Beginning Tutorials

Paper 68-25

PROC MEANS: More than just your average procedure

Peter R. Welbrock
Strategic Information Systems, Inc., Philadelphia, PA

Abstract

PROC MEANS and its close relative PROC
SUMMARY have been two of the work horse
procedures that all users of SAS software learn
to know intimately. Version 7 and 8 of the SAS
System brought many changes to these
procedures that give both the programmer and
analyst new opportunities to efficiently
summarize their data. This paper will give a
broad overview of the MEANS procedure,
starting at the seminal level with the syntax, and
moving onto some of the more advanced
techniques that are now available. This paper
will be suitable for both the SAS beginner, since
it does not assume an existing knowledge of the
procedure, and any more advanced users that are
looking into converting their Version 6 code to
more fully exploit the opportunities available in
the later releases.

This paper concentrates on the summarization of
data using the MEANS procedure, rather than
obtaining statistics'

Introduction

It doesn’t matter how hard one tries to avoid it,
at some point the data you have is not
summarized to right level. You have county
level data when you want to analyze states. You
have data by minutes when you actually want it
by day. This wusually occurs because
traditionally, data is stored at its most granular
level: the lowest level of detail. In many ways,
this is very sensible because it does not restrict
the analyst from looking at it in any way that is
required. For example, if data were stored at a
state level, then there would be no way to look at
it at county level. That information would be
lost due to the granularity of the data.

There are two trends that go against the grain:
the first of these is the development of Data
Warehousing. A good Data Warehouse will be
designed around the understanding of the needs

of the users and might therefore already contain
data summarized to the level the analyst requires.
The second trend is that of placing data within an
MDDB (Multi-Dimensional Database), which is
in essence a series of tightly coupled pre-
summarized data tables. Note that in both of
these situations, the detail data (that is at the
most granular level) is still available. Neither the
Data Warehouse or the MDDB should restrict
the analyst from looking at data in any way they
require, but they are there to increase the speed
in which results can be obtained, by pre-
summarizing the data in a way that the analyst
requires it.

Despite both the development of Data
Warehouses and MDDBs, there comes a time
when anyone who uses data beyond the most
perfunctory reporting will still need it
summarized. There are many ways this can be
achieved using SAS® Software, including:

SQL

The data step

PROC FREQ™
PROC TABULATE™
PROC REPORT™

The most often used, however is PROC MEANS
because of its ratio of efficiency to ease of use.
Note that PROC MEANS is used here
interchangeably with PROC SUMMARY (they
use the same statistical engine, sharing it with
PROC FREQ). The two procedures are very
similar indeed, with MEANS traditionally being
used when printed output is required, as opposed
to output in a data table.

The approach this paper takes to outlining the
use of PROC MEANS is to use a single data
source and to slowly build a single procedure,
incrementally adding more options. This will
allow us to step through the syntax from the
simplest form, until we end up with a relatively



complex example. Each incremental addition of
an option will add to the functionality of the
procedure. Each section of the paper will
therefore be labeled based upon the added
functionality rather than the marginal syntax.

When would I use PROC MEANS?

Although we have looked at the procedure in
terms of summarizing data, it can do far more.
There are many statistics that can obtained from
the procedure, whilst the data is being
summarized. It is also possible (and a very
common activity) to summarize the data into
multiple levels within the same procedure step.
For example, at the same time one is taking
county information and summarizing it to a state
level, the procedure could also be summarizing it
to a country level.

PROC MEANS can therefore be used in
situations where the detail level of the data and
the statistics available for the analysis variables
are not compatible with the analysis needs. As
previously mentioned, there are many other tools
that can perform many of the tasks PROC
MEANS can perform, but none available that
offer the options in just a few lines of code.

Beginning Tutorials

e Does the alternative technique lead to
maintenance problems in situations where
the requirements are not ad-hoc?

Help, my data isn’t giving me what I need!

The detail data that we are going to use is based
upon sales orders. The columns available to us
are outlined in the following table:

Note that it is imperative to fully understand
your data. One of the major pitfalls made by
users is to jump right into the analysis before
really knowing what it is they are analyzing.
When using PROC MEANS, it is critical to
understand your categorical variables (e.g.
country, state, zip) and your analysis
variables in detail (e.g. number of orders,
amount of orders). This should be done
before summarization.

One of the perpetual discussions that occur is the
efficiency of the procedure compared to other
techniques that are available. This is outside the
scope of this paper", but there are a few pointers
that should be considered:

¢ How much extra time will it take to program
the alternative and is the savings in
computer usage worth it?

e Will the alternative technique be more
efficient in all or just specific situations. Do
I have the time to test the comparative
efficiency every time I need to summarize
my data?

Column Column | Description

Name Type

order id C Order Identifier

sku C Product

store C Name of Store

year N 4 digit year

month N 2 digit month

quarter N 1 digit quarter of

year

store_type C Store Classification

total N $ amount ordered

quantity N Number of items
Table 1

Data Table Name=sugi25.orders

This data table, sugi25.orders contains data at an
order item level. This means that there could
well be multiple rows per order, each one
representing a different product. For example a
single order might be made up of three rows of
data. The first row might be for 2 cycling
helmets, the second row for 3 knee guards and
the third row might be for the sales tax.

In this situation, the data is not structured in such
a way to facilitate analysis on the $ amount
ordered by year, or by quarter.

Producing a simple summary

A simple request from the above data would be
to obtain a new data table that contains the total
$ ordered amount for each year. The syntax
required to do this is:

proc means data=sugi.orders nway

chartype noprint; 1)
class year; 2)
var total; 3)
output out=by_year sum=; 4)

run;



Beginning Tutorials

1)

2)

The proc means statement is standard and
must be used at the start of every use of the
procedure. The data= tells the procedure
the name of the input detail data table (note
that this could be anything SAS will
recognize as a SAS data set). The nway
statement is the most complex, and restricts
the number of classifications the procedure
outputs to the highest level (see below). The
noprint option informs the procedure that no
printed output is required. This assumes that
the user will take the output as a data set and
perform additional processing. Finally, the
chartype option is explained below.

Notes about classifications:

By default, MEANS will create a summary of
data by every combination of columns specified
in the CLASS statement. For example, if the
columns sku and sku_type were specified as
class variables, then the procedure would, by
default, create the following in a single output
data set:

Total summary (_type_='00")
Sku_type (_type_='01")

Sku (_type_="10")

Sku by sku_type (_type_="11")

The obvious question is if all these different
summary levels are output to a single table,
then how is it possible to distinguish between
them? This is done using a generated column in
the output table called _type_. The values for
the example above are shown in parentheses.
In previous versions of SAS, the value for -
_type_ was a humeric column calculated using a
necessary, but rather convoluted technique
where the value was incremented by one for
each additional available summary level. In
Version 8 and beyond, _type_ can optionally
(depending on using chartype in the MEANS
statement) be a character variable containing
either a 'l or '0' depending on whether the
corresponding column in the CLASS statement
is active in the summary level. Note that if
there are more than 32 columns in the CLASS
statemtent then _type is automatically a
character column.

It is still possible to use the old version of the
_type_ column, but this is probably not
advisable if at all avoidable.

summary. Note that these columns tend not
to contain continuous variables, but discrete
values. In our example, year is the only
classification, which means that we will
have in our output only grouping by each
year. If there are three years represented in
our detail data, then there will only be three
rows in the output data file. Note that if we
had omitted the nway option (see 1.) then we
would have the three rows plus a grouping
for all the years together.

Note that in Version 8, there can be multiple
class statements.

3) The wvar statement lists the analysis
variables. In this example, only the total is
going to be included in the output data file.
Any column listed after the var statement
has to be numeric.

4) The output statement specifies what and
where the output from the procedure will be
stored. The output statement can become
quite complex (see examples later in the
paper), but in its rawest form illustrated in
our example, we are creating a new data file
called by year containing the sum of the
total column.

What will the by year table actually look like?
The table below contains the structure of the
table.

Column  Description

Name

year year value from class statement

total Total from var statement

_freq_ The number of detail rows that
make up the summarized grouping.

_type The level of the grouping.

The class statement has listed after it each
classification column involved within the

Associated Topics

Now that we have seen the MEANS procedure in
its most basic form, there are a couple of
associated topics that should be addressed to
fully understand how it works.

Treatment of missing values: by default, the
MEANS procedure will remove any row from
the summary if any of the classification columns
contain a missing value. This behavior can be
overridden using the missing option after the
PROC MEANS statement. The missing option
will result in a missing value being a valid
grouping from a classification variable.




It is easy to create misleading results from the
detail data by forgetting to treat missing values
in the correct way. This goes back to really
understanding your data before analyzing it.

From the perspective of calculating statistics,
each var column is treated separately. This
means that if one column has a missing value on
a particular row, and another column does not,
then in the first instance the missing value will
be omitted from the statistic calculation, but this
will not affect the calculation for the second var
column where the value is not missing.

Treatment of SAS formats: the MEANS
procedure will take advantage of any formats
that are permanently associated with a column,
or any that are assigned within the procedure
itself using the formats statement. This saves the
recoding of columns before using the procedure.

Examples of using formats with the MEANS
procedure are given later in this paper.

‘But not all possible combinations of
summary types are required ...’

Let’s build on our example and now include
three class variables. This will give us more
possible combinations of summaries. We are
going to use as our classification variables year,
store and sku. In this case, the possible summary
combinations are included in the table below:

Class 1 Class 2 Class 3 _type_
‘000’
sku ‘001°
store ‘010°
store sku 011’
year ‘100°
year sku ‘100’
year store ‘110°
year store sku ‘111’

Table 2

Possible Combinations from 3 Class Variables

We don’t, however, want all of these summaries.
We only want those with #ype =’011" and
‘101°. In Version 6, this could only be done by
applying a where clause on the output data file
based on the value of the type variable. Now,
however, there is a far more elegant (and
efficient) way to obtain the same results.

Beginning Tutorials

proc means data=sugi.orders missing
chartype noprint;

class year store sku;

types (store*sku) (year*sku);

var total;

output out=by_year sum=;

run;

Note that the missing option has been added as a
procedure option. This will force the procedure
into using missing as a valid category for all of
the class variables.

The example above illustrates the use of the
types statement. This statement allows for the
pre-selection of which interactions between the
class variables are to be calculated and stored in
the output data file, by year. There are many
different forms of the types statement. Below are
two examples:

types store* (sku year); 1)
types () sku; 2)

1) This types statement is equivalent to
obtaining the following interactions:
store*sku and store*year.

2) This example is equivalent to obtaining the
overall summary and sku by itself.

The #ypes statement is very useful, but can
sometimes be a little long-winded. There is an
alternative that will apply in certain situations:
the ways statement. This essentially restricts the
output interactions to the levels included as the
value of the ways statement. This is best
illustrated by example:

Ways 2; 1)
Ways 1; 2)

1) This will give a summary of all interactions
where there are two class variables involved
i.e. year*store, year*sku, store*sku.

2) This will give a summary of all interactions
where there is only one class variable
involved i.e. year, store, sku.

Note that it is possible to use the #ypes and the
ways statements together. Obviously, one has to
be careful in this situation to ensure that the
output is exactly what is required. If there is a
duplication across the ways and the #ypes
requests for summary levels, then a warning will



be put out to the log and any duplicates will be
ignored.

What if I want more columns in my output
file than specified in the class or var
statements?

It is sometimes necessary to ‘pull along’
additional columns of data into the output data
file. These columns are not used as analysis
variables, or as classification variables, but are
nevertheless items of data that will be required in
any post procedure reporting or analysis.

For example, suppose that in the output data file,
we also wanted the store type. A simple way to
include this in the output data file would be to
use the ID statement. This statement informs the
procedure that a column will be included in the
output data file that contains the final value of
that column from the input data file for each
interaction.

Usually, the column selected for an /D statement
will have only one value for each of the
classification columns. If this is not the case,
then extra care must be taken in using this
statement.

For example, if we wanted store type in the
output data file, then we would add the following
line of code:

ID store_type;

The output data file would contain a column with
the values of store _type. If the summary level
was store then this column would make sense,
since it would contain the corresponding store
type for each store. If the summary level were
sku then the output store type column would
have to be used with caution, since it would
contain the last value of store_type the procedure
came across in summarizing the data by sku.

Should the data be sorted before using the
MEANS procedure?

Often, data is already sorted by the columns in
the class statement. In this situation it is possible
to use the by statement instead of the class
statement. If the by statement is used, then it is
only possible to get the nway interaction between
class variables.  This essentially limits the
functionality of the procedure since it is not

Beginning Tutorials

possible, for instance, to use the ways or the
types statements.

It is not necessary to sort the file by the class
variables. A simple index (if there is one class
variable) or a composite index (if there are many
class variables) could also be created.

If there is an option between using the class or
the by statement, then the latter is more efficient,
since it requires less memory usage. There are
situations with large summaries where it is more
efficient to sort the input data (removing any
columns not required in the summary) and then
to use by instead of class. There are, however,
no simple rules for deciding between the two.
There are many factors in making this decision:

1) The size of the data.

2) The amount of available memory.

3) The form of the data (is it already sorted?).
4) The required levels of summarization.

Efficiency

Learning about the sumsize= and the memsize=
options can help in the effective use of the
MEANS procedure.

Using the by statement is very easy. All that is
required is to replace class with by in the code.

What if formatted values of classification
variables are required as summary levels?

The use of formats have already been mentioned
above, but it is worth actually looking at an
example. Suppose we have a user defined
format as follows:

proc format;
value $ sku_fmt '0' - '3' ='Low Sku'
‘4’ - '8' = 'Medium Sku'
other = 'High Sku'
run;

This creates a format that we will use to re-
classify the sku column. It will simply classify
any sku starting with 0,1,2 or 3 as ‘Low Sku’,
those starting with 4,5,6,7,8 as ‘Medium Sku’
and the rest as ‘High Sku’.

We can now use this user defined format in our
MEANS procedure.



proc means data=sugi.orders missing
chartype noprint;

class store sku;

types store*sku;

var total;

format sku $sku_fmt.;

output out=by_store_sku sum=;

run;

Note that the only addition to the code is the
format statement. The output from this
procedure will not contain any sku values, but
only the formatted value of the sku values.

One problem with this code is that a situation
might arise where for a particular summary level,
there might not be a sku that has all three format
categories. By default, this will mean that the
format category not represented will not show up
in the output data file (why should it?). there are
circumstances where this might not be
acceptable however, and Version 7 and beyond
has additional functionality within the MEANS
procedure to handle this (see box below).

Advanced Format Topic

For those seriously interested in using formats
with PROC MEANS, the preloadfmt statement
will be of use. This is useful in situations when a
formatted value of a class variable is included in
the output, even if there are no rows included in
the classification.

For example, suppose a summary by store and sku
(these are our classification variables) for total
is desired. The classification column sku is to be
formatted using the sku_fmt format created
above.

In the output, for every store, every formatted
classification of sku should be included, even if
there is no total. In Version 6, this would have
required extensive manipulation of the data
before running the procedure. This can now be
achieved using the preloadfmt in association with
the completetypes and exclusive option (see
below).

The code we would use to ensure that every
categorized formatted value of sku is included in
the output is outlined below:

Beginning Tutorials

proc means data=sugi.orders missing
chartype noprint completetypes; 1)

class store sku/preloadfmt; 2)

types store*sku;

var total;

format sku $sku_fmt.;

output out=by_store_sku sum=;

run;

The changes to the code are the options on the
two numbered lines:

1) The completetypes option has been added.
This tells the procedure to include all of the
possible values whether or not they exist for
a specific class interaction. In other words,
in our code, for every store, include all the
values of sku even if they do not exist for a
particular store.

This can reduce the possible errors in using
the output data file. When looking at a
particular store, it will be possible to find
out which skus the store did net have, as
well as the ones it did have.

2) The preloadfmt option must be used in
coordination with the completetypes option
(see 1)), the exclusive option (see below) on
the class statement or the order=data
option (see below in the section dealing
with ordering the output data file).

The preloadfmt if used in conjunction with
the completetypes option will mean that all
values of the formatted class column will
occur in the output data file at all summary
levels it is involved in, whether there are
any rows for that value or not.

This can best be seen by the output shown
in the table below:

Preloadfmt with Completetypes Options

Store Sku _Freq  Total
Dunham’s Low Sku 5 87.2
Dunham’s Medium Sku | 1

Dunham’s High Sku 0 .

MC Sports | Low Sku 9 532.9
MC Sports | Medium Sku | 0

MC Sports | High Sku 0

Table 3
Output using completetypes and preloadfint



Note in the above table that for the Dunham’s
store, the formatted value of sku, ‘High Sku’ has
a freq of zero. This means that there are no
rows in the detail table that make up this row in
the output data file. This row is included (as are
the final two rows for MC Sports) because of the
preloadfmt and completetypes options.

Preloadfmt with Exclusive option

If the preloadfmt is used in conjunction with the
exclusive option on the class statement, then the
output will be restricted to those rows to which
the format applies. In other words, if a sku could
not be formatted, then it would be excluded from
the output data file.

Thoroughly understanding the preloadfmt option
will greatly increase the usefulness of the
MEANS procedure. Although it might seem as
though it is beyond the elementary use of the
procedure, it is definitely an option that should
be mastered.

A note about completetypes

This option does not have to be used in
conjunction with preloadfmt. Without it, it
will produce an output data file that has all
values for a particular classification column
for every other classification column.

Changing the order of the data in the output.

When producing summary data from the
MEANS procedure (either in data or printed
form), a specific order of the class columns is
often required. This can, of course, be done after
the fact using a procedure like SORT or SQL,
but very often, it is possible to specify the sort
order within the procedure itself.

There are six relatively simple ways to affect the
order of the output. Four of these are
implemented using the order= option on either
the class statement or on the procedure
statement. = The final two are to use the
ascending or descending option. These different
options are outlined below:

Note on Sort Orders

Take extra care in understanding sort orders.
They do vary from operating system to
operating system.

Beginning Tutorials

Order=data
e.g. class store sku/preloadfmt order=data;

In this situation, the procedure will order the data
based upon the order in which the FORMAT
procedure stores them. By default, the
FORMAT procedure orders values by their
formatted description. It is possible to avoid this
by using the notsorted option in the FORMAT
procedure.

If the exclusive option is used, then only values
that have a formatted value will be included. If
exclusive is excluded, then the values that do not
have a formatted value will be appended in the
output after the formatted values in the order
they are encountered.

Order=formatted (or order=fmt)
e.g. class store sku/ order=formatted;

The order of the class variables will be the
ascending order of the formatted values.

Order=unformatted (or order=unfmt)
e.g. class store sku/ order=unfmt;

The order of the class variables will be the sorted
order of unformatted values. This option might
at first sight seem a little odd, but it is very
useful in situations where you want the
formatted value to be viewed in the output, but
this value has little meaning beyond mere
labeling. A good example of this would be
dates. You might format a SAS date based so
that the month shows. The output might not
might be what is required since if the formatted
value was used to sort, then April will be first. If
the unformatted value is used to sort the data,
then January would be first, which is probably
what is required.

Order=freq

e.g. class store sku/ order=freq:

The order of the class variables will be based on
the freq variable. In other words, the

observations within a particular interaction that
has the highest value of freq would be first.



Ascending and Descending

These two options can be used on both the class
statement and the procedure statement. They are
self-explanatory and specify highest-to-lowest or
lowest-to-highest.

Controlling the contents of the Output

Up until this point, our output (we have been
using the noprint option and specifying an output
data file) has been very simple. Our output has
included the class columns, the sum of the var
columns and the generated columns (_ freq and
_type ). The output statement, however, has
extensive uses and can become quite complex.
Since this paper is an introduction to the
procedure, the simpler options will be addressed,
with reference to the more complex options
when pertinent.

Multiple Class and Output Statements
Both the class and the output statements can occur
multiple times within a single use of the MEANS
procedure.

Using multiple class statements gives control over
the way that classification variables can be
treated. In Version 6, any options on the class
statements would be applied to all classification
variables. After Version 6, it is possible to treat
different variables in different ways by using
multiple class statements.

A similar situation arises for the output statement.
It is now possible to have multiple output
statements, each one producing its own output.
This allows for more flexibility and reduces the
number of times the procedure needs to be
invoked.

The following example starts to extend the use of
the output statement.

proc means data=sugi.orders missing
chartype noprint completetypes:;

class store sku/preloadfmt;

types store*sku;

var total;

format sku $sku_fmt.;

output out=by_store_sku sum=sum_total

mean=mean_total;
run;

Beginning Tutorials

The difference in this situation is that we are
using a single var column, but we are asking for
both the sum and the mean stored in the output as
columns called sum total and mean_total
respectively.

Using this technique, it is possible to create
output that has multiple statistics for multiple
columns. Taking this a step further by adding an
additional var column:

proc means data=sugi.orders missing
chartype noprint completetypes:;

class store sku/preloadfmt;

types store*sku;

var total quantity;

format sku $sku_fmt.;

output out=by_store_sku sum=sum_total
sum_quantity

mean=mean_total

mean_quantity;

run;

In this situation, we have four -calculated
columns in our output, based on the two var
columns total and quantity. For each of these we
have the sum and the mean.

Both of these two examples have illustrated a
simple way to obtain statistics and to explicitly
name the output columns. It is not necessary,
however, to explicitly specify the statistics
required:

proc means data=sugi.orders missing
chartype noprint completetypes:;

class store sku/preloadfmt;

types store*sku;

var total;

format sku $sku_fmt.;

output out=by_store_sku;

run;

The above snippet of code excludes explicit
reference to both the output statistics and their
corresponding column names. What would
happen here is that the output would include a
row for each interaction between store and sku
for the following statistics: mean, std, n, min and
max. A new column would be created called
_stat  that would contain the name of the
statistic.  The column fotal would contain the
values of the statistic.



The process of explicitly stating the names of the
output variables can be tedious. In Version 6,
this was a major chore if there were a large
number of var columns and a large number of
statistics required. After Version 6, the
autoname  option alleviates this tedious
procedure.

proc means data=sugi.orders missing
chartype noprint ;

class store sku;

types store*sku;

var total quantity;

format sku $sku_fmt.;

output out=by_store_sku n= mean= range=
max= min= median=
/ autoname ;

run;

This example uses the autoname option to
automatically create the names of the output
columns. In this situation, there are only two var
variables and six statistics. This requires naming
twelve output columns. The autoname option
will create the output column name by appending
the statistic keyword to the end of the var
column name. So in the example above the first
two columns names for the statistics will be:
sku_n and sku_mean.

Note that if the var column label is required, as
opposed to the name, then the autolabel option
should be substituted.

Subsetting the output

In Version 6, subsetting the output was largely
dependent on two different techniques:

e Eliminating unwanted data before the
procedure runs.

e Eliminating unwanted data during the
creation of the output.

The first of these two options should be a
standard technique not just for the MEANS
procedure, but for any situation where processing
takes place. It can be performed by putting a
where clause on the incoming data, a where
clause within the procedure or, if there is an
efficient opportunity, in code before the
procedure.

Examples of these three techniques are
illustrated in the simple code below.

Beginning Tutorials

proc sort data=sugi.orders out=work.orders

nodupkey: 1)
by store sku year month;
run;
proc means
data=orders(where=(sku=: '4"))
missing; 2)

by store sku;

types store*sku;

var total quantity;

format sku $sku_fmt.;

output out=by_store_sku(where=(total > 999))
sum=; 3)

run;

1) The data is pre-processed to remove any
duplicate values. Note that this could not be
done within the MEANS procedure.

2) A where clause is applied to the data as it
comes into the procedure. Note that this
will be more effective when the data is large
if the incoming data is indexed by the
columns referenced within the where clause.

3) The data is subsetted on the way out of the
procedure, using calculated results.

It would have been possible to use the subsetting
in 2) within the SORT procedure. This decision
would be based on whether the work.orders data
file would be used elsewhere.

There are now more options available than just
using the where clause. A slightly more
complex example is as follows. In this situation,
we want to obtain the three skus by store that
have the greatest orders (total).

proc means data=sugi.orders missing
chartype noprint;

class store ;

types () store ;

var total ;

format total dollar10.2;

output out=by_top_total sum= mean=
idgroup( max(total) id[3] (total sku)=) / 1)
autolabel autoname;

label total='Total $';

run;

Note that most of the code is very basic. The
total column is the analysis variable and there is
only one classification variable, which is store.
The big difference is with the oufput statement.
The basis of the change is the use of the idgroup



option, which extends the functionality of the id
statement we examined earlier (see line 1)).

The idgroup option gives the MEANS procedure
the ability to output a data file that contains
extreme values. In our example, we are
obtaining the following:

max(total)
Will give the maximum values of the fotal column for
each outputted row, after the procedure has run.

Id[3]
Will restrict the output to the top three max values
of the total column

(total sku)=

Will inform the procedure that in finding the top
three total values for each row in the output, include
in that output the values of the total and sku
columns. Inother words, there will be three sku and
three total values in the output data file. This will
mean that we will know the three skus that have the
greatest order amount for each of the rows in the
output data file and the values of those amounts.

One of the dangers of using the idgroup option is
the complexity of naming conventions. It is
possible to logically have duplicate variable
names in the output file. For this reason, it is
more than advisable to use the autolabel and/or
autoname options.

Another issue with the idgroup option is that of
ties. What happens if 10 of the skus have
identical order amounts (total). In this situation,
the procedure will select the skus to output based
upon observation number. Just to reiterate an
earlier point, this illustrates how important it is
to really know the data being used.

The use of idgroup is one of the more complex
pieces of using the MEANS procedure, but is
offers a set of additional tools that can greatly
increase the usefulness of the procedure.

Conclusion

The MEANS procedure is one of the most
important available. It is worth spending the
time to become adept at using the myriad of
options available. The time invested in
familiarizing yourself with the procedure will
pay off many times over. It doesn’t matter if
SAS is being wused for elementary or

Beginning Tutorials

sophisticated uses since this procedure always
has its place.

In many ways, it is now more important than
ever to fully get to grips with PROC MEANS
since it is strategically a very important piece of
the SAS software. It is central to the creation of
HOLAP MDDBs as well as in the data
warehousing process, where success is based
upon giving the users data in the form closest to
their business requirements.

In this paper, the basics of the procedure have
been covered. There are many more options
available, all of which are covered in the online
documentation.

To learn more, a good place to start is to study
each of the samples given in both the online
documentation and within the Technical Support
page on the SAS web site.

References:

" For a beginning introduction to using PROC
MEANS for creating statistics, see: Delwiche,
Lora D. and Susan J. Slaughter, The Little SAS®
Book, Second Edition,Cary, NC: SAS Institute
Inc., 1998. Page 172.

" For efficiency techniques see: Bob Virgile,
Efficiency: Improving the Performance of Your
SAS Applications, Cary, NC: SAS Institute Inc.,
1998.

Author:

Peter R. Welbrock

Strategic Information Systems, Inc.
Philadelphia, PA

610 668 6417

welbrock@erols.com

Author of 'Strategic Data Warehousing
Principles Using SAS® Software’, Cary, NC:
SAS Institute Inc.,

SAS and all other SAS Institute Inc. product or service names
registered trademarks or trademarks of SAS Institute Inc. in tl
USA and other countries. ® indicates USA registration. Oth
brand and product names are trademarks of their respective
companies.



	CD Table of Contents

	68-25cite: SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and other countries.   ® indicates USA registration.  Other brand and product names are trademarks of their respective companies. 


