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Abstract—The nonlinear dynamics of the mechanoelectrical mechanoreceptors. The overall dynamic behaviors of
transduction in an arthropod mechanorecepimuticular slit mechanoreceptors, and the molecular mechanisms in-
sense organ of the spid@upiennius salgiwere studied using volved, are not yet well understood, mainly because of

Volterra kernel measurements and the recently proposed ; i . o
method of principal dynamic modes. Since mechanoreceptors the small physical size and inaccessibility of most

must operate with sufficient gain sensitivity to rapidly varying mechanoreceptors.
displacement stimuli over a broad bandwidth and for a wide In previous work we used the principal dynamic mode

range of amplitudes, the experimental data were generated by(PDM) methodology to characterize the nonlinear dy-
applying pseudorandom broadband mechanical displacements, i hehavior of action potential encoding in an insect

of various mean levels to the cuticular slits. The recorded &
response data were intracellular current and potential. The pur- Mechanoreceptdr.We have now used the PDM ap-

pose of this paper is to demonstrate the use of the principal proach to examine the most fundamental stage of mecha-
dynamic mode(PDM) methodology in elucidating the nonlin-  noreception; the conversion of mechanical displacement
gar dyn(;lmicsn?fta t\ipidlflg’\rxech?fnoretceptor._dThe resu'tf (t)btai”e%to transmembrane receptor current, in an arthropod
emonstrate that two s suffice to provide a complete non- - : .
linear dynamic model of this insect meF():hanoreceptorF.) The first mecha_norecep_tor. _Slngle neurons Qf a sllt-ser_lse organ in
PDM resembles the first-order kernel and has a low pass char-the spider,Cupiennius salgiwere stimulated with pseu-
acteristic (position dependept while the second PDM has a  dorandom broadband displacements of varying mean lev-
high-pass characteristi¢velocity-dependentand resides en-  els to simulate the range of natural stimulation, while
tirely in the second-order kernéhonlinear adaptation This intracellular microelectrodes were used to observe the

study may serve as an example of the proper use of this new :

methodology for the analysis of nonlinear physiological sys- resulting recepFor current under voltage clamp or the
tems. © 1999 Biomedical Engineering Society. receptor potential under current clamp. _
[S0090-696499)01703-§ This work demonstrates the use of the PDM technique

to characterize the nonlinear dynamic behavior of a bio-
logical system and should serve as an example of the
proper use of this new methodology for the general study
of nonlinear physiological systems, and a guide to the
interpretation of the resulting characterization.

Keywords—Nonlinear modeling, Volterra kernels, Laguerre
expansion, Nonlinear adaptation.

INTRODUCTION

The transduction and detection of mechanical stimuli METHODS
occurs in many animal tissues and is used widely for
both sensory and regulatory purposes. As in other sen- Experimental Preparation

sory modalities, mechanoreceptors must operate with
sufficient gain to detect small stimuli, but at the same
time provide an operating range that can accommodate
most naturally occurring stimuli, leading to systems that
can adapt their gains to the prevailing stimulus condi-
tions. In addition, a variety of dynamic behavior is seen,
which presumably reflects the varying functional roles of

A calibrated mechanical stimulus was applied to a
defined position on a slit of the cuticular slit sense organ
mechanoreceptors. Motion of the stimulating probe com-
pressed the cuticular slits, causing their local displace-
ment relative to the surrounding cuticle, thus subjecting
the sensory endings of the bipolar mechanoreceptor neu-
rons to mechanical displacement. A leg from adult fe-

i, , male tropical hunting spider&C. sale) was autotomized

Address correspondence to Professor Vasilis Marmarelis, Depart- . . .. .
ment of Biomedical Engineering, University of Southern California, and a CO”C""Ye piece of cuticule contglnlng Iyrlfom organ
University Park—OHE 500, Los Angeles, CA 90089-1451. Electronic VS-3 was dissected from the anterior patella and pre-
mail: vzm@bmsrs.usc.edu pared under a microscope. Full details of this preparation
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are given in Ref. 12. The slit sense organ preparation imposing the pseudorandomly modulated displacement.
was fixed with beeswax onto a custom-designed Plexi- This adaptation period was sufficient to complete the
glas holder. The interior concave surface of a fixed adaptational decay of the receptor current and so to en-
preparation was connected to the holder's bath chamber,sure that the sensitivity of the mechanoreceptors had
filled with fresh spider salindpH 8.2, and grounded reached a steady level. The recovery from adaptation and
with an indifferent electrodésilver—silver chloride An the responses to displacement steps and pseudorandom
additional manipulator was used for lowering small tubes modulation were repeatable within a displacement range
into the holder’s bath so that fresh saline, with or with- of <20 wm from one preparation to another. In general,
out 10 uM tetrodotoxin (TTX), could be added when the preparations were stable for a period=efl h and
needed. The preparation-holder complex was firmly held occasionally several recordings were obtained from the
by a stand while the mechanical stimulus was applied to same neuron.
the exterior surface of the preparation from below. The  The sampling at 1 kHz of the electrical responses was
stimulator was a modified loudspeaker with servocon- initiated synchronously to the onset of the pseudorandom
trolled position and an infrared optical position indicator signal produced by the computer. Records of the cell
circuit. Computer-generated voltage commafseudo- response and the stimulating pin position obtained during
random modulationdrove the stimulator. The resulting each cycle were digitized with a 12-bit A-D converter
displacement was applied to the slit sense organ by a(DT2821, Data Translation converted to suitable units
small insect pin grounded so as to reduce electrical noise(mV or nA for responsesum for displacemenjs and
from the stimulator. The pin tip was seen under illumi- stored on a diskA 6 s interval of mean steady back-
nation through the transparent cuticle and its location ground displacement was maintained between each con-
could be altered by a three-dimensional micromanipula- secutive run to ensure that adaptation was equal for each
tor. stimulus sequence. Pseudorandom displacement stimuli
The stimuli were measured by the displacem@ni- from a shift-register generator were applied for periods
crometer of the pin tip, read from the output of the of 8.192 s. Responses were averaged 10 times.
optical position indicator, and recorded with a microcom-
puter (IBM 386 compatible using an ASYST(Keithley)- Analysis Methodology
based prograrh.The actual stimulus delivered by the
stimulator was band limited and pseudorandomly modu-  Four data sets of 4000 datapoints sampled at 1 kHz
lated with a Gaussian amplitude distribution and spec- (4 s long of the mechanical random forcing input and
trally flat up to ~400 Hz. Current- or voltage-clamp the intracellular current or potential output were used to
recordings were obtained from mechanoreceptor Somataestimate the first- and second-order Volterra kernels via
using single microelectrodes filled Wit3 M KCl and  the Laguerre expansion techniqu@he kernels were es-
having resistances between 25 and 80} Mhen in the  timated over 50 mgmemory and validated by model
tissue. The microelectrodes were connected to a single-Prediction of four test data setsot used for estimatign
electrode voltage-clamp amplifi€SEC-10L, NPI Elec-  for each case of output dataurrent or potential These
tronics, Germany The frequency response of the record- Kernel estimates were used, in turn, to compute the
ing system, including the microelectrode, had a 3-dB PDMs of the systerfi.Having computed the PDMs, we
high-frequency cutoff at=10 kHz?* estimated the associated nonlinearity for each syStem.
The sensitivity of the neurons was tested by 200- to An outline of the methodology is provided in Appendix
300-ms step displacements of the slits. The stimuli were A for the convenience of the reader. All computations
directed to the slit that gave the maximum receptor po- Were performed on a Pentium-based PC system running
tential (or generator potentipith superimposed action the LYsIs software package under Microsoft Windows,
potentials. This was usually the slit that was seen to be Which has been developed by the Biomedical Simula-
innervated by the neuron. If the voltage responses weretions Resource at the University of Southern California
adequate(resting potential less tharn-60 mV, action  under NIH sponsorship.
potential amplitudes>50 mV), 10 uM TTX was added
to the bath to suppress the fast voltage-activated sodium RESULTS
current. A period of 2—5 min was normally required for
all action potentials to be suppressed. TTX has no effect Using four data sets of intracellular recordings of in-
on the receptor curreritThe adaptation properties of the duced current, we first estimate the first- and second-
neurons were then studied under voltage clamp by ob- order kernels via the Laguerre expansion technftjliee
serving the dynamics of the receptor current during dis- resulting first-order kernel estimates for two representa-
placement stimuli. In these experiments, the neuronstive recordings are shown in Fig. 1 in the time and
were allowed to adapt for 10 s to a preselected constantfrequency domains, exhibiting consistent waveforms but
displacement background applied to the slit before super- different amplitudes, due to the fact that the two record-
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FIGURE 1. The obtained first-order kernel estimates using .
intracellular current response data (under voltage-clamped k
e . . X-MIN= 0.0 Y-MIN= 0.0 Z-MIN= -0.01087

conditions ) in the time (top) and frequency (bottom ) do- X—MAX= 50 Y-MAX= 50 7 MAX= 2.387x1073

mains, for two different mean displacement stimulus levels
(solid: 29.02; dashed: 31.90 ). The peak kernel value for the

higher mean displacement level is about 40% larger; but the FIGURE 2. The obtained second-order kemel estimates in

the time domain for the two data sets discussed in Fig. 1.

lon-pass charadieriics. The ordinate axs unts for (e first The peakto-peak kernel value for the higher mean displace-
d P K | A/ ) ment level is about 25% larger; but the waveforms of the two
order kemnel are: nA/- (umms). kernels are similar. The ordinate axis units for the second-

order kernel are: nA/ (umms)?. The 7; and 7, axes are in
millisecond units (10 ms bar shown ).

ings have different mean displacement vallies., aver-

age stimulus leve)sthat define different operating points

with distinct gain sensitivities. Specifically, the kernel  flected on the apparent transfer function measurerhent,
corresponding to the higher mean displacement level is thus the latter does not represent the linear dynamics of
about 40% largefsolid: 29.02; dashed: 31.9@nd has the system. This is a good example of the pitfalls of
slightly smaller stimulus powefsolid: 0.798; dashed: linearized analysis.

0.764. The frequency response of the kernels peaks at The obtained second-order kernel estimates for the
about 50 Hz and declines gradually above 100 Hz. What same two recordings are shown in the time domain in
is most intriguing in Fig. 1 is that the frequency response Fig. 2, also exhibiting similar forms but different ampli-
characteristics of both first-order kernels are mildly low tudes that follow a similar size relation with their first-
pass, although the apparent transfer function magnitudeorder counterpartéi.e., about 25% larger for the higher
for this preparation has been reported previously to ex- mean displacement leyel The contribution of the
hibit marked high-pass characteristics above 150°Hz. second-order kernel to the system response is significant
This apparent inconsistency can be explained by the relative to the first-order kernel contribution for this sys-
high-pass frequency response characteristics of thetem, as illustrated for a segment of high mean displace-
second-order Volterra model term governed by the ment data in Fig. 3, where the actual system response
second-order kernel, as illustrated below. Note that the (trace 1 is compared to the model predictions of first-
high-pass characteristics of the nonlinear terms are re-(trace 2 and second ordeftrace 3. The normalized
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FIGURE 3. Model predictions for a segment of high mean
displacement data not used for kernel estimation. Actual cur-
rent response data (trace 1), first-order model prediction 075
(trace 2) and second-order model prediction (trace 3). The
significant contribution of the second-order kernel to the
current response is visually evident. The normalized mean- 0.375
square errors are: 34.1% for the first-order, and 8.3% for the
second-order model prediction. The ordinate axis units are:
nA. o

0.9375

0.5625

0.1875

-0.1875

-0.375

mean-square errofdNMSE) are: 34.1% for the first or-
der and 8.3% for the second-order modikle latter in- -08625 4
cludes the first- and second-order kerhel¢ote that this 073 " - - - -
comparison is made with a segment of data not used for ° “Tue o pusec] ° ”
the esﬂ_matmn of the kernels fo_r each experiment. The FIGURE 4. The computed two principal dynamic modes
comparison demonstrates the inadequacy of the first-(ppwm) in the time domain using the intracellular current ker-

order (linear) model and the good prediction obtained by nels of Figs. 1 and 2. The PDMs for the two mean displace-

the second-order model ment levels (low: top; high: bottom ) are rather similar. The
’ . waveform of the first PDM  (solid ) is similar to the first-order

Next we compute the PDMgmodes of this system kernel (with reverse polarity ) exhibiting mild low-pass char-

using the first- and second-order kernel estim%,t@s;lly acteristics, while the second PDM  (dashed) exhibits strong
two significant modes are found in this system and they Nigh-pass characteristics, as illustrated in Fig. 5. The corre-

. . . sponding eigenvalues are both negative and indicate that the
are shown in Fig. 4 for the aforementioned two record- contribution of the first PDM to the current response is
ings. The consistency in the form of these modes for about one order of magnitude larger than the contribution of
different recordings is remarkable. The corresponding :‘Ae/(slf;";‘i)PDM' The ordinate axis units for the PDMs are:
eigenvalues for the first\(;) and secondX,) modes are '
(A\y=-0.0317, \,=-0.0046 and (;=-0.0632,
\»,=0.00798 for the two recordings, indicating the rela- The nonlinearity associated with these two modes is
tive contributions of the two modes to the system output shown in Fig. 6 in 3D perspective. It is evident from this
(the first is about one order of magnitude lapgerhe plot that the nonlinear dependence of the system output
two modes are shown in the frequency dom#iFT (intracellular current upon the first mode outputy,,
magnitude in Fig. 5 and demonstrate the high-pass char- follows a ramp-threshold characteristic whose critical
acteristics of the second modevident in the second- point (threshold valugremains fairly constant and close
order kernel, and the mildly low-pass characteristics of to zero for positive values of the second mode output,
the first mode that resembles the first-order kernel. This u,, but rapidly decreases for negative valuesugf This
result also demonstrates that the high-pass characteristicmonlinear surface is concav@egative eigenvalugse-
of the mechanoreceptor reside in the second-order kernelflecting the fact that the differential change of intracel-
and not in the first-order kernel, i.e., the high-pass be- lular current in response to an increase of displacement
havior is strictly nonlinear! Therefore, the fundamental forcing is negative. Note also that the slope of the ramp—
property of adaptation characterizing the mechanorecep-threshold curve with respect to; decreases with de-
tor response(i.e., the fact that the system retains gain creasingu,. The form of this nonlinearity indicates di-
sensitivity when the mean displacement changes rectionally selective behavior of the mechanoreceptor,
strictly nonlinear. since the response characteristics with respectuto
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FIGURE 5. The two computed PDMs for the intracellular cur- oMN= 3 ! YMIN= _:‘5 Z-MiN= -0.3984
rent data in the frequency domain  (i.e., FFT magnitude of the X-MAX= 3 Y-MAX= 2.5 Z-Max= 0.01
PDMs shown in Fig. 4 ). The high-pass characteristic of the
second PDM is not evident in the first-order kernel G.e., it FIGURE 6. The static nonlinearities associated with the two
resides entirely in the second-order kernel ), indicating non- PDMs of Figs. 4 and 5: high mean level (bottom ), low mean
linear adaptation of the mechanoreceptor. displacement level (top). The axes (u,, u,) represent the

two PDM outputs. The vertical axis is the intracellular current
response (negative ). The axes ranges are given at the bot-
. . A . tom of each plot. The ramp-threshold concave characteristic
(magnitude of displacementre distinctly different for . P © ramp ;
with respect to u, is evident, as well as the asymmetry with

negative and positive values of (change of displace-  respectto u,. The ordinate axis units are: nA. The  u; and u,
meny. axes are also in nA units (1 nA bar shown ).

This interesting nonlinearity and the associated two
modes constitute a complete nonlinear model for the
system defined by the mechanical displacement input andcase. The corresponding second-order kernels are shown
the intracellular current outputunder voltage-clamped in the time domain in Fig. 8. The consistency in the form
conditions. of these kernels is again evident, and the size relation is

We now turn to the intracellular potential data col- similar to their first-order kernel counterparts of Fig. 7.
lected under current-clamped conditions. Here too the The first- and second-order model predictions are shown
results have been very consistent in form across record-in Fig. 9 along with the actual output for a segment of
ings. Two representative first-order kernels, obtained for data not used for the estimation of the kernels. The
the same stimuli used in the two previously presented significant contribution of the second-order kernel is
current recordings are shown in Fig. 7 in the time and again evident(NMSE for second-order prediction is
frequency domains. These first-order kernels look like 25.9% versus 60.2% for the first-order predicjiodem-
low-pass filtered versions of their intracellular current onstrating the inadequacy of the linedfirst-orde)
counterparts of Fig. 1due to the transmembrane capaci- model.
tance but their size relation is more exaggerated in favor =~ Computation of the modes from these kernel esti-
of the higher mean displacement level céise, the peak  mates again yields only two significant modes for this
value of the corresponding kernel is about double— system, shown in Fig. 10 for the same two recordings.
compared to about 40% larger for the current output We observe that the first modes are now more strongly
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FIGURE 8. The obtained second-order kernel estimates in
the time domain for the two data sets discussed in Fig. 7.
The waveforms are similar for the two mean displacement

FIGURE 7. The obtained first-order kernel estimates using

(under current-clamped

conditions ) in the time (top) and frequency (bottom ) do-

mains, for the same stimuli as in Fig. 1. These first-order
kernels look like low-pass versions of their intracellular cur-

intracellular potential response data

levels, but the size for the higher mean displacement level is
about double—in rough correspondence to their first-order

kernel counterparts. The ordinate axis units for the second-

order kernel are: mV/ (umms)?.
units (10 ms bar shown ).

The 7, and 7, axes are in ms

(due to the transmembrane ca-

pacitance ), although the size relation is more exaggerated in
favor of the higher mean displacement level case. The ordi-

nate axis units for the first-order kernel are: mV/

rent counterparts in Fig. 1

(pmms).

in 3D perspective. It is evident from these plots that the
nonlinear surface is convex, reflecting the fact that the

low pass, resembling the first-order kernel waveforms, differential change of intracellular potential in response
while the second modes remain distinctly high pass, andto an increase of displacement forcing is positittgs is

also the reason for the positive eigenvajudhe form of

ity) to the second modes of the previously analyzed cur- the nonlinear surface changes slightly with mean dis-

notably similar in waveformalthough of reverse polar-

rent data. The corresponding eigenvalues for the first placement levelin addition to the obvious and antici-

pated change in elevatipnThis nonlinearity and the

0.145

2.877,\,=
and (\;=2.649,\,=0.247 for the two recordings, indi-

(\1) and secondX,) modes are X,

associated two modes constitute a complete nonlinear

cating the relative contributions of the two modes to the dynamic model of the system defined by the mechanical
system outputthe first is about one order of magnitude forcing (displacementinput and the intracellular poten-

large). These modes are shown in the frequency domain tial output under current-clamped conditions.

(FFT magnitudgin Fig. 11. Clearly the first mode domi-

CONCLUSIONS

nates up to about 150 Hz and the second mode is domi-

intracellular

potential data, the two modes seem to divide the opera-

nant above that frequency. Thus, for the
tional bandwidth at about 150 Hz.

These results demonstrate the efficacy and the utility
of principal dynamic mode analysibased on second-

The nonlinearities associated with the two modes for order Volterra mode)sin enhancing our understanding
the intracellular potential data at the aforementioned two of the nonlinear dynamic behavior of the mechanorecep-

different mean displacement levels are shown in Fig. 12 tor system. The key results are as follows.
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FIGURE 9. A segment of intracellular potential test data 0585
(trace 1) and the model predictions of first-order (trace 2) ' )
and second-order (trace 3). The significant contribution of 0.42 :
the second-order kernel to the response potential is evident. 0255 :'
The normalized mean-square errors are: 60.2% for the first- ’ '
order, and 25.9% for the second-order model prediction. The 0.09 !
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30
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on respective predictions of the system response.
(3) Significant increase in the size of the kernel esti- FIGURE 10. The two computed PDMs in the time domain,
mates(and of the system responsehen the mean level  ysing the intracellular potential kemnels of Figs. 7 and 8.

of the displacement stimulus increases, although the re-Again the waveforms are similar for the two mean displace-
ment levels, and the first PDMs  (solid ) resemble in waveform

Sp.eCtlve S.t.lrr.IUIus power decreases slighilg., higher the first-order kernels. The second PDMs  (dashed) are simi-
gain sensitivity. lar in waveform to their counterparts for the intracellular

(4) Consistent estimates of two significant principal current data (with reverse polarity ). The corresponding
eigenvalues are both positive and indicate that the relative

dynamic modes: one with low pass and the other with i ; . .
: - . contribution of the first PDM is about one order of magni-
high-pass frequency response characteristics, for both in-tyde larger. The ordinate axis units for the PDMs are: mV/

tracellular current and potential response datader (pmms).

voltage- and current-clamped conditions, respectively
(5) The first mode(low pas$ is similar in waveform about 150 Hz(first mode is dominant below 150 Hz;

to the first-order kernel; and the second mode residessecond mode is dominant above 150)Hz
entirely in the second-order kernéhe latter also con- (9) The nonlinearities associated with the two modes

tains the first mode Thus, the high-pass characteristics are distinct for current and potential data and exhibit
of the mechanoreceptdrepresented by the second mode concave and convex morphologies, respectively. The

and responsible for its adaptation propgriye entirely a  form of these nonlinearities changes only slightly for
nonlinear mechanism. various mean displacement stimulus leveldth the cur-

(6) The first mode for the intracellular potential data vature somewhat blunted for higher mean displacement

is a low-pass filtered version of its counterpart for the stimulus levels except for a significantand anticipated

current data(as expected, due to the membrane capaci- change in elevation.
tance. (10) A plateau of low values(deviations from the

(7) The second modesghigh pasy for current and mean response levels evident for negative values of

potential data are notably similar in wavefor@though the first mode output and nonlinear dependence is evi-
of reverse polarity, dominating the response character- dent for positive values, implying a threshold character-
istics of the mechanoreceptor above approximately 150 istic in the position dependence of the mechanoreceptor

Hz. response. The velocity dependengepresented by the
(8) For the intracellular potential data, the two modes second mode outpuis measurable and nonlinear but not
appear to divide the frequency response bandwidth atas pronounced.
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FIGURE 11. The computed two PDMs for the potential data
in the frequency domain (i.e., FFT magnitude of the PDMs
shown in Fig. 10 ). As previously, the high-pass characteris-
tic of the second PDM is not evident in the first-order kernel
(nonlinear adaptation ). The two PDMs appear to divide the
frequency response bandwidth, whereby the first PDM is
dominant below about 150 Hz and the second PDM is domi-
nant above that frequency.

(11) For the intracellular current data, the concave
nonlinearity exhibits threshold characteristics with re-
spect to the output of the first modeau,); with the

MARMARELIS, JUUSOLA and FRENCH

2 Z-MIN= —0.125
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-0.8301
Z-MAX= 11,475
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X-MAX= 6 Y-MAX= 3
FIGURE 12. The static nonlinearities associated with the two
PDMs of Figs. 10 and 11 for high (bottom) and low (top)
mean displacement levels. The axes (uq, u,) represent the
two PDM outputs, and the vertical axis is the intracellular
potential response. The axes ranges are given at the bottom
of each plot. The convex nonlinear characteristic is evident,
as well as the even symmetry with respect to u,. The ordi-
nate axis units are: mV. The wu,; and u, axes are also in mV
units (1 mV bar shown ).

DISCUSSION

The presented results show that the nonlinear dynamic
behavior of the slit-sense organ neurons can be described
by a compact model consisting of two PDMs and a two

threshold being regulated by the output of the second dimensional static nonlinear function. The models for the

mode (,). Specifically, foru,=0, the threshold with
respect tou, is almost constant at approximately =0

receptor current and receptor potential differ primarily in
the change of the low-pass characteristics of the first

and the slope of the suprathreshold response is large;PDM, reflecting the low-pass filtering of the receptor

however, foru,<0, this threshold gradually decreases

current by the membrane capacitance and resistance, as

while the slope of the suprathreshold response also de-previously observefl. The second PDM is similar in
creases. This nonlinear characteristic reflects the asym-waveform for current and potential data, endowing the

metrical response of the mechanoreceptor.

(12) For the intracellular potential data, the convex
nonlinearity exhibits low values fou;<<0 and rising
values foru;>0. The dependence om, is even sym-
metric (i.e., irrespective of its sign exhibiting higher
response values for largeu,|. Since the sign ofu,
(direction of displacement changdoes not seem to af-

mechanoreceptor with its high-pass response characteris-
tics (akin to differentiation that give it adaptation capa-
bilities. These high-pass characteristics were shown to
reside entirely in the second-order kerrggbnlinear ad-
aptation. The similarity of the second PDMs for the
receptor current and receptor potential supports the idea
that the receptor potential is primarily a low-pass filtered

fect the response, the intracellular potential response isversion of the receptor current. This is to be expected if

not velocity sensitive but speed sensitive.

there are not very large changes in membrane potential
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during the current clamp recordings, since the current reductions in mean inward current. This nonlinear behav-
through the mechanoreceptor channels is carried almostior was more pronounced in the initial dynamic re-
entirely by sodium ionswhose equilibrium potential is  sponses to steps than in the late responses near the end
large and positive compared to the resting membrane of steps, as reflected in the model obtained by the high-
potential. pass properties of the second PDM that is primarily re-
The form of the nonlinearity in the current data re- sponsible for the nonlinear adaptive behavior.
sembles threshold behavior akin to half-wave rectifica-  The physiological system responsible for the receptor
tion (with a negative slopefor positive values of the  current consists of the slit cuticle between the stimulator
second mode(,>0), i.e., an increase of stimulus dis- and the dendritic sheath surrounding the neuron tip, a
placement values elicits strong negative current for posi- small, presumably fluid filled, region between the den-
tive displacement values but not for negative displace- dritic sheath and the neuronal membrane, and the me-
ment values. Fou,<0, the aforementioned; threshold chanically activated ion channels in the neuronal
is reduced for increasinu,| and the slope of the su- membrané. The important questions in interpreting the
prathreshold response is also reduded., it becomes  obtained nonlinear dynamic model afé) what physical
less negative This response behavior is both position mechanisms could correspond to the two PDMs, &)d
sensitive and velocity sensitive. what is the basis of the nonlinearity? Presently, neither
For the potential data, the nonlinearity exhibits ini- question can be answered with certainty. One obvious
tially supralinear(i.e., changing faster than lingare- possibility for the two distinct PDMs would be the ex-
sponse characteristics far,>0 (with a positive slopg istence of two types of mechanically activated ion chan-
and somewhat flattened responsefg« 0. The effect of  nels in the neuronal membrane, one type with low-pass
u, is even symmetric and causes increased response pocharacteristics, and the other with high-pass characteris-
tential for larger|u,|, also in supralinear fashion. Thus, tics. However, no experimental evidence exists to sup-
this response behavior is position sensitive and speedport this possibility at present. Experiments that elimi-
sensitive (not rate directional Note that these experi- nate mechanotransduction by removing the permeant
ments were made under clamped conditions which may ions, or application of blocking chemicals, cause a
account for some of the differences in the nonlinear gradual reduction in the amplitude of the entire response,
behavior evident in the current and potential response rather than eliminating one dynamic component
data. Finally, we should note that although the form of selectively?
the nonlinearity foru;>0 appears initially to be supra- It seems difficult to explain the form of the nonlin-
linear, it gradually becomes linear and then sublinear as earity or the response characteristics of the two PDMs by
u, increases and reaches the end of the dynamic rangeany of the known physical components between the
(i.e., sigmoidal overall shape stimulator and the neuronal membrane. While the fluid
The presented PDM model is more compact than its between the dendritic sheath and the neuronal membrane
Volterra counterparie.g., for second-order models the could conceivably cause high-pass behavior by dashpot
numbers of free parameters are 108 and 1378, respec-action, it is impossible to say if this would be linear or
tively); however the Volterra model includes the dynam- nonlinear without more detailed knowledge of the mo-
ics represented by the less significant eigenvalues/lecular mechanics of the fluid. It seems equally likely
eigenvectors that are omitted from the PDM model. In that the nonlinear dynamics measured here reflect the
this application, the improvement in prediction mean- properties of the mechanically activated channels or their
square error was marginal and not consistent, lending connection to deformation of the neuronal membrane.
support to the notion of a “minimal model” based on Very little is known about the molecular structures of
PDM analysis. Furthermore, as indicated above, the mechanically activated channels, or their linkages to the
PDM model can be extended to nonlinear orders higher membrane or cytoskeleton. However, models of me-
than secondeven though limited to the selected PDMs chanically activated channels, based on single channel
in terms of dynamidswhile the Volterra models cannot  patch clamp recordings are starting to emeérgdhe
be practically extended into higher order nonlinearities quantitative nonlinear dynamic descriptions of mechan-
because of the computational burden associated with theotransduction provided here should be useful in con-
rapid increase in the number of free parameters. The straining the selection process for such models in the
adequacy of each model has to be judged in each par-future.

ticular application with regard to the objectives and the
prevailing practical limitations.

The nonlinear dynamic behavior observed here agrees

well with experiments using step displaceméntsere
positive stepgindenting the slits caused significant in-
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APPENDIX

In discrete time, the general input—output relation of a
stable (finite-memory nonlinear time-invariant dynamic
system is given by the discrete-time Volterra series:

y(n)=ko+ >, ky(m)x(n—m)+ >, > ky(my,my)
m ml m2

X X(N—=mg)X(N—my)+ -+, (A1)

where x(n) is the input andy(n) is the output of the
system. Theth term of the series is antuple convolu-
tion of theith-order kernelk; with i versions ofx. The
Volterra kernels Kq,kq,ks, ...) describe the dynamics
of the system at each order of nonlinearity and constitute

a complete and canonical representation of the system

nonlinear dynamic$?

Expansion of the Volterra kernels on a complete basis
{bj(m)} transforms Eq.(Al) into the multinomial ex-
pression:

y(n)=co+2i ca(j) vj(n)

>

J1

121 Co(j1+i2) Ujl(n)vjz(n)"""‘

=f(v1,02, ... V), (A2)

where

v,-(n)=% b;(m)x(n—m) (A3)

and c4(j), cy(j1,i2),... represent the expansion coef-
ficients of the respective kernels.

The unknown expansion coefficients can be estimated
in practice by linear regression of the output dgta on
the terms of the multinomial expression of E&2), as
long as the expression is finite and its terms do not lead
to ill conditioning of the regression matrix inversion. The
latter condition can be secured when the input is suffi-
ciently broadband. Note that for a white noise input and
an orthogonal basis, the signdls;(n)} have zero cova-
riance. This fact was used by Wiener in his original
suggestion for kernel estimation using covariance
computations® He also suggested the use of Laguerre
functions as an appropriate orthonormal basis, owing to
their built-in exponential term that makes them suitable
for physical systems with asymptotically exponential re-
laxation dynamics?® This suggestion was adapted to dis-
crete time for improved kernel estimatidn®4
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The use of the kernel expansion basis implies that a
general model of the Volterra class of systems can take
a block-structured form wherein the basis functions
{bj(m)} constitute the impulse responses of a filter bank
whose outputs are feeding into a multi-input static non-
linearity f(vq, ... vj,...). For aselected basige.g., La-
guerre functions the modeling problem reduces to esti-
mating the multivariate functiorf(-). Of course, the
latter will be different for different bases.

The PDM approach rests on the fact that, among all
possible choices of expansion bageghogonal or non-
orthogonal there are some that require the minimum
number of basis functions to achieve a given mean-
square approximation of the system output. Such a mini-
mum set of basis functions is termed the PDMs of the
nonlinear system and correspond to an associated multi-
variate nonlinear functionf(-) generating the system
output? No claim of uniqueness can be made for these
PDMs or the associated nonlinearity, although the latter
is unique for a selected set of PDMs for a given system
and vice versa.

For the estimation of the PDMs and the output non-
linearity f(-) from stimulus-response data, we use eigen-
decomposition of a properly constructed matrix contain-
ing the estimated first and second-order kernel valires
addition tokg), since in most practical applications ker-
nel estimation is limited to second order. The obtained
kernel values up to a maximum lag (kernel memory
are combined to form a real symmetrit{2)x (M
+2) square matrix:

Ko 3ki(0)  3ky(1) Ik (M)
1k (0)  Kp(0,0  kp(0,1) K(OM)
0=| k(1) k(1,0 ky(1,D) ke(1M) |
k(M) ka(M,0)  Ka(M,1) Ko(M.M)

- (Ad)

that can be used to express the second-order Volterra
model responsey,(n) in a quadratic form:

y2(n)=x"(n) Qx(n), (A5)
where  the (M+2)-dimensional vector x'(n)
=[1x(n)x(n—1)---x(n—M)] is composed of the
stimulus (M+1)-point epoch at each time and a con-
stant 1 that allows incorporation of the zeroth- and first-
order kernel contributions in EqA5). SinceQ is a real
symmetric square matrix, there always exists an or-
thonormal matrixR such thatQ=R"A R, leading to the
expression
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yo(n)=u'(n)A u(n), (AB) multivariate nonlinear function of the modéleceiving

as inputs the outputs of thé selected PDM filtenscan

be estimated up to any degree of nonlinearity. There is
no guarantee that the PDMs selected from the quadratic
model will be adequate for the high-order model; their

adequacy will be assessed ultimately by the predictive

ability of the resulting model. Thus, for every time in-
is the vector of transformed inputs by the orthonormal stantn, we have

eigenvector matriXR. Inspection of the real eigenvalues
in A aII_ows seleption of the s_ignificant ones on the ba_sis y=F(Uy, ... Uy +s, (A10)
of relative magnitudda selection that calls for appropri-
ate threshold criterfaand subsequent selection of the
corresponding orthonormal eigenvectors that become the
PDMs of this system.

For each significant eigenvalue , the values of the
corresponding eigenvector/,LiT=[Mi, oM 1 Mi M+1]
(with the exception ofu; o), define theith PDM:

where A is the diagonal eigenvalue matrix and

u(n)=Rx(n) (A7)

where € is an error term and-(-) represents the non-
linear function of the model with the selected PDMs in
the filter bank(i.e., in general an approximation of the
associated system nonlinearify-)]. The error terme
includes noise effects, measurement errors, and modeling
errors due to the omission of less significant terms asso-
ciated with small eigenvalues or the omission of PDMs

_ residing in kernels of order higher than second. Esti-
pi(m)= ,Zl pi o (m=j+1), (A8) mates of F(-) can be obtained from the data, either
analytically or graphically.

Analytical evaluation ofF(-) requires the introduc-
tion of a postulated mathematical structyferm) for F,
containing certain unknown parameters which are subse-
guently estimated from the data via least-squares fitting.

Graphical evaluation of(-) is feasible when there
A ] are only two PDMs generating the outputs, (u,) then
order model predictiory, usingJ PDMs: a surface can be computed in;(u,,y) space by aver-

aging all the datay that correspond to each specified
- J two-dimensional bin in theu,u,) plane. The graphical
YZ(n)=i21 Nifui(n)+Bi1%. (A9) approach is used in this paper.

M+1

where §(-) denotes the discrete impulse functi@fro-
necker delta The obtainedith PDM generates théh
mode outputu;(n) via convolution with the stimulus
X(n). Note that a constant offset valyg= u; , must be
added to thdath mode outputy; to express the second-
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