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Abstract—The nonlinear dynamics of the mechanoelectri
transduction in an arthropod mechanoreceptor~cuticular slit
sense organ of the spiderCupiennius salei! were studied using
Volterra kernel measurements and the recently propo
method of principal dynamic modes. Since mechanorecep
must operate with sufficient gain sensitivity to rapidly varyin
displacement stimuli over a broad bandwidth and for a w
range of amplitudes, the experimental data were generate
applying pseudorandom broadband mechanical displacem
of various mean levels to the cuticular slits. The record
response data were intracellular current and potential. The
pose of this paper is to demonstrate the use of the princ
dynamic mode~PDM! methodology in elucidating the nonlin
ear dynamics of a spider mechanoreceptor. The results obta
demonstrate that two PDMs suffice to provide a complete n
linear dynamic model of this insect mechanoreceptor. The
PDM resembles the first-order kernel and has a low pass c
acteristic ~position dependent!, while the second PDM has
high-pass characteristic~velocity-dependent! and resides en-
tirely in the second-order kernel~nonlinear adaptation!. This
study may serve as an example of the proper use of this
methodology for the analysis of nonlinear physiological s
tems. © 1999 Biomedical Engineering Society.
@S0090-6964~99!01703-8#

Keywords—Nonlinear modeling, Volterra kernels, Laguer
expansion, Nonlinear adaptation.

INTRODUCTION

The transduction and detection of mechanical stim
occurs in many animal tissues and is used widely
both sensory and regulatory purposes. As in other s
sory modalities, mechanoreceptors must operate w
sufficient gain to detect small stimuli, but at the sam
time provide an operating range that can accommod
most naturally occurring stimuli, leading to systems th
can adapt their gains to the prevailing stimulus con
tions. In addition, a variety of dynamic behavior is see
which presumably reflects the varying functional roles

Address correspondence to Professor Vasilis Marmarelis, Dep
ment of Biomedical Engineering, University of Southern Californ
University Park–OHE 500, Los Angeles, CA 90089-1451. Electro
mail: vzm@bmsrs.usc.edu
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mechanoreceptors. The overall dynamic behaviors
mechanoreceptors, and the molecular mechanisms
volved, are not yet well understood, mainly because
the small physical size and inaccessibility of mo
mechanoreceptors.

In previous work we used the principal dynamic mo
~PDM! methodology to characterize the nonlinear d
namic behavior of action potential encoding in an ins
mechanoreceptor.2 We have now used the PDM ap
proach to examine the most fundamental stage of mec
noreception; the conversion of mechanical displacem
into transmembrane receptor current, in an arthrop
mechanoreceptor. Single neurons of a slit-sense orga
the spider,Cupiennius salei, were stimulated with pseu
dorandom broadband displacements of varying mean
els to simulate the range of natural stimulation, wh
intracellular microelectrodes were used to observe
resulting receptor current under voltage clamp or
receptor potential under current clamp.

This work demonstrates the use of the PDM techniq
to characterize the nonlinear dynamic behavior of a b
logical system and should serve as an example of
proper use of this new methodology for the general stu
of nonlinear physiological systems, and a guide to
interpretation of the resulting characterization.

METHODS

Experimental Preparation

A calibrated mechanical stimulus was applied to
defined position on a slit of the cuticular slit sense org
mechanoreceptors. Motion of the stimulating probe co
pressed the cuticular slits, causing their local displa
ment relative to the surrounding cuticle, thus subject
the sensory endings of the bipolar mechanoreceptor n
rons to mechanical displacement. A leg from adult
male tropical hunting spiders~C. salei! was autotomized
and a concave piece of cuticule containing lyrifom org
VS-3 was dissected from the anterior patella and p
pared under a microscope. Full details of this preparat
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392 MARMARELIS, JUUSOLA and FRENCH
are given in Ref. 12. The slit sense organ prepara
was fixed with beeswax onto a custom-designed Ple
glas holder. The interior concave surface of a fix
preparation was connected to the holder’s bath cham
filled with fresh spider saline~pH 8.2!, and grounded
with an indifferent electrode~silver–silver chloride!. An
additional manipulator was used for lowering small tub
into the holder’s bath so that fresh saline, with or wit
out 10 mM tetrodotoxin ~TTX!, could be added when
needed. The preparation-holder complex was firmly h
by a stand while the mechanical stimulus was applied
the exterior surface of the preparation from below. T
stimulator was a modified loudspeaker with servoco
trolled position and an infrared optical position indicat
circuit. Computer-generated voltage commands~pseudo-
random modulation! drove the stimulator. The resultin
displacement was applied to the slit sense organ b
small insect pin grounded so as to reduce electrical n
from the stimulator. The pin tip was seen under illum
nation through the transparent cuticle and its locat
could be altered by a three-dimensional micromanipu
tor.

The stimuli were measured by the displacement~mi-
crometers! of the pin tip, read from the output of th
optical position indicator, and recorded with a microco
puter~IBM 386 compatible! using an ASYST~Keithley!-
based program.4 The actual stimulus delivered by th
stimulator was band limited and pseudorandomly mo
lated with a Gaussian amplitude distribution and sp
trally flat up to ;400 Hz. Current- or voltage-clam
recordings were obtained from mechanoreceptor som
using single microelectrodes filled with 3 M KCl and
having resistances between 25 and 80 MV when in the
tissue. The microelectrodes were connected to a sin
electrode voltage-clamp amplifier~SEC-10L, NPI Elec-
tronics, Germany!. The frequency response of the recor
ing system, including the microelectrode, had a 3-
high-frequency cutoff at>10 kHz.4

The sensitivity of the neurons was tested by 200-
300-ms step displacements of the slits. The stimuli w
directed to the slit that gave the maximum receptor
tential ~or generator potential! with superimposed action
potentials. This was usually the slit that was seen to
innervated by the neuron. If the voltage responses w
adequate~resting potential less than260 mV, action
potential amplitudes.50 mV!, 10 mM TTX was added
to the bath to suppress the fast voltage-activated sod
current. A period of 2–5 min was normally required f
all action potentials to be suppressed. TTX has no ef
on the receptor current.3 The adaptation properties of th
neurons were then studied under voltage clamp by
serving the dynamics of the receptor current during d
placement stimuli. In these experiments, the neur
were allowed to adapt for 10 s to a preselected cons
displacement background applied to the slit before sup
,

a

-

t
-

imposing the pseudorandomly modulated displacem
This adaptation period was sufficient to complete t
adaptational decay of the receptor current and so to
sure that the sensitivity of the mechanoreceptors
reached a steady level. The recovery from adaptation
the responses to displacement steps and pseudoran
modulation were repeatable within a displacement ra
of ,20 mm from one preparation to another. In gener
the preparations were stable for a period of>1 h and
occasionally several recordings were obtained from
same neuron.

The sampling at 1 kHz of the electrical responses w
initiated synchronously to the onset of the pseudorand
signal produced by the computer. Records of the c
response and the stimulating pin position obtained dur
each cycle were digitized with a 12-bit A–D convert
~DT2821, Data Translation!, converted to suitable units
~mV or nA for responses;mm for displacements!, and
stored on a disk. A 6 s interval of mean steady back
ground displacement was maintained between each
secutive run to ensure that adaptation was equal for e
stimulus sequence. Pseudorandom displacement sti
from a shift-register generator were applied for perio
of 8.192 s. Responses were averaged 10 times.

Analysis Methodology

Four data sets of 4000 datapoints sampled at 1 k
~4 s long! of the mechanical random forcing input an
the intracellular current or potential output were used
estimate the first- and second-order Volterra kernels
the Laguerre expansion technique.8 The kernels were es
timated over 50 ms~memory! and validated by mode
prediction of four test data sets~not used for estimation!
for each case of output data~current or potential!. These
kernel estimates were used, in turn, to compute
PDMs of the system.9 Having computed the PDMs, we
estimated the associated nonlinearity for each syste9

An outline of the methodology is provided in Append
A for the convenience of the reader. All computatio
were performed on a Pentium-based PC system runn
the LYSIS software package under Microsoft Window
which has been developed by the Biomedical Simu
tions Resource at the University of Southern Californ
under NIH sponsorship.

RESULTS

Using four data sets of intracellular recordings of i
duced current, we first estimate the first- and seco
order kernels via the Laguerre expansion technique.8 The
resulting first-order kernel estimates for two represen
tive recordings are shown in Fig. 1 in the time an
frequency domains, exhibiting consistent waveforms
different amplitudes, due to the fact that the two reco



s

l is

:
a

hat
se
w
ude
ex-
z.
the
the
he
the
re

t,
of
f

e
n

nt

e-
se

393Principal Dynamic Mode Analysis of a Mechanoreceptor
ings have different mean displacement values~i.e., aver-
age stimulus levels! that define different operating point
with distinct gain sensitivities.5 Specifically, the kernel
corresponding to the higher mean displacement leve
about 40% larger~solid: 29.02; dashed: 31.90! and has
slightly smaller stimulus power~solid: 0.798; dashed
0.764!. The frequency response of the kernels peaks
about 50 Hz and declines gradually above 100 Hz. W
is most intriguing in Fig. 1 is that the frequency respon
characteristics of both first-order kernels are mildly lo
pass, although the apparent transfer function magnit
for this preparation has been reported previously to
hibit marked high-pass characteristics above 150 H5

This apparent inconsistency can be explained by
high-pass frequency response characteristics of
second-order Volterra model term governed by t
second-order kernel, as illustrated below. Note that
high-pass characteristics of the nonlinear terms are

FIGURE 1. The obtained first-order kernel estimates using
intracellular current response data „under voltage-clamped
conditions … in the time „top … and frequency „bottom … do-
mains, for two different mean displacement stimulus levels
„solid: 29.02; dashed: 31.90 …. The peak kernel value for the
higher mean displacement level is about 40% larger; but the
waveforms of the two kernels are similar, exhibiting mildly
low-pass characteristics. The ordinate axis units for the first-
order kernel are: nA/ „mm ms ….
t

-

flected on the apparent transfer function measuremen7

thus the latter does not represent the linear dynamics
the system. This is a good example of the pitfalls o
linearized analysis.

The obtained second-order kernel estimates for th
same two recordings are shown in the time domain i
Fig. 2, also exhibiting similar forms but different ampli-
tudes that follow a similar size relation with their first-
order counterparts~i.e., about 25% larger for the higher
mean displacement level!. The contribution of the
second-order kernel to the system response is significa
relative to the first-order kernel contribution for this sys-
tem, as illustrated for a segment of high mean displac
ment data in Fig. 3, where the actual system respon
~trace 1! is compared to the model predictions of first-
~trace 2! and second order~trace 3!. The normalized

FIGURE 2. The obtained second-order kernel estimates in
the time domain for the two data sets discussed in Fig. 1.
The peak-to-peak kernel value for the higher mean displace-
ment level is about 25% larger; but the waveforms of the two
kernels are similar. The ordinate axis units for the second-
order kernel are: nA/ „mm ms …2. The t1 and t2 axes are in
millisecond units „10 ms bar shown ….
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394 MARMARELIS, JUUSOLA and FRENCH
mean-square errors~NMSE! are: 34.1% for the first or-
der and 8.3% for the second-order model~the latter in-
cludes the first- and second-order kernels!. Note that this
comparison is made with a segment of data not used
the estimation of the kernels for each experiment. T
comparison demonstrates the inadequacy of the fi
order ~linear! model and the good prediction obtained
the second-order model.

Next we compute the PDMs~modes! of this system
using the first- and second-order kernel estimates.9 Only
two significant modes are found in this system and th
are shown in Fig. 4 for the aforementioned two reco
ings. The consistency in the form of these modes
different recordings is remarkable. The correspond
eigenvalues for the first (l1) and second (l2) modes are
(l1520.0317, l2520.0046! and (l1520.0632,
l250.0078! for the two recordings, indicating the rela
tive contributions of the two modes to the system out
~the first is about one order of magnitude larger!. The
two modes are shown in the frequency domain~FFT
magnitude! in Fig. 5 and demonstrate the high-pass ch
acteristics of the second mode~evident in the second
order kernel!, and the mildly low-pass characteristics
the first mode that resembles the first-order kernel. T
result also demonstrates that the high-pass character
of the mechanoreceptor reside in the second-order ke
and not in the first-order kernel, i.e., the high-pass
havior is strictly nonlinear! Therefore, the fundamen
property of adaptation characterizing the mechanorec
tor response~i.e., the fact that the system retains ga
sensitivity when the mean displacement changes! is
strictly nonlinear.

FIGURE 3. Model predictions for a segment of high mean
displacement data not used for kernel estimation. Actual cur-
rent response data „trace 1 …, first-order model prediction
„trace 2 … and second-order model prediction „trace 3 …. The
significant contribution of the second-order kernel to the
current response is visually evident. The normalized mean-
square errors are: 34.1% for the first-order, and 8.3% for the
second-order model prediction. The ordinate axis units are:
nA.
r

-

s
l

-

The nonlinearity associated with these two modes
shown in Fig. 6 in 3D perspective. It is evident from th
plot that the nonlinear dependence of the system ou
~intracellular current! upon the first mode output,u1,
follows a ramp-threshold characteristic whose critic
point ~threshold value! remains fairly constant and clos
to zero for positive values of the second mode outp
u2, but rapidly decreases for negative values ofu2. This
nonlinear surface is concave~negative eigenvalues! re-
flecting the fact that the differential change of intrace
lular current in response to an increase of displacem
forcing is negative. Note also that the slope of the ram
threshold curve with respect tou1 decreases with de
creasingu2. The form of this nonlinearity indicates di
rectionally selective behavior of the mechanorecep
since the response characteristics with respect tou1

FIGURE 4. The computed two principal dynamic modes
„PDM… in the time domain using the intracellular current ker-
nels of Figs. 1 and 2. The PDMs for the two mean displace-
ment levels „low: top; high: bottom … are rather similar. The
waveform of the first PDM „solid … is similar to the first-order
kernel „with reverse polarity … exhibiting mild low-pass char-
acteristics, while the second PDM „dashed … exhibits strong
high-pass characteristics, as illustrated in Fig. 5. The corre-
sponding eigenvalues are both negative and indicate that the
contribution of the first PDM to the current response is
about one order of magnitude larger than the contribution of
the second PDM. The ordinate axis units for the PDMs are:
nA/ „mm ms ….
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395Principal Dynamic Mode Analysis of a Mechanoreceptor
~magnitude of displacement! are distinctly different for
negative and positive values ofu2 ~change of displace
ment!.

This interesting nonlinearity and the associated t
modes constitute a complete nonlinear model for
system defined by the mechanical displacement input
the intracellular current output~under voltage-clamped
conditions!.

We now turn to the intracellular potential data co
lected under current-clamped conditions. Here too
results have been very consistent in form across rec
ings. Two representative first-order kernels, obtained
the same stimuli used in the two previously presen
current recordings are shown in Fig. 7 in the time a
frequency domains. These first-order kernels look l
low-pass filtered versions of their intracellular curre
counterparts of Fig. 1~due to the transmembrane capa
tance! but their size relation is more exaggerated in fav
of the higher mean displacement level case~i.e., the peak
value of the corresponding kernel is about double
compared to about 40% larger for the current out

FIGURE 5. The two computed PDMs for the intracellular cur-
rent data in the frequency domain „i.e., FFT magnitude of the
PDMs shown in Fig. 4 …. The high-pass characteristic of the
second PDM is not evident in the first-order kernel „i.e., it
resides entirely in the second-order kernel …, indicating non-
linear adaptation of the mechanoreceptor.
-

case!. The corresponding second-order kernels are sho
in the time domain in Fig. 8. The consistency in the for
of these kernels is again evident, and the size relatio
similar to their first-order kernel counterparts of Fig.
The first- and second-order model predictions are sho
in Fig. 9 along with the actual output for a segment
data not used for the estimation of the kernels. T
significant contribution of the second-order kernel
again evident~NMSE for second-order prediction i
25.9% versus 60.2% for the first-order prediction!, dem-
onstrating the inadequacy of the linear~first-order!
model.

Computation of the modes from these kernel es
mates again yields only two significant modes for th
system, shown in Fig. 10 for the same two recordin
We observe that the first modes are now more stron

FIGURE 6. The static nonlinearities associated with the two
PDMs of Figs. 4 and 5: high mean level „bottom …, low mean
displacement level „top …. The axes „u 1 , u 2… represent the
two PDM outputs. The vertical axis is the intracellular current
response „negative …. The axes ranges are given at the bot-
tom of each plot. The ramp-threshold concave characteristic
with respect to u 1 is evident, as well as the asymmetry with
respect to u 2. The ordinate axis units are: nA. The u 1 and u 2
axes are also in nA units „1 nA bar shown ….
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396 MARMARELIS, JUUSOLA and FRENCH
low pass, resembling the first-order kernel waveform
while the second modes remain distinctly high pass,
notably similar in waveform~although of reverse polar
ity! to the second modes of the previously analyzed c
rent data. The corresponding eigenvalues for the fi
(l1) and second (l2) modes are (l152.877,l250.145!
and (l152.649,l250.247! for the two recordings, indi-
cating the relative contributions of the two modes to t
system output~the first is about one order of magnitud
larger!. These modes are shown in the frequency dom
~FFT magnitude! in Fig. 11. Clearly the first mode domi
nates up to about 150 Hz and the second mode is do
nant above that frequency. Thus, for the intracellu
potential data, the two modes seem to divide the ope
tional bandwidth at about 150 Hz.

The nonlinearities associated with the two modes
the intracellular potential data at the aforementioned t
different mean displacement levels are shown in Fig.

FIGURE 7. The obtained first-order kernel estimates using
intracellular potential response data „under current-clamped
conditions … in the time „top … and frequency „bottom … do-
mains, for the same stimuli as in Fig. 1. These first-order
kernels look like low-pass versions of their intracellular cur-
rent counterparts in Fig. 1 „due to the transmembrane ca-
pacitance …, although the size relation is more exaggerated in
favor of the higher mean displacement level case. The ordi-
nate axis units for the first-order kernel are: mV/ „mm ms ….
-

-

in 3D perspective. It is evident from these plots that t
nonlinear surface is convex, reflecting the fact that
differential change of intracellular potential in respon
to an increase of displacement forcing is positive~this is
also the reason for the positive eigenvalues!. The form of
the nonlinear surface changes slightly with mean d
placement level~in addition to the obvious and antici
pated change in elevation!. This nonlinearity and the
associated two modes constitute a complete nonlin
dynamic model of the system defined by the mechan
forcing ~displacement! input and the intracellular poten
tial output under current-clamped conditions.

CONCLUSIONS

These results demonstrate the efficacy and the ut
of principal dynamic mode analysis~based on second
order Volterra models! in enhancing our understandin
of the nonlinear dynamic behavior of the mechanorec
tor system. The key results are as follows.

FIGURE 8. The obtained second-order kernel estimates in
the time domain for the two data sets discussed in Fig. 7.
The waveforms are similar for the two mean displacement
levels, but the size for the higher mean displacement level is
about double—in rough correspondence to their first-order
kernel counterparts. The ordinate axis units for the second-
order kernel are: mV/ „mm ms …2. The t1 and t2 axes are in ms
units „10 ms bar shown ….
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397Principal Dynamic Mode Analysis of a Mechanoreceptor
~1! Consistent kernel estimates of first and seco
order across recordings.

~2! Inadequacy of the first-order~linear! model and
significant contribution of the second-order kernel, bas
on respective predictions of the system response.

~3! Significant increase in the size of the kernel es
mates~and of the system response! when the mean leve
of the displacement stimulus increases, although the
spective stimulus power decreases slightly~i.e., higher
gain sensitivity!.

~4! Consistent estimates of two significant princip
dynamic modes: one with low pass and the other w
high-pass frequency response characteristics, for both
tracellular current and potential response data~under
voltage- and current-clamped conditions, respectively!.

~5! The first mode~low pass! is similar in waveform
to the first-order kernel; and the second mode resi
entirely in the second-order kernel~the latter also con-
tains the first mode!. Thus, the high-pass characteristi
of the mechanoreceptor~represented by the second mo
and responsible for its adaptation property! are entirely a
nonlinear mechanism.

~6! The first mode for the intracellular potential da
is a low-pass filtered version of its counterpart for t
current data~as expected, due to the membrane capa
tance!.

~7! The second modes~high pass! for current and
potential data are notably similar in waveform~although
of reverse polarity!, dominating the response characte
istics of the mechanoreceptor above approximately
Hz.

~8! For the intracellular potential data, the two mod
appear to divide the frequency response bandwidth

FIGURE 9. A segment of intracellular potential test data
„trace 1 … and the model predictions of first-order „trace 2 …

and second-order „trace 3 …. The significant contribution of
the second-order kernel to the response potential is evident.
The normalized mean-square errors are: 60.2% for the first-
order, and 25.9% for the second-order model prediction. The
ordinate axis units are: mV.
-

-

t

about 150 Hz~first mode is dominant below 150 Hz
second mode is dominant above 150 Hz!.

~9! The nonlinearities associated with the two mod
are distinct for current and potential data and exhi
concave and convex morphologies, respectively. T
form of these nonlinearities changes only slightly f
various mean displacement stimulus levels~with the cur-
vature somewhat blunted for higher mean displacem
stimulus levels!, except for a significant~and anticipated!
change in elevation.

~10! A plateau of low values~deviations from the
mean response level! is evident for negative values o
the first mode output and nonlinear dependence is
dent for positive values, implying a threshold charact
istic in the position dependence of the mechanorece
response. The velocity dependence~represented by the
second mode output! is measurable and nonlinear but n
as pronounced.

FIGURE 10. The two computed PDMs in the time domain,
using the intracellular potential kernels of Figs. 7 and 8.
Again the waveforms are similar for the two mean displace-
ment levels, and the first PDMs „solid … resemble in waveform
the first-order kernels. The second PDMs „dashed … are simi-
lar in waveform to their counterparts for the intracellular
current data „with reverse polarity …. The corresponding
eigenvalues are both positive and indicate that the relative
contribution of the first PDM is about one order of magni-
tude larger. The ordinate axis units for the PDMs are: mV/
„mm ms ….
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398 MARMARELIS, JUUSOLA and FRENCH
~11! For the intracellular current data, the conca
nonlinearity exhibits threshold characteristics with r
spect to the output of the first mode (u1); with the
threshold being regulated by the output of the seco
mode (u2). Specifically, for u2>0, the threshold with
respect tou1 is almost constant at approximatelyu150
and the slope of the suprathreshold response is la
however, for u2,0, this threshold gradually decreas
while the slope of the suprathreshold response also
creases. This nonlinear characteristic reflects the as
metrical response of the mechanoreceptor.

~12! For the intracellular potential data, the conv
nonlinearity exhibits low values foru1,0 and rising
values foru1.0. The dependence onu2 is even sym-
metric ~i.e., irrespective of its sign!, exhibiting higher
response values for largeruu2u. Since the sign ofu2

~direction of displacement change! does not seem to af
fect the response, the intracellular potential respons
not velocity sensitive but speed sensitive.

FIGURE 11. The computed two PDMs for the potential data
in the frequency domain „i.e., FFT magnitude of the PDMs
shown in Fig. 10 …. As previously, the high-pass characteris-
tic of the second PDM is not evident in the first-order kernel
„nonlinear adaptation …. The two PDMs appear to divide the
frequency response bandwidth, whereby the first PDM is
dominant below about 150 Hz and the second PDM is domi-
nant above that frequency.
;

-
-

DISCUSSION

The presented results show that the nonlinear dyna
behavior of the slit-sense organ neurons can be descr
by a compact model consisting of two PDMs and a tw
dimensional static nonlinear function. The models for t
receptor current and receptor potential differ primarily
the change of the low-pass characteristics of the fi
PDM, reflecting the low-pass filtering of the recept
current by the membrane capacitance and resistance
previously observed.6 The second PDM is similar in
waveform for current and potential data, endowing t
mechanoreceptor with its high-pass response charact
tics ~akin to differentiation! that give it adaptation capa
bilities. These high-pass characteristics were shown
reside entirely in the second-order kernel~nonlinear ad-
aptation!. The similarity of the second PDMs for th
receptor current and receptor potential supports the i
that the receptor potential is primarily a low-pass filter
version of the receptor current. This is to be expected
there are not very large changes in membrane poten

FIGURE 12. The static nonlinearities associated with the two
PDMs of Figs. 10 and 11 for high „bottom … and low „top …

mean displacement levels. The axes „u 1 , u 2… represent the
two PDM outputs, and the vertical axis is the intracellular
potential response. The axes ranges are given at the bottom
of each plot. The convex nonlinear characteristic is evident,
as well as the even symmetry with respect to u 2. The ordi-
nate axis units are: mV. The u 1 and u 2 axes are also in mV
units „1 mV bar shown ….



ent
os

ane

e-
ca-

-
si-

ce-

-

n

i-

po
s,
eed
-
ay
ar

nse
of
-
as
ng

its
e
pec
m-
es
In
n-
ing
n
the
her
s
t
ies
th
he

par
he

ee

alle

av-
e-

end
gh-
re-

tor
tor
, a
n-
me-
al
e

her
us
-
n-

ass
ris-

up-
i-
ant
a

se,
nt

-
by

the
id

rane
pot
r

o-
ly
the
eir

ne.
of
the
e-
nel

n-
n-

the

-
r-
h

399Principal Dynamic Mode Analysis of a Mechanoreceptor
during the current clamp recordings, since the curr
through the mechanoreceptor channels is carried alm
entirely by sodium ions3 whose equilibrium potential is
large and positive compared to the resting membr
potential.

The form of the nonlinearity in the current data r
sembles threshold behavior akin to half-wave rectifi
tion ~with a negative slope! for positive values of the
second mode (u2.0), i.e., an increase of stimulus dis
placement values elicits strong negative current for po
tive displacement values but not for negative displa
ment values. Foru2,0, the aforementionedu1 threshold
is reduced for increasinguu2u and the slope of the su
prathreshold response is also reduced~i.e., it becomes
less negative!. This response behavior is both positio
sensitive and velocity sensitive.

For the potential data, the nonlinearity exhibits in
tially supralinear~i.e., changing faster than linear! re-
sponse characteristics foru1.0 ~with a positive slope!
and somewhat flattened response foru1,0. The effect of
u2 is even symmetric and causes increased response
tential for largeruu2u, also in supralinear fashion. Thu
this response behavior is position sensitive and sp
sensitive ~not rate directional!. Note that these experi
ments were made under clamped conditions which m
account for some of the differences in the nonline
behavior evident in the current and potential respo
data. Finally, we should note that although the form
the nonlinearity foru1.0 appears initially to be supra
linear, it gradually becomes linear and then sublinear
u1 increases and reaches the end of the dynamic ra
~i.e., sigmoidal overall shape!.

The presented PDM model is more compact than
Volterra counterpart~e.g., for second-order models th
numbers of free parameters are 108 and 1378, res
tively!; however the Volterra model includes the dyna
ics represented by the less significant eigenvalu
eigenvectors that are omitted from the PDM model.
this application, the improvement in prediction mea
square error was marginal and not consistent, lend
support to the notion of a ‘‘minimal model’’ based o
PDM analysis. Furthermore, as indicated above,
PDM model can be extended to nonlinear orders hig
than second~even though limited to the selected PDM
in terms of dynamics! while the Volterra models canno
be practically extended into higher order nonlinearit
because of the computational burden associated with
rapid increase in the number of free parameters. T
adequacy of each model has to be judged in each
ticular application with regard to the objectives and t
prevailing practical limitations.

The nonlinear dynamic behavior observed here agr
well with experiments using step displacements5 where
positive steps~indenting the slits! caused significant in-
ward currents, while negative steps caused much sm
t

-

e

-

/

e

-

s

r

reductions in mean inward current. This nonlinear beh
ior was more pronounced in the initial dynamic r
sponses to steps than in the late responses near the
of steps, as reflected in the model obtained by the hi
pass properties of the second PDM that is primarily
sponsible for the nonlinear adaptive behavior.

The physiological system responsible for the recep
current consists of the slit cuticle between the stimula
and the dendritic sheath surrounding the neuron tip
small, presumably fluid filled, region between the de
dritic sheath and the neuronal membrane, and the
chanically activated ion channels in the neuron
membrane.1 The important questions in interpreting th
obtained nonlinear dynamic model are:~1! what physical
mechanisms could correspond to the two PDMs, and~2!
what is the basis of the nonlinearity? Presently, neit
question can be answered with certainty. One obvio
possibility for the two distinct PDMs would be the ex
istence of two types of mechanically activated ion cha
nels in the neuronal membrane, one type with low-p
characteristics, and the other with high-pass characte
tics. However, no experimental evidence exists to s
port this possibility at present. Experiments that elim
nate mechanotransduction by removing the perme
ions, or application of blocking chemicals, cause
gradual reduction in the amplitude of the entire respon
rather than eliminating one dynamic compone
selectively.3

It seems difficult to explain the form of the nonlin
earity or the response characteristics of the two PDMs
any of the known physical components between
stimulator and the neuronal membrane. While the flu
between the dendritic sheath and the neuronal memb
could conceivably cause high-pass behavior by dash
action, it is impossible to say if this would be linear o
nonlinear without more detailed knowledge of the m
lecular mechanics of the fluid. It seems equally like
that the nonlinear dynamics measured here reflect
properties of the mechanically activated channels or th
connection to deformation of the neuronal membra
Very little is known about the molecular structures
mechanically activated channels, or their linkages to
membrane or cytoskeleton. However, models of m
chanically activated channels, based on single chan
patch clamp recordings are starting to emerge.11 The
quantitative nonlinear dynamic descriptions of mecha
otransduction provided here should be useful in co
straining the selection process for such models in
future.
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APPENDIX

In discrete time, the general input–output relation o
stable ~finite-memory! nonlinear time-invariant dynamic
system is given by the discrete-time Volterra series:

y~n!5k01(
m

k1~m!x~n2m!1(
m1

(
m2

k2~m1 ,m2!

3x~n2m1!x~n2m2!1•••, ~A1!

where x(n) is the input andy(n) is the output of the
system. Theith term of the series is ani-tuple convolu-
tion of the ith-order kernelki with i versions ofx. The
Volterra kernels (k0 ,k1 ,k2 , . . . ) describe the dynamic
of the system at each order of nonlinearity and constit
a complete and canonical representation of the sys
nonlinear dynamics.13

Expansion of the Volterra kernels on a complete ba
$bj (m)% transforms Eq.~A1! into the multinomial ex-
pression:

y~n!5c01(
j

c1~ j ! v j~n!

1(
j 1

(
j 2

c2~ j 1 , j 2! v j 1
~n!v j 2

~n!1•••

5 f ~v1 ,v2 , ... ,v j , ...!, ~A2!

where

v j~n!5(
m

bj~m!x~n2m! ~A3!

and c1( j ), c2( j 1 , j 2), . . . represent the expansion coe
ficients of the respective kernels.

The unknown expansion coefficients can be estima
in practice by linear regression of the output datay~n! on
the terms of the multinomial expression of Eq.~A2!, as
long as the expression is finite and its terms do not l
to ill conditioning of the regression matrix inversion. Th
latter condition can be secured when the input is su
ciently broadband. Note that for a white noise input a
an orthogonal basis, the signals$v j (n)% have zero cova-
riance. This fact was used by Wiener in his origin
suggestion for kernel estimation using covarian
computations.15 He also suggested the use of Lague
functions as an appropriate orthonormal basis, owing
their built-in exponential term that makes them suita
for physical systems with asymptotically exponential
laxation dynamics.15 This suggestion was adapted to d
crete time for improved kernel estimation.8,10,14
The use of the kernel expansion basis implies tha
general model of the Volterra class of systems can t
a block-structured form wherein the basis functio
$bj (m)% constitute the impulse responses of a filter ba
whose outputs are feeding into a multi-input static no
linearity f (v1 , ... ,v j ,...). For aselected basis~e.g., La-
guerre functions!, the modeling problem reduces to es
mating the multivariate functionf (•). Of course, the
latter will be different for different bases.

The PDM approach rests on the fact that, among
possible choices of expansion bases~orthogonal or non-
orthogonal! there are some that require the minimu
number of basis functions to achieve a given me
square approximation of the system output. Such a m
mum set of basis functions is termed the PDMs of t
nonlinear system and correspond to an associated m
variate nonlinear functionf (•) generating the system
output.9 No claim of uniqueness can be made for the
PDMs or the associated nonlinearity, although the la
is unique for a selected set of PDMs for a given syst
and vice versa.

For the estimation of the PDMs and the output no
linearity f (•) from stimulus-response data, we use eige
decomposition of a properly constructed matrix conta
ing the estimated first and second-order kernel values~in
addition tok0), since in most practical applications ke
nel estimation is limited to second order. The obtain
kernel values up to a maximum lagM ~kernel memory!
are combined to form a real symmetric (M12)3(M
12) square matrix:

Q53
k0

1
2 k1~0! 1

2 k1~1! ••• 1
2 k1~M !

1
2 k1~0! k2~0,0! k2~0,1! ••• k2~0,M !

1
2 k1~1! k2~1,0! k2~1,1! ••• k2~1,M !

••• ••• ••• ••• •••

1
2 k1~M ! k2~M ,0! k2~M ,1! ••• k2~M ,M !

4 ,

~A4!

that can be used to express the second-order Volt
model response,y2(n) in a quadratic form:

y2~n!5xT~n! Qx~n!, ~A5!

where the ~M12!-dimensional vector xT(n)
5@1 x(n) x(n21)••• x(n2M ) # is composed of the
stimulus ~M11!-point epoch at each timen and a con-
stant 1 that allows incorporation of the zeroth- and fir
order kernel contributions in Eq.~A5!. SinceQ is a real
symmetric square matrix, there always exists an
thonormal matrixR such thatQ5RTL R , leading to the
expression
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401Principal Dynamic Mode Analysis of a Mechanoreceptor
y2~n!5uT~n!L u ~n!, ~A6!

whereL is the diagonal eigenvalue matrix and

u ~n!5R x ~n! ~A7!

is the vector of transformed inputs by the orthonorm
eigenvector matrixR. Inspection of the real eigenvalue
in L allows selection of the significant ones on the ba
of relative magnitude~a selection that calls for appropr
ate threshold criteria! and subsequent selection of th
corresponding orthonormal eigenvectors that become
PDMs of this system.

For each significant eigenvaluel i , the values of the
corresponding eigenvector,m i

T5@m i , 0 m i , 1 •••m i , M11#
~with the exception ofm i ,0), define theith PDM:

pi~m!5 (
j 51

M11

m i , j d ~m2 j 11!, ~A8!

where d(•) denotes the discrete impulse function~Kro-
necker delta!. The obtainedith PDM generates theith
mode outputui(n) via convolution with the stimulus
x~n!. Note that a constant offset valueb i5m i ,o must be
added to theith mode outputui to express the second
order model predictionŷ2 using J PDMs:

ŷ2~n!5(
i 51

J

l i@ui~n!1b i #
2. ~A9!

Nonzero offset values$b i% give rise to linear terms in
$ui% in the model output equation.

Equation ~A9! indicates that the relative importanc
of ui(n) for the second-order model responseŷ2(n) is
determined by the relative magnitude~absolute value! of
the corresponding eigenvaluel i . Note that the matrixQ
is not positive definite and, therefore, negative and po
tive eigenvalues are possible.

In practice, the selection of the significa
eigenvalues/eigenvectors must take into account sig
to-noise ratio~SNR! considerations~i.e., setting the se-
lection threshold higher for lower SNR! and tradeoffs
between prediction accuracy and model compactnes
simple selection criterion is used in this study, where
the selected eigenvalues account for at least 90% of
output signal power.

Clearly, when the actual system is of higher th
second order, the search for PDMs based on the q
dratic form of Eq.~A5! may be unduly confined. None
theless, the final model~which includes the estimate
multi-input static nonlinearity! is not limited to the sec-
ond order of the employed quadratic form, since t
-

-

multivariate nonlinear function of the model~receiving
as inputs the outputs of theJ selected PDM filters! can
be estimated up to any degree of nonlinearity. There
no guarantee that the PDMs selected from the quadr
model will be adequate for the high-order model; th
adequacy will be assessed ultimately by the predict
ability of the resulting model. Thus, for every time in
stantn, we have

y5F~u1 , ... ,uJ!1«, ~A10!

where e is an error term andF(•) represents the non
linear function of the model with the selected PDMs
the filter bank@i.e., in general an approximation of th
associated system nonlinearityf (•)#. The error terme
includes noise effects, measurement errors, and mode
errors due to the omission of less significant terms as
ciated with small eigenvalues or the omission of PDM
residing in kernels of order higher than second. Es
mates of F(•) can be obtained from the data, eith
analytically or graphically.

Analytical evaluation ofF(•) requires the introduc-
tion of a postulated mathematical structure~form! for F,
containing certain unknown parameters which are sub
quently estimated from the data via least-squares fitti

Graphical evaluation ofF(•) is feasible when there
are only two PDMs generating the outputs (u1 ,u2) then
a surface can be computed in (u1 ,u2 ,y) space by aver-
aging all the datay that correspond to each specifie
two-dimensional bin in the (u1 ,u2) plane. The graphica
approach is used in this paper.
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