.

Goldstone [38] studied unitization using simple 2D shapes like those shown in Fig. 2. Each shape is formed from 5
separate parts. Subjects were trained to sort these shapes into categories based on the presence of a single component,
a conjunction of 5 components, or a conjunction of 5 components in a specific order. Performance, measured by
response time, improved with training, and although categorization based on a single feature was fastest, the greatest
improvement due to training was for categorization based on 5 parts in a specific order. Goldstone suggested that
the improvement was because the shapes came to be represented in a new way. The original representation of the
shapes, through training, was replaced with new, more efficient, chunk-like representation formed from parts that
were always present in the stimuli, but previously not perceived. A detailed study of response times indicated that
the improvement based on unitization was greater than would be predicted based on improvements in processing of
individual components. This result furnished strong evidence that new perceptual units were being used.

An interesting issue with this and other sources of evidence for perceptual unitization or chunking is whether
basic elements have merely become cemented together perceptually or whether a higher-order invariant has been
discovered that spans multiple elements and replaces their separate coding [34]. In the top display in Fig. 2, for



62 P.J. Kellman, P. Garrigan / Physics of Life Reviews 6 (2009) 53–84
Fig. 2. Stimuli used in unitization experiment by Goldstone [38]. Each top contour is composed of 5 contour segments (labeled A–E). Categorization
training in which a consistent arrangement (e.g., ABCDE) was discriminated from items differing by one component led to performance that
indicated formation of a new perceptual unit or discovery of higher-order shape invariants (see text).

example, the learner may come to encode relations among positions of peaks or valleys in the contour. Such relations
are not defined if individual components are considered separately. It is possible that unitization phenomena in general
depend on discovery of higher-order pattern relations, but these ideas deserve further study.

3.5. Perceptual learning in real-world tasks

In recent years, perceptual learning research has most often focused on basic sensory discriminations. Both the
focus and style of this research contrast with real-world learning tasks, in which it would be rare for a learner to have
thousands of trials discriminating two simple displays consistently projected to the same retinal location and differing
minimally on some elementary attribute. Ecologically, the function of perceptual learning is almost certainly to allow
improvements in information extraction from richer, multidimensional stimuli, where even those falling into some
category show a range of variation. A requirement of learning in such tasks is that the learner comes to extract invariant
properties from instances having variable characteristics. As E. Gibson put it “It would be hard to overemphasize the
importance for perceptual learning of the discovery of invariant properties which are in correspondence with physical
variables. The term ‘extraction’ will be applied to this process, for the property may be buried, as it were, in a welter
of impinging stimulation”. [34, p. 81]

These aspects of real-world tasks at once indicate why perceptual learning is so important and why it is task-
specific. For a given purpose, not all properties of an object are relevant. In fact, for understanding causal relations
and structural similarities, finding the relevant structure is a key to thinking and problem solving [23,123]. For different
tasks, the relevant properties will vary. For example, in classifying human beings, the relevant properties differ in an
employment interview and in an aircraft weight and balance calculation (at least for most jobs). Most often, perceptual
learning in real-world situations involves discovery of relations and some degree of abstraction. Perceptual learning
that ferrets out dimensions and relations crucial to particular tasks underwrites not only remarkable improvements in
orientation discrimination but also the expertise that empowers a sommelier or successful day-trader. In understanding
human expertise, these factors play a greater role than is usually suspected; conversely, the burden of explanation
placed on the learning of facts, rules, or techniques is often exaggerated, and the dependence of these latter processes
on perceptual learning goes unnoticed. Some examples may illustrate this idea.

3.5.1. Chess expertise
Chess is a fascinating domain in which to study perceptual learning, for several reasons. One is that, as mentioned

earlier, humans can reach astonishing levels of expertise. Another is that the differences between middle level players
and masters tend not to involve explicit knowledge about chess. De Groot [19] and Chase and Simon [14] studied
chess masters, intermediate players, and novices to try to determine how masters perform at such a high level. Masters
did not differ from novices or mid-level players in terms of number of moves considered, search strategies, or depth
of search. Rather, the differences appeared to be perceptual learning effects – exceptional abilities to encode rapidly
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and accurately positions and relations on the board. These abilities were tested in experiments in which players were
given brief exposures to chess positions and had to recreate them with a set of pieces on an empty board. Relative to
intermediate or novice players, a chess master seemed to encode larger chunks, picked up important chess relations
in these chunks and required fewer exposures to fully recreate a chessboard. One might wonder if masters are simply
people with superior visual memory skills – skills that allowed them to excel at chess. A control experiment [14]
suggested that this is not the case. When pieces were placed randomly on a chessboard, a chess master showed no
better performance in recreating board positions than a novice or mid-level player. (In fact, there was a slight tendency
for the master to perform worse than the others.) These results suggest that the master differs in having advanced skills
in extracting structural patterns specific to chess.

3.5.2. The word superiority effect
It is comforting to know that perceptual expertise is not the sole province of grandmasters, as few of us would

participate. Common to almost all adults is a domain in which extensive practice leads to high expertise: fluent
reading. An intriguing indicator of the power of perceptual learning effects in reading is the word superiority effect.
Suppose a participant is asked to judge on each trial whether the letter R or L is presented. Suppose further that the
presentations consist of brief exposures and that the time of these exposures is varied. We can use such a method to
determine an exposure time that allows the observer to be correct about 80% of the time.

Now suppose that, instead of R or L, the observer’s task is to judge whether “DEAR” or “DEAL” is presented
on each trial. Again, we find the exposure time that produces 80% accuracy. If we compare this condition to the
single letter condition, we see a remarkable effect first studied by Reicher [94] and Wheeler [126]. (For an excellent
review, see [6].) The exposure time allowing 80% performance will be substantially shorter for the words than for the
individual letters. Note that the context provided by the word frame provides no information about the correct choice,
as the frame is identical for both. In both the single letter and word conditions, the discrimination must be based on the
R vs. the L. Somehow, the presence of the irrelevant word context allows the discrimination to be made more rapidly.

One might suppose that the word-superiority effect comes from readers having learned the overall shapes of famil-
iar words. If practice leads to discovery of higher-order structure of the word (beyond the processing of the individual
letters), this structure may become more rapidly processed. It turns out that this explanation of the word superiority
effect is not correct. The most stunning evidence on the point is that the effect is not restricted to familiar words; it
also works for pronounceable nonsense (e.g., GEAL vs. GEAD, but not GKBL vs. GKBD). The fact that most of
the effect is preserved with pronounceable nonsense suggests that learning has led to extraction and rapid processing
of structural regularities characteristic of English spelling patterns. The idea that the word superiority effect results
from perceptual learning of higher-order regularities would predict that beginning readers would not show the word
superiority effect. This proves to be the case [28].

3.5.3. Interaction of fluency and discovery processes
It has long been suspected that fluency and discovery processes interact in the development of expertise. Writing in

Psychological Review in 1897 and 1899, Bryan and Harter proposed that automatizing the pick-up of basic structure
serves as a foundation for discovering higher-order relationships [11,12]. These investigators studied learning in the
task of telegraphic receiving. When the measure of characters received per minute (in Morse Code) was plotted against
weeks of practice, a typical, negatively accelerated learning curve appeared, reaching asymptote after some weeks.
With continued practice, however, many subjects produced a new learning curve, rising from the plateau of the first.
And for some subjects, after even more practice, a third learning curve ultimately emerged. Each learning curve raised
performance to substantially higher levels than before. See Fig. 3.

What could account for this remarkable topography of learning? When Bryan and Harter asked their subjects to
describe their activity at different points in learning, responses suggested that the information being processed differed
considerably at different stages. Those on the first learning curve reported that they were concentrating on the way
letters of English mapped onto the dots and dashes of Morse Code. Those on the second learning curve reported that
dots and dashes making letters had become automatic for them; now they were focusing on word structure. Finally,
learners at the highest level reported that common words had become automatic; they were now focusing on message
structure. To test these introspective reports, Bryan and Harter presented learners in the second phase with sequences
of letters that did not make words. Under these conditions, performance returned to the asymptotic level of the first
learning curve. When the most advanced learners were presented with sequences of words that did not make messages,
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Fig. 3. Practice effects in Bryan and Harter’s [12] telegraphic speech recognition (Morse Code) experiment. Subject performance increases with
practice, then levels off for some time, with little apparent improvement with continued practice. During this time, letter recognition is becoming
automatic. Automatic letter recognition frees up attentional resources for becoming sensitive to word structure, accounting for a second negatively
accelerated learning curve (top line). Recognizing individual words without context (middle line) or individual letters that do not constitute words
(bottom line), is always more difficult, and shows no indication of multiple learning stages.

their performance returned to the asymptotic levels of the second learning curve. These results confirmed subjects’
subjective reports.

The Bryan and Harter results serve as a good example for distinguishing discovery and fluency effects in perceptual
learning. Both are involved in the telegraphers’ learning. As learning curves are ascending, we may assume that
at least some of what is occurring is that learners are discovering new structure that enables better performance.
The acquisition of new bases of response (discovery) is clearly shown in the tests Bryan and Harter did with non-
meaningful letter and word sequences. What is also noticeable, however, are long periods at asymptotic performance
at one level before a new learning curve emerges. In Fig. 3 (top curve), such a period continues for nearly a month of
practice. Given that performance (letters per minute transcribed) is not changing, the information being extracted is
unlikely to be changing in such periods. What is changing? Arguably, what is changing is that controlled, attentionally
demanding processing is giving way to automatic processing. If in fact the information being extracted is constant,
then this change would appear to be a pure fluency effect. Both the discovery of structure and automatizing its pick-up
appear to be necessary to pave the way for discovery of higher level structure.

Although the universality of the phenomenon of three separable learning curves in telegraphic receiving has been
questioned [57], Bryan and Harter’s data indicate use of higher-order structure by advanced learners and suggest that
discovery of such structure is a limited capacity process. Automating the processing of basic structure at one level
frees attentional capacity to discover higher level structure, which can in turn become automatic, allowing discovery
of even higher level information, and so on. This cycle of discovery and fluency in perceptual learning – discovering
and automating of higher and higher levels of structure – may account for the seemingly magical levels of human
expertise that sometimes arise from years of sustained experience, as in chess, mathematics, music and science. These
insights from the classic Bryan and Harter study are reflected in more recent work, such as demonstrations that
expertise involves learning across multiple time scales in pure motor skill development [71] and automating basic
skills in development of higher-level expertise in areas such as reading [100] and mathematics [30]. These principles
are increasingly reflected in modern applications of perceptual learning to training procedures (e.g., [16]). Bryan and
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Harter’s study offers a compelling suggestion about how discovery and fluency processes interact. Their 1899 article
ends with a memorable claim: “Automaticity is not genius, but it is the hands and feet of genius”.

3.6. Abstract perceptual learning

Two important tenets of contemporary theories of perception are that perceptual systems are sensitive to higher-
order relationships [35,74], and they produce as outputs abstract descriptions of reality [74,78], that is, descriptions
of physical objects, shapes, spatial relations and events. These modern ideas contrast with pervasive earlier views
that sensory systems produce initially meaningless sensations, which acquire meaning only through association and
inference.

Sensitivity to abstract relations is reflected as well in perceptual learning. It is probably worth making clear what we
mean by abstract, as there are a variety of uses of the term. For our purposes, abstract information may be illustrated
as follows. Suppose we hear and encode a melody. Encoding the information that the first note has fundamental
frequency f0 is a concrete encoding. Encoding that the second note has a fundamental frequency that equals f0 plus
some amount k is encoding a relation. Encoding that two notes differ by an octave is encoding an abstract relation.
The idea is that the abstract encoding is dependent on a concrete value only conditionally. For an octave, whatever
the first frequency is, the second must be twice that. In general, a relation is abstract if it involves binding the value
of a variable. (In this example, the first frequency can be any frequency x, but the second must be 2x.) Our notion of
abstract information is close to J. Gibson’s notion of higher-order invariants [33].

The importance of relations and abstract relations was emphasized in Gestalt Psychology (e.g., [65,123]). Our use
of a melody borrows from the Gestaltists, as it was a classic example of theirs. If you hear and encode a new melody,
what is it that you have learned? If learning were confined to a concrete, sensory level, the learning would consist
of a temporal series of specific frequencies of sound. But this description would not capture the learning of most
listeners. Most of us (except those with “perfect pitch”) will not retain the particular frequencies (or more accurately,
the sensations of pitch corresponding to those frequencies). Your learning is such that you will seamlessly recognize
the melody as the same if you hear it later, even if it has been transposed to a different key. The fact that the melody
retains its identity despite changes in all of the constituent frequencies of sound indicates encoding of the melody in
terms of abstract relations. Conversely, most hearers would have little ability to identify later the exact key in which
the melody was played at first hearing.

In vision, abstract relations are pervasive in our encoding of shape. A miniature plastic replica of an elephant is
easily recognizable as an elephant. This ability is more remarkable than it first appears. It involves use of abstract
relations to classify despite novel (and starkly conflicting) concrete features. (No real elephants are made of plastic
or fit in the palm of your hand.) Seeing the miniature elephant as appropriately shaped depends on abstract rela-
tions, such as the proportions of the body, trunk and ears, that are applied to a novel set of concrete size values.
Perceptual learning about shape seems to have this property in any situation in which shape invariance is required
across changes in constituent elements, size or other changes (what the Gestalt psychologists called “transposition”
phenomena).

In cases such as melodies and shapes, abstract relations are salient even in initial encoding (although there is a pos-
sibility that such invariance is initially discovered through learning processes). In other contexts, learning processes
have a larger challenge in discovering over a longer period some higher-order invariance that determines a classifi-
cation [34]. Whether the relevant relations “pop out” or are discovered gradually, the pickup of abstract structure is
common in human perceptual learning, and it presents challenges in the modeling of perceptual learning.

There has not been much work on perceptual learning of abstract relations. Numerous studies have involved shape
perception [34], but not much has been done to examine invariance over transformations after learning. Intuitively,
work on caricature [96] or on recognition of people and events in point-light displays (e.g., a person walking has
small lights placed on the major joints of the body and is filmed in the dark [53]) are studies of the effects of abstract
perceptual learning processes.

Although sensory discrimination tasks used in most contemporary perceptual learning research do not appear to
involve abstract perceptual learning, it may be more pervasive than suspected. An interesting example comes from the
work of Nagarajan et al. [81]. They trained subjects on an interval discrimination for vibratory pulses. The sensory
(concrete) aspects of this learning would be expected to involve tactile sensations sent to somatosensory cortex. They
found that after training, learning transferred to other parts of the trained hand, and to the same position on the
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contralateral hand. More remarkable, they found that learning also transferred to auditory stimuli with the same
intervals. So, what was learned was actually the time interval – an abstract relation among inputs, with the particular
inputs being incidental. This idea that even apparently low-level tasks may involve relational structure is also reflected
in recent work suggesting that perceptual learning may not operate directly on sensory analyzers but only through
perceptual-constancy based representations [31]. We discuss that work more thoroughly in Section 5 below.

Research suggests that perceptual learning of abstract relations is a basic capacity of human learners from very
early in life. Marcus et al. [73] familiarized 7-month-old infants with syllable sequences in which the first and last
elements matched, such as “li na li” or “ga ti ga”. Afterwards, infants showed a novelty response (longer attention) to
a new string such as “wo fe fe” but showed less attention to a new string that fit the abstract pattern of earlier items,
such as “wo fe wo”. Similar results have been obtained in somewhat older infants [39]. These findings suggest an
early ability to discover abstract relationships, although there is some possibility that speech stimuli are somewhat
special in this respect [98].

That learning often latches onto abstract relations is important in attaining behaviorally relevant descriptions of
the environment: For thought and action, it is often the case that encoding relations and abstract relations is more
crucial than encoding sensory particulars [35,65,119]. Whether this holds true depends on the task and environment,
of course.

4. Explaining and modeling perceptual learning phenomena

How have researchers sought to explain and model perceptual learning? These questions are important not only for
understanding human performance but for artificial systems as well. Understanding how learners discover invariance
among variable instances would have value for creating learning devices as well as explaining human abilities. We
currently have no good machine learning algorithms that can learn from several examples to correctly classify new
instances of dogs, cats, and squirrels the way 4-year-old humans do routinely. Even understanding how basic acuities
improve with practice presents interesting challenges for modeling. Here we describe several foundational ideas that
have been proposed and illustrated by empirical studies or models, or both.

4.1. Receptive field modification

Aligned with the focus of much research is the idea that low-level perceptual learning might work by modifying
the receptive fields of the cells that initially encode the stimulus. For example, individual cells could adapt to become
more sensitive to important features, effectively recruiting more cells for a particular purpose, making some cells
more specifically tuned for the task at hand, or both. Equivalently, receptive field modification can be thought of as a
way to exclude irrelevant information. A detector that is sensitive to two similar orientations might develop narrower
sensitivity to facilitate discrimination between the two.

The idea of receptive field modification in early cortical areas would fit with some known properties of perceptual
learning. In vision, specificity to retinal location and to particular ranges on stimulus dimensions (e.g., orientation)
would be consistent with known properties of cells in early cortical areas (V1 and V2). Consistent with some percep-
tual learning results, effects of changing a cell’s receptive field would be long lasting, compared to other adaptation
effects. As a cell’s receptive field becomes more specifically tuned, it may also become more resilient to future,
experience-induced changes since it would be less broadly sampling the statistics of the environment.

Evidence for receptive field change has been found using single-cell recording techniques in primates. In monkey
somatosensory cortex, there is high variability in the size of representations of the digits [77]. At least some of this
variability may be due to effects of experience. Perceptual learning can dramatically alter both the total amount of
cortex devoted to a particular mental representation as well as the size of the receptive fields of the individual cells.
Recanzone et al. [92] trained owl monkeys to discriminate different frequencies of tactile vibration. Following training,
the total size of cortex corresponding to the trained digits increased 1.5–3 fold. Other studies have shown that a task
requiring fine dexterity, e.g. retrieving food pellets from small receptacles, resulted in a decrease in the size of the
receptive fields of cells corresponding to the tips of the digits used in the task [129]. Presumably, smaller receptive
fields would lead to finer tactile acuity and thereby increase the level of performance in retrieving the pellets.
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In the auditory domain, Recanzone et al. [93] showed that monkeys trained on a difficult frequency discrimination
improved over several weeks. Mapping of primary auditory cortex after training showed that receptive fields of cortical
cells responding to the task-relevant frequencies were larger than before training.

An example of a model that attempts to explain learning effects by receptive field change is the vision model
of Vernier hyperacuity proposed by Fahle, Edelman, and Poggio [26,90]. Their model begins with a network of
non-oriented units receiving input from simulated photoreceptors. The photoreceptor layer of their model remains
static, while the second layer is an optimized representation of the photoreceptor activity using radial basis functions.
This second layer represents cells whose receptive field structure changes to more effectively utilize task-relevant
information from the photoreceptors.

4.2. Selection and differentiation

An alternative approach for modeling perceptual learning is the idea of selection. Selection describes learning to
preferentially use some subset of the information available for making a decision. This notion was at the core of
Eleanor Gibson’s work, so much so that she often used “differentiation learning” as synonymous with perceptual
learning. Summing up the approach, she said:

It has been argued that what is learned in perceptual learning are distinctive features, invariant relationships, and
patterns; that these are available in stimulation; that they must, therefore, be extracted from the total stimulus flux.
. . . From the welter of stimulation constantly impinging on the sensory surfaces of an organism, there must be
selection. [34, p. 119]

A specific proposal put forth by Gibson was that perceptual learning works by discovering distinguishing (or
distinctive) features. Distinguishing features are task-specific: they are those features that provide the contrasts relevant
to some classification. Thus, in learning to discriminate objects, the learner will tend to select information along
dimensions that distinguish the objects, rather than forming better overall descriptions of the objects [89].

In contemporary perceptual learning work with basic sensory discriminations, the notion of selection is also a
viable candidate for explaining many results. Imagine an experiment in which the learner improves at distinguishing
two different Gabor patches (or lines) having a slight orientation difference. On each trial the learner must decide
which of the two patches was presented. Now envision in cortex an array of orientation-sensitive units responsive at
the relevant stimulus positions. Some units are activated by either stimulus; some more by one stimulus than the other;
others may be activated by only one stimulus. Suppose the learner’s decision initially takes all of these responses into
account, giving each equal measure. As learning proceeds, the weights of these inputs are gradually altered. Units
that do not discriminate well between the stimuli will be given less weight, whereas those that discriminate strongly
will be given more weight. It may even be the case that the best discriminators are not the units that initially give
the largest response to either stimulus. For example, suppose the learner is to discriminate lines at 10◦ vs. 14◦, and
suppose orientation-sensitive units respond somewhat to inputs within ±6◦ of their preferred orientations. In this
simple example, analyzers at 7◦ and 17◦ may be more informative than the units centered at 10◦ or 14◦, because such
analyzers would be activated by only one of the two displays.

Recently, Petrov et al. [86] presented experimental and modeling results indicating that in a low-level task (orien-
tation discrimination of two Gabor patches in noise), perceptual learning was best described, not in terms of receptive
field modification, but by selective reweighting. They argued that even in simple discrimination paradigms, perceptual
learning might be explained in terms of discovery of which analyzers best perform a classification and the increased
weighting of such analyzers. In their model, encodings at the lowest level remain unchanged.

This approach brings to light an interesting set of issues. Earlier models of perceptual learning posited that the
changes occurred in the earliest encodings because these areas have the same specificity – e.g., position and orientation
– that has been reported in transfer tests. Petrov et al. point out, however, that specificity in perceptual learning only
requires that some part of the neural system responsible for making a particular decision have specificity, not that the
changes that drive perceptual learning occur in units that have specificity. The solution, they argue, again involves
selection. Learning can occur via changes in higher level structures and still have specificity, provided that those
structures are reading the outputs of lower-level units that are specific to visual field location, orientation, or some
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other stimulus attribute. Specificity can arise from differentially selecting information from units with specificity, and
can therefore arise from changes in higher-level, abstract representations of the relevant stimuli.

In order to unambiguously demonstrate lack of transfer, many perceptual learning experiments utilize two condi-
tions (for learning and transfer testing) that involve distinct, low-level neural structures, e.g., stimuli at two orientations
orthogonal to one another. In these experiments, lack of transfer is defined as training in one condition that does not
enhance performance (or enhances performance less) in the other condition. This setup, Petrov et al., argue, is poorly
suited for discriminating between the receptive field modification hypothesis and the selective reweighting hypothesis.
In this type of experiment, training in each condition involves distinct neural representations at the lowest level and
distinct connections between these representations and higher level “decision units”. Since both the representations
and the connections are distinct, specificity could result from modification at either stage, and therefore cannot dis-
tinguish between the receptive field hypothesis (changes at the level of representation) and the selective reweighting
hypothesis (changes in the connections).

In the Petrov et al. experiments, instead of having a different stimulus in each condition, the same stimulus was
presented in a different context in each condition.. In this case the representation at the lowest level is the same (i.e.
the same units in V1), and the connection from these units to higher level units could be shared or distinct. Their
experimental data were well-described by a model with a single representation of the stimulus, with training effects
occurring in distinct connections between the representation and the decision units.

This recent work adds to earlier results that seemed discrepant with hypotheses of receptive field change. Ahissar
et al. [3] trained subjects in a pop-out visual search task with a target of one orientation and distractors in another
orientation. After learning had occurred, they swapped target and distractor orientations and again trained subjects
to criterion. Finally, they switched back to the original orientations and found that performance was neither better
nor worse than at the end of the first session of training. If training had caused modification of receptive fields of
orientation-sensitive units in V1, they argued, then switching target and distractor orientations after training should
have interfered with the earlier learning. Yet the earlier learning was preserved, and it coexisted with the later learning.
These results are more consistent with a model in which a particular task leads to selective use of particular analyz-
ers, but the underlying analyzers themselves remain unchanged. This kind of result also addresses a deep concern
about the idea of receptive field modification in vision: Given that the earliest cells in the striate pathway (beginning
with cortical area V1) are the inputs for many visual functions, including contour, texture, object, space, and motion
perception, task-specific learning that altered receptive fields at this level would be expected to affect or compromise
many other visual functions. The fact that such effects do not seem to occur is comforting for visual health but less so
for explanations of perceptual learning in terms of receptive field change.

The notion of selective reweighting corresponds nicely to Gibson’s earlier account of perceptual learning as selec-
tion and the learning of distinguishing features. It raises the fascinating possibility that perceptual learning at all levels
can be modeled as selection. One difference is that Gibson talked about selection of relevant stimulus information,
whereas Petrov et al. [86] and others cast the selection notion in terms of selection and weighting of analyzers within
perceptual systems. We believe these two versions of selection are two sides of the same coin. To be used, information
must be encoded, and the function of encoding processes is to obtain information. Perceptual learning processes, we
might say, select information relevant to a task by weighting heavily the analyzers that encode it. (Trying to distinguish
more deeply between selection of information and selection of analyzers is much like puzzling over whether we really
“see” objects in the world, or we see electrical signals in our brains. For discussion, including a claim that we see the
world, not cortical signals, see [59, pp. 10–11].)

4.3. Relational recoding

Neither receptive field modification nor simple selection from concrete inputs can account for the substantial part of
human perceptual learning that is abstract. Take the idea of learning what a square is. A given square, having a specific
size and viewed on a particular part of the retina, activates a number of oriented units in visual cortex. Suppose the
learner is given category information that this pattern is a square. Using well-known connectionist learning concepts,
this feedback could be used to strengthen the connection of each activated oriented unit with the label “square”. One
result of this approach is that with sufficient learning (to stabilize weights in the network), the network would come
to accurately classify this instance if it recurred. Moreover, with appropriate design, the network would also be able
to respond “square” to a display that contained a large part, but not all, of the previously activated units. These kinds
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Fig. 4. Extraction of abstract invariants. All of these figures may be categorized as “squares”, but none would activate a largely overlapping
population of cells in visual cortex. What is the same about all of these figures is an abstract relation. Whatever is used to define a side, the sides
are approximately equal. Specific concrete encodings from which this relation is extracted are incidental to squareness.

of learned classification and generalization results are readily obtainable by well-established methods common in
machine learning.

There is another level to the problem, however, and as we noted earlier, it is one with deep roots. At the turn of
the last century, Gestalt psychologists criticized their structuralist predecessors for the idea that complex perceptions,
such as perception of an object, are obtained by associating together local sensory elements. Their famous axiom
“The whole is different from the sum of the parts” was aptly illustrated in many domains that are commonplace for
perceivers but profoundly puzzling for the structuralist aggregating of sensory elements or, in our era, the weighting
of concrete detector inputs. A square, for example, is not the sum of the activations triggered by any particular square.
Another square may be smaller, rotated, or displaced on the eye. All of these transformations activate different popula-
tions of oriented units in early cortical areas. Moreover, we also readily recognize squares made of little green dots, or
squares made of sequences of lines that are oriented obliquely along the edges of a square. A square made in this way
may have no elementary units in common with an earlier example of square, whereas another pattern that shares 90%
of the activated units with an earlier example may simply not be a square at all. Being a square has to do with relations
among element positions, not the elements themselves. See Fig. 4.

Kellman et al. [60] made a proposal about how such abstract invariants may be learned. A crucial part of their
approach is that the model be generic, in that it contains only properties we might expect on other grounds to be
available in visual processing. That is, one could easily build a specific device to learn about squares, but the goal
is to understand how we can be a general purpose device that learns the invariants of squares, rhombuses, dogs,
cats, chess moves, etc. The key, according to these investigators, is a stage of early relational recoding of inputs.
In vision, there are basic features and dimensions to which we are sensitive. Besides these, there must be operators
that compute relations among features or values on dimensions. In the simulations of Kellman et al. [60], the key
operator was an “equal/different” operator. This operator compared values, and produced an output that was large
when two values were approximately equal and small when they differed beyond some threshold value. Their model
learned to classify, from only one or two examples, various quadrilaterals (e.g., square, rectangle, parallelogram,
trapezoid, rhombus, etc.). The model was given the ability to extract contour junctions and distances between these.
The layer of equal/different operators scanned all pairs of inter-junction distances. A response layer that used the
results of all equal/different operators readily learned the quadrilateral classifications from simple category feed-
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back. Learning, even with a minimum of examples of each form class, generalized to patterns of different size,
orientation, and position; with certain types of preprocessing, they would also generalize to figures made of any
elements.

The key idea here is not to provide a complete account of learning in this particular domain but to begin to address
the perceptual learning ability to discover higher-order invariants. We believe that along with the basic encodings of
features and dimensions there is a set of operators that computes new relations. There is evidence for equal/different
operators and one or two others. Some of these relational computations are automatic or nearly so; some may be gen-
erated in a search for structure over longer learning periods in complex tasks. The outputs of automatically generated
relational recodings or newly synthesized ones that were not initially obvious may account for the salience of some
relations in perception and for the longer term learning of other, initially invisible ones.

It is implied by this view that there is essentially a “grammar” of perceptual learning and learnability. Some re-
lations in stimuli are obvious; some may be discovered with experience and effort; and some are unlearnable. These
outcomes depend on the operators that compute relations on the concrete inputs, as well as on search processes that
explore the space of potentially computable operations for classifications that are not initially obvious. If this overall
approach has merit, then determining the operators in this grammar, although difficult, stands as a key question in
understanding abstract perceptual learning. The solution of this “Kantian” question of what relational operators we
possess that may allow us to discover new invariants will help us understand how we learn to classify dogs and cats,
become experts at chess and radiology, and will also empower artificial learning devices that may someday share in
the remarkable levels of structural intuition displayed by human experts.

4.4. Abstract relations and language

Earlier we raised the question of whether human extraction of abstract relations requires capabilities extending
beyond perception, such as symbolic processes in general or language in particular. We now return to this question in
the context of modeling perceptual learning, as the answer we suggests fits within a general scheme of the process of
discovery in perceptual learning.

Although we do not have a detailed process model of high-level perceptual learning, there are certain elements that
seem likely to be part of any successful model. To see what these are, we focus on tasks in which the learner must
discover what features or patterns appearing in particular instances (objects, events, situations) determine whether or
not a particular instance is a member of a category. Such learning is common (as when a child learns the notion of
dog). We assume for simplicity that the training consists of instances along with category feedback about whether
particular instances are or are not in the category. We also assume that explicit instruction about which variables
determine category membership is not given.

Any perceptual discovery task of this type involves what may be described broadly as a search process. The learner
must somehow determine which attributes of the observed instances determine membership in a category. “Search”
does not imply a particular mechanism. It is convenient to think of it as a process that involves sampling from a set
of candidate features and then comparing the values of these features with outcome feedback. This sort of search can
be implemented through gradual strengthening of various weights in a neural network, but not all inputs are available
for adjustment on each learning trial. In human and animal learning, evidence suggests a sampling process involving
limitations of attention (e.g., [115]), a point to which we return below. Our immediate focus, however, is on the
potential candidate attributes that may determine a classification. Most obviously, these include perceptual features
and relations that are naturally encoded. In classic discrimination learning work (some of which is summarized in
[115]), humans or animals were tested for acquisition of correct responding where some outcome depended on highly
salient stimulus features. In a typical experiment, figures (on a card or on a door in a jumping stand for rats) might
be triangles vs. circles, red vs. black, and large vs. small. Learning involved determining which of these dimensions
was relevant (e.g., color), as well as the significance of particular values on the dimension (e.g., red produces the
reward). In cases where the perceptual dimensions are highly salient, the discovery problem in perceptual learning is
minimized. With more complicated stimuli, it may be much harder to notice immediately what features and relations
should be on the candidate list. In fact, the candidate list for features or relations that could be crucial to some new
classification seems unlikely to be a fixed list. In complex learning tasks, certain properties or relations that are
initially unnoticed can be discovered. Advanced competence in chess, chemistry, radiology, mathematics, and many
other domains almost certainly involves sensitivity to relations to which the novice is essentially blind. Earlier we
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discussed how new relations might be synthesized through a combination of initial perceptual encodings and the
application of relational operators. This function – generating candidates for search – seems to be required to explain
advanced human perceptual learning. This view has similarities to the approach described by Perlovsky [85] in that
cognitive (and linguistic) models evolve to best correspond to and account for input signals.

In terms of process, the notion of search suggests that not all candidate features and relations are checked at the
same time. This fact is consistent with the gradual nature of perceptual learning in many contexts and also with
discrimination learning in simple contexts [115]. Candidate features derived from basic perception and from the gen-
eration of higher-level relations must be checked for their correspondence with the categorization outcomes. Again,
this description does not imply any particular implementation, but it does imply that not all candidates are checked
at the same time. Such a limitation need not even arise specifically in the “checking” or weighting process; it might
occur in capacity limits on what can be encoded in memory from perceiving each instance. Feedback based on the pro-
gression of learning could be used to determine whether to broaden, narrow or otherwise guide sampling. Obviously,
many details of such a framework need to be further specified, and some suggest empirical tests.

For current purposes, however, the key idea is that of a salience hierarchy – some preferred ordering of candidate
features. The idea that some properties are obvious at first glance and others require more effort to notice seems
straightforward: it is required by the fact that some perceptual discovery tasks are trivially easy whereas others require
extended learning. This aspect of perceptual learning is the likely locus for effects of symbolic learning and language.
By assigning symbols to particular properties or relations, as by naming a relation, its salience may be increased.
Increased salience for some property leads to a greater likelihood that it will be searched for, encoded, and checked
for relevance to categorization outcomes.

Humans may well exceed animals in their extraction of abstract relations from objects, arrangements and events,
and this difference may depend on language. The dependence, however, does not imply a fundamentally different
process from perceptual learning as we have described it. Rather, the effects of language and symbolic experience
may influence salience hierarchies in search processes involved in perceptual discovery. As with other aspects of
perceptual learning, these effects may often be highly task specific: prior experience with and symbolic representation
of a property may lead to greater likelihood of encoding that property or selecting it to check its relevance to a
classification being learned. Although these conjectures are obviously ripe for further research, existing evidence
seems consistent with them. Studies of concept formation in pigeons (e.g., [50]) do not indicate a clear limit on
pickup of abstract relations. They do indicate that pigeons extract relations less readily than do humans but that under
optimal conditions, pigeons seem to classify based on abstract relations. These observations are consistent with the
idea that making certain relations salient is helpful in abstract perceptual learning; in humans, language may contribute
to making a relation salient.

It is also possible that language may allow relations that are recognized in tasks in one cognitive domain to be
selected in another domain. Spelke [110] has suggested that language can serve this kind of integrative or connec-
tive function: Core cognitive domains may develop prior to language, but their representations are often narrowly
confined. Language may facilitate connections across domains. In guiding perceptual learning of high-level relations,
language may point the way to extraction of relations in one domain because these have been relevant and symboli-
cally represented in another. Phenomena that appear to involve abstract learning differences between human children
and adults (e.g., [64]), as well as the observation that some relational learning tasks can be acquired only by humans
and symbol-trained chimpanzees, are consistent with this role of language.

Presupposed by these interpretations, however, is the idea that the relevant relations can be found in objects and
events if made salient. In other words, the capability to encode relevant properties needs to be present. Such capa-
bilities may indeed differ across species, such that in some species, no amount of directing of attention could lead
to discovery of a certain relation. If evolution has overseen some progression in perceptual abilities to pick up ab-
stract relations, that would certainly be relevant to understanding differences in intelligence across species. Clearer
understanding of species’ differences in this regard would be very useful in considering this idea. Moreover, there is
a fascinating chicken-and-egg problem regarding symbolic language and abstract perceptual encoding: It is possible
that evolutionary development of sensitivity to abstract stimulus relations contributed to the emergence of language.
Although there are obviously many potential influences on the evolution of language, at minimum, some abstract
perceptual learning capabilities are crucial. As we consider below in Section 6, a child’s ability to classify parts of the
speech stream into grammatical categories involves complex cases of abstract perceptual learning, and these appear
to have innate foundations [48].
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5. The scope of perceptual learning

It is apparent from our discussion that perceptual learning encompasses several information processing changes.
These are linked by our general definition of perceptual learning as comprising improvement in the pickup of in-
formation. There appear to be different ways to improve: coming to select relevant features for some classification,
discovering higher-order invariants to which the perceiver is initially insensitive, and becoming more fluent or auto-
matic in information pickup.

It would be possible to classify these effects as deriving from different learning processes. As research progresses, it
may turn out that there are a variety of mechanisms at work in these changes. Also, some characteristics of perceptual
learning may be shared with other kinds of information processing. For instance, information extraction may become
more automatic with practice, but so might familiar patterns of reasoning or inference.

Still, there are overriding functional reasons for considering perceptual learning, broadly construed, as a coherent
category in a taxonomy of learning. Not only do the perceptual learning changes we have considered involve im-
provement in the way information is acquired and occur under the same conditions, but they also appear to be deeply
interconnected. Discovery and fluency effects, as Bryan and Harter illustrated long ago, work in synergistic and recur-
sive fashion to produce a spiral of access to progressively higher-level structure. This spiral of discovery → fluency
→ new discovery is likely responsible for many of the most impressive of human accomplishments. Also common to
the family of perceptual learning effects is that they are not easily explained by other common notions in the taxonomy
of learning.

Grouping phenomena together makes most sense if doing so helps to reveal general underlying principles. We
believe this is the case with many perceptual learning phenomena, and in what follows we offer some analysis relevant
to both that goal and to some current views about perceptual learning that suggest a much narrower scope.

5.1. The current modal view of perceptual learning

As we have considered, the recent surge of interest in perceptual learning has focused almost exclusively on basic
sensory acuities. Many experiments reveal to the observer two stimulus displays, with instructions to the observer to
judge, over thousands of trials, which of the two has been presented each time.

Such a focus may seem puzzling in terms of perceptual learning’s role in real-life learning tasks, few if any of which
resemble this scheme. It is also historically aberrant. In Gibson’s classic [34] review, there is consistent emphasis on
extraction of invariance from variable instances but very few studies that conform to the more recent paradigm. The
differences are not merely methodological, however; there is a contrast between the task content: shape, arrangement,
and relational structure for many tasks in the earlier generation of research, contrasted with current work involving
discrimination tasks such as Vernier acuity.

The recent focus is special but not coincidental. It rests on a plausible and coherent set of ideas. We will argue that
the ideas are not correct, but their appeal is nonetheless easy to understand.

The primary organizing idea in recent work in perceptual learning is that perceptual learning can provide a win-
dow into plasticity in the brain. The sensory acuities found to be malleable through learning are also the functions
currently best understood in terms of brain anatomy and physiology. For example, the first visual cortical area (V1)
is known, from single-cell recording work in animals, to have a preponderance of cells sensitive to contrast at par-
ticular locations, orientations, and particular ranges of spatial frequencies [20,49]. The receptive fields for such units
have been modeled as a Gabor filters – periodic (e.g., sinusoidal) functions of contrast, multiplied by a Gaussian win-
dow. Moreover, it is known that orientation sensitivity, in primates, is not present in this visual stream prior to V1.
Thus, a perceptual learning task involving orientation sensitivity may use a pair of Gabor patches differing slightly
in orientation, accompanied by an assumption that improvement in performance will reflect changes in mechanisms
at this early processing level. Indeed, some have argued that the definition of perceptual learning, or one especially
important kind of perceptual learning, should be confined to changes at this level. For example, Fahle and Poggio [27]
defined perceptual learning as encompassing “parts of the learning process that are independent from conscious forms
of learning and involve structural and/or functional changes in primary sensory cortices”.

Consistent with these ideas are some common phenomena from perceptual learning tasks involving basic sensory
dimensions. It is often found that learning effects in perceptual learning tasks show limited transfer across changes in
the stimulus or the location of presentation (e.g., the eye, hemifield, or retinal location use during learning). Limited
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transfer has routinely been interpreted as showing a low-level locus of learning. For example, an effect found during
training on a certain location in one eye that does not transfer to the same position in the visual field in the other eye
has been taken to indicate that the locus of learning must be at a level prior to that where binocular combination of
inputs occurs (e.g., V1).

The final assumption in this perspective is that behavioral results involving perceptual learning in animals that
seem analogous to human results can be linked to receptive field changes in primary sensory cortices using direct
physiological measures (e.g., [93]). Taken together, one can see the coherence of these basic ideas about perceptual
learning and early cortical change: behavioral results that involve basic sensory discriminations; transfer data (often,
failure to transfer) that suggest a low-level locus of learning, and direct physiological evidence of neural change from
animal experiments.

5.2. Critique of the modal view

Despite its plausibility, there are reasons to question the prevailing orthodoxy about perceptual learning. As re-
search has progressed, it has cast doubt on each element of the set of assumptions that justifies a low-level sensory
emphasis. Conversely, we believe that evidence has begun to reveal more general principles of perceptual learning
that unify tasks and results at different levels. Perceptual learning in basic sensory tasks and higher level tasks may
be more closely related than anticipated. Discovering and elaborating general principles of perceptual learning may
require abandoning the narrowest views of perceptual learning.

5.2.1. Specificity of learning does not implicate low-level mechanisms
Recall that specificity of learning, or equivalently, lack of transfer of learning across stimulus conditions, has been

traditionally interpreted as a sign that the neural changes associated with the learning occur early in visual processing.
This is simply because neurons in the early visual system are known to encode visual stimuli in a manner that is more
specific than those in later areas. The lack of transfer in perceptual learning tasks is not, however, a particularly robust
effect. Across learning domains and for studies within particular domains, transfer results have been inconsistent
(for a review, see [58]). More recently, Young et al. [131] re-examined the idea that perceptual learning in a Vernier
acuity task is specific to the eye trained. They pointed out that in previous studies, in which learning effects were
found to be specific to the trained eye, the observer’s untrained eye was covered by a patch. This condition may have
favored learning to ignore the patch, which could produce an interfering visual input. When they performed the same
experiment with a light diffuser over an open untrained eye, they found complete transfer of learning effects to the
untrained eye. This kind of result suggests that the specificity of perceptual learning effects may reflect the task the
experimenter has chosen (sometimes in unsuspected ways) rather than constraints on learning mechanisms.

Other research confirms that small task variations can lead to large differences in generality of transfer. For exam-
ple, Liu [70] found substantial perceptual learning effects in discrimination tasks both for motion directions differing
by 3 deg (as previously studied by Ball and Sekuler [5]) and for motion directions differing by 8 deg. When he tested
for transfer, however, learning of the 3 deg discrimination showed little transfer to new orientations, but learning of an
8 deg discrimination transferred robustly. In the face of findings like these, defining perceptual learning by specificity
of transfer would have paradoxical consequences (i.e., learning to discriminate motion directions differing by 3 deg
would be perceptual learning, but learning to discriminate motion directions differing by 8 deg would not). Likewise,
following the typical inferences from specificity of transfer, we would have to infer different cortical loci for these
two very similar tasks. As we will suggest below, the variability in transfer results is consistent with selection models
of perceptual learning, and such models avoid these counterintuitive consequences.

An attack on the typical logic of inferring a low-level locus from transfer was put forth by Mollon and Danilova
[80], who argued that the idea is simply a fallacy (cf. [22]). Specificity of transfer need not reflect a low-level site of
modifications in the nervous system; it is equally consistent with a selection notion: that more central processes select
which outputs of relevant analyzers at lower levels are relevant to a particular task. In this view, not only does learning
involve higher levels, but no changes at lower levels are required, and specificity in transfer mostly reflects the task
the experimenter has chosen. This view is also more consistent with the large variability in transfer outcomes with
relatively small variations in procedures and tasks.
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5.2.2. Receptive fields in early visual areas do not show sufficient changes to account for perceptual learning effects
The argument for low-level loci of learning in humans has been based on the specificity of perceptual learning

effects. In light of both the logical issues and inconsistent results described above, there is little or no evidence that
any perceptual learning results in humans involve changes in primary sensory cortices. Such a statement will surely
sound like heresy to many researchers who have presumed they are studying such changes. They would most likely
respond by pointing to animal research in which behavioral outcomes and physiological changes can both be assessed.
Some evidence has suggested changes due to perceptual learning in primary auditory and somatosensory cortex. Yet,
in vision, there is little evidence from animal research for modification of early areas; changes in receptive field
structure or dynamics following perceptual learning have not been consistently observed (e.g. [18,102]). Training that
results in large behavioral changes (e.g., discrimination improvement) may occur despite little corresponding changes
in the receptive fields of V1 and V2 cells (in monkey). Where changes have been found, the results have been subtle,
and of too small a magnitude to account for the changes in behavior [32]. More robust training-induced modifications
have been found at later stages of processing, e.g., cells in area V4 [130]. The greater complexity of the receptive
fields of these cells [84] makes characterization of the impact of these changes challenging. In any case, these changes
are well beyond “primary sensory cortices”, and the observed changes in V4 could be consistent with the neural
implementation of either receptive field change or selective reweighting models of perceptual learning.

5.2.3. Higher level variables are involved in perceptual learning
A variety of findings indicate that, even in low-level tasks, higher level variables affect perceptual learning. At-

tention to particular stimulus attributes, having a task, and/or an internal reward signal upon finding a target seems
important [103,105], although under certain circumstances these variables may allow learning to occur for spatially
and temporally coincident but task-irrelevant stimuli (see [104]).

Ahissar and Hochstein [2] suggested that perceptual learning always involves an interplay of higher and lower
levels of processing. In their “reverse hierarchy” approach, learning is initiated through high level attention and task
involvement. Learning descends to the lowest processing level at which task-relevant regularities exist. This approach
thus involves discovery or selection, not just of specific analyzers at some level, but among possible levels of infor-
mation and processing as well.

5.2.4. Perceptual learning should not omit perception
Although it is common to label early cortical changes as perceptual learning, and some have suggested or assumed

that only such changes qualify as perceptual learning, this view generates a seldom-noticed paradox. Learning effects,
if confined to primary sensory cortices, would likely not be perceptual learning. In vision, the earliest cortical areas
(V1, V2) contain cells with receptive fields sensitive to oriented contrast in small regions, in specific spatial frequency
ranges. These areas are unlikely to contain representations of what objects are in a scene, their shapes, sizes, or the
3D arrangements of objects and surfaces. Even a single piece of an abrupt luminance edge of an object against a
background cannot be represented by any one such detector. Most perceptual descriptions are likely computed further
along in the visual pathway, such as object shape in parietal regions and LOC [66] or spatial arrangement obtained
from a synthesis of varying spatial cues, which may be registered in the caudal intraparietal sulcus [117]. Even a simple
property like perceived object size is unlikely to be coded by cells in V1 or V2, whose responses, unlike perceived size,
will change as the same object is viewed from different distances. We are only beginning to understand how the outputs
of simple and complex cells in early cortical areas are transformed into representations of contours and surfaces with
properties like color and transparency (e.g. [41]; see [82] for a review of computational modeling efforts in this area).
Perceptual learning effects important in real-world tasks (such as shape discrimination) often involve these higher-
level properties (see [42] for a discussion of computational modeling approaches to understanding learning in cerebral
cortex).

5.2.5. Perceptual learning �= sensory plasticity
Perhaps the problem in a notion of perceptual learning that omits most of perception is that we need to distinguish

notions of perceptual learning and sensory plasticity. The issue of when and how cortical receptive fields can change
is certainly an important topic in its own right. Such changes may occur in some perceptual learning tasks, and they
may occur during early visual development, or due to deterioration when stimulation is excluded, and perhaps in other
circumstances.
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Yet one must wonder why changes, if confined to the earliest cortical areas, should be considered perceptual
learning at all. Indeed, recent findings [31] give reason for believing that the perceptual learning may actually operate
only on interpreted perceptual representations. In our current understanding of visual processing, there is little reason
to suppose that most, if any, such representations reside in the earliest cortical areas. Perceptual learning involving
interpreted perceptual representations may well produce changes at the earliest sensory levels, but learning effects
would unlikely be confined to such plasticity. There are also many important questions of sensory plasticity involving
these early areas that do not necessarily involve learning effects, such as those relating to maturation and tuning of
cortical units in infancy [83]. We believe that perceptual learning and sensory plasticity label two important notions;
they may often be related but they are not interchangeable.

5.3. Selection as a unifying principle in perceptual learning

In addition to the foregoing arguments against confining perceptual learning to sensory plasticity at the earliest
cortical levels, it should already be clear that there is an important theoretical consideration against doing so. Earlier
we described the case for modeling even low-level perceptual learning as selection. In her classic work on perceptual
learning, Gibson saw selection as a unifying principle in higher level as well as low-level perceptual learning contexts.
Whether one sees as more important the window into cortical plasticity opened by low-level perceptual learning or
the role of perceptual learning in richer, real-world learning domains, restricting the label “perceptual learning” to one
part of the landscape would miss an obvious general principle that unifies perceptual learning as a type of learning.
The specific information and analyzers involved may no doubt be important for understanding particular cases of
perceptual learning, but the overarching explanation of perceptual learning as involving task-driven discovery of
relevant information for classifications should not be missed.

5.4. Receptive field change and selection

A related insight is that even receptive field changes that could occur after learning may ultimately require a
selection explanation as well. Imagine a cortical cell that becomes sensitive to a larger retinal area as a result of
training. A more detailed account of this change, if it were to become available, would no doubt show that this cortical
cell’s links with retinal ganglion cells had changed. Ganglion cells gathering information from spatial regions that
previously did not affect the cortical cell now would affect it. The changing of connections or weights with earlier
processing levels is again a notion of selection or selective reweighting. Thus, even cases of receptive field change
may involve selection, if viewed more finely. This does not imply, however, that all selection may be thought of as
receptive field change. There are certainly levels in the nervous system at which decision processes utilize information
from various inputs yet we would not be inclined to characterize these as having receptive fields in anything like the
usual sense. Such decision processes may not be realized in terms of outputs of single neural units, and their inputs
would not be maps on the receptive surfaces of sensory systems. More likely, decision processes at different levels can
gain access to outputs of various perceptual processes, and the improvement in selectivity and fluency that emerges
from practice need not invoke receptive field concepts.

Another important consideration is that receptive fields are relatively permanent (which is why the hypothesis of
receptive field change through learning is so interesting in the first place). In contrast, reliance by decision processes
on particular sets of analyzers may change from task to task. This impermanence of task-specific selection has been
the key empirical finding that has led investigators to argue for selection models rather than receptive field change
[3,86]. In some cases, especially involving the lowest levels and perhaps particularly for senses other than vision
(given current evidence), improvements in selectivity may well occur through receptive field change. It is a question
of continuing interest if, when, and where, this occurs.

5.5. Perceptual learning and perceptual constancy

Reframing perceptual learning in terms of selection, with access not restricted to the simplest sensory analyzers,
raises an interesting question. What, if any, are the constraints on selection? Is information at any level of process-
ing – from the earliest analyzers to the most complex perceptual representations – available to perceptual learning
processes? As we have seen, some have suggested that only activity of analyzers at the earliest levels falls within the
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domain of perceptual learning. Paradoxically, it may actually be the case that the earliest analyzers are never the direct
targets of learning processes. These ideas have recently emerged in studies relating perceptual learning to perceptual
constancy.

Perceptual constancy refers to the fact that perceptual representations (and experience) involve stable properties of
objects, not the sensory inputs used to derive those representations. For example, the perceived size of a person does
not change as the person walks toward you or away from you. Such events do change the size of the projection of
the person on your retinas. In this case, size constancy describes the fact that you perceive an unchanging physical
size despite changes in the projective (retinal) size. Under common conditions, the projective size is (along with reg-
istered distance) an input into the computation that produces size constancy. Constancy processes produce perceptual
representations that correspond to enduring physical properties of objects, despite changes in the sensory inputs (the
proximal stimuli) used to compute perceptual representations. A deep reason why constancy processes are important
is that we perceive by means of stimuli received at the senses (energy), but ecologically, what we need to know about
is the structure of material objects, spatial arrangements, and events [31]. Constancy processes enable us to deal with
important and relatively stable material structures in the physical world which are made known to us by constantly
fluctuating arrays of energy reaching our senses.

If constancy-based representations are important in our descriptions of the environment, might they also play a
special role in learning? Garrigan and Kellman [31] studied this question in series of experiments. Using established
relations of perceptual constancy and sensory inputs (such as the use of retinal size in computing perceived size),
they tested subjects in two conditions in each experiment. In each condition, subjects’ task was to discover the basis
of a classification. On each trial, they were shown displays and asked to indicate whether or not the display fit in
category X. The relevant properties were not described to subjects; they were given accuracy feedback only, and their
task was to discover any stimulus properties that could lead to accurate classification. In one condition, in each of the
basic experiments, subjects were shown a display in which either a perceptual (constancy-based) invariant or a sensory
invariant could in principle be discovered and used to do the classification. In the case of size perception, the stimulus
on each trial consisted of a pair of rectangles that were the same in retinal size and also in perceived size (because
they were at both at the same distance from the observer). If perceptual learning processes can discover invariants at
any level of processing, learners could succeed in this task either by extracting the perceptual regularity or the sensory
one (the relation of retinal sizes). In a separate condition, displays could be successfully classified only by using
the relation of retinal size. This condition was arranged by using identical stimuli as in the first condition, but using
stereoscopic disparity to vary the apparent depth of the two displays. The question was whether a sensory invariant
could be discovered if it did not correlate with a perceptual invariant. This question was asked in three different
perceptual domains – perception of size, surface lightness, and motion. In every case, learning readily occurred when
a perceptual invariant was available to be discovered. When only a sensory invariant was available, there was no
evidence of learning, even after hundreds of trials. The results were especially revealing in that in each case, the
sensory invariant is known to be an ingredient used in computation of the perceptual invariant. The visual system
picks up the sensory information, but that information does not seem accessible to perceptual learning processes.
A separate control using perceptual equivalence that was uncorrelated with sensory equivalence also showed robust
learning effects. (This control indicated that a perceptual regularity alone rather than a combination of a perceptual
and sensory regularity was sufficient for learning.) Fig. 5 illustrates one of the experiments – a study of perceptual
learning in surface lightness.

This result fits well with a model of perceptual learning that incorporates higher level, abstract representations,
and suggests a strong constraint on perceptual learning. Perceptual learning is in fact perceptual. Information in early
encodings that does not survive transformation to the percept is unavailable. This assessment inverts some popular
wisdom. Far from being confined to the earliest analyzers, perceptual learning may not directly access early sensory
analyzers at all.

It is important to note that this view does not imply that neural changes associated with perceptual learning cannot
occur in early cortical regions. It simply means that adjustments that arise from learning throughout the entire system
work through constancy-based representations, a point related to the claim of Ahissar and Hochstein [2] that lower
level changes in perceptual learning are guided by higher levels.

Ecologically, it makes sense that learning processes access perceptual encodings, not the sensory inputs used to
compute them. Red objects in white light might reflect mostly long wavelength light onto the retina, but red objects
in short wavelength light might reflect light with a very different spectrum onto the retina. Discovering that the apple



P.J. Kellman, P. Garrigan / Physics of Life Reviews 6 (2009) 53–84 77
Fig. 5. Perceptual learning depends on perceptual constancy. Pairs of squares were shown on each trial, and the observer’s task was to discover
which ones were members of some category (see text). Perceived lightness depends on ratios of the local luminance (within a square) to its surround
[120]. Bottom, center: When the invariant determining the classification was identical lightness of the two squares (accomplished by having the
same local luminance for each and placing both on the same background), learning readily occurred. Acquisition curves are shown from 5 observers
(bottom right). Top, center: Presenting the identical local luminance squares on variable backgrounds, caused differences in perceived lightness.
In this condition, only the local luminances of the squares (a sensory invariant, decorrelated from perceived lightness) could be used to learn the
classification. As in the other experiments involving size and motion, learning did not occur for any observer under this condition. These results
suggest that perceptual learning works through constancy-based perceptual representations (after [31]).

is red requires considerable processing, but that persisting property of apples is likely to be the kind of information
useful in learning important regularities about the environment as well as in guiding thought and action. Perceptual
learning utilizes distinctions at these more abstract levels because these levels capture behaviorally-relevant infor-
mation rather than incidental details of viewing conditions. Without such constraint, learners might swamped search
processes that lead to discovery in perceptual learning. Search processes that need to explore a large space of possible
relations among the activity of photoreceptors on the retina may be intractable; search processes that consider struc-
tural properties of objects may be both tractable and adaptive. Perceptual learning involves selection, and available
evidence suggests that selection depends on constancy-based, perceptual representations.

6. Perceptual learning and instruction

If one consults the educational literature about the cognitive bases of human learning, one would find ample treat-
ment of fact and concept learning, conceptual understanding, procedure learning, constructing explanations, thinking
and reasoning. Except for an occasional mention of pattern recognition, perceptual learning would be starkly absent.
Yet it is arguably one of the most, possibly the most, important component of human expertise.

If one looks instead at research, not on education, but on expertise, perceptual learning stands out. De Groot [19],
himself a chess master, studied chess players, with the expectation that master level players considered more possible
moves and countermoves or in some sense thought more deeply about strategy. Instead, he found that their superiority
was shown mostly on the perceptual side. They had become able to extract meaningful patterns in larger chunks, with
greater speed and less effort than less skilled players. De Groot suggested that this profile is a hallmark of human
expertise in many domains:

We know that increasing experience and knowledge in a specific field (chess, for instance) has the effect that things
(properties, etc.) which, at earlier stages, had to be abstracted, or even inferred are apt to be immediately perceived
at later stages. To a rather large extent, abstraction is replaced by perception, but we do not know much about how
this works, nor where the borderline lies. [19, pp. 33–34]
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Table 1

Novice Expert

Discovery effects
Selectivity Attention to irrelevant and relevant information Selective pickup of relevant information filtering
Units Simple features “Chunks”/higher-order relations

Fluency effects
Search type Serial processing More parallel processing
Attentional load High Low
Speed Slow Fast

Such differences between experts and novices have since been found to be crucial in research on expertise in a va-
riety of domains, such as science problem solving [15,107], radiology [67,69], electronics [24], and mathematics [95].
An influential review of learning and its relation to education summed it up this way:

Experts are not simply “general problem solvers” who have learned a set of strategies that operate across all
domains. The fact that experts are more likely than novices to recognize meaningful patterns of information applies
in all domains, whether chess, electronics, mathematics, or classroom teaching. In de Groot’s [19] words, a “given”
problem situation is not really a given. Because of their ability to see patterns of meaningful information, experts
begin problem solving at “a higher place”. [9, p. 48]

As was evident in our discussion of specific examples, perceptual learning serves in the development of expertise
in multiple ways, such as automaticity and chunking in information pickup. Table 1 summarizes these changes, all of
which have been demonstrated in studies of expert performance and experiments on perceptual learning.

Looking over the effects in Table 1, one is struck by the remoteness of these characteristics that drive ex-
pert performance from the usual products and goals of school (and university) learning. It is not the case that
the facts, concepts, and procedures taught in school are unimportant. It is more that those foci alone leave out
something important. How does hearing a lecture help a university student to do more parallel processing or
pick up larger chunks of information at a glance? The contrast between the usual emphases in conventional in-
struction and the characteristic strengths of experts are relevant to understanding the potential role perceptual
learning could play in instructional contexts and how it might best mesh with and enhance conventional meth-
ods.

6.1. Natural kind learning

Moving from experts to the other side of the continuum, it is interesting to consider that before a child goes
to school, discovery processes in perceptual learning, including highly abstract ones, are very much in evidence.
Imagine a young child going for a walk with her father. Upon seeing a dog, the child points, and the father says
“That’s a dog”. Suppose this particular dog is a small, white, poodle. On some other day, the child sees another dog
– this one a large, black, Labrador Retriever. Again, someone says “dog”. And so on. With each instance, something
about a particular dog (along with the label “dog”) is encoded. As this process continues, and a number of instances
(probably not very many) have been encountered, the child becomes able to look at a new, never before seen dog and
say “dog”. This is the magical part, as each new dog will differ in various ways from any of the examples encountered
earlier. Moreover, with practice, the child will correctly distinguish novel instances of dog, cat, squirrel, etc. from
each other. A particular cat or squirrel may have properties that resemble some known dog; in color a black dog and
a black cat are more similar than a black dog and white dog. Despite similarities of instances in different classes
and differences within classes, the learner somehow comes to extract properties that can be used to classify novel
instances accurately. Such examples appear to be cases of abstract perceptual learning, as the most crucial information
allowing assignment to the category very likely involves relational variables rather than the most concrete features,
such as color e.g., [21]. A miniature, purple, plastic model of a dog wearing tennis shoes would still be recognized as
a dog.

Properties underlying a classification can be highly complex and implicit. If a child, or even an adult, is asked to
state a set of rules that would allow a novice to distinguish dogs, cats, and wolves, they cannot ordinarily do so. In
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Fig. 6.

contrast with much of school learning to come, it is striking that these feats of natural learning occur without the child
ever being presented with a lecture on the distinguishing features of dogs or cats. Rather, structure is extracted from
instances and category feedback. Such perceptual learning processes are crucial not only for developing understand-
ing of the objects and events in the world; they also play a pivotal role in language acquisition, at multiple levels.
Concepts like noun, verb, adverb, and preposition are taxing enough when taught explicitly in middle school. How
is it that these abstract classes are extracted and used in language acquisition, allowing grammatical structures to be
processed (e.g., [48]) and facilitating the learning of new words? At a different level, learning may be involved in the
ability of the young language learner to detect invariance in the structure of speech signals across different speak-
ers. Evidence suggests that the perceptual learning processes needed for these achievements, including clear cases of
abstract perceptual learning, are present relatively early in infancy [39,73,99].

6.2. The container metaphor

Once in school, learning will be organized and guided by certain deep-seated assumptions about what learning is.
Both formal and informal discussions of learning, both in educational and commercial training settings, most often
consists of two categories: declarative and procedural learning. The former comprises facts and concepts that can be
verbalized and the latter sets of steps that can be executed. Bereiter and Scardamalia [7] suggested that this pervasive,
implicit view is a “folk psychology” notion of learning. They call it the container metaphor, summed up by saying that
“Knowledge is most readily conceived of as specifiable objects in the mind, such as discrete facts, beliefs, ideas . . . ”
and learning “. . . involves retaining and retrieving such objects” [7, p. 487]. The container metaphor is aptly illustrated
in Gary Larson’s cartoon in Fig. 6.

We do not mean to suggest that perceptual learning is purposely neglected. Indeed, as we have suggested, one
problem is that both learning scientists and educators have had little acquaintance with perceptual learning. The
identification of teaching, learning, and knowing with the explicit is deep-seated. Facts and concepts that can be
stated and explicit procedures are the mainstay of most activities we call educational. We believe the lack of focus
on perceptual learning also derives from a lack of suitable techniques. How might we teach pattern recognition or
structural intuition? Some perceptual learning surely occurs by considering examples in lectures or homework, but
these activities target perceptual learning obliquely at best. It is often recognized that there are aspects of learning
that extend beyond the classroom – the novice pilot, radiologist, chemist, or computer programmer may be told that
fluency and the intuitive grasp of structure will come from practice or seasoning. A special obstacle for any other
approach to these aspects of learning is that they often involve unconscious processing. If not even the skilled expert
can verbalize the information being used to do a task, how can a teacher convey this to students? Even when details
can be expressed, hearing a description does not make the student a fluent extractor of information.
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6.3. Technologies for perceptual learning

Research in recent years suggests that there are ways to address perceptual learning systematically in instructional
settings. These can accelerate the growth of perceptual expertise. Indeed, the reader may have already noted the irony
of educators lacking methods to address perceptual learning while researchers produce perceptual learning routinely
in almost any laboratory task they select. Of course, there are differences between most laboratory tasks and richer
educational domains, but equally surely there is significant potential to address perceptual learning in instruction.

A number of recent efforts have produced markedly successful outcomes using perceptual learning techniques.
Kellman and Kaiser [61] applied perceptual learning methods to pilot training, using what they called Perceptual
Learning Modules (PLMs). In a Visual Navigation PLM, pilots learned navigational skills by mapping, on short,
speeded trials, videotaped out-of-the-cockpit views onto locations shown on standard visual navigation (VFR sec-
tional) charts. Remarkable improvements in accuracy and speed occurred in just an hour of training, even among
experienced aviators. In a separate study of flight instrument interpretation, pilots classified aircraft attitude (e.g.,
climbing, turning) from an array of primary flight displays used by pilots to fly in instrument conditions. They found
that under an hour of training allowed novices to process configurations more quickly and just as accurately as civil
aviators who had on average 1000 hours of flight time (but who had not used the PLM). When experienced pilots used
the PLM, they also showed substantial gains, paring 60% off the time needed to interpret instrument configurations.

Perceptual learning interventions to address speech and language difficulties have been reported to produce benefits
[76,113]. For example, Tallal et al. showed that auditory discrimination training in language learning using specially
enhanced and extended speech signals improved both auditory discrimination performance and speech comprehension
in language-impaired children.

Applications in medical and surgical training illustrate the value of perceptual learning in addressing dimensions
of learning not encompassed by ordinary instruction. Guerlain et al. [43] applied PLM concepts to address issues of
anatomic recognition in laparoscopic procedures. They found that a computer-based PLM approach patterned after the
work of Kellman and Kaiser [61] led to better performance than traditional approaches. The training group presented
with variation in instances selected to encourage learning of underlying invariance later showed improvement on
perceptual and procedural measures, whereas a control group who saw similar displays but without the structured
PLM did not. Their data implicated perceptual learning as the source of the improvement, as neither group advanced
on strategic or declarative knowledge tests.

Perceptual learning technology is also being applied to high-level educational domains such as mathematics and
science. Although these subjects involve a variety of cognitive processes, they rely substantially on pattern recognition
and fluent processing of structure, as well as mapping across transformations (e.g., in algebra) and across multiple
representations (e.g., graphs and equations). These aspects are not well-addressed by conventional instruction, and a
variety of indicators suggest that they may be disproportionately responsible for students’ difficulties in learning [62].
Although this research area is relatively new, findings indicate that even short PLM interventions can accelerate fluent
use of structure, in contexts such as the mapping between graphs and equations [106], apprehending molecular struc-
ture in chemistry [128], processing algebraic transformations, and understanding fractions and proportional reasoning
[62].

Although a full description is beyond our scope here, it may be helpful to mention some elements of perceptual
learning interventions. A key assumption is that information extraction advances when the learner makes classifi-
cations and (in most cases) receives feedback. Digital technology makes possible many short trials and appropriate
variation in short periods of time, allowing the potential to accelerate perceptual learning relative to less frequent or
systematic exposure to structures in a domain. Unlike conventional practice in solving problems, learners in PLMs dis-
criminate patterns, compare structures, make classifications, or map structure across representations. In an Algebraic
Transformations PLM, for example, learners saw a target equation on each trial and made a speeded choice indicating
which of several alternative equations was a legal transformation of the target [62]. Although learners never practiced
solving equations in this learning intervention, two to three 40-minute sessions of this sort led to strong advances in
fluency in algebra problem solving (specifically, an average decrease from about 28 sec to about 12 sec per problem).
Another key element of PLMs is the novelty of instances. Learning to process structure that defines a category, as
opposed to labels for particular memorized instances, requires that most learning items (and transfer items) be novel.
Here again, digital technology – making possible the storage or generation of large numbers of novel instances – is an
especially good fit for this approach to learning.
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There are many other issues in structuring learning in PLMs – issues of sequencing, feedback, variation of positive
and negative instances of categories, mixing of learning tasks, integration of perceptual learning activities with con-
ventional instruction, and so on. Moreover, significant research remains to be done regarding how to optimize these
interventions and combine them with instruction. It is already clear, however, that perceptual learning interventions
offer great promise in addressing neglected dimensions of learning and overcoming common difficulties in learning.
If these possibilities are realized, they will comprise a far-reaching consequence of basic scientific efforts to bring to
light and understand perceptual learning, both as an important variety of learning and as one that interacts with and
supports other forms of learning and cognition.
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