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Abstract

This paper addresses the problem of acquiring realistic visual models of the

shape and appearance of complex three-dimensional (3D) scenes from collec-

tions of images, a process dubbed 3D photography. We focus on three instances

of this problem: (1) the image-based construction of projective visual hulls

of complex surfaces from weakly-calibrated photographs; (2) the automated

matching and registration of photographs of textured surfaces using affine-

invariant patches and their geometric relationships; and (3) an approach to

projective motion analysis and self-calibration explicitly accounting for natural

camera constraints such as zero skew and capable of handling large numbers of

images in an efficient and uniform manner. We also briefly discuss some relat-

ed applications of oriented differential projective geometry to computer vision

problems, including the determination of the ordering of rim segments in pro-

jective visual hull computation, and a purely projective proof of Koenderink’s

famous characterization of the local shape of visual contours.

1 Introduction

Recent advances in motion analysis and image-based modeling and rendering have led to

a convergence between computer vision and computer graphics, and, to a limited extent,

to the industrial deployment of this technology: For example, the Façade [24] approach to

environmental modeling developed at UC Berkeley has been used in producing “The Ma-

trix”; the virtualized-reality technology developed at Carnegie-Mellon University [53] has

been used to enhance the broadcast of the 2000 edition of the Superbowl with Matrix-like

effects; and computer vision techniques are now routinely used in film production. Sever-

al key ingredients are still missing, however, before 3D photography fulfills its potential
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in film, game, and Web-content production, TV advertising and sport-event broadcast-

s, electronic commerce, teleconferencing, human-computer interaction, and architectural

and archaeological walkthroughs. Truly flexible modeling environments, capable of ac-

quiring realistic models of dynamic scenes under general illumination patterns without

cumbersome devices for geometric and photometric calibration must be developed.

The output of today’s approaches to structure from motion (SFM) is essentially an

unstructured cloud of geometric features such as points or lines [28, 32, 46, 117]. This

is appropriate for rendering scene models from a limited set of viewpoints (near-frontal

views where the Delaunay triangulation of an image’s features are used to construct a

surface mesh [94]) but not for 360◦ viewing. In addition, current SFM techniques may

fail on surfaces with little or no texture, and they are limited by their computational

coast to relatively small numbers of images and features [120]. On the other hand, 3D

photography methods using as input a small set of registered pictures output polyhedral

and/or volumetric models that are appropriate for rendering [22, 53, 58, 76, 77, 109,

122], but they require carefully setting up and calibrating the cameras, and they fail to

record fine surface detail when changes between successive viewpoints are too large for

correlation-based stereo [25, 35, 54, 86] to be effective. Neither class of approaches is

particularly appropriate for modeling articulated or deformable objects.

We focus in the rest of this paper on three instances of the 3D photography problem:

[1] the image-based construction of topological mesh models of complex surfaces from

weakly-calibrated photographs (Section 2); [2] the automated matching and registration

of photographs of textured surfaces taken from very different viewpoints (Section 3); and

[3] the development of projective and Euclidean structure-from-motion techniques capa-

ble of handling large numbers of images in an efficient and uniform manner (Section 4).

The proposed approach is based on several key ideas, including: [a] a novel image-based

representation of object shape, topology and photometry in terms of projective visual

hulls [63, 65]; [b] a novel representation for rigid and articulated textured surfaces in

terms of affine-invariant patches and their spatial relationships [99]; and [c] an efficient,

provably-convergent approach to projective SFM and self-calibration explicitly accounting

for natural camera constraints such as zero skew [75, 95]. Our practical goal is to inte-

grate these ideas into a system capable of acquiring realistic visual models of rigid and

articulated objects from photographs and video sequences in controlled (blue screen) and

uncontrolled (natural) environments. From a more theoretical point of view, our work

on projective visual hulls has also led us to investigate the role of oriented differential

projective geometry [60, 107] in computer vision and computer graphics. We will briefly

discuss preliminary results in Section 2.
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1.1 Related Work

A number of methods are available for constructing polyhedral meshes and deformable

surfaces from range images [12, 22, 31, 115, 114, 122], the main challenge in this case being

to fuse and register data extracted from multiple images [8, 50, 122]. Parametric object

models defined in terms of superquadrics [3, 38, 90], algebraic surfaces [55, 110, 111, 112],

and assemblies of simple volumetric primitives [17, 24] can be constructed from range

images or registered photographs. Stereo pairs or triples of images can also be used

to acquire polyhedral object models. In this context, the main difficulty is to establish

correspondences between pictures: Feature-based techniques [2, 37, 88] and correlation-

based approaches [25, 54, 35, 86] work well when the separation between the cameras is

small. The wide-baseline case is more difficult [96], but prior shape models can help: For

example, the Façade system of Debevec et al. [24] uses an approach—dubbed stereo from

shape from now on—where the large disparities corresponding to gross surface structure

are essentially zeroed by intersecting the visual rays from an offset image with the model’s

surface, then projecting the intersections into a reference image. The remaining disparities

typically correspond to the fine structure of the observed scene, allowing once again the use

of correlation techniques. Various types of local viewpoint invariants have also recently

been proposed to establish correspondences in wide-baseline stereo [80, 113, 123]. We

will revisit those as well as stereo from shape in latter parts of this paper. When the

input pictures are registered, an alternative to conventional stereopsis is to delineate the

outline of the object of interest in each image, and use the registered image contours to

reconstruct an approximation of its surface, known as the visual hull [61] and formed by

intersecting the viewing cones formed by the rays passing through the optical centers of

the cameras and the corresponding image silhouettes. Algorithms for constructing visual

hulls from images date back to the mid-70s and Baumgart’s PhD thesis [5], and variants

include [18, 76, 77, 85, 106]. We have used the fact that the viewing cones should be

tangent to the surface to construct smooth surface models from visual hulls in [109]; an

alternative that does not require full camera calibration will be proposed in Section 2 (see

[76, 77] for related work). The space-carving approach proposed by Kutulakos and Seitz

[58] is related to both stereo and visual-hull algorithms, and it uses registered photographs

to construct discrete volumetric models, whose boundary voxels record color information.

When continuous image sequences are available, other techniques can be used as well

[10, 15, 16, 21, 52, 109, 125]. In the absence of registration information, SFM techniques

[27, 44] estimate both the shape of the observed object and the motion of the camera

observing it. Popular approaches include the affine factorization method of Tomasi and

Kanade [117] and the projective reconstruction techniques pioneered by Faugeras [28] and
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Hartley et al. [46]. The latter typically rely on the multilinear constraints associated with

the fundamental matrix [71, 130] or the trifocal tensor [42, 103] to reconstruct the scene

up to a projective transformation (see also [74, 108] for projective factorization methods

that will be discussed in more detail later in this paper). This reconstruction is then

refined using bundle adjustment [120] before being upgraded to a Euclidean one via self

calibration [30, 78, 93, 121] using prior knowledge of camera parameters such as image

center or focal length. Fitzgibbon and Zisserman [32] and Pollefeys et al. [94] describe

complete systems capable of automatically acquiring Euclidean models of complex natural

scenes.

The techniques discussed until now construct an explicit 3D object model from images.

Recent work has demonstrated the possibility of synthesizing new views of 3D scenes

without 3D reconstruction, a process dubbed image-based rendering [79]. Gortler et al.

[36] and Levoy and Hanrahan [66] have used the fact that the set of all visual rays (light

field) is four-dimensional to assemble new images from radiance information collected

from a two-dimensional sample of images of a scene (see also [14, 104] for methods using

mosaics to generate novel images). In contrast, the techniques proposed by Laveau and

Faugeras [62], Seitz and Dyer [102], Kutulakos and Vallino [59] and Avidan and Shashua

[1] rely on feature correspondences established across a discrete and usually small set of

views. They are related to the problem of transfer in photogrammetry: Given the image

positions of tie points in a set of reference images and in a new image, and given the image

positions of a ground point in the reference images, predict the position of that point in

the new image [4]. In the projective case, Laveau and Faugeras [62] have proposed to

first estimate the fundamental matrix associated with each pair of reference views, then

reproject the scene points into a new image by specifying the position of the new optical

center in two reference images and the position of four reference points in the new image.1

Once the feature points have been reprojected, realistic rendering is achieved using ray

tracing and texture mapping. Related methods have been proposed by various authors in

the affine and projective cases [1, 59, 102]. Their main drawback is that the synthesized

images are in general separated from the “correct” ones by arbitrary planar affine or

projective transformations. The methods proposed by Avidan and Shashua [1] and Genc

and Ponce [34] overcome this difficulty by taking into account the constraints associated

with calibrated cameras from the start.

We have focused in this section on the geometric aspects of 3D photography. It should

1Notably, this work involves the first explicit use of oriented projective geometry [107] in computer

vision, allowing the distinction between points that are in front of a camera, and those that are behind

(see also [43]). We will come back to oriented projective geometry in Section 2, where it will play a

fundamental role in the construction of projective visual hulls.
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be noted that a number of approaches to the construction of accurate photometric scene

models have also been proposed. These include methods for viewpoint-dependent tex-

ture mapping [24, 76, 77, 97], and techniques for constructing surface light [81, 129] and

reflectance [23, 73, 87] fields. We will revisit those in Section 5.

2 Object Modeling from Shape Cues

Since contour rotoscoping is a common operation in modern film and television production

pipelines, and commercial packages are available to smaller-scale content creators, the

visual hulls briefly discussed in Section 1.1 are an attractive means for capturing the overall

structure of surface models in many applications, especially when used in combination

with texture mapping. We introduced in [109] a method for automatically acquiring 3D

models from objects’ silhouettes found in a few registered photographs, where a polyhedral

visual hull is used to construct a smooth triangular spline surface, which is then deformed

until it is tangent to all viewing cones. Although this method gives satisfactory results,

it requires computationally expensive and possibly fragile algorithms for computing the

intersection of polyhedral solids, as well as precise calibration data for all input cameras.

We propose here a new extension of the visual hull, the projective visual hull, which

consists of two graphical structures, dubbed the rim mesh and visual hull mesh [63, 64],

and can be constructed directly from weakly-calibrated image data, without any explicit

3D reconstruction or precise knowledge of the cameras’ positions or intrinsic parameters

(see [76, 77] for related work). Let us define the occluding contour, or rim as the curve

where the viewing cone associated with an object’s silhouette grazes its surface (Figure

1). The rim mesh is a boundary representation of the surface: Its vertices are the frontier

points [15, 98] where rims associated with two images intersect; its arcs are the occluding

contour branches joining successive pairs of frontier points along the same rim, and its

faces are the surface patches delimited by these curves. Likewise, the visual hull mesh is

a boundary representation of the visual hull: Its faces are the parts of the viewing cone

surfaces—called strips because they bound the regions of space where the corresponding

rim branches may lie—that actually belong to the visual hull; its vertices are frontier

points (where two strips cross) and triple points (where three viewing cones intersect),

and its edges are intersection curve segments between consecutive vertices.

The key insight is that both the rim and visual hull meshes are actually projective

structures—that is, their topology is invariant under projective transformations. Intu-

itively, this is simply due to the fact that these transformations preserve the incidence

relationship and order of contact between rays and surfaces. In particular, graphical
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Figure 1: Left: A solid observed by two cameras. The two rims intersect at the frontier point

with the intersection curves of the two viewing cones. The faces of the visual hull form strips

enclosing the rim arcs.

descriptions of the two meshes can in principle be constructed directly from image in-

formation when the epipolar geometry is known: As shown in [64], the 1-skeleton of

the rim mesh—that is, the graph formed by its vertices (frontier points) and edges (rim

arcs)—can be found by computing the (image) frontier points as the places where tangent

epipolar rays graze the contour [15, 98], then inserting these points in the correct order

along the contour. We focus here in the construction of the visual hull mesh [63, 65]. Its

1-skeleton can be constructed using transfer to trace the projection of the intersection

curves of the viewing cones into the input images, and inserting frontier and triple points

as vertices along the contour and the intersection curves. Although point insertion and

the subsequent construction of the faces of the visual hull mesh are relatively simple when

Euclidean calibration information is available, these processes require orienting matching

epipolar lines in a consistent way and identifying the convex and concave parts of the

contour [63, 64]. Unfortunately, neither of these notions makes sense in the usual context

of projective geometry. This has prompted us to investigate oriented projective geometry

[107]. Recall that an ordinary projective space is the quotient of a vector space under

the equivalence relation defined by u ≈ v when there exists some nonzero scalar λ such

that v = λu [7]. In contrast, an oriented projective space is the quotient of a vector

space under the equivalence relation u ≈ v when there exists some positive scalar λ such

that v = λu [107]. Line orientation and convexity can be given proper definitions in

this setting, that can also be used in projective motion analysis to distinguish valid point

reconstructions lying in front of the cameras from incorrect ones lying behind at least one

of the cameras [43, 62].
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An additional difficulty in our case is the necessity of defining a local criterion for

convexity [63]. In the Euclidean case, such a criterion is that the curvature at a point be

positive. Curvature is not defined in (oriented) projective geometry, which has prompted

us to investigate differential oriented projective geometry [60]. Briefly, it turns out that

a differential oriented projective invariant, akin to curvature, can be properly defined

in terms of first and second derivatives of a curve parameterization. Its value itself is

meaningless, but its sign determines whether the curve is locally convex or concave at a

point. Likewise, another invariant (akin but of course not identical to Gaussian curvature)

can be defined for surfaces, and used to determine whether a surface patch is locally

convex, concavem or saddle-shaped. Armed with these invariants, it is possible to prove

the following result [63, 65]:

Proposition 1 A convex (resp. convave, inflection) point on the apparent contour of a

smooth solid is the projection of a convex (resp. hyperbolic, parabolic) point on the rim of

its surface (Figure 2).

O

X

x

y Y

Z

z

Figure 2: A smooth solid and its perspective projection. The rim is the solid curve drawn on

the surface. The apparent contour is the boundary of the projection. The dashed curve is the

locus of the parabolic points, or parabolic curve. The rim points X, Y , and Z are respectively

convex, hyperbolic, and parabolic, and their images x, y, and z are respectively convex, concave,

and inflection points of the contour.

This proposition was originally proven by Koenderink [56] using Euclidean concepts

such as the curvature of plane curves and the Gaussian curvature of surfaces. In contrast,

the elementary proof presented in [63, 65] is purely projective. Other classical results

can also be generalized to the projective setting: For example (with proper orientations

chosen for all objects involved), it is easy to show [63, 65] that a counterclockwise change

in viewpoint in the tangent plane at a surface point X will cause the rim tangent to rotate

counterclockwise when X is elliptic, and clockwise when it is hyperbolic (Figure 3). The

following result is a corollary of this fact and Proposition 1 [63, 65].
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Figure 3: Relative orientation of rims and camera centers for an elliptic point (left), and a

hyperbolic point (right).

Proposition 2 It is possible to determine the relative orientation of the two rim branches

intersecting at a frontier point from image information alone—namely, from the first and

second derivatives of some parameterization of the visual contour at the image of the

frontier point, and from the orientation of the corresponding epipolar tangents.

With this proposition, it is possible to design a line-sweep algorithm for tracing the

intersection curves and finding the frontier and triple points, correctly inserting these

points along the contours and intersection curves, and determining the faces of the rim

and visual hull meshes [63]. Figure 4 shows the results of a preliminary experiment,

where silhouettes extracted by hand from 11 moderate-resolution (4 Mpixels) images,

kindly provided by S. Sullivan and Industrial Light & Magic, have been used to construct

the visual hull of a person.

3 Object Modeling from Texture Cues

The approach described in the previous section relies on shape information alone to create

3D models of rigid objects. In this section, we combine geometry with texture informa-

tion in the modeling process. We use an implementation of the affine-invariant region

detector proposed by Mikolajczyk and Schmid [80] to capture local appearance infor-

mation (see Lindeberg and G̊arding [67, 68] for related work). In this approach, the

dependency of an image patch’s appearance on affine transformations is eliminated by

an iterative rectification process using (a) the second-moment matrix computed in the
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(a)

(b) (c) (d)

Figure 4: Projective visual hulls: (a) Sample pictures and silhouettes in the sequence (note

that there are holes in the second silhouette); (b) the 1-skeleton of the visual hull mesh; (c) a

triangulation of the visual hull mesh; (d) two texture-mapped views of this triangulation.

neighborhood of a point to normalize the shape of the corresponding image patch in an

affine-invariant manner; (b) the local extrema of the normalized Laplacian over scale to

determine the characteristic scale of the local brightness pattern; and (c) an affine-adapted

Harris detector to determine the patch location. The output of the affine-invariant region

detection/rectification process is a set of image patches in the shape of ellipses, together

with the (affine) transformation mapping these ellipses onto a unit circle centered at the

origin. This transformation is only defined up to a rotational ambiguity (this is intuitive-

ly obvious since a planar affine transformation is defined by six independent parameters

but an ellipse is only defined by five parameters). We use image gradient information to

eliminate this ambiguity. This allows us to turn the shape of an affine-invariant patch

from an ellipse to a parallelogram, and to determine the six degrees of freedom of an affine

rectifying transformations R that maps this corresponding parallelogram onto a square

with unit edge half-length centered at the origin (Figure 5).

The rectified patch is a normalized representation of the local surface appearance that

is invariant under planar affine transformations. We will assume from now on an affine—

that is, orthographic, weak-perspective, or paraperspective—projection model. Under this

model, our normalized appearance representation is invariant under arbitrary changes in

viewpoint. For Lambertian patches and distant light sources, it can also be made invariant

to changes in illumination (ignoring shadows) by subtracting the mean patch intensity
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Figure 5: Affine-invariant patches: (a) Sample image and its patches; (b) the patch normaliza-

tion process and its (two-dimensional) geometric interpretation; (c) a three-dimensional inter-

pretation of this process.

from each pixel value and normalizing the sum of squared intensity values to one (or

equivalently using normalized correlation to compare patches).

The rectifying transformation associated with a planar patch and its inverse can be rep-

resented by two 2×3 matrices R and S that map homogeneous (affine) plane coordinates

onto non-homogeneous ones (Figure 5[b]). These transformations play a fundamental

role in the rest of this section. Let us first note that the columns vectors of the matrix

S admit a simple geometric interpretation: Since they are respectively the images of the

vectors (1, 0, 0)T , (0, 1, 0)T , and (0, 0, 1)T under that mapping, the third column c of S is

the (non-homogeneous) coordinate vector of the patch center c, and its first two columns

h and v are respectively the (non-homogeneous) coordinate vectors of the “horizontal”

and “vertical” vectors joining c to the sides of the patch. These two vectors can also be

interpreted as the positions of the points, dubbed normalized side points in the sequel,

where the “horizontal” and “vertical” axes of a copy of the image patch placed at the

origin pierce its right and top side. The second key (and new) insight is that a rectified

patch can also be thought of as a fictitious view of the original surface patch (Figure 5[c]),

and the inverse mapping S can thus be decomposed into an inverse projection N [27] that

maps the rectified patch onto the corresponding surface patch, followed by a projection

M that maps that patch onto its (true) image projection, i.e., S =MN . Note that in

the affine projection setting chosen here, we can write

M = [A b ] and N =

[ B
(0, 0, 1)

]

,

where A and B are respectively 2× 3 and 3× 3 matrices, and b is a vector in IR2.2 The

columns of the matrix B admit a geometric interpretation related to that of the matrix S:
2This is an affine instance of the characterization of homographies induced by planes given in Faugeras,

Luong and Papadopoulo [27, Prop. 5.1].
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Namely, the first two are the (non-homogeneous) coordinate vectors of the “horizontal”

and “vertical” axes of the surface patch, and the third one is the (non-homogeneous)

coordinate vector of its center C.

In particular (and not surprisingly), a match between m ≥ 2 images of the same affine-

invariant patches contains exactly the same information as a match between m triples of

points. It is thus clear that all the machinery of structure from motion from point matches

[27, 44, 117] can be exploited in modeling tasks, the multi-view constraints associated with

the matrix S providing a unified and convenient representation for all stages of the process.

In particular, let us assume that we are given n patches observed in m images, together

with the corresponding 2 × 3 matrices Rij and Sij for i = 1, . . . ,m and j = 1, . . . , n (i

and j serving respectively as image and patch indices). Following Tomasi and Kanade

[117], we can take the center of mass of the observed patches’ centers as the origin of the

world coordinate system, and the center of mass of these points’ projections as the origin

of every image coordinate system. In this case, the vectors bi are equal to zero, and we

have Sij = AiBj, or equivalently,

Ŝ = ÂB̂, where Ŝ def
=









S11 . . . S1n

. . . . . . . . .

Sm1 . . . Smn









, Â def
=









A1

...

Am









, and B̂ def
= [B1 . . . Bn ] .

In particular, Ŝ has at most rank 3, a fact that can be used as a matching constraint

when at least two matches are visible in at least two views. Alternatively, singular value

decomposition can be used as in Tomasi and Kanade [117] to factor Ŝ and compute

estimates of the matrices Â and B̂ that minimize the squared Frobenius norm of the

matrix Ŝ − ÂB̂. The normalized (residual) norm |Ŝ − ÂB̂|/
√
3mn of this matrix can

be interpreted geometrically as the root mean squared distance between the center and

normalized side points of the patches observed in the image, and the center and normalized

side points predicted from the recovered matrices Â and B̂. Again, two views of two

matches are sufficient to bring this constraint to bear on the matching process.

Image matching requires two key ingredients: (a) A measure of appearance similarity

between two images of the same patch, and (b) a measure of geometric consistency between

n matches M1, . . ., Mn established across m images (a match is an m-tuple of image

patches). For the former we use normalized correlation between rectified patches. For the

latter, we use the method described in the previous section to estimate (when m,n ≥ 2)

the matrices Â and B̂, and define d(M1, . . . ,Mn) = |Ŝ − ÂB̂|/
√
3mn as a measure of

consistency among matches. In our current implementation, we only match patches across

pairs of images (m = 2), and follow a strategy similar to that used in the range data

domain by Johnson and Hebert [51] with spin images. Given a patch in one image, we first
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select its most promising matches in the second image based on normalized correlation of

the rectified patches. We then discard the matches M such that the number of consistent

matches M ′ (i.e., matches such that d(M,M ′) is less than some preset threshold) is less

than some fixed percentage of the total number of candidate matches. At this point, we

find groups of consistent matches as follows: For each one of the surviving p < n matches,

we initialize the group G to that match M , we then find the match M ′ minimizing

d(G,M ′) (naturally defined as d(M1, . . . ,Mk,M
′) when G = (M1, . . . ,Mk)). If d(G,M ′)

is small enough, we add M ′ to G and continue. This results in the construction of p

groups. Finally, we discard the smallest groups, and the remaining matches are judged

to be correct.

The proposed matching strategy can be used in modeling tasks to match successive

pairs of views of the same object. When some of the patches are only observed in some of

the frames (the usual case), the data can be split into overlapping blocks of two or more

frames, using all the patches visible in all images of the same block to run the factorization

technique, then using the points common to overlapping blocks to register the successive

reconstructions in a common frame. In principle, it is sufficient to have blocks that overlap

by four points. Once all blocks are registered, the initial estimates of the variablesMi and

Nj can be refined through a few non-linear least-squares iterations. When three or more

views are available, it is then a simple matter to compute the corresponding Euclidean

weak-perspective projection matrices (assuming the aspect-ratios are known) and recover

the Euclidean structure of the scene [91, 95, 117, 126]. Figure 6 shows a photograph of a

teddy bear and the Euclidean model reconstructed from 14 images including that one.

(a) (b)

Figure 6: An object modeling experiment [99]: (a) one of the 15 input photographs, and (b)

three views of the reconstructed model. Note that the photographs are taken from viewpoints

that are too far apart for conventional correlation-based stereo to work.

Patch-based models like the one shown in Figure 6 are too rough for direct use in com-

puter graphics applications. They are, on the other hand, sufficient for object recognition

purposes, as demonstrated by Figure 7 [99]. We will briefly address in Section 5 the prob-
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lem of combining this type of surface representation with visual hulls and SFM techniques

to construct more realistic models.

Figure 7: Object recognition experiments [99]: (top) a photograph with the patches matched

to the bear model overlaid, and this model in its estimated pose; and (bottom) recognition of a

salt can and a plastic rubble stand model.

4 Object Modeling from Motion Cues

The approaches proposed in the previous sections are limited to controlled settings where

a fixed set of cameras capture a few snapshots of a scene. This section addresses the more

general (and challenging) case of dynamic image sequences. In this context, we will exploit

the significant advances in motion analysis that have taken place in the past ten years

[44, 27]. Keys to this progress have been the emergence of reliable interest-point detectors

[41, 80] and feature trackers [69, 117, 118]; a shift from methods relying on a minimum

number of images [124] to techniques using a large number of images [93, 117, 118]; and a

vastly improved understanding of the geometric, statistical and numerical issues involved

[28, 29, 45, 46, 44, 49, 57, 72, 93, 103, 105, 117, 118, 127].

Concretely, let us consider m perspective cameras with projection matrices Mi (i =

1, ..,m) observing n fixed points with homogeneous coordinate vectors P j (j = 1, .., n).

We assume that point correspondences have been established and address in this section

the classical SFM problem of recovering both the matricesMi and the vectors P j from the

image positions pij of the point projections. This is a least-squares problem that can be
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expressed as the minimization of E1 =
∑

i,j |pij− 1

zij
MiP j|2 or E2 =

∑

i,j |zijpij−MiP j|2
with respect to the parameters zij,Mi and P j, where zij is the depth of point number j

relative to camera number i. The error E1 measures the mean squared distance between

observed and predicted image points, but its minimization involves the use of iterative

non-linear least-squares techniques (bundle adjustment), with a cost of O((m + n)3) per

iteration (more efficient techniques are available in sparse cases, i.e., when m¿ n or n¿
m [44]). Here we propose instead to minimize E2, which is not geometrically as satisfying

but will prove computationally convenient. This requires imposing some constraint on

the unknowns since E2 admits a trivial zero forMi = 0, P j = 0 and zij = 0 otherwise.

Another expression for E2 is obtained by introducing the data matrix [108, 117]:

D def
=









z11p11 . . . z1np1n

. . . . . . . . .

zm1pm1 . . . zmnpmn









=MP whereM def
=









M1

. . .

Mm









and P def
= (P1, . . . ,Pn ) .

It follows immediately that E2 = |D −MP|2, where “| |” denotes the Frobenius norm.

Minimizing E2 is thus equivalent to finding the parameters zij,M and P that minimize

the Frobenius norm of the difference between D and MP . Sturm and Triggs [108, 119]

have proposed constraining the columns of D to have unit norm and minimizing E2

by alternating steps where M and P are estimated using singular value decomposition

with steps where the columns of D are renormalized and used to compute the projective

depths zij. Although this method gives good results in practice, there is no guarantee

that it will converge because of the column renormalization step. This has motivated

Mahamud and Hebert [74] to propose a variant where the minimization is done under the

constraint that the vectors (zij, .., zmj) (where j = 1, .., n) have unit norm, which avoids

the renormalization step and reduces minimization to a series of factorization steps mixed

with the resolution of eigenvalue problems. It is then easy to show that the error decreases

at each step of the iterative process, and it is in fact possible to show that the method

actually converges to a local minimum [75, 89] although the proof is much more difficult

and involves the global convergence theorem (GCT) from [70].

Here we propose to minimize E2 under the constraint
∑

ij |MiP j|2 = 1 [75]. Writing

that the derivative of E2 with respect to zij is zero at one of its minima can be used to

eliminate this variable and show that, at a minimum, E2 =
∑

ij |pij×(MiP j)|2, where the
vectors pij have been normalized as a preprocessing step. In particular, E2 is proportional

to the mean squared norm of vectors that depend on Mi and P j in a bilinear fashion.

Thus it can be minimized by alternating steps whereM is fixed and P is estimated using

homogeneous linear least squares with steps where P is fixed andM is estimated using

homogeneous least squares (see [13, 40, 83] for related work). It is easy to show that the
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error decreases at each step of the iterative process, and it is in fact possible to show that

the method actually converges to a local minimum [75] using once again the GCT. Figure

8(a) uses real data to compare the proposed method with the Sturm-Triggs iterative

factorization algorithm [108, 119], its provably-convergent variant proposed by Mahamud

and Hebert [74], and the Morris implementation of non-linear bundle adjustment [84].

The figure plots the average and maximum reprojection errors (in pixels) obtained on a

real image sequence that consists of 20 images of 30 points. In this case, 10 of the images

have been used for training, and 10 have been used for testing.
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Figure 8: Empirical comparison of the proposed Bilinear iterative method (B), the Sturm-

Triggs algorithm (ST), the provably-convergent iterative Factorization method of Mahamud

and Hebert (F), and the Morris implementation of Bundle Adjustment (BA) [75]. See text for

details.

Figure 8(b)-(c) shows an other experiment with a sequence of 180 images that contain

a total of 411 points. Not all the points are visible in all frames (Figure 8[b,top]). We

have split the data in consecutive blocks of 30 frames with a 5-frame overlap, and used

the Tomasi-Kanade method in the full rectangle of each block (Figure 8[b,bottom]) to

compute an affine reconstruction of the scene. The successive reconstructions have been

registered and used as input to the bilinear and bundle-adjustment methods. As shown

by Figure 8(c), the initial errors are much larger in this case, and it takes the bilinear

algorithm about 20 iterations to reach sub-pixel mean error, as opposed to 4 iterations

for bundle adjustment. Although comparing the speed of the two implementations is a

bit like comparing apples and oranges, it is worth noting that the bilinear algorithm takes

4 minutes to converge on this data, while bundle adjustment takes three hours. Thus the

low cost of bilinear iterations greatly outweighs the fast convergence of bundle adjustment.

Projective scene reconstructions are not directly suitable for image synthesis: They first

need to be “upgraded” to metric reconstructions using self-calibration techniques [30,

78, 93, 121], or equivalently, by computing an appropriate projective transformation.

We have recently introduced a quasi-linear approach [95] to metric reconstruction from

uncalibrated images under minimal assumptions that are true for most real cameras (i.e.,
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rectangular pixels and/or known aspect ratio [48, 92]). This method is based on a novel

characterization of metric upgrades from zero skew matrices. It is well known [29] that a

3× 4 matrix M̂ represents a zero-skew camera when (m̂1 × m̂3) · (m̂2 × m̂3) = 0, where

(m̂T
i , m̂i4) denotes the i

th row of M̂ (i = 1, 2, 3). If mT
i (i = 1, 2, 3) and qj (j = 1, 2, 3, 4)

are 4-vectors denoting respectively the rows of the projection matrixM and the columns

of the metric upgrade matrix Q, we have used line geometry to prove in [95] the following

result.

Proposition 3 Given a projection matrixM and a projective transformation Q, a neces-

sary and sufficient condition for the matrix M̂ =MQ to satisfy the zero-skew constraint

is that λTRTRµ = 0, where RT is the 6×3 matrix (q2∧q3, q3∧q1, q1∧q2), λ =m1∧m3

µ = m2 ∧m3, and “∧” denotes the exterior product that associates with two points the

vector of Plücker coordinates of the line passing through them.

This result can be used to decompose the estimation of Q into (a) the computation of

the matrix RTR using homogeneous linear least squares, (b) the estimation of R using

a new algorithm for computing the best estimate of the square root of a non-necessarily

positive symmetric matrix, and (c) the computation of Q using once again homogeneous

linear least squares [63, 65]. Figure 9 shows preliminary results obtained with a 39-frame

sequence of teddy bear images. A total of 4389 points visible in all frames are tracked

automatically in this sequence using S. Birchfield’s KLT implementation of the Kanade-

Lucas-Tomasi tracker [69, 116].

5 Discussion

We plan to integrate the three approaches to 3D photography presented in this paper into

a system capable of acquiring realistic visual models of complex objects from photographs

and video sequences. Projective visual hulls will be used primarily in controlled situations

where blue-screen technology can be used to delineate objects’ silhouettes. For scenes with

complex backgrounds, we will rely on affine-invariant patch matching, feature tracking,

and motion segmentation to separate objects of interest from their background. Let us

conclude by sketching a few research directions that we intend to follow as we pursue our

integration efforts.

Projective visual hulls. As demonstrated by Figure 4, texture-mapped pictures of

visual hulls constructed from a few photographs are reasonably realistic, but their visual

quality degrades as the virtual camera moves away from the real ones (this is particularly
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(a) (b)

(c) (d)

Figure 9: Object modeling from motion cues: (a) two views of the projective reconstruction

of the teddy bear; (b) the corresponding Euclidean reconstruction; (c) its triangulation induced

by the Delaunay triangulation of one of the input images’ features; (d) texture-mapped views

of this triangulation.

noticeable for the back of the shirt in the last view). Various methods can be used to

remedy this problem. The simplest one is to interpolate the colors associated with all

cameras observing each vertex of the mesh [24, 76, 77, 97]. A more accurate alternative

is to add geometric detail to the raw visual hull. Classical stereo algorithms [25, 82, 86]

cannot be used in this context because the input cameras are too far apart for normal-

ized cross-correlation to return meaningful information. However, it is possible to take

advantage of the rough surface model provided by the visual hull to reproject all input

pictures in one reference image: This is an instance of the stereo-from-shape approach

proposed by Debevec et al. [24], where the ray associated with a reference image pixel

is first intersected with the model surface before being reprojected into an offset image.

In practice, this zeroes out the wide-baseline disparities, allowing once again the use of

correlation techniques to reveal fine surface detail. This idea is illustrated by Figure 10,

where three of the pictures used to model a squash have been reprojected into the first

image. Note the similarity between these pictures in their region of overlap, except (as

could have been expected) in the neighborhood of specularities. In this setting, rim points

play a particular role: They are the only surface points that belong to the boundary of the
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visual hull. Accordingly, the disparity associated with each image reprojection must be

zero along the occluding contours, and these curves can be found by a global optimization

process maximizing correlation under the constraints of zero disparity and containment

within the associated strips. We plan to implement a two-step process where the rims are

found first, and used to anchor the subsequent stereo-from-shape process.

Figure 10: Three images of a squash, and their model-based reprojection into the first image;

note how the specularities appear in different places in the three images.

Affine-invariant patches. When cameras are strongly calibrated, the projection ma-

trices are known, and a single match between two affine-invariant patches provides 12

constraints (corresponding to the entries of the two matrices S1 and S2) in 11 unknowns

(the 9 entries of B and the depths of the patch relative to the two cameras). Combining

this constraint with the known epipolar geometry allows the independent verification of

individual matches in wide-baseline situations (Figure 11). This complements the stereo-

from-shape approach to adding geometric detail to visual hulls. Conversely, visual hulls

can be used to discard incorrect matches between patches whose projections fall outside

the input silhouettes.

Figure 11: Using affine-invariant patches for wide-baseline calibrated stereo. The matches found

are indicated by lines joining corresponding features, and they are all correct in this example.

We have only retained the affine-invariant patches with highest Harris response in this example,

resulting in a sparse set of matches. A much larger set of patches would of course be used in

actual applications.

When the cameras are not calibrated, the techniques described in Section 3 can be

used to match successive images, (weakly) calibrate the cameras, and use the matches
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found to add once again geometric detail to the visual hull. Perhaps more interestingly,

affine-invariant patches should prove useful in modeling articulated objects from image

sequences [6, 11, 26]: Indeed, the geometric consistency constraints derived in Section 3

will also hold for the rigid parts of an articulated object. Several recent algorithms for

motion segmentation also rely on affine SFM constraints to find groups of rigidly-moving

points in image sequences [9, 20, 33]. However, these techniques explicitly search for

a permutation of the scene points producing geometrically consistent groups, and their

high combinatorial cost has limited their practical applicability. They also assume that

feature correspondences have already been established through tracking. In contrast,

the matching strategy proposed in Section 3 is computationally efficient and it exploits

geometric consistency constraints during the matching process itself. Figure 12 shows a

preliminary experiment where the patches found in two pictures of an articulated object

have been matched.

Figure 12: Two pictures of a glasses’ case, completely open and just half open, with matches indicated
by lines between corresponding features.

Structure from motion. Unlike affine or projective factorization methods [74, 108,

117], the bilinear algorithm proposed in Section 4 does not require all features to be present

in all images (sparse data). In addition, its cost per iteration is only O(mn) as opposed to

O(mn min(3m,n)) for factorization techniques and O((m + n)3) for bundle adjustment.

Our bilinear algorithm is a constrained optimization technique that alternates steps where

motion parameters are held constant with steps where structure parameters are held con-

stant to solve a homogeneous least-squares problem. In the non-homogeneous case, it has

been shown that a similar alternation [120] scheme called NIPALS [128] has the quadratic

convergence rate of Gauss-Newton and other non-linear least-squares techniques used in

bundle adjustment for dense data, but only linear convergence in the case of sparse data

[100]. This is exactly the behavior observed in Figure 8. In the non-homogeneous case, al-

gorithms that achieve a tradeoff between the NIPALS and Gauss-Newton schemes—with

relatively low cost per iteration, yet near-quadratic convergence on sparse data—have

been proposed [101]. We plan to adapt the same idea to our homogeneous setting by

developing a variant of sequential quadratic programming [47] that decouples the motion
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and structure parameters to achieve both computational efficiency and fast convergence.

Finally, handling sparse data requires the discovery of a “good” set of overlapping blocks

of frames and points in the corresponding image sequence. This can be formalized as the

computation of a covering of an interval graph by (maximum) cliques. Clique problem-

s are NP-complete in general [19], but simple and efficient algorithms are available for

interval graphs [39]. We plan to apply these algorithms to the initial affine registration

phase of the projective SFM technique proposed in Section 4.
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