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Abstract

In this paper, we propose a vignetting correction algorithm
that does not require a reference image of a diffuse sur-
face with uniform illumination. Acquiring such an image
requires extreme care and special lighting equipments to
ensure accuracy. Instead, we present an anti-vignetting al-
gorithm that only requires few images of a normal scene
and works independently of exposure and white balance
changes. We achieve this goal by using a basic concept from
information theory, mutual information (MI). Vignetting
correction factors are estimated by maximizing the mutual
information using the joint histogram of corresponding pix-
els in two images. The proposed approach is suitable for
both rotating camera and moving camera. We show the
performance of our algorithm by experiments using both
simulated data and real images. Our method is especially
useful for image mosaics, high dynamic range imaging, and
radiometric calibration.

1. Introduction

What determines the brightness at a certain point in image?
How is the image brightness related to scene brightness?
Scene brightness can be defined by the term radiance which
is the power per unit foreshortened area emitted into a unit
solid angle by a surface [8]. After passing through the lens
system, the power of radiant energy falling on the image
plane is called the irradiance. Irradiance is then transformed
to image brightness.

Recently, a lot of work has been done in finding the re-
lationship between scene radiance and image intensity. The
majority of research assumes linearity between radiance
and irradiance, concentrating on estimating the radiomet-
ric response function which explains the nonlinear relation-
ship between irradiance and image brightness [5, 6, 10, 11].
However, an important photometric distortion that spatially
varies the amount of light hitting the image plane is not con-
sidered in most algorithms. This phenomenon of intensity

falloff in the image periphery can have significant effect on
images especially in image mosaics and in high dynamic
range images.

1.1. Distortion Factors
The cosine-fourth law is one of the effects that is responsi-
ble for the lens falloff. It defines the relationship between
radiance(L) and irradiance(E) using a simple camera model
consisting of a thin lens and an image plane [8]. Eq. 1
shows that irradiance is proportional to radiance but it de-
creases as cosine-fourth of the angleα that a ray makes with
the optical axis. In the equation,d is the radius of the lens
andf denotes the distance between the lens and the image
plane.

E =
Lπd2cos4α

4f2
(1)

Most of cameras are designed to compensate the cosine-
fourth effect [2] and the most dominant factor for irradiance
falloff in the image periphery is due to a phenomenon called
vignetting. Vignetting effect refers to the gradual fading-out
of an image at points near its periphery due to the blocking
of a part of the incident ray bundle by the effective size of
aperture [18]. Effect of vignetting increases as the size of
the aperture increases and vice versa. With a pinhole cam-
era, there would be no vignetting.

Another phenomenon called pupil aberration has been
described as a third important cause of fall in irradiance
away form the image center in addition to the cosine-fourth
law and vignetting [1]. Pupil aberration is caused due to
nonlinear refraction of the rays which results in a signifi-
cantly nonuniform light distribution across the aperture.

In this paper, we propose a new vignetting model that
explains the observed irradiance falloff behavior rather than
trying to physically model this radiometric distortion caused
by combination of different factors. While there are multi-
ple causes for the irradiance falloff, we will call the process
of correcting this distortion vignetting correction since vi-
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gnetting is the most dominant factor for the distortion and
to conform with previous works.

1.2. Previous Work
Conventional methods for correcting vignetting involve tak-
ing a reference image of a non-specular object such as a pa-
per with uniform white illumination. This reference image
is then used to build correction LUT (Look Up Table) or
to approximate parametric correction function. In the LUT
method, a correction factor at each pixel is calculated by the
following form[18] :

ILUT (i, j) = Iref,max/Iref (i, j), (2)

whereIref is the reference image,Iref,max is the maxi-
mum intensity value of the reference image, andILUT (i, j)
is the correction value at pixel(i, j). After computing the
LUT, images taken with the same setting can be corrected
by multiplying each pixel with the corresponding value in
the LUT.

In [2], Asada et al. proposed a camera model using vari-
able cone that accounts for vignetting effects in zoom lens
system. Parameters of the variable cone model were es-
timated by taking images of uniform radiance field. Yu
et al. proposed using a hypercosine function to represent
the pattern of the vignetting distortion for each scanline
in [19]. They expanded their work to 2D hypercosine
model in [18] and also introduced anti-vignetting method
based on wavelet denoising and decimation. Other vi-
gnetting models include simple form using radial distance
and focal length[16], third-order polynomial model[3],
first order Taylor expansion[15], and empirical exponential
function[4]. In [7] and [9], vignetting was used for camera
calibration.

1.3. Goal and Outline of the paper
As mentioned, most existing vignetting correction methods
require a reference image of a diffuse surface with uniform
illumination. This process requires extreme care and special
lighting equipments are necessary to ensure uniform illumi-
nation. While this illumination requirement was less strict
for methods in [18, 19] which used normal indoor light-
ing, they still required images of uniform surface such as a
white paper, attention to avoid casting a shadow on the sur-
face, and their results relied heavily on proper acquisition
of reference images.

In this paper, our goal is to correct vignetting without re-
quiring an image of a diffuse surface with uniform lighting
for reference. Instead, we present an anti-vignetting algo-
rithm that only requires few images of a normal scene taken
by rotating or translating the camera. We achieve this goal
by using a basic concept from information theory, mutual

(a) (b) (c)

Figure 1: Joint histogram of a MR image with itself[13] - (a)
rotated 0 degrees (b) rotated 2 degrees (c) rotated 5 degrees

information (MI). Parameters for vignetting model are esti-
mated by maximizing the mutual information using the joint
histogram of corresponding pixels in two images.

This paper is organized as follows. Section 2 provides
brief review of mutual information theory. Section 3 de-
scribes our vignetting correction method using mutual in-
formation. Section 4 presents experimental results and we
discuss our proposed method and future works in section 5.

2. Mutual Information
Mutual information (MI) is a basic concept from informa-
tion theory, measuring the statistical dependence between
two random variables or the amount of information that one
variable contains about the other [12]. With the work by
Viola and Wells [17], mutual information has been used to
solve many problems in computer vision such as pose es-
timation and object recognition. However, its primary use
has been in image registration.

DefiningA andB as two random variables with marginal
probability distributionspA(a) andpB(b), and joint proba-
bility distributionpAB(a, b), mutual informationI(A,B) is
defined by means of Kullback-Leibler measure as follows.

I(A,B) =
∑

a,b

pAB(a, b)log
pAB(a, b)

pA(a)pB(b)
(3)

We can interpret Eq.3 as measuring the degree of depen-
dence ofA andB by measuring the distance between the
joint distributionpAB(a, b) and the distribution associated
to the case of complete independencepA(a) · pB(b) [12].

We can also explain mutual information in terms of en-
tropy :

I(A,B) = H(A)−H(A|B) (4)

= H(B)−H(B|A) (5)

= H(A) + H(B)−H(A,B) (6)

H(A) = −
∑

a

pA(a) log pA(a) (7)

H(A,B) = −
∑

a

∑

b

pAB(a, b) log pAB(a, b) (8)
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H(A|B) = −
∑

a

∑

b

pAB(a, b) log pA|B(a|b) (9)

The entropyH(A) is a measure of the amount of uncer-
tainty about the random variableA. From Eq.4, mutual in-
formation I(A,B) is the reduction of uncertainty aboutA by
the knowledge about another random variableB.

For image registration, image intensitiesa andb of cor-
responding pixels are considered to be random variablesA
andB. pAB(a, b) is computed by normalizing the joint his-
togram of overlapping regions of two images.pA(a) and
pB(b) are also computed similarly by normalizing the his-
togram of joint regions for each image respectively. Then
the registration parameters are estimated by finding param-
eters that maximizes the mutual information (Eq.3).

Fig.1 shows joint histograms of a MR image with itself
[13] for different rotations which give good intuition about
using mutual information for image registration. The first
histogram is just a line since two images are identical. This
is a case of perfect registration with maximum mutual in-
formation. As the image rotates, the images get more mis-
aligned causing the joint histogram to spread more widely.
The mutual information becomes smaller as the joint his-
togram disperses. We use this idea in our algorithm to cor-
rect vignetting which will be discussed in detail in the next
section.

3. Vignetting Correction
3.1. Vignetting Model
The variable cone model proposed by Asada et al. [2] suc-
cessfully predicts the vignetting distortion physically. How-
ever, the functional form of their model is difficult to imple-
ment due to inverse trigonometric functions in the model,
and the model suffers from severely restricted field of view
which makes the use of the model for practical application
difficult [18]. The model requires focal length of the cam-
era which also make this model impractical for our work.
In [18, 19], empirical model using hypercosine was intro-
duced. While it effectively models many cameras with
smooth intensity falloff, the model was not suitable for cam-
eras with sharp intensity falloff. Uyttendaele et al. proposed
a simple model for vignetting in [16], but this model also
requires focal length which makes it impractical for our
method.

In this paper, we propose a new vignetting model that
explains the observed irradiance falloff behavior rather than
trying to physically model the vignetting effect. The func-
tion we use as the model is given in Eq. 10, wherer is
the normalized radial distance from the image center,N
is the parameter for controlling the width of the intensity
plateau, andα is the parameter responsible for the falloff
rate (Fig.2). The vignetting correction factor would be the

Figure 2: Proposed Vignetting Model. First row :α = 1, N
= 2,3,4. Second row :α = 3, N = 2,3,4

Figure 3: Effect of vignetting on joint histogram

inverse off .

f(r) =
1

(1 + rN )α
(10)

For an imageI0, vignetting is corrected (I) as follows :

I(r) = I0(r)/f(r) (11)

3.2. Anti-Vignetting by Maximizing Mutual
Information

Consider the example shown in Fig.3. Two images are dis-
placed by some amount and two points (pt1 and pt2) are
located in the joint area between two images. Pt1 is in the
center of image 1 and in the periphery of image 2. If images
are not effected by vignetting, this point will have the same
color in both images. If vignetting occurred, the color of the
point in image 1 will stay the same since it is located in the
center of the image, hence not affected by vignetting. How-
ever, the color of the point in image 2 will decrease from B
to B’ due to vignetting. So if we build a joint histogram of
the corresponding points between this image pair, position
atP1’ of the joint histogram will be incremented instead of
P1. Similarly for pt2, position atP2’ will be incremented
rather thenP2.

The example shows how vignetting affects the joint his-
togram of the overlapping area of both images. The vi-
gnetting effect causes the joint histogram to spread more
hence decreasing the mutual information, similar to the im-
age registration example introduced in the previous section.
The key of our algorithm is to find the parameters of our vi-
gnetting model that maximize the mutual information. In-
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tuitively, it can be seen as a process of making the joint
histogram more compact. Note that this idea holds indepen-
dent of changes in exposure or white balance. Our method
works also for a moving camera as far as correspondence
can be found and the scene is mostly Lambertian.

Our algorithm for vignetting correction is summarized as
follows:

1. Multiply each image with vignetting correction factor
computed with initial parameters (x = [N , α]) (Eq. 10,
Eq. 11).

2. Compute correspondence between two images. While
there are multiple ways to compute correspondence be-
tween images such as computing homography, stereo
matching, and optical flow, homography is used in all
examples of this paper.

3. Compute joint histogram and marginal histograms
from corresponding points : hx(i1, i2), hx(i1),
hx(i2).

4. Compute marginal and joint image intensity distribu-
tions,pI1,x(i1), pI2,x(i2), pI1I2,x(i1, i2)

pI1I2,x(i1, i2) =
hx(i1, i2)∑

i1

∑
i2

hx(i1, i2)
(12)

pI1,x(i1) =
hx(i1)∑
i1

hx(i1)
(13)

pI2,x(i2) =
hx(i2)∑
i2

hx(i2)
(14)

5. Estimate parameters (x*) that maximize mutual infor-
mation using Powell’s optimization [12, 14].

Ix(I1, I2) =
∑

i1

∑

i2

pI1I2,x(i1, i2)log
pI1I2,x(i1, i2)

pI1,x(i1)pI2,x(i2)
(15)

x∗ = arg max
x

(Ix(I1, I2)) (16)

When aperture is fixed, the same model applies to a set
of images that are used to correct vignetting. If aperture
changes while taking pictures, different parameters should
be used for each image. So, if we are using two images
for the vignetting correction and aperture changes, we need
to estimate 4 parameters,N andα for each image. More
in general, in case of N-image panorama, we would need to
estimate 2N parameters but instead of optimizing all param-
eters at once, we can work pairwise. For color images, we
estimated parameters for each color channels separately.

4 Experiments

4.1 Synthetic Data

To evaluate our algorithm, we first performed experiments
on synthetic images. By experimenting with synthetic im-
ages, we can first verify the use of mutual information for
vignetting correction without worrying about correctness of
the vignetting model.

Two images were generated from a larger image as
shown in Fig.5. Vignetting effect and Gaussian noise (σ
= 7) were added to each image. The first vignetting model
we used for the simulation is shown in Fig.4 (a). As can
be seen from Fig.5 (c), the effect of vignetting is more ap-
parent in image mosaic. Using our algorithm, we were able
to estimate the vignetting model accurately as can be seen
in Fig.4 (b) and Fig.5 (g). Notice that after correcting the
distortion, the image mosaic looks seamless and the joint
histogram is much more compact.

We further tested our algorithm by increasing the inten-
sity plateau of the models as shown in Fig.4 (d),(g). While
we were able to get good estimation from both experiments,
we observed that accuracy started to drop in the experiment
with the model with shown in Fig.4 (g). This observation
is apparent in mutual information plot in Fig.4. While the
first model results in a sharp peak in the mutual information
plot, the peak blends as the width of the intensity plateau
of vignetting grows, resulting in decrease of accuracy. This
is result of lack of information since area affected by vi-
gnetting is very small.

4.2. Real Data

To verify the overall performance of our algorithm, we
applied our method to real images. For the first experi-
ment (Fig.6), two images were taken with a Sony DSC-P9
camera. Vignetting effect is clearly seen from the image
panorama built by aligning the image pair. After applying
our correction method, vignetting effect is vastly removed
(Fig.6, second row). However, the vignetting correction is
not perfect as there are some vignetting effects left espe-
cially in the dark region under the board in the picture.

Second experiment was done using images downloaded
from a website (Fig.6). Again, while not perfect, vignetting
effect is vastly removed. This example shows one of the ad-
vantages of our algorithm. We do not have to pre-calibrate
vignetting factors using a reference image. Instead, we just
use images used for application directly.

5. Conclusion

In this paper, we have proposed a novel method for vi-
gnetting correction. The key advantage of our method over
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4: Synthetic Experiment (a),(d),(g) Model used for
simulation1 (N = 2.5,α = 1.1),(N = 4.2,α = 1.0),(N = 9.5,
α = 7.5) (b),(e),(h) Model estimated with our algorithm (N
= 2.52,α = 1.12), (N = 4.15,α = 0.99),(N = 9.3,α = 6.7)
(c),(f),(i) Mutual information with changes in parameters
specified by grayscale value

previous methods is that we do not require a reference im-
age of a diffuse surface with uniform illumination which
requires extreme care and special lighting equipments to
ensure accuracy. Instead, our algorithm only requires a
pair of images to correct vignetting and it is independent
of exposure and white balance changes. The performance
of the proposed method was verified by experiments with
synthetic and real data.

The synthetic experiments showed that our algorithm is
well suited for vignetting correction. While the results from
real images also showed vast improvement in getting vi-
gnetting free images, there is still room for improvement.
At this point we apply our algorithm directly to image
brightness rather than to image irradiance (Eq.11). Basic
underlying assumption is that the relationship between irra-
diance and image brightness is linear which is seldom the
case. Because our approach is more sensitive to brighter
pixels as they are more affected by vignetting (in absolute
terms), for nonlinear response our approach tends to fit the
shape of the upper part of the response curve providing bet-
ter results for brighter image region and not perfectly com-
pensating the darker region (see joint histograms in Fig.7).
To achieve more accurate results, image brightness should
be transformed to image irradiance using radiometric re-
sponse function [5, 6, 10, 11]. We plan to work on combin-
ing the proposed method with radiometric response func-
tion estimation in the near future. The proposed approach
could be very helpful for radiometric calibration, high dy-
namic range imaging, and image mosaics. We also plan to
enhance the proposed algorithm to deal with images with
large plateau and sharp intensity fall-off better.
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(a) Synthetic image :N = 2.5,α
= 1.1, Gaussian noise withσ = 7

(b) Synthetic image (c) Image mosaic of (a),(b) (d) Joint histogram of (a),(b)

(e) Vignetting corrected image of
(a)

(f) Vignetting corrected image of
(b)

(g) Image mosaic of (d),(e) (h) Joint histogram of (d),(e)

(i) Synthetic image :N = 4.2,α
= 1.0, Gaussian noise withσ = 7

(j) (k) (l)

(m) (n) (o) (p)

(q) Synthetic image :N = 9.5,α
= 7.5, Gaussian noise withσ = 7

(r) (s) (t)

(u) (v) (w) (x)

Figure 5: Experiment with synthetic images
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Figure 6: Experiment with real images . First row : images taken with Sony DSC-P9. Second row : Vignetting corrected
images. Reviewers, please look at the images through monitors rather than images printed.

Figure 7: Experiment with real images. First row : images from http://www.fsoft.it/Imaging/Vignetting.htm and joint his-
togram of green channel. Second row : Vignetting corrected images and joint histogram. Third row : Original image
panorama and vignetting corrected image panorama. Reviewers, please look at the images through monitors rather than
images printed.
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