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Abstract

This paper proposes an adaptive controller for a generic transport vehicle
subject to center-of-gravity uncertainty and time-delays. The adaptive con-
trol architecture is based on a linearized model of the the aircraft dynam-
ics. The adaptive algorithm specifically accommodates for actuator satura-
tion and augments a baseline controller predicated on sequential loop closing
techniques and integral anti–windup logic. The adaptive design is validated
using the high-fidelity GTM SIMULNIK code developed at NASA Langley.
The resilience of the adaptive algorithm is compared to that of the baseline
controller for the uncertainties mentioned above by monitoring the structural
loading and command tracking performance of the two controllers.
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Preface

This study contains research conducted during an internship in the 2008 Lan-
gley Aerospace Research Summer Scholar (LARSS) program. The high fi-
delity SIMULINK model of the Generic Transport Model (GTM) was used
for the testing and validation of two controllers. One controller was an in–
house scheme designed by the Langley Dynamic Systems and Controls (DSC)
group, and the other, an adaptive algorithm stemming from recent work in
the Active–Adaptive Controls (AAC) lab at MIT. The in–house controller was
designed using sequential loop closing techniques in order to design Stability
Augmented Systems (SAS) and Command Augmented Systems (CAS). The
adaptive controller then augments to the baseline, in–house, controller. In ad-
dition to the equations of motion for the aircraft, the GTM SIMULINK model
also incorporates: actuator dynamics, actuator saturation limits, sensor dy-
namics, telemetry time delays and data processing time delays. The adaptive
algorithm specifically accounts for the actuator saturation effects while re-
maining robust with respect to variations in telemetry and data processing
time delays. Two different studies were conducted comparing the robustness
and performance of the two control structures. The first study analyzed the
g–force at the nose of the aircraft given a step command in the angle of attack
while incorporating uncertain time delays in telemetry and uncertain Center of
Gravity (CG) location. The second study analyzed the tracking performance
of the control structures given a wave train in the angle of attack command
while also having uncertainties in telemetry and CG location. The adaptive
algorithm had similar g–loading characteristic to the nominal controller, and
outperformed the nominal controller by a significant margin in the command
tracking study.
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Nomenclature

Acronyms and Abbreviations
AAC Active–Adaptive Controls
ALT Altitude
CAS Command Augmented System
CG Center of Gravity
DSC Dynamic Systems and Controls
LARSS Langley Aerospace Research Summer Scholar
LAT Latitude
LON Longitude
MAC Mean Aerodynamic Cord
SAS Stability Augmented System

Symbols
A Augmented state jacobian
Am Reference model state jacobian
Ap Plant state jacobian
B Augmented input jacobian
Bp Plant input jacobian
e Reference model error
eα AOA error
ea Augmented error
e∆ Saturation defect error
F Force vector
Fx Force in x–direction
Fy Force in y–direction
Fz Force in z–direction
g Gravitational constant
H Output selection matrix
HB

I Transformation matrix, inertial earth frame to wind
I Moment of inertia, Identity matrix
K Nominal feedback gain
M Moment vector
Mx Moment in x–direction
My Moment in y–direction
Mz Moment in z–direction
p Roll rate
P Solution to Lyapunov equation
q Pitch rate
Q Rate parameter in Lyapunov equation
r Yaw Rate
Re Integral error saturation function
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RS Rectangular saturation function
Si ith selection matrix
t Time
u Velocity in x–direction, input vector
u Perturbation input vector
ua Adaptive input vector
un Nominal input vector
up Pilot input vector
U Input vector
v Velocity in y–direction
Va Air speed
w Velocity z–direction
w wind velocity vector
x Perturbation state vector
xp Plant perturbation state vector
X State vector
α Angle of attack
β Side slip angle
δ Control surface deflection angle
∆l CG location movement in the units ft
ε Trim state error vector
λ Dimensionless CG uncertainty parameter
γ Adaptive rate parameter
φ Euler angle x–direction
θ Euler angle y–direction
θ Adaptive feedback gain
σ Adaptive damping term
τ Time
ψ Euler angle z–direction

Subscript
0 Trim value
a Aileron, adaptive
A Wind axes
B Bottom
cmd Command
e Elevator
F Flap
I Inboard
L Left
O Outboard
p Plant, pilot
r Rudder
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R Right
sp Spoiler
st Stabilizer
T Top
w Post washout filter state value
∆ Perturbation from saturation limit

Prefix
∆ Denotes perturbation from trim value

Vector Notation

There are an extensive number of variables introduced in this report. Great
care was taken in developing appropriate nomenclature. Vector notation is
used extensively as well. When bold font variables are introduced it is as-
sumed that the variable contains more than one element. For instance, if a
vector ξ ∈ <n is introduced, then it is assumed that,

ξ ,


ξ1

ξ2
...
ξn

 .
The same is assumed when dealing with matrices. Consider the following
matrix G ∈ R2×2, where

G ,

[
G11 G12

G21 G22

]
.

Notice that each component of the 2 × 2 matrix is scalar and therefore not
bold. Now, consider the partitioning of a different matrix, Y ∈ R4×4

Y ,

[
Y11 Y12

Y21 Y22

]
.

Notice that each of the 4 partitions of Y is still an element of R2×2 and as so
is still bold when presented. This notation was recognized in works by Robert
F. Stengel from Princeton, and several other prominent authors.

In the event that a vector is defined with a subscript in the name, such as
Fp, then it is assumed that the subscript in being part of the variable definition
will be bold as well. When selecting a certain value within the vector, the usual
integer notation is used as displayed in the following example.

Fp ,


Fp 1

Fp2
...
Fpn

 .

9



This notation will be avoided at all cost as sequential sub–indexing is not
clean.

Indexing by variable will also be performed when necessary. Observe
the following superscript and subscript declarations for selecting rows and
columns. Let u ∈ R3, K ∈ R3×3, and ξ ∈ R3 with the following relation,

u ,

uaub
uc

 = Kξ ,

← Ka →
← Kb →
← Kc →

ξ1

ξ2

ξ3

 ,

Ka
ξ1

Ka
ξ2

Ka
ξ3

Kb
ξ1

Kb
ξ2

Kb
ξ3

Kc
ξ1

Kc
ξ2

Kc
ξ3

ξ1

ξ2

ξ3

 .
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1 Introduction

Over the past several years NASA LARC has been developing the Generic
Transport Model (GTM) under the Airborne Subscale Transport Aircraft Re-
search(AirSTAR) project. The GTM is a 5.5% dynamically scaled transport
vehicle that is flown wirelessly by radio frequency. A picture of the Generic
Transport Model–Turbine 1 (GTM–T1) can be seen in Figure 1.

Figure 1. Generic Transport Model Turbine–1

In addition to the physical GTM aircraft there exists a high fidelity Simulink
based model. The Simulnk model of the aircraft is referred to as (GTM–S).
The GTM-S environment contains the following:

• Experimentally obtained extended aero data set for high AOA and spins

• Sensor noise and sensor bias from flight data

• Telemetry uplink and downlink time delays

• Actuator dynamics with rate and position limits

• Sensor dynamics along with ADC and DAC latencies and quanitization

• Experimentally obtained aero data for damaged aircraft, i.e. missing tail
section [1, 2]

The GTM–S was the test bed for this work.
In flight validation is always the crucial final hurdle for control algorithms.

Most algorithms that depart in any way from classical control theory never
make it to in–flight testing. This reluctance to experiment with nonlinear or
robust control algorithms stems from a well known and tragic history.

The biggest set back to nonlinear control applications in avionics came
from the X–15 program, the X–15 plane is pictured in Figure 2. The program
began in 1954 and 199 test flights were performed. The X–15 was designed with
several research goals in mind. The major goal was to understand the effects
of high speed atmosphere reentry. In the process the X–15 broke altitude and
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Figure 2. X-15

speed records with flights higher than 300,000 ft and at speeds in excess of
Mach 6. [3]

The characteristic of the X–15 program most related to this work is the im-
plementation of an adaptive algorithm in aircraft stabilization. The adaptive
control algorithm implemented in the X–15 project was designed by Minneapo-
lis Honeywell Corp. It was referred to as a “Self–Adaptive” control system.
The Self–Adaptive control system had a variable feedback gain on euler rates
in order to maintain attitude stability in flight. The variable feedback gains
were adjusted so as to minimize the error between the actual attitude of the
aircraft and some ideal reference attitude. The adaptive controller decreased
the tuning time necessary to gain schedule a classic controller over the entire
flight envelope. [4, 5]

The adaptive algorithm from Honeywell was truly ahead of its time in
implementation. However, it lacked the mathematical tools necessary to prove
stability in a rigorous manner and relied on “rule of thumb” ideologies instead.
This ended in tragedy however. On November 15, 1967 test flight 191 of 199
crashed above Delamar Dry Lake. [3] Unbeknownst to the pilot there was
an electrical malfunction and the aircraft began to deviate from the desired
trajectory and a gross side–slip angle was building. Once off by 15◦ the pilot
corrected for the mistake, then the aircraft drifted again, after several seconds
of pilot corrections the aircraft interred a Mach 5 spin at an altitude of 230,000
ft. [3,6] As the aircraft fell into more dense air it broke apart killing the pilot,
Mike Adams. This crash put a holt on all adaptive control implementation for
several decades, and not until recently has the idea been revisited.

40 years have passed now, and several advances have been made in control
theory and time domain analysis. The main theoretical tool of adaptive al-
gorithms stems from work by Lyapunov in 1892 [7] however these techniques
were not translated into English until the 40’s. [8] By the 1960’s several con-
trol theorist were able to construct rigorous methods for stability proofs, some
prominent figures were Bellman [9], LaSalle [10], Coppel [11], Hahn [12, 13],
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Krasovskii [14] and Anderson [15]. [16]
In this work an adaptive control algorithm is introduced which is then

validated on the GTM SIMULINK model. The adaptive algorithm is designed
to augment a nominal baseline controller. The nominal baseline controller
is comprised of a Control Augmented System (CAS) for the pitch axis and
a Stability Augmented System (SAS) for both the yaw and roll axes. The
adaptive architecture explicitly accounts for actuator saturation limits and
the anti–windup logic present in the CAS. The specfifc algorithm used in this
report stems from work first introduced by Karason and Annaswamy in [17]
with multi dimensional extensions by Schwager and Jang in [18–23]. The
robustness of the above algorithm with respect to uncertain center of gravity
location and time delays is studied here in.
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2 Dynamics

In this section the aerodynamics, actuator dynamics, actuator saturation, and
sensor dynamics. of the GTM-S are explored.

2.1 Dynamics of Aircraft Motion

The standard conservation equations [24] for a flat–earth symmetric aircraft
describe the dynamics of u, v, and w, the body-fixed aircraft velocities; p, q,
and r, the roll, pitch, and yaw rates; as well as the Euler angles φ, θ, and ψ.
The aircraft’s equations of motion are given by:

u̇ =
Fx
m
− g sin θ − qw + rv (1)

v̇ =
Fy
m

+ g cos θ sinφ− ru+ pw (2)

ẇ =
Fz
m

+ g cos θ cosφ+ qu− pv (3)

ṗ =
Izz
ID

[Mx + Ixzpq − (Izz − Iyy) qr] +
Ixz
ID

[Mz − Ixzqr − (Iyy − Ixx) pq] (4)

q̇ =
1

Iyy

[
My − (Ixx − Izz) pr − Ixz

(
p2 − r2

)]
(5)

ṙ =
Ixz
ID

[Mx + Ixzpq − (Izz − Iyy) qr] +
Ixx
ID

[Mz − Ixzqr − (Iyy − Ixx) pq] (6)

φ̇ = p+ q sinφ tan θ + r cosφ tan θ (7)

θ̇ = q cosφ− r sinφ (8)

ψ̇ = (qsinφ+ r cosφ) sec θ, (9)

where ID = IxxIzz − I2
xz. The aerodynamic forces are represented as F ,

[Fx Fy Fz]
T and the aerodynamic moments as M , [Mx My Mz]

T . The gross
vehicle mass is denoted by m and the components of the inertial tensor are
listed as Ixx, Iyy, Izz and Ixz.

The following navigation equations determine x and y, the positions of the
aircraft in the north and east directions respectively, as well as the altitude
h=−z:

ẋ =u cos θ cosψ + v(− cosφ sinψ + sinφ sin θ cosψ)+ (10)

w(sinφ sinψ + cosφ sin θ cosψ),

ẏ =u cos θ sinψ + v(cosφ cosψ + sinφ sin θ sinψ)+ (11)

w(− sinφ cosψ + cosφ sin θ sinψ),

ż = −u sin θ + v sinφ cos θ + w cosφ cos θ. (12)
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It is often convenient to replace the body-fixed velocities with the actual veloc-
ities by accounting for wind. Letting the subindex (·)A represent components
of the velocity vector corrected for wind and w representing the wind velocity
vector, the following relation can be defined.uAvA

wA

 =

uv
w

−HB
I w, (13)

where,

HB
I =

 cos θ cosψ cos θ sinψ − sin θ
(− cosφ sinψ + sinφ sin θ cosψ) (cosφ cosψ + sinφ sin θ sinψ) sinφ cos θ

(sinφ sinψ + cosφ sin θ cosψ) (− sinφ cosψ + cosφ sin θ sinψ) cosφ cos θ

 .
(14)

Once the wind adjusted velocity is attained, then the total velocity of the
aircraft, VA, the angle of attack, α, and the side slip angle, β, can be defined
as,

VA =
√
u2
A + v2

A + w2
A, (15)

tanα =
wA
uA

, (16)

sin β =
vA
VA
. (17)

2.2 Control Authority

The forces and moments represented by F and M are generated by the varied
air pressure across different surface of the aircraft and from the the thrust
generated by the engines. In this study the engine was not given as a control
input and therefore will not be controlled. There will simply be a constant
throttle setting for the engines with later work considering throttle control
in more detail. The surfaces of the aircraft are adjusted in order to impart
moments and forces on the aircraft and are referred to as control surfaces. A
visual representation of the control surfaces on the GTM are shown in Figure
13.

There are 6 distinct types of control surfaces:

• Elevator–Located on the rear of the empennage and controls the pitch
of the aircraft.

• Aileron–Located outside of the flaps and controls roll.
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Aircraft Control Surfaces
Stabilizer Spoiler

Rudder

AileronFlapElevator

Control Surfaces
•Aileron•Aileron
•Elevator
•Rudder
•Spoiler

Maneuvering - pilot “joystick” inputs, foot pedals… etc

Spoiler
•Stabilizer
•Flap

Auxiliary logic – scenario switches (takeoff, landing…etc)

5

Figure 3. Aircraft control surfaces

• Rudder–Vertical controller structure on the rear of the empennage, and
controls yaw.

• Flaps–Located inboard on the underside of the wings. When extended
out and down the coefficient of lift for the aircraft is increased. Necessary
for low–speed maneuvers such as take off and landing.

• Stabilizer–Located on the leading edge of the empennage and is usually
adjusted for various trim conditions.

• Spoilers– Located on the top of the aircraft wing. These control surfaces
can greatly affect lift. When deployed straight up the aircraft can loose
altitude without increasing speed. Spoilers are essentially air brakes.

Within the 6 different types of control surfaces there may be several indepen-
dent components of each. For instance there are 4 independent flap control
surfaces on the GTM. There are left–inboard and left–outboard as well as
right–inboard and right–outboard flaps. This leads to an important topic re-
lating to symmetry and control authority. On the GTM there are actually
17 distinct control surfaces that can be controlled independently, consider the
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following defenition,

Ucontrol surface ,



δaL
δaR
δspLO
δspLI
δspRO
δspRI
δeLO
δeLI
δeRO
δeRI
δrT
δrB
δst
δFLO
δFLI
δFRO
δFRI



: L aileron
: R aileron
: L out spoiler
: L in spoiler
: R out spoiler
: R in spoiler
: L out elevator
: L in elevator
: R out elevator
: R in elevator
: top rudder
: bottom rudder
: stabilizer
: L out flap
: L in flap
: R out flap
: R in flap

. (18)

In this work δ will be the variable that represents deflection angles for control
surfaces. At the time of this work, not all of the independent control surfaces
were available for control input authority. For this reason the total number of
independent control surfaces available was constrained to 8. The independent
control deflection vector used in this study is defined as,

U ,



δaL
δaR
δspL
δspR
δe
δr
δst
δF



: L aileron
: R aileron
: L spoiler
: R spoiler
: elevator
: rudder
: stabilizer
: flaps

. (19)

From a pilot standpoint, however, the control inputs are lumped together.
Pulling back on the control stick will simultaneously initiate the deflection of
all 4 elevators. So the pilot input vector will be much different. The pilot stick
will control the aileron elevator and rudder, while auxiliary logic for different
flight scenarios will engage the stabilizers, flaps and spoilers. Stemming from
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this ideology the pilot reference inputs could simply be defined as,

Rpilot ,


δa,p
δsp,p
δe,p
δr,p
δst,p
δF,p


: aileron
: spoiler
: elevator
: rudder
: stabilizer
: flaps

. (20)

Specific details surrounding the engagement of the control surfaces and the
interaction between the actual control surface position and the pilot’s com-
manded position will be covered in great detail in the following sections. In
general, the pilot stick is not always directly linked to a specific control sur-
face. Different axes on the pilot stick might command control surfaces to move
through the generation of state trajectory reference commands, thus indirectly
affecting the control surfaces through error states and feedback control.

2.3 Actuator and Filter Dynamics

The control inputs from the pilot as well as the control inputs from the con-
trol logic will pass through the actuators before the deflection of the con-
trol surfaces occur. For this reason, actuator dynamics are included into the
SIMULINK model. The actuator dynamics are modeled by: band limiting
the control input, instituting maximum and minimum deflection angles for
the control surfaces and rate limiting the movement of the control surfaces. A
screen capture of the servo model in the SIMULINK environment is shown in
Figrue 4 with the various control limits for the six different types of control
surfaces detailed in Table 2.

Figure 4. Visual representation of servo dynamics

In order to further increase the accuracy of the SIMULINK model, low
pass filters are applied to the states for α, p, q and r. In the real 9 foot
scaled remote control GTM there will be sensors in place to determine the
above listed states. A visual representation of the low pass filters is shown
in Figure 5. While the low pass filters have been added in order to increase
the accuracy of the model, washout filters are added for a completely different
reason. Washout filters are high pass filters and do not pass steady state values
through. Washout filters have been added to the SIMULINK model for control

19



Table 1. Actuator dynamics and servo limits.

Surface BW [Hz] Rate Limit [deg/sec] Max [deg] Min [deg]

δa 10.0 300 20 -20
δsp 10.0 300 45 0
δe 10.0 300 20 -30
δr 8.4 300 30 -30
δst 10.0 300 20 -20
δF 10.0 300 20 -20

design purposes. Feedback on washed out states is preferable for maneuvers
where a sustained pitch yaw or roll rates is maintained. More detail will be
given in the control design as to why this is desirable.

Washout States

10

x =

26666666666666666666666666664

¢Vt

¢®
¢¯
¢p
¢q
¢r

¢pw

¢qw

¢rw

¢LAT
¢LON
¢ALT

¢Á
¢μ
¢Ã
¢e

37777777777777777777777777775

8¼

s + 8¼

®real ®

low-pass

s

s + 1:5

qreal qw

washoutlow-pass

q8¼

s + 8¼

s

s + 5

preal pw

washoutlow-pass

p4¼

s + 4¼

s

s + 5

rreal rw

washoutlow-pass

r4¼

s + 4¼

Figure 5. Filters

At the time of this work the specific types of sensors used to measure
the states of the GTM were not given. However it is known that digital to
analog conversion and can introduce time delays into a system. Therefore,
all of the states of the GTM are delayed by τfilter. A visual representation of
the filter time delays is shown in Figure 6. Two other time delay variables
are also present in the SIMULINK model τup and τdown. These time delays
values represent the time for wireless radio communication between the GTM
aircraft and the ground pilot.
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Figure 6. Entire GTM plant.

Table 2. Actuator dynamics and servo limits.

Delay Variable Time [ms]

τfilter 40
τup 10
τdown 10

.
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3 Baseline Control Design

The control design is comprised of both a baseline controller and an adap-
tive algorithm. The baseline controller is comprised of three sequential loop
closing designs. A Control Augmented System (CAS) is designed for the
elevator–pitch loop, and Stability Augmented Systems (SAS) are designed
for the aileron–roll and rudder–yaw loops. The CAS incorporates an integral
error augmentation for angle of attack command following. In order to in-
crease the robustness of the CAS system, an integral anti–windup saturation
logic is introduced. The adaptive control system is based on Model Reference
Adaptive Control and explicitly accounts for actuator saturation and the time
varying saturation limit imposed by the CAS system. The anti–windup logic
is expressed in state space form as best as possible so as to ensure analytically
tractable representations necessary for stability proofs. Before continuing, a
detailed discussion on linearization must be performed.

3.1 Linearized Dynamics

The plant to be controlled involves the aircraft dynamics as outlined in Equa-
tions (1)-(9), along with the filter dynamics as illustrated in Figure 5. The
control inputs to the plant were first defined in Equation (19) (but are repeated
here in as well),

U , [δaL δaR δspL δspR δe δr δst δF ]T ,

and the states of the plant are defined as,

X = [α β φ θ ψ p q r pw qw rw]T .

Notice that VA /∈ X. Under normal conditions the velocity would most cer-
tainly be a state variable. During this study however, the throttle inputs were
not given as control inputs. It was therefore assumed impossible to simulta-
neously control aircraft attitude and velocity without throttle control. Noting
the above input and state variable definitions along with the assumed dynamic
model described above, the nonlinear system has the following form,

Ẋ = f(X,U). (21)

So that linearization can be performed on Equation (21), and to ensure that the
system remains full states accessible, the servo and low–pass filter dynamics
are ignored, along with all of the modeled time delays.1 Figure 7 illustrates
the above discussion explicitly showing the components of the aircraft that are
neglected during linearization.

1The internal servo dynamics can not be measured, so in light of remaining a full states
accessible approach there internal dynamics are ignored; and since the input to the gyros,
for example, are not measurable the same ideology is extended to the low–pass filters as
well.
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Figure 7. Visual representation of the dynamics included in linearization

The system will be linearized at the trim state X0 and trim input U0

satisfying

Ẋ = f(X0,U0) = 0. (22)

The resulting linear system is then:

ẋp = Apxp + Bpu + ε(t) (23)

where,

Ap =
∂f(X,U)

∂X

∣∣∣∣
X=X0
U=U0

(24)

Bp =
∂f(X,U)

∂U

∣∣∣∣
X=X0
U=U0

(25)

xp = X−X0 (26)

u = U−U0 (27)

ε : linearization error (28)

It is assumed that ε is small. xp is the perturbation plant state vector and
u is the perturbation input vector. When selecting scalar components of the
aforementioned vectors the following ∆(·) notation will be used,

u = [∆δaL ∆δaR ∆δspL ∆δspR ∆δe ∆δr ∆δst ∆δF ]T ,

xp = [∆α ∆β ∆φ ∆θ ∆ψ ∆p ∆q ∆r ∆pw ∆qw ∆rw]T .

In the nominal control design ∆α will be commanded to follow a reference
input ∆αcmd. Therefore, a selection vector H is introduced so that,

∆α = Hxp, (29)

and then an alpha error signal eα is introduced as,

eα =

∫ t

0

∆α−∆αcmd dt (30)
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Augmenting the error dynamics of Equation (30) to the plant dynamics from
Equation (23) the open loop linear system then becomes,[

ẋp

ėα

]
︸ ︷︷ ︸

ẋ

=

[
Ap 0
H 0

]
︸ ︷︷ ︸

A

[
xp

eα

]
︸ ︷︷ ︸

x

+

[
Bp

0

]
︸ ︷︷ ︸

B1

u +

[
0
−1

]
︸ ︷︷ ︸

B2

∆αcmd (31)

or more compactly
ẋ = Ax + B1u + B2∆αcmd. (32)

In the subsequent sections the logic behind the control perturbation vector u
will be introduced. The control will be broken into nominal feedback, adaptive
feedback and pilot direct surface commands.

u = un︸︷︷︸
nominal

+ ua︸︷︷︸
adaptive

+ S2δp︸︷︷︸
direct surface, us

(33)

where,

un ,
[
∆δaL,n ∆δaR,n 0 0 ∆δe,n ∆δr,n 0 0

]T
ua ,

[
∆δaL,a ∆δaR,a ∆δspL,a ∆δspR,a ∆δe,a ∆δr,a ∆δst,a ∆δF,a

]T
δp ,

[
δa,p δe,p δr,p

]T
and,

S2 =



−20 0 0
20 0 0
0 0 0
0 0 0
0 0 0
0 0 30
0 0 0
0 0 0


. (34)

The first thing to notice is that the nominal perturbation input, un, only
has feedback for the aileron, elevator, and rudder; where as the the adap-
tive perturbation input command, ua, has feedback to as many independent
control surfaces as possible. The pilot perturbation command is similar to
the nominal control structure in that it only affects the aileron, elevator and
rudder. Note that if a single input to the aileron is given, then it is implied
that ∆δaL,n = −1 · ∆δa,n and ∆δaR,n = +1 · ∆δa,n. The same is not true for
the adaptive system where asymmetric commands can be give to the ailerons.
The purpose of the selection matrix S2 is to distinguish between left and right
aileron input commands, to select the components of the pilots input that di-
rectly affect control surfaces and scale the pilot stick inputs in order to map
them to deflection angles on the actual control surfaces. Later, S1 will be
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introduced as the matrix that selects the elevator command and directs it to
the CAS system. The subscript (·)p denotes normalized pilot inputs, bounded
between -1 and 1, and the subscript (·)s denotes the actual surface deflection
that is being commanded with feed–forward input. To review, the rudder and
ailerons are directly affected by the pilots command stick, in contrast to the
elevator pilot input, which passes through auxiliary logic.

As an exercise in understanding, consider the total input to the GTM:

U = U0 + u

= U0 + un︸︷︷︸
nominal

+ ua︸︷︷︸
adaptive

+ us︸︷︷︸
direct surface

(35)

so that the total input for the rudder for instance would consist of:

δr = δr,trim + ∆δr,n + ∆δr,a + 30δr,p

where the subscript notation (·)trim denotes a component of the trim vector
U0.

3.2 Sequential Loop Closing Controller

In the baseline control design, three control loops are used for command follow-
ing and aircraft stabilization. The Control Augment System (CAS) elevator
to pitch loop is shown in Figure 8.

¢®cmd CAS pitch-elevator
10

±e p

¢®
X¡

1=s K±e
e®

Saturation 
Logic

10
e;p

K±e
®

K±¢μ

X ¢±e;n

K±e
μ

K±e
¢qw

K e
qw

12

Figure 8. CAS for pitch–elevator loop.

In the CAS design the pilot stick controlling the elevator deflection is de-
noted as δcmd, and is subsequently scaled by a factor of 10 in order to obtain
the angle of attack command signal

∆αcmd = 10δe,p. (36)
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The elevator control stick indirectly affects the elevator through the genera-
tion of the alpha command and the subsequent generation of eα as shown in
Equation (30). The four states eα ∆α, ∆θ and ∆qw are then multiplied by
the scalar components of the nominal state feedback gain K. The sum of the
four control signals generates the nominal perturbation input for the elevator,
∆δe,n,

∆δe,n =
[
Kδe
eα Kδe

α Kδe
θ Kδe

qw

] 
eα
∆α
∆θ
∆qw

 . (37)

The subscript (·)n will be used in this work to denote nominal. Note that there
is a saturation logic block shown in Figure 8. Equation (38) is not entirely
correct once saturation in the elevator occurs. A more accurate representation
of the nominal control law is as follows:

∆δe,n =
[
Kδe
eα Kδe

α Kδe
θ Kδe

qw

] 
Re(eα, δe(t))

∆α
∆θ
∆qw

 . (38)

In the revamped nominal control law a saturation function Re is introduced.
Before going into the structure of the integral anti–windup saturation function
another form of saturation must be reviewed.

In addition to the integral saturation and anti–windup logic, each of the
control surfaces on the aircraft has a maximum angle of deflection. Let the
scalar saturation function, Rs, representing this effect be defined as:

Rs(ui) =

{
ui if ‖ui‖ ≤ ui,max

ui,max sign(ui) if ‖ui‖ > ui,max

(39)

where the subscript i runs through the length of the control input vector,
nu = 8.2 It is important to make a distinction between control inputs that are
present for stabilization and those necessary for command following. Consider
the following parsing of the baseline control input for the elevator.3,4

δe(t) = δe,trim +Kδe
qw∆qw +Kδe

θ ∆θ +Kδe
α ∆α︸ ︷︷ ︸

stabilization

+Kδe
eαRs(eα, δe(t))︸ ︷︷ ︸

command following

= δe,stab +Kδe
eαRs(eα, δe(t))︸ ︷︷ ︸

command following

(40)

2This saturation function assumes that the saturation limit is symmetric about zero.
This need not be the case, but does increase the analytical tractability of the formulation.

3When the adaptive algorithm is introduced there will be extra terms present in Equation
(40)

4The adaptive components of the stabilization and command following must also be taken
into account, but have been left out for increased intuition when dealing with the baseline
control alone.
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In the CAS system priority is given to maintaining stability. Then, the alpha
command following ensues, however, the integration error is monitored so as
to not instigate integration windup.

When the elevator begins to saturate eα is adjusted. Consider the following
saturation function and state resetting definition for eα ≥ 0,

Re(eα) =

{
eα if eα ≤ eavailable

eavailable if eα > eavailable

(41)

eavailable =

max
{

0, (Rs(δe)− δe,stab) /Kδe
eα

}
if δe ≥ 0

min
{

0, (Rs(δe)− δe,stab) /Kδe
eα

}
if δe < 0

(42)

eα =

{
eα if ėα ≥ 0 or eα ≤ eavailable

eavailable if ėα < 0 and eα > eavailable

. (43)

Equation (41) is a simple rectangular saturation function, which is bounded
from above by the available integration error, eavailable. The amount of available
error is then simply the maximum signal value that when multiplied by the
integration error gain will not induce saturation of the elevator. If for instance,
the stability component of the elevator input is demanding the maximum
deflection angle of the elevator, then eavailable = 0. Equation (43) represents
the anti–windup logic. When the integration error is positive, and begins to
head back into the direction of the maximum available error the error signal
is reset to the available limit. Thus short circuiting the unwinding process. A
visual representation of the anti–windup logic is shown in Figure 9.

Re(e®; ±e(t))

e®

eavailable
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Figure 9. Integral error saturation and anti–windup

The above integration saturation and anti–windup logic were for positive
integration errors. For completeness, the replacements for Equations (41) and
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(43) when eα < 0 are listed as well,

Re(eα) =

{
eα if eα ≥ eavailable

eavailable if eα < eavailable

(44)

eα =

{
eα if ėα ≤ 0 or eα ≥ eavailable

eavailable if ėα > 0 and eα < eavailable

. (45)

This completes the CAS baseline control design. Later when the adaptive
system is introduced some of the above definitions are redefined to include
the adaptive effects. It is redundant to redefine equations, however, with the
adaptive components included some of the equations become less intuitive at
first glance.

The Stability Augmented Systems (SAS) for yaw and roll are much simpler
than the CAS system. The two SAS control systems are shown in Figures 10(a)
and 10(b).
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Figure 10. (a) Baseline aileron control loop, (b) Baseline rudder control loop.

The nominal perturbation inputs for the SAS systems are listed below:

∆δa,n = K∆a
pw ∆pw +Kδa

φ ∆φ (46)

∆δr,n = Kδr
rw∆rw +Kδr

ψ ∆ψ (47)

The SAS systems are essentially yaw and roll dampers. Combining the three
sequential loop closing systems together leads to an overall baseline control
design as shown in Figure 11 with a further simplified representation shown
in Figure 14.

The next step in the control design is to generate a closed loop state space
model of the GTM. This is not a straightforward task. Given the nonlinearities
in the control design we arrive to the conclusion that un 6= Kx.
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Figure 11. SAS and CAS control systems.
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8

Figure 12. Baseline control structure.

3.3 Representing Nonlinearities in a Linear Context

Even though the nominal controller does not have a simple linear relation
with the feedback gain K a pseudo linear representation can be realized. The
only nonlinearities in the baseline controller are the control surface saturation
function,

Rs(u) ,
[
Rs(u1) Rs(u2) · · · Rs(u8)

]T
(48)

and the integration saturation function Rs.

Using the linear dynamics as shown in Equation (31) with the baseline
controller defined as u = un + us the following closed loop dynamics can be
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generated,5 [
ẋp

ėα

]
︸ ︷︷ ︸

ẋ

=

[
Ap + BpK1 BpK2

H 0

]
︸ ︷︷ ︸

A+B1K

[
xp

eα

]
︸ ︷︷ ︸

x

+

[
Bp

0

]
︸ ︷︷ ︸

B1

S1δp

+

[
0
−1

]
︸ ︷︷ ︸

B2

S2δp −
[
Bp

0

]
︸ ︷︷ ︸

B1

u∆ −
[
Bp

0

]
︸ ︷︷ ︸

B1

K2eα,∆

(49)

where the saturation defect signals are denoted as (·)∆, and defined as

eα,∆ = eα −Re(eα, δe) (50)

u∆ = u−Rs(u). (51)

The saturation defect signals are introduced in order to have an analytically
tractable closed loop dynamic model of the GTM. Equation (49) is deemed
pseudo–linear because the feedback matrix K still portrays a linear relationship
with x, and the nonlinearities are captured entirely by the defect signals, which
can be thought of as exogenous inputs. Note that this work is ongoing and was
a first attempt at characterizing the nonlinearities in the anti–windup scheme
in a tractable fashion.

5Notice that the following subscript notation was used on K as explained in the Nomen-
clature section of this report, K =

[
K1 K2

]
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4 Uncertainty

Two forms of uncertainty are discussed in this work. Unknown time delay and
uncertain center of gravity location. The uncertain time delay will appear in
the system as shown in Figure 4. The uncertain time delay will be another
time delay in addition to the three known time delays.
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Figure 13. Time delay uncertainty

Uncertain center of gravity affects are also studied within this work. During
simulations the center of gravity is simply injected into the aircraft model as a
design variable. The effects that center of gravity shifts have on the equations
of motion of an aircraft were studied in great detail in [2]. The center of gravity
will change the state jacobian matrix Ap as first introduced in Equation (23).
Let the uncertain center of gravity be characterized by the variable λ, where

λ =
∆l

MAC
(52)

∆l is the perturbation from the assumed position of the center of gravity in
ft, and MAC is the mean aerodynamics chord. Therefore, λ is essentially the
percent change in the center of gravity location in relation to the length of
the cross section of the wing at the fuselage. Positive values of λ assume that
the center of gravity was moved toward the nose of the aircraft and negative
values are towards the tail of the aircraft. The uncertain state jacobian matrix
is defined as

Ap, uncertain = Ap(λ). (53)

Combining the closed loop system dynamics with saturation in (49) with the
uncertain jacobian matrix (53), results in[

ẋp

ėα

]
︸ ︷︷ ︸

ẋ

=

[
Ap(λ) + BpK1 BpK2

H 0

]
︸ ︷︷ ︸

A(λ)+B1K

[
xp

eα

]
︸ ︷︷ ︸

x

+

[
Bp

0

]
︸ ︷︷ ︸

B1

S1δp

+

[
0
−1

]
︸ ︷︷ ︸

B2

S2δp −
[
Bp

0

]
︸ ︷︷ ︸

B1

u∆ −
[
Bp

0

]
︸ ︷︷ ︸

B1

K2eα,∆

(54)
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or in compact form,

ẋ = (A(λ) + B1K)x + B1(S1δp − u∆ −K2eα,∆) + B2S2δp (55)

Given the uncertainty above, an adaptive controller is introduced in order to
improve the performance of the baseline controller.
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5 Adaptive Control Design

Recall the total input to the plant as first shown in (35), and repeated here
in,

U = U0 + un︸︷︷︸
nominal

+ ua︸︷︷︸
adaptive

+ us︸︷︷︸
direct surface

The adaptive input ua augments naturally to the nominal control structure.
A visual representation of the complete control structure is shown in Figure 5
Consider the uncertain closed loop dynamics with the baseline control input

+Nominal

U0

un
X

U

S2

±p

us

X0+
-

x

Adaptive
uad

16

Figure 14. Full control design.

as first shown in (55), and repeated here,

ẋ = (A(λ) + B1K)x + B1(S1δp − u∆ −K2eα,∆) + B2S2δp

Notice that with the uncertain parameter λ there is no guarantee that the
eigen values of A(λ) + B1K will remain in the left half plane. The motivation
for the adaptive component continues as follows. Collect the bounded and
unbounded terms in the above expression as:

ub = S1δp (56)

uu = u∆ + K2eα,∆ (57)

and recall that the direct surface commands were previously defined as us =
S2δp. Substituting the above simplications into (55),

ẋ = (A(λ) + B1K)x + B1(ub − uu) + B2us. (58)

The adaptive parameter is then introduced as a term that will premultiply B1,
so that the closed loop dynamics are now of the form,

ẋ = (A(λ) + B1K)x + B1(ub − uu + ua) + B2. (59)

The adaptive component of the controller is a time varying state feedback
gain,

ua , θT (t)x. (60)
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Substituting the adaptive law from (60) into (59) yields the closed loop dy-
namical expression,

ẋ = (A(λ) + B1(K + θT ))x + B1(ub − uu) + B2us. (61)

Notice that the eigen values of the expression A(λ)+B1(K+θT ) can be placed
anywhere, given a controllable pair (A,B1). The adaptive parameter θ will
be adjusted by comparing the performance of the closed loop GTM with that
of a reference model. We define the reference model as,

ẋm = Amxm + B1ub + B2us (62)

The reference model Jacobian Am is chosen to be Hurwitz, so that given
bounded inputs ub and us the output xm is globally bounded. The model
following error

e = x− xm (63)

is now introduced along with the following assumption. For all λ under con-
sideration, there exist θ∗ such that, A(λ) + B1(K + θ∗T ) = Am. In addition
to the matching condition assumption, an adaptive error term is introduced,

θ̃ = θ − θ∗. (64)

If the adaptive term θ approaches θ∗, then the adaptive error term θ̃ will
converges to zero, and the dynamics of the closed loop GTM will match the
dynamics of the reference model. The above scencario is not completely true
however when saturation occurs. Consider the time derivative of the model
followin error from (64),

ė = Ame−B1uu + B1θ̃
Tx (65)

Notice that the unbounded term uu still apears and specifically has a non zero
value when saturation occurs. For this reason another error signal is generated.
The error defect signal, e∆ has a time derivative as

ė∆ = Ame∆ −B1uu. (66)

The error defect signal uses the unbounded input in order to estimate the
amount of error in the reference model that occurs from saturation alone.
From the reference model error and the defect error, the augmented error,
ea = e− e∆ now has a time derivative of the following form.

ėa = Amea + B1θ̃
Tx (67)

The form of equation (67) has already been studied in great detail and previous
work suggest that a stable tuning law for θ exist,

θ̇ = −Γxea
TPB1 − σθ (68)
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where Am
TP + PAm = −Q and Q = QT > 0, the parameter Γ is a posi-

tive diagonal matrix that controls the rate of adaptation and σ is a possitive
diagonal matrix that adds robustness to the adaptive law.

There are three extensions however that are necessary for a complete sta-
bility proof of the adaptive law above. The integral saturation law introduces
time varying saturation limits, which have not been studied before. Also,
anti–windup logic has not been studied in great detail in the context of model
reference adaptive control, and with a short literature search the authors of
this work have found no stability proof for anti–windup logic involving simple
state resetting. Another issue considering stability is how the authors of this
work chose to deal with the large known time delays in the system. Historically
and at present, time delay robustness has been of major concern for adaptive
systems. Resent works such as, [22], have gone through pain staking analysis
in order to determine analytical time delays margins for adaptive systems. In
this work there are several large ”known” time delays. The known time de-
lays were added to the reference model as shown in Figure 15, and then the
only time delay discrepancy between the GTM and the reference model is the
”unknown” component of the time delay.

Time Delay

18

¿uncert¿up

¿up ¿¯lter ¿down

¿¯lter ¿down

X error

¿up = 10 ms: Time to send data from AirSTAR* to GTM

¿down = 10 ms: Time to send data from GTM to AirSTAR*

¿¯lter = 40 ms: Delay in logic for gyros calculating euler rates

¿uncert = 0) 40 ms: Uncertain time delay

* NOTE:  Air STAR is the command center used when the GTM is flown

GTM 
Dynamics

Reference 
Model

Figure 15. Time delay in reference model

With the time delays added to the reference model, the reference model
becomes less stable, yet the task of model matching is simplified for the adap-
tive parameter. The burden of robustness with respect to time delay is shifted
from the adaptive parameter space to the reference model. The implications
of introducing time delays into the reference model have never been studied
by any adaptive control groups.
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6 High Fidelity Simulation Studies

Two different sets of simulation studies were performed in this section. The
first set of simulations study the impact of uncertain CG locations and time
delays on transient performance. The performance metric in the first study
is the maximum acceleration of the fuselage. In the second study an angle of
attack wave train is commanded and the time response of the nominal and
adaptive controllers is compared over a 35 second time window. For all of the
studies presented in this section the GTM was trimmed with an airspeed of
87 Knots at and angle of attack of 3 degrees. For the studies below the fixed
step Euler 1 solver was used at 500 Hz.

6.1 Loading Factor Study

For the first study an angle of attack command was given as shown in Figure
16. At time zero the center of gravity is perturbed and the control input signal
is delayed by the uncertain and known time delay amount. The z–direction
loading factor (Nz=|z̈/g|) is constantly monitored in these studies and when
the loading factor exceeds 5, then the simulations are stopped. Simulations
were stopped at loading factors of 5 because at that value critical support
structures within the wings of transport vehicles begin to plastically yield. The
purpose of this study was to compare the transient response of the nominal
and adaptive systems. Adaptive structures are notoriously aggressive, and
as so, could possibly induce large loading factors. The largest spikes in the
loading factor occur at two time instances in these studies. At time zero there
is an immediate impulse response from the system. This is do to the fact that
the aircraft begins each simulation at a non–trim condition. The second spike
in the transients occurs at 2 seconds when the step command is given in the
angle of attack.

Phase 1 - Loading Factor Study

20

– Simulation starts with GTM at 89 Knots with α of 3˚
– Check loading factor
– For the  following reference command in alpha

– Sweep across CG – time delay uncertainty range
– Simulation time is 5 seconds in order to capture transients

– Impulse from non trim initial condition (t=0)
– Pilot input (t=2)

alpha command

Figure 16. AOA path for study 1
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Nz

Figure 17. Loading factor results baseline controller

Nzx

x

Figure 18. Loading factor study baseline + adaptive

For this study, uncertain time delays from 0 to 60 ms and uncertain CG
locations of λ equal to 0 ∼ −0.60 were simulated.6 The results for the nom-
inal controller alone are shown in Figure 17, and the results for the nominal
with adaptive controller are shown in Figure 18. It was seen that the adap-
tive algorithm does not generate excessively high loading factors during these

6Note that for each simulation there are allready 60 ms of known time delay incorporated.
Therefore, a simulation with 60 ms of uncertain time delay has a total time delay of 120 ms.
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transients, and in fact has lower loading factors for a larger uncertainty set
than the nominal controller alone. In figure 18 the boundary for the nominal
controller is shown as a white dashed line. From comparing the nominal and
adaptive controller it is seen that that for smaller time delays the adaptive
controller is more robust to uncertain CG location. For large time delays the
adaptive controller is less robust than the nominal controller as shown by the
dashed line at the top of Figure 18. However, at uncertain time delays of 60
ms the total time delay in the system is greater than 120 ms. Time delays of
that magnitude encroach on data link drop out time scales and are considered
to be well outside the range of normal conditions.

6.2 Doublet Command Following

Six different uncertain scenarios were simulated for the doublet command tra-
jectory given in Figure 19. The six studies are shown in Table 3. The studies
are broken into two groups; time delay studies (TD1–2–3) and center of grav-
ity studies (CG1–2–3). The time delays studies have a fixed CG uncertainty
of λ = −0.30, and the uncertain time delay is increased from 0 ms to 40 ms.
In the center of gravity studies the uncertain time delay is held at 20 ms and
the uncertain CG location is moved from λ = −0.30 ∼ −0.40.

– Simulation starts with GTM at 89 Knots with α of 3˚
– For the  following reference command in alpha, (first 5 seconds 

same as Phase 1)

– Two sets of simulation
– Hold CG and vary uncertain time delay for studies:  TD1, TD2 

and TD3
– Hold uncertain time delay and vary CG: CG1, CG2 and CG3

Phase 2 – Time Simulation Studies

26
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xxx

xxx

Figure 19. Time simulation study angle of attack doublets

Table 3. Time simulation study chart.

Test Name Uncertain Delay [ms] Total Delay [ms] Uncertain CG (λ)

TD1 0 60 -0.30
TD2 20 80 -0.30
TD3 40 100 -0.30
CG1 20 80 -0.20
CG2 20 80 -0.35
CG3 20 80 -0.40
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Figure 20. Time simulation study map

A visual map of the uncertainties is given in Figure 20, where the uncertain
TD and CG studies are shown as superimposed white×××’s on the loading factor
study for the adaptive controller.

The results for TD1 are shown in Figure 21. For this study the time delay
was 0 ms and the uncertain CG location was not large enough to cause drastic
difference in the dynamic response of the closed loop GTM when compared
to the reference system. For this reason the adaptive and nominal responses
are very similar. This is an ideal result. When there is little uncertainty in
the system the adaptive system should remain relatively dormant. Notice that
at t = 0 there are large transients in the angle of attack. This is do to the
unstable initial condition instituted by the uncertain CG location. Thus an
impulse response is obtained. This impulse response occurs in every scenario,
and because the TD and CG uncertain scenarios are in the stable regions
of the loading factor study, it is known apriori that the the loading factor
obtained from these transients are below 5 for each of the six studies. The
results for TD2 are shown in Figure22. The differences in the nominal and
adaptive systems are becoming more clear as the overshoot is significantly
smaller in the adaptive system. Study TD3 has similar characteristics to
that of TD2 as shown in Figure 23. The adaptive controller once again has
∼ 50% reduction in overshoot. In general the time delay studies illustrate
that for reasonable time delays 100 ms the adaptive controller and nominal
controller have similar characteristics with the adaptive controller illustrating
smaller overshoots, while the robustness with respect to time delay is not
visibly depredated.
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Figure 21. TD1 τuncert = 0.0ms λ = −0.3

Phase 2 – Fix CG, Vary Time Delay
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Figure 22. TD2 τuncert = 0.2ms λ = −0.3

Phase 2 – Fix CG, Vary Time Delay cont.
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• In case of data link drop out integrators in adaptive 
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Figure 23. TD3 τuncert = 0.4ms λ = −0.3
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The CG1–2–3 are shown in Figures 24, 25 and 26 respectively. The three
studies have the same uncertain time delay of τuncert = 0.20ms and the cen-
ter of gravity is moved toward the aft of the aircraft with larger and larger
uncertainty in each simulation. In CG1, the uncertainties are similar to that
of TD1 and there simply is not enough discrepancy between the closed loop
dynamics of the GTM and the reference model to instigate noticeable adap-
tation. This is not the case in CG2 and CG3. From Figures 25 and 26 there
is a stark difference between the nominal and adaptive systems. The nominal
controllers allow for large excursions from the reference signal and in both
uncertain scenarios the nominal controller allows the GTM to hit the ground
at ∼ 10s.

Phase 2 – Fix Time Delay, Vary CG
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Figure 24. CG1 τuncert = 0.2ms λ = −0.20

Phase 2 – Fix Time Delay, Vary CG
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Figure 25. CG2 τuncert = 0.2ms λ = −0.35
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Phase 2 – Fix Time Delay, Vary CG cont.
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7 Concluding Remarks

The adaptive algorithm showed promising results on the high fidelity SIMULINK
model. This architecture is suitable for further evaluation. The following are
areas of concern and future work suggestions:

• A stability proof for the state resetting should be constructed.

• The implications of incorporating known time delays into the reference
model must be analyzed.

• Extensive testing should be conducted at the resetting limit of the CAS
system.

• Consider what will happen in the adaptive system if the saturation limit
of the actuator is poorly known.

• Explore adaptive control with rate saturation
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Appendix A

Control Design Free Parameters

The design parameters for the CAS control loop (angles in degrees):

Kδe
eα = 0.9 ∗ 4.6357 (A1)

Kδe
α = 0.7489 (A2)

Kδe
θ = 0 (A3)

Kδe
qw = 0.1841 ∗ 0.7 (A4)

The design parameter for the SAS roll loop (angles in degrees):

Kδa
pw = 0.1 (A5)

Kδa
φ = 0.1 (A6)

The design parameters for the SAS yaw loop (angles in degrees):

Kδr
rw = 0.3 (A7)

Kδr
ψ = 0.1 (A8)

Adaptive design parameters:

Γ = 1× 101.8 ∗ eye(12, 12) (A9)

σ = 100 ∗ eye(12, 12) (A10)

Q = diag([10 0.1 1e−2 1e−2 1e−2 1e−1 1e−2 1e−1 1e−2 1e−2 1e−2 10]′)
(A11)
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