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ABSTRACT

Hierarchical representations of large data sets, such as binary clus-
ter trees, are a crucial component in many scalable algorithms used
in various fields. Two major approaches for building these trees are
agglomerative, or bottom-up, clustering and divisive, or top-down,
clustering. The agglomerative approach offers some real advan-
tages such as more flexible clustering and often produces higher
quality trees, but has been little used in graphics because it is fre-
quently assumed to be prohibitively expensive (O(N2) or worse).

In this paper we show that agglomerative clustering can be done
efficiently even for very large data sets. We introduce a novel
locally-ordered algorithm that is faster than traditional heap-based
agglomerative clustering and show that the complexity of the tree
build time is much closer to linear than quadratic. We also eval-
uate the quality of the agglomerative clustering trees compared to
the best known divisive clustering strategies in two sample applica-
tions: bounding volume hierarchies for ray tracing and light trees
in the Lightcuts rendering algorithm. Tree quality is highly appli-
cation, data set, and dissimilarity function specific. In our experi-
ments the agglomerative-built tree quality is consistently higher by
margins ranging from slight to significant, with up to 35% reduction
in tree query times.

Index Terms: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Raytracing;
Keywords: Agglomerative clustering, Bounding volume hierarchy,
Lightcuts rendering, Dendogram, Bottom-up tree construction

1 INTRODUCTION

Many algorithms in graphics involve repeatedly computing results
based on queries of very large data sets. In this paper we use two
examples: intersecting rays against the scene geometry and estimat-
ing the illumination from many lights. Each case involves many
queries per image over data sets that are too large for brute-force
evaluations to be practical. Constructing and using hierarchical or
multi-resolution representations, such as a binary cluster tree, of
these data sets is essential in achieving scalable algorithms with ac-
ceptable performance.

A binary cluster tree is a hierarchical partitioning of the data set
where the leaves of the tree are the individual data points and each
interior node represents a cluster containing all the points in its sub-
tree. The root is thus the cluster containing all the elements in the
data set. Each node or cluster typically stores some summary infor-
mation about the points it contains such as their bounding volume,
total strength, etc. During a query, the tree is traversed starting from
the root and at each node the cluster summary information is used
to decide if further traversal of that sub-tree is necessary for that
query. Pruning whole subtrees from the traversal, when possible,
greatly accelerates the query performance and enables sub-linear
query cost. Different cluster trees built from the same data can vary
greatly in quality as measured by average query cost.
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There are three basic approaches to building cluster trees: ag-
glomerative, divisive, and incremental. Agglomerative, or bottom-
up, clustering starts with the individual data points and progres-
sively groups these together into larger and larger clusters until the
root cluster containing all the data points is formed. This is typi-
cally done using a greedy approach that groups the two most similar
clusters together at each step based on a user-supplied cluster dis-
similarity function. Divisive, or top-down, clustering starts with the
root cluster and progressively splits clusters to form smaller clus-
ters until individual data points are reached (the leaves are clusters
of size 1). The splits may be chosen by a simple heuristic such
as uniform or median splitting, or may use a cost function to select
from multiple candidate splittings at each step. Incremental cluster-
ing starts with an initial simple tree and progressively adds points to
it to form new trees until all the data points have been added, while
trying to maximize some measure of tree quality at each step.

Divisive clustering is typically the fastest tree build strategy and
the easiest to parallelize. Agglomerative clustering allows more
flexibility because it allows the user to supply an arbitrary function
defining what constitutes a good pair to cluster together. This is es-
pecially convenient for data combining different types of properties
and in higher dimensions. Incremental clustering is useful when
not all the data points are initially known, but typically builds lower
quality trees and will not be considered further here.

Agglomerative clustering is much less commonly used in graph-
ics than divisive clustering. One major reason is that it is often
assumed to be O(N2) or worse and thus prohibitively expensive for
large data sets. In this paper we present efficient algorithms for
agglomerative clustering including a novel locally-ordered one that
outperforms more traditional heap-based versions. With these al-
gorithms, agglomerative clustering becomes feasible even for very
large data sets. We also show that the agglomerative built trees are
often of higher quality than those built by divisive clustering. Clus-
ter tree quality is very application-specific, so we use two specific
applications to analyze the costs and benefits of agglomerative clus-
tering: bounding volume hierarchies and Lightcuts [23, 21].

In the next section, we briefly discuss some related work. Then
we discuss general algorithms for agglomerative clustering in Sec-
tion 3 and present our locally-ordered algorithm that is faster than
traditional heap-based ones and easier to parallelize. Section 4 ap-
plies agglomerative clustering to the bounding volume hierarchies
for ray casting and analyzes its performance. Section 5 presents
our second example application: light cluster trees in the Lightcuts
framework. Finally we conclude in Section 6.

2 RELATED WORK

Agglomerative clustering is used in a wide variety of applications
and fields (e.g., [9, 4, 5, 8, 3]) including data mining, compression,
and bioinformatics. In some fields the cluster tree is called a den-
dogram. Its popularity is largely due to its ability to use arbitrary
clustering dissimilarity or distance functions and the conventional
wisdom that it produces higher quality trees than divisive or incre-
mental approaches. Many papers have been devoted to fine-tuning
the clustering function for specific applications or data types.

The simplest agglomerative clustering algorithm is O(N3) and
clearly inefficient. More efficient algorithms are known, depending
on the nature of the data and clustering metric, and O(N2) is typ-
ically reported as the complexity [16] of agglomerative clustering.



Figure 1: Agglomerative clustering starts with a set of inputs (left)
and progressively forms them into larger clusters (center) based on
similarity (as defined by a user-supplied dissimilarity function) to form
a hierarchical clustering tree (right). In this simple 2D example, the
numbers correspond to the order in which the clusters are created by
standard greedy agglomerative clustering.

This is too slow for large data sets and hence approximations such
as random data sub-sampling are often recommended [8]. For our
example applications, we demonstrate that our optimized agglom-
erative clustering runs in sub-quadratic, and closer to linear, time
and thus, can be directly applied to large data sets.

Our first example application is ray casting using hierarchical
bounding volumes. Ray casting computes the geometry intersected
by a ray and is the fundamental, and typcially most expensive, op-
eration in ray tracing algorithms. A wide variety of acceleration
structures have been proposed for accelerating ray casting includ-
ing octrees, uniform grids, kd-trees, and hybrids[1, 20, 14]. In this
paper we will use bounding volume hierarchies (BVH) which have
received much interest lately [13, 19]. The first automated BVH
construction algorithm combined a surface area heuristic for mea-
suring cluster quality and an incremental clustering approach [7],
but current methods use a divisive clustering approach instead, be-
cause it builds higher quality trees [18].

Our second example application is Lightcuts [23, 21], a scalable
high-quality rendering techniques that accurately approximates the
illumination from many point lights using a light cluster tree. The
original Lightcuts work used agglomerative clustering to build the
light tree but provided few details on how to do this efficiently [22,
15]. In this paper we provide more details on efficient light tree
building and evaluate the quality of the agglomerative clustering
trees as compared to some alternative divisive clustering strategies.

3 FAST AGGLOMERATIVE CLUSTERING

Agglomerative clustering is a greedy algorithm that takes a set of
points, which may combine geometric and non-geometric proper-
ties, along with a cluster dissimilarity function and builds a binary
clustering tree. The data points are initially considered clusters of
size 1. At each step, it selects the best (e.g., most similar or closest)
pair of clusters that are not yet part of a larger cluster and combines
them into a single larger cluster. The process repeats until a single
cluster containing all the data points is created (i.e. the root node of
the cluster tree). A simple 2D example is shown in Figure 1.

The cluster dissimilarity function d(A,B), also sometimes called
the distance1 function, measures how dissimilar two clusters are. It
is assumed to be symmetric but can otherwise be arbitrarily defined.
Some simple examples are the maximum distance between any two
points in the clusters A and B, the volume of the convex hull of the
union of A and B, or the distance between the centroids of A and B.
Conceptually at each step we consider dissimilarity metric over all
pairs of active clusters and select the pair with the smallest value of
d(A,B) and group them together into a single larger cluster. Pseu-
docode for a simple, naive implementation is shown in Figure 2.
This naive version runs in O(N3) time where N is the number of

1The dissimilarity or distance function need not correspond to Euclidean
distance and frequently does not obey the triangle inequality required of
mathematical metrics.

1: Set active = InputPoints
2: while( active.size() > 1) do {
3: double bestD = infinity;
4: Cluster left = null, right = null;
5: foreach A in active do {
6: foreach B in active do {
7: if ((A != B) and (d(A, B) < bestD)) {
8: bestD = d(A, B);
9: left = A;
10: right = B;
11: }
12: }
13: }
14: active.remove(left);
15: active.remove(right);
16: active.add(new Cluster(left,right));
17:}

Figure 2: Pseudocode for naive O(N3) agglomerative clustering.

input points and is clearly inefficient as it discards all the computed
dissimilarity information between executions of the outer loop.

3.1 Heap-based implementation
We can greatly improve the efficiency of the agglomerative cluster-
ing by adding two acceleration structures to the algorithm: a kd-tree
to accelerate the search for the best match for any given cluster, and
a min-heap to preserve and reuse dissimilarity information across
outer loop iterations. Pseudo-code for this efficient heap-based im-
plementation is shown in Figure 3.

The kd-tree is an extension of the active set from the naive
algorithm (so it supports add and remove operations) opti-
mized to answer findBestMatch(A) queries quickly. We define
findBestMatch(A) to return the cluster B that minimizes d(A,B)
over all clusters in the kd-tree with the restriction that B is not the
same as A. This is equivalent to the innermost loop in the naive
algorithm. To answer these queries efficiently, the kd-tree is itself
a hierarchical clustering tree, where the leaves contain the current
active clusters and the interior nodes contain enough summary in-
formation to compute a lower bound on the dissimilarity metric to
any element within their subtree. The query then performs a top-
down traversal, always visiting the nearer child first, and at each
interior node computes a lower bound on the dissimilarity metric
and only recurses into its sub-tree if it could contain a better match
than the best found so far.

It may seem counter-intuitive that we use one hierarchical clus-
tering tree of the data to build another. The idea is to use a simple-
to-build, but lower quality, clustering tree to bootstrap the construc-
tion of a higher quality tree. Our kd-tree is built using a fast divisive,
or top-down, construction that simply splits the longest axis of the
node’s bounding box in the middle. Points in the kd-trees used in
this paper are 3D points with some extra application-specific prop-
erties and each kd-tree node stores a tight axis-aligned bounding
box of the points in its sub-tree plus enough summary informa-
tion about the application-specific properties to be able to compute
bounds on the dissimilarity function d(A,B).

The minimum heap stores the best match for each active cluster
along with the corresponding dissimilarity value. This allows us
to retrieve the globally best matching pair (removeMinPair() oper-
ation) in O(logN) time. Note that once we create a cluster (lines
14-19), we may invalidate some pairs in the heap that involved ei-
ther of the two clusters being removed. We could immediately scan
through the heap to find and update such invalidated pairs (e.g., [8]),
but we have found it to be faster to update the heap lazily. Instead
each time we remove an element from the heap, we check to see if
either of the clusters in the pair has already been incorporated into
a larger cluster and update the pair if needed. This is safe because



1: KDTree kd = new KDTree(InputPoints);
2: MinHeap heap = new MinHeap();
3: foreach A in InputPoints do {
4: Cluster B = kd.findBestMatch(A);
5: heap.add(d(A,B), new Pair(A,B));
6: }
7: while( kd.size() > 1 ) {
8: Pair <A,B> = heap.removeMinPair();
9: if (! kd.contains(A) ) {
10: //A was already clustered with somebody
10: } else if (! kd.contains(B) ) {
11: //B is invalid, find new best match for A
11: B = kd.findBestMatch(A);
12: heap.add(d(A,B), new Pair(A,B));
13: } else {
14: kd.remove(A);
15: kd.remove(B);
16: Cluster C = new Cluster(A,B);
17: kd.add(C);
18: Cluster D = kd.findBestMatch(C);
19: heap.add(d(C,D), new Pair(C,D));
20: }
21:}

Figure 3: Pseudocode for efficient heap-based agglomerative clus-
tering. Empirical performance is better than O(N2) and closer to lin-
ear scaling with input size (e.g., see Figure 9).

each globally best pair will generally appear in the heap twice (once
as <A,B> and once as <B,A>) and even if one has a stale dissimi-
larity value, the one with the most-recently-formed cluster first will
always have an up-to-date dissimilarity value.

In our experiments, this heap-based agglomerative clustering has
sub-quadratic and almost-linear performance and can be used even
on large data sets (e.g., see Figure 9). However it is noticeably
slower than the new algorithm we present next.

3.2 Locally-ordered or heap-less implementation
The greedy aspect of agglomerative clustering imposes a global or-
dering on the creation of the clusters, but it is possible to build ex-
actly the same tree while creating the individual nodes in a different
order. For example, in Figure 1 we could create node 2 before node
1 while still creating exactly the same tree. This is the inspiration
for our novel locally-ordered agglomerative clustering algorithm.

In principle, we can immediately group two clusters together
whenever we can prove that the greedy algorithm would also group
those same two clusters eventually. This is easy to prove if the dis-
similarity functions obeys a non-decreasing property defined as:

d(A,B)≤ d(A∪C,B) (1)

for all sets/clusters A,B,C where ∪ is the set-union or clustering
operator and d is the dissimilarity function. Many common dissim-
ilarity functions2 obey this property including the ones used in the
examples in this paper. With this property, if two clusters, A and
B, agree that they are each other’s best match among all the current
clusters, then it is impossible for any future grouping of the other
clusters to create a better match for either. Thus the greedy algo-
rithm must eventually cluster A and B together and it is safe for us
to cluster them immediately. Pseudocode for this locally-ordered
agglomerative clustering is shown in Figure 4.

This locally-ordered version consistently outperforms the heap-
based version because it eliminates the overhead of maintaining the
min-heap and greatly increases the locality in the kd-tree searches,

2This property holds for ”size”-type dissimilarity functions such as max-
imum point-wise distance or volume of the combined convex hull, but fails
for some other common ones such as distance between cluster centroids.

1: KDTree kd = new KDTree(InputPoints);
2: Cluster A = kd.getAnyElement();
3: Cluster B = kd.findBestMatch(A);
4: while( kd.size() > 1 ) {
5: Cluster C = kd.findBestMatch(B);
6: if (A == C) {
7: kd.remove(A);
8: kd.remove(B);
9: A = new Cluster(A,B);
10: kd.add(A);
11: B = kd.findBestMatch(A);
12: } else {
13: A = B;
14: B = C;
15: }
16:}

Figure 4: Pseudocode for locally-ordered agglomerative clustering.
This algorithm assumes the dissimilarity function d is non-decreasing
but is empirically faster than the heap-based algorithm.

despite performing more of them. The heap-based version forms
clusters in a global ordering regardless of their locality, while the
local-ordered version proceeds exclusively from neighbor to near-
est neighbor. This increases the spatial and memory locality in sub-
sequent searches which is especially important in large data sets.

In the exceptional case that three clusters are exactly equally
good matches (i.e. d(A,B) = d(B,C) = d(C,A)), the pseudocode
could possibly run into an infinite loop, but this is easily fixed. One
can change the condition on line 6 to allow A and B to be clustered
as long as C is no better of a match (i.e. d(A,B) ≤ d(B,C)). Note
that in this specific case, the results of the agglomerative clustering
is under-determined and implementation dependent so the different
agglomerative algorithms may not produce exactly the same tree.

3.3 Parallelizing agglomerative clustering for multicore
As a greedy algorithm, agglomerative clustering may seem inher-
ently serial in nature. The naive O(N3) algorithm is trivial to par-
allelize but uninteresting. The efficient kd-tree based algorithms
are challenging since each iteration potentially has data dependen-
cies with the prior ones. In previous work [12, 10, 11], we showed
that there is exploitable parallelism in the heap-based and locally-
ordered algorithms using the Galois optimistic approach.

Divisive clustering with its divide-and-conquer approach is easy
to parallelize; once a node is split into two sub-clusters, they do not
interact and can constructed in parallel. In agglomerative cluster-
ing, subsequent clusters are often, but not always, independent and
can be constructed in parallel. This lends itself to optimistic paral-
lelism, where we attempt to form many clusters in parallel, while
checking for conflicting operations and undoing operations when
necessary. Because each iteration updates shared data structures
(i.e. the heap and kd-tree), memory-location-based conflict check-
ing is likely to be expensive and report many false conflicts. Instead
we check conflicts at a higher semantic level on each access to the
shared data structures and conflicts are rare (around 0.1%).

We originally created the locally-ordered algorithm when
searching for more easily parallelized versions of agglomerative
clustering, and we were pleasantly surprised to discover that it is
also faster than the heap-based version even in purely serial execu-
tion. Parallelizing the locally-ordered version is briefly discussed in
[11] where we achieved a speedup of 2.3x on 4 cores. With further
improvements we can now get around a 3x speedup on 4 cores, but
all the results in this paper are for single threaded clustering.

4 BOUNDING VOLUME HIERARCHIES FOR RAY CASTING

Our first example application for agglomerative clustering is build-
ing bounding volume hierarchies for ray casting. Ray casting is the
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Figure 5: Bounding volume hierarchy (BVH) tree build times for four
different models using the heap-based and locally-ordered agglom-
erative clustering algorithms and the divisive algorithm.

problem of finding the intersections between a ray and all the geo-
metric primitives, such as triangles, in the scene. Depending on the
usage, one may want the first, any, or all intersections, but herein
we will assume we want the first intersection. This can be naively
implemented by testing every triangle for ray intersections but that
is prohibitively expensive. A variety of acceleration structures have
been proposed and we will consider bounding volume hierarchies
(BVH) with a binary BVH tree using axis-aligned bounding boxes.

Ray casting performs a top-down traversal of the BVH tree
where at each node it tests the ray against the node’s axis-aligned
bounding box and only recurses to its children if the ray intersects
its box. The leaf nodes are the geometric primitives and these are
tested for intersection only if the ray intersected all its parent boxes.
Typically only a tiny fraction of the triangles will be tested against
a ray resulting in much faster queries. Tree quality can be measured
by how many intersection tests are needed for an average ray.

The probability that a random line will intersect a convex volume
is proportional to its surface area [7]. This is the basis of the surface
area heuristic (SAH) which is used to construct a simple cost-model
used as a heuristic to construct good BVH trees. The current stan-
dard method for fast construction of high quality BVH trees is a
greedy divisive approach [19]. We have implemented the binned
BVH construction described in [18] which is reported to build high
quality BVH trees quickly. At each step it splits the node along its
longest axis and chooses the lowest cost split from 16 candidates.

Following the surface area heuristic3, we define the dissimilarity
function for BVH agglomerative clustering as: d(A,B) equals the
surface area of the bounding box of A∪B. Its easy to show that this
obeys the non-decreasing requirement of Equation 1.

For the kd-tree used in construction, we consider each cluster to
be a 3D point defined by the center of its axis-aligned bounding
box plus some extra properties (i.e. the size of its bounding box in
each axis). Each kd-tree node keeps a bounding box for its cluster’s
centers plus their minimum box sizes in each axis. Given a query
findBestMatch(A), we can quickly compute a lower bound on the
bounding box of A∪B for any cluster B in this node’s subtree. Its x
axis box size must be at least the minimum x separation between A’s
center and the bounding box of cluster centers plus 0.5∗(A.sizeX +
min(B.sizeX)), and similarly for minimum box sizes in the y and z

3This assumes the cost of a BVH box intersection is roughly constant. If
using BVH boxes with variable number of children or primitives of strongly
variable cost, one might want a more complicated dissimilarity function.

Clustering Random Line Cost Statistics Image Times
Method E(boxes) E(tris) E(cost) Eye Shadows

Kitchen: 384834 triangles
Agglomerative 42.3 15.0 36.1 2.0s 32.3s

Divisive 61.8 15.2 46.1 2.5s 49.2s
Tableau: 628945 triangles

Agglomerative 21.4 4.8 15.5 1.5s 15.8s
Divisive 25.7 4.9 17.7 1.5s 16.4s

Grand Central Terminal: 1468407 triangles
Agglomerative 79.0 14.5 54.0 2.0s 29.0s

Divisive 111.6 14.7 70.5 2.5s 35.1s
Temple: 2123971 triangles

Agglomerative 31.1 7.0 22.6 2.0s 32.2s
Divisive 43.7 7.5 29.4 2.6s 41.2s

Figure 6: BVH tree quality statistics for agglomerative and divisive
clustering for four models. Note that both agglomerative methods
build the same tree and thus have the same per-ray performance.
Using the surface area heuristic we compute the expected number of
box and triangle intersection for a random line and its expected cost
as a measure of BVH tree quality. We also give the time to generate
two 1280x960 images as additional measures of BVH quality; the eye
image traces only one eye ray per pixel while the shadows image uses
16 eye rays and 16 shadow rays per pixel.

axes. The surface area of this minimum box is then a lower bound
on d(A,B) and if it is larger than the best match found so far, we
stop traversing this subtree. Otherwise we recurse to its children
starting with the nearer one (i.e. one on the same side of the kd-
node’s splitting plane as A).

4.1 BVH results
All results are computed on a 3GHz Intel Core2 workstation with
four cores. The reported tree building times are single threaded
while the ray tracing and image generation components run on 4
threads. All code was written in Java and run using the Sun 1.6
Server JVM. We have not applied low-level optimizations such as
packet ray tracing, cache alignment, and SIMD optimizations, so
our absolute performance is not as good as that reported for the
most highly optimized systems (e.g., [18]), but should be sufficient
for comparing the relative merits of different BVH tree building
strategies. We tested on four different scenes shown in Figure 7
that were used in the original Lightcuts paper [23].

Figure 5 shows the times to build the BVH trees for four com-
plex models using agglomerative clustering with the heap-based
and locally-ordered algorithms and our implementation of the di-
visive clustering from [18]. Our locally-ordered version is consis-
tently much faster than the heap-based agglomerative clustering and
within a factor of two of the divisive tree builder.

Some statistics on BVH tree quality and its effect on the per-ray
costs are shown in Figure 6. Using the surface area heuristic, we
compute the expected number of box and triangle intersections for
a random line based on the surface areas of the clusters in the BVH
tree. We combine this into an expected ray cost figure by assum-
ing that ray-box and ray-triangle intersection costs are 0.5 and 1.0
respectively. This expected cost is a good measure of BVH tree
quality. We also recorded the time to trace two 1280x960 images to
see how well predicted BVH quality correspond to actual ray costs.
The eye image traces one eye ray per pixel while the shadows im-
age traces 16 eye rays and 16 shadow rays per pixel. These timings
do not include the build time.

We can see that the agglomerative clustering produces higher
quality trees but the results are highly dependent on the model.
In one scene (Tableau) the quality is nearly the same while in the
other scenes the agglomerative per-ray costs are significantly lower.
Whether the improvement in tree quality is worth the extra build
time is highly dependent on application. If we are tracing many



Kitchen Tableau

Grand Central Terminal Temple
Figure 7: Lightcuts renderings of our four test scenes.

rays per pixel or can reuse the tree across many frames then the
higher quality tree is likely to produce net computational savings.
If we cannot amortize the extra build cost across many rays, then
a faster build time outweighs any improvements in quality and ag-
glomerative clustering is not warranted.

5 LIGHT CLUSTER HIERARCHIES FOR LIGHTCUTS

Our second example application is building light cluster hierarchies
for the Lightcuts [23] rendering algorithm. Lightcuts provides a
scalable method to accurately approximate the illumination from
many points lights that can be used to unify and solve a variety of
difficult illumination problems including area lights, HDR environ-
ment lighting, sun/sky models, and indirect illumination. It con-
structs a hierarchical tree of light clusters and for each point to be
illuminated it performs a top-down traversal of this light tree. For
each cluster visited it computes a cheap estimate of the illumina-
tion from that cluster along with an error bound on this approxima-
tion and will only recurse to the node’s children if the error bound
exceeds a perceptually-based threshold. Thus it can accurately ap-
proximate the illumination from many lights while only actually
evaluating a small fraction of them; the number of lights actually
evaluated is called the cutsize.

The original Lightcuts work built the light tree using agglom-
erative clustering though it did not describe how to do this effi-
ciently. In fact, it used the heap-based algorithm discussed earlier.
The point lights are characterized by a 3D position, a direction (the
local surface normal), and an intensity. Clusters are characterized
by an axis-aligned bounding box over spatial positions, a bounding
cone over directions, and the summed intensity of all their lights.
Clusters also randomly select some of their contained lights as their
representatives to use when approximating their illumination.

Axis-aligned boxes provide a very convenient way to bound spa-
tial positions, but bounding cones are harder to efficiently compute
incrementally. If the bounding cone of A∪B is only computed from
the bounding cones of A and B then the computed bounding cones
become increasingly loose higher up in the tree. Alternatively we
could use O(N) approximate [17] or exact bounding cone methods
but this is expensive for nodes with many children. To get around
this issue we use an O(1) technique adapted from [2]. If we treat
the directions as points on the 3D unit sphere and have a bounding
sphere for these points, then we can easily find a bounding cone
from the intersection of the bounding sphere and the unit sphere.
The intersection of the two spheres is a circle and the cone (with
its apex at the origin) through this circle is a bounding cone for the

Clustering Preprocess Per Image Stats Summed
Method Build Total Avg Cutsize Time Time

Kitchen
Agg-Heap 5.1s 7.7s 644.4 129.4s 137.1s
Agg-Local 3.2s 5.7s 643.6 132.7s 138.4s

Divisive-6D 0.5s 3.0s 740.6 157.5s 160.5s
Divisive-3D 0.4s 2.9s 806.8 162.5s 165.4s

Tableau
Agg-Heap 5.0s 7.3s 313.1 67.3s 74.3s
Agg-Local 3.0s 5.2s 314.2 66.7s 71.9s

Divisive-6D 0.4s 2.6s 351.5 73.8s 76.4s
Divisive-3D 0.4s 2.6s 358.6 75.4s 78.0s

Grand Central Terminal
Agg-Heap 7.4s 11.1s 817.0 152.8s 163.9s
Agg-Local 4.9s 7.8s 820.3 152.7s 160.5s

Divisive-6D 0.4s 2.8s 913.7 175.7s 178.5s
Divisive-3D 0.4s 2.7s 1121.8 193.7s 196.4s

Temple
Agg-Heap 5.3s 7.2s 438.2 53.9s 61.1s
Agg-Local 3.1s 5.0s 435.8 53.8s 58.8s

Divisive-6D 0.4s 2.3s 544.1 66.4s 68.7s
Divisive-3D 0.4s 2.3s 494.3 59.0s 61.3s

Figure 8: Lightcuts data for the four test scenes. We report the time
to build the 200000 point indirect tree as well as the total preprocess
time which includes this build. We also report the average cutsize
which is the average number of lights evaluated per pixel and the
time to compute the pixels of a 640x480 image with 16x anti-aliasing
and the summed time for the image including the preprocess.

directions. Finding exact bounding spheres [6] is O(N), so instead
we keep track of an axis-aligned bounding box for the points on
the unit sphere and use its circumscribed sphere as the bounding
sphere. We have found this to be a cheap and convenient way to
compute reasonably tight bounding cones in very large data sets4.

Agglomerative clustering was originally chosen for Lightcuts
because it outperformed divisive clustering in early tests, but we
wanted to retest this. We implemented several divisive clustering
strategies and the one that performed the best was also the simplest.
Uniform divisive clustering that simply splits each node along the
middle of its longest axis. It can be performed either in 3D based
solely on spatial position or in 6D by including spatial positions and
directions as points on unit sphere scaled by c, the diagonal length
of the scenes bounding box divided by 16. The agglomerative clus-
tering dissimilarity function uses this same scaling factor and is:

d(A,B) = I(A∪B)
(

L(A∪B)2 + c2 (1−S(A∪B))2
)2

(2)

where I() is the summed intensity of a light cluster, L() is the di-
agonal length of a cluster’s spatial bounding box, S() is sine of the
half-angle of its directional bounding cone or one if the half-angle is
greater than 90 degrees. This is a little different from the clustering
function in [23] and results somewhat higher quality trees.

5.1 Lightcuts results

Results for our four test scenes are shown in Figure 8 using the
same machine as for the BVH results. All Lightcuts results used
the same ray tracing acceleration structure, so the only difference is
the method used to build the light tree. These scenes used the same
parameters as in the original Lightcuts paper [23], except that we
used 200000 indirect lights for all scenes and we used the simplified
clamping, anti-aliasing (with 16 eye rays per pixel), and multiple
representatives techniques from [21]. Although both agglomerative

4The special cases when the bounding cone spans > 180 degrees or com-
pletely contains the unit sphere can be easily handled with a little care.
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Figure 9: Log-log plot of clustering build times versus number of point
for the Kitchen model with Lightcuts. Agglomerative (heap-based and
locally-ordered) and simple uniform divisive (only 6D is included be-
cause 3D build times are so similar) clustering build times are plotted.
The graph includes O(N) and O(N2) trend lines to demonstrate that
agglomerative clustering build complexity scaling is much closer to
linear than quadratic.

methods build the same tree, the representative lights are chosen
randomly causing small differences in cutsizes and image times.

The locally-ordered agglomerative cluster building is again
faster than the heap-based version and only constitutes a small frac-
tion of the overall image times. The agglomerative clustering con-
sistently builds higher quality trees and is faster overall than the
divisive clustering even including build times, though divisive clus-
tering comes close in two scenes, Tableau and Temple. One sur-
prising result is the good performance of the simple 3D divisive
clustering, which implies that one can build reasonably good trees
even while ignoring the lights’ orientations.

In building light trees, there is an inherent tradeoff between want-
ing to create spatially compact cluster to tightly bound distance (in-
tensity falls off with distance squared) and wanting to create direc-
tionally compact clusters to tightly bound the cosine fall off term in
the lighting. The 3D uniform-divisive strategy is very good at cre-
ating spatially compact clusters and this partially compensate for its
other shortcomings. Based on these results, one might want to start
with just the simpler divisive clustering and then add agglomerative
clustering to a Lightcuts implementation as a later optimization.

Figure 9 illustrates the scaling of agglomerative clustering with
the number of input points. In Lightcuts, the indirect lights are
generated stochastically, allowing us to easily vary their number.
This example is typical of our experience where the agglomerative
clustering complexity scaling is clearly sub-quadratic, and nearly
linear. Thus, though not as fast as the simplest divisive clustering,
agglomerative clustering can be applied to even very large data sets.

6 CONCLUSIONS

We have presented two fast algorithms for agglomerative cluster-
ing including a novel locally-ordered one that relaxes the order in
which the tree is built and is easier to parallelize. We have then
evaluated agglomerative clustering in two sample applications: ray
casting and Lightcuts both in terms of tree build times and tree qual-
ity. While not as fast the simplest divisive clustering algorithms, we
have shown that agglomerative clustering often builds higher qual-
ity trees and is fast enough to be used even on very large data sets.
The increase in quality is highly scene and application specific, but
sometimes can be significant. Thus fast agglomerative clustering is
a technique that graphics practitioners should be aware and have in
their toolbox of useful algorithms.
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