
A Specification-based Approach to Testing
Software Product Lines (Poster Paper)

Engin Uzuncaova
Dept. Of Electrical And Computer Engineering

The University of Texas at Austin
uzuncaov@ece.utexas.edu

Daniel Garcia
Dept. Of Electrical And Computer Engineering

The University of Texas at Austin
gdaniel@ece.utexas.edu

Sarfraz Khurshid
Dept. Of Electrical And Computer Engineering

The University of Texas at Austin
khurshid@ece.utexas.edu

Don Batory
Dept. Of Computer Sciences

The University of Texas at Austin
batory@cs.utexas.edu

ABSTRACT
This paper presents a specification-based approach for sys-
tematic testing of products from a software product line.
Our approach uses specifications given as formulas in Alloy,
a first-order logic based on relations. Alloy formulas can
be checked for satisfiability using the Alloy Analyzer. The
fully automatic analyzer, given an Alloy formula and a scope,
i.e., a bound on the universe of discourse, searches for an in-

stance, i.e., a valuation to the relations in the formula such
that it evaluates to true. The analyzer translates an Alloy
formula (for the given scope) to a propositional formula and
finds an instance using an off-the-shelf SAT solver. The use
of an enumerating solver enables systematic test generation.

We have developed a prototype based on the AHEAD
theory. The prototype uses the recently developed Kodkod
model finding engine of the Alloy Analyzer. We illustrate
our approach using a data structure product line.

Categories and Subject Descriptors: D.2.5 [Software

Engineering]: Testing and Debugging—testing tools; D.2.4
[Software Engineering]: Software/Program Verification—
programming by contract

General Terms: Reliability, Verification, Design

Keywords: Product-lines, specification-based testing, test
data generation, GenVoca, AHEAD, Alloy

1. INTRODUCTION
Software product lines are rapidly gaining prominence as

a means of automating software development. By defining
a set of features—increments in program functionality—an
implementation with desired functionality can automatically
be synthesized by selecting the desired combination of fea-
tures. Existing tools provide the ability to combine complex
features and synthesize efficient implementations. As prod-
uct lines become more popular and they are used in larger
and more complex domains, developing techniques that can
efficiently and systematically test the generated implementa-
tions emerges as a critical need. Moreover, combinations of
certain features may introduce complex interactions among
the features that must be thoroughly tested for correctness.

Copyright is held by the author/owner(s).
ESEC/FSE’07, September 3–7, 2007, Cavtat near Dubrovnik, Croatia.
ACM 978-1-59593-812-1/07/0009.

Specification-based testing provides an effective approach
for testing correctness of software in general. The impor-
tance of using specifications in software testing was real-
ized at least three decades ago [10], and approaches based
on specifications are widely used today. A typical approach
generates test inputs using an input specification and checks
program correctness using an oracle specification—correctness
criteria. Several existing approaches can automatically gen-
erate test inputs from a specification as well as execute the
program to check its correctness.

Recent developments on tighter integration of specifica-
tions with programs via annotations [12] have made writing
specifications intuitive and even more appealing. Moreover,
recent advances in constraint solving and automated theo-
rem proving [1] have enabled specification-based approaches
to handle a large class of programs, including those that use
advanced constructs of modern languages, and to scale to
real applications and test them systematically [14].

This paper presents a specification-based testing approach
for software product lines. Our approach uses specifications
of properties given as formulas in Alloy [11], a first-order
logic based on relations. Alloy formulas can be checked for
satisfiability using the Alloy Analyzer. The fully automatic
analyzer, given an Alloy formula and a scope, i.e., a bound
on the universe of discourse, searches for an instance, i.e., a
valuation to the primary variables (relations) in the formula
such that it evaluates to true. The analyzer translates an Al-
loy formula (for the given scope) to a propositional formula
and finds an instance using off-the-shelf SAT technology [15].

SAT solvers, e.g., mChaff [15], that can enumerate solu-
tions enable the use of the Alloy Analyzer for systematic
testing of Java programs: each solution represents a test in-
put [14]. An Alloy formula that constrains relevant object
fields to describe desired inputs is solved to enumerate in-
stances. Each instance is translated into a Java object graph
that forms a test input. The program is executed on each
input, and its output is checked using another Alloy formula
that characterizes the correctness of the program.

We present a novel use of Alloy to generate inputs for
systematic testing of implementations synthesized from a
product line. Each program in a product line is specified as
a composition of features, where each feature represents an
Alloy formula. The Alloy formula of a program is the com-
position of the formulas for each of the program’s features.
Tests are generated by solving the resulting formula.

525



The contribution of this paper is to show how specification-
based testing can be applied to product lines in a traditional

fashion, where tests are generated for a product from its
complete specification. In ongoing work, we are investigat-
ing an incremental approach, where previously generated
tests are refined using changes in specification.

2. BACKGROUND

Categorical models of product-lines
A feature is an increment in program functionality. A soft-

ware product-line (SPL) is a family of programs where no
two programs have the same combination of features.

Every program in an SPL has multiple representations or
models (e.g., source, documentation, etc.). Adding a fea-
ture to a program refines each of the program’s represen-
tations. Furthermore, some representations can be derived
from other representations. These ideas have a compact
form when cast in terms of metaprogramming and category
theory. We show below how this is done by a progression of
models: GenVoca [6], AHEAD [7], and FOMDD [3,19].

2.1 GenVoca
GenVoca is a metaprogramming model that we have used

to build feature-based product lines for over fifteen years [5–
7]: base programs are values and features are functions
that map programs to feature-refined programs. A Gen-
Voca model M = {f,h,i,j} of a product-line is an algebra,
where constants are base programs:

f // a base program with feature f
h // a base program with feature h

and functions are program refinements:

i•x // adds feature i to program x
j•x // adds feature j to program x

where • denotes function composition.
Note that even though we write the composition of fea-

tures a and b as a•b, it really is an abbreviation of the ex-
pression compose(a,b). We use • to simplify expressions.

The design of a program is a named expression, e.g.:

p1 = j•f // p1 has features j and f
p2 = i•j•h // p2 has features i, j, h
p3 = j•h // p3 has features j and h

The set of programs that can be defined by a GenVoca
model is its product-line. Expression optimization corre-
sponds to program design optimization, and expression eval-
uation corresponds to program synthesis [4,17].

The use of one feature may preclude the use of some fea-
tures or may demand the use of others. Tools that validate
compositions of features are discussed elsewhere [2].

2.2 AHEAD
Every program has multiple representations or models: a

program has source code, documentation, bytecode, make-
files, UML designs, etc. A vector of representations for a
program is a GenVoca constant. Base program f, for ex-
ample, has a statechart model cf , a Java source code repre-
sentation sf derived from its statechart model, and a Java
bytecode representation bf derived from its source. Program
f’s vector is f = [cf , sf, bf].

A GenVoca function maps a vector of program represen-
tations to a vector of refined representations. For exam-
ple, feature j simultaneously refines f’s statechart model (to
specify j), its source code (to implement j), and its byte-
code (to execute j). If ∆cj is statechart refinement made by
j, ∆sj and ∆bj are the corresponding refinements of source
and bytecode, function j is the vector j = [∆cj, ∆sj, ∆bj].

The representations of a program, such as p1, are synthe-
sized by composing each base model with its refinement:

p1 = j•f // GenVoca expression
= [∆cj, ∆sj, ∆bj]•[cf, sf, bf]
= [∆cj•cf, ∆sj•sf, ∆bj•bf]

That is, the statechart of p1 is produced by composing
the base statechart with its refinement (∆cj•cf ), the source
code of p1’s base with its refinement (∆sj•sf ), etc.

2.3 Feature oriented model driven design
AHEAD captures the lockstep refinement of program rep-

resentations when a feature is composed with a program.
But there are additional functional relationships among dif-
ferent representations that AHEAD does not capture. For
example, the relationship between Java source sf of pro-
gram f and its bytecode bf is expressed by javac. That is,
javac is a transformation that maps sf to bf . Similarly, one
can imagine a transformation τ that maps a statechart cf

to its Java source sf . Unlike features that represent refine-
ment relationships between artifacts, these transformations
represent derivation relationships between artifacts.

All of these relationships are expressed by a commut-

ing diagram, where objects denote program representations,
downward arrows represent derivations and horizontal ar-
rows denote refinements. These objects and arrows define a
category [16]. Figure 1 shows the commuting diagram for
program p2 = i•j•h = [c2, s2, b2].

javac

τ τ τ

ch

sh

bh

c3 c2

s3

b3 b2

s2

∆cj ∆ci

∆sj ∆si

∆bj ∆bi

javac javac

Figure 1: Commuting diagram.

A fundamental property of a commuting diagram is all
paths between two objects produce equivalent results. For
example, one way to derive the bytecode b2 of program p2

(lower right in Figure 1) from the statechart ch of program
h (upper left) is to immediately derive the bytecode bh and
refine to b2, while another path immediately refines ch to
c2, and then derives b2:

∆bi•∆bj•javac•τ = javac•τ•∆ci•∆cj

There are
`

4

2

´

= 6 possible paths to derive the bytecode
b2 of program p2 from the statechart ch of program h. Each
path represents a metaprogram whose execution synthesizes
the target object (b2) from the starting object (ch).

Traversing arrows of commuting diagrams has a cost. It
is an optimization problem to determine the shortest (least-
cost) path between two objects in a commuting diagram.

526



search

size

parent

parent

siz
e

parentsiz
e

search

search

search

parent

siz
e

p1

p2

p3

p4

p5

p6

p7

p0

p0=base

p1=size•base

p3=search•base

p4=parent•size•base

p5=search•size•base

p6=search•parent•base

p7=search•parent•size•base

p2=parent•base

Figure 2: Family of binary trees. Nodes represent

products. Arrows represent feature inclusion.

3. OUR APPROACH ILLUSTRATED
We describe our specification-based testing approach us-

ing an illustrative example. We present the example using
AHEAD [8] and Alloy [11] notations, which we describe as
we introduce them; details are available elsewhere [8,11].

3.1 A product line of binary trees
Consider a family of binary trees [9]. While all trees in

this family are acyclic, they are differentiated on whether
their nodes have parent pointers, or whether they have inte-
ger values satisfying search constraints, or whether the trees
cache the number of their nodes. The following AHEAD
model describes this family:

BT = {base, size, parent, search}

where the base product is an acyclic binary tree [9], which
can be extended using a combination of three independent
(i.e., commutative) features:

• size: the tree caches the number of nodes in a field;

• parent: nodes have parent pointers;

• search: nodes have integer values, which satisfy the
search constraints of a binary search tree

The model BT represents a product-line of different trees.
A particular tree is defined by an feature expression. For
example, the expression p = parent•base, where the opera-
tor ‘•’ denotes feature composition, defines a tree with par-
ent pointers, and the expression s = search•base defines a
binary search tree. Syntactically different expression may
define equivalent products, e.g., since size and parent are in-
dependent, size•parent•base = parent•size•base. Figure 2
characterizes the eight distinct products of the BT family.

3.2 Alloy annotated Jakarta code
We next describe the basic class declarations and speci-

fications that represent the BT family. The following anno-
tated code declares the base class:

class BinaryTree {
/*@ invariant

@ all n: root.*(left + right) {
@ n !in n.^(left + right) // no directed cycles
@ lone n.~(left + right) // at most one parent

@ no n.left & n.right // left and right nodes differ
@ }

@*/

Node root;

}

class Node {
Node left, right;

}

A binary tree has a root node and each node has left and
right children. The invariant annotation in comments states
the class invariant, i.e., a constraint that a BinaryTree object
must satisfy in any publicly visible state, such as a pre-state

of a method execution [13].
The invariant is written as a universally quantified (key-

word all) Alloy formula. The operator ‘.’ represents rela-
tional composition; ‘+’ is set union; and ‘*’ is reflexive tran-
sitive closure. The expression root.*(left + right) repre-
sents the set of all nodes reachable from root following zero
or more traversals along left or right edges. The invari-
ant formula universally quantifies over all reachable nodes.
It expresses three properties that are implicitly conjoined.
(1) There are no directed cycles; (the operator ‘!’ denotes
negation and ‘^’ denotes transitive closure; the keyword in

represents set membership). (2) A node has at most one
parent; (the operator ‘~’ denotes relational transpose; the
keyword lone represents a cardinality constraint of less than
or equal to one on the corresponding set). (3) A node does
not have another node as both its left child and its right

child; (the operator ‘&’ denotes set intersection).
The AHEAD tool-set provides a veneer, Jakarta, on Java

to facilitate development of product lines [5]. The following
Jakarta code uses the keyword refines, which represents
extension, to introduce the feature size:

refines class BinaryTree {
/*@ refines invariant
@ size = #root.*(left + right)

@*/

int size;
}

Note (1) the new field size in class Node and (2) the addi-
tional invariant that represents the correctness of size: the
value of size field is the number of nodes reachable from
root (inclusive). The Alloy operator ‘# denotes cardinality
of a set.

We extend the base to introduce parent as follows.

refines class BinaryTree {
/*@ refines invariant

@ no root.parent
@ all m, n: root.*(left + right) |

@ m in n.(left + right) <=> n = m.parent
@*/

}

refines class Node {

Node parent;
}

The correctness of parent is: (1) root has no parent node
(i.e., root.parent == null); and (2) if node m is the left or
right child of node n then n is the parent of m and vice versa.

We extend the base to introduce search as follows.

refines class BinaryTree {
/*@ refines invariant
@ all n: root.*(left + right) {

@ all nl: n.left.*(left + right) | n.elem > nl.elem
@ all nr: n.right.*(left + right) | n.elem < nr.elem

@ }
@*/

}

refines class Node {
int elem;

}

527



The search constraint requires that the elements in the tree
appear in the correct search order: all elements in the left
sub-tree of a node are smaller than the element in the node
(and those in the right-subtree larger).

3.3 Test generation
We next illustrate how to generate inputs for methods

defined in implementations of the products in the binary tree
family. Since an input to a (public) method must satisfy its
class invariant, we must generate valid inputs, i.e., inputs
that satisfy the invariant. To illustrate, consider testing the
method “int size() { ... }”, say in product p3.

The method takes one input (the implicit input this).
Generating a test input for method size requires solving
p3’s class invariant, i.e., acyclicity and binary search con-
straints (from Figure 2). Given the invariant in Alloy and
a bound on the input size, the Alloy Analyzer can system-
atically enumerate all structures that satisfy the invariant;
each structure represents a valid input for size (and other
methods that take one tree as input). Given p3’s invariant,
the analyzer takes 2.83 seconds to generate 100 trees with
exactly 10 nodes (1.8 GHz Pentium M with 512 MB RAM).

4. ONGOING WORK
Solving a constraint using a single invocation of the an-

alyzer is inspired by its traditional use. We are currently
investigating an incremental approach: the analyzer is in-
voked multiple times to generate a desired structure, where
each invocation is on a SAT formula that is simpler than the
formula that represents the complete constraint.

τ

s0 s3

t3t0

∆s

∆t

τ

Figure 3: Binary search tree commuting diagram.

The commuting diagram in Figure 3 illustrates how the
incremental approach differs from the traditional approach.
The nodes si represent specifications for test generation for
the corresponding products, e.g., s0 represents the base spec-
ification, which is just the acyclicity constraint. The nodes
ti represent the corresponding sets of test inputs. The hori-
zontal arrow ∆s represents the refinement of the class invari-
ant, i.e., addition of search constraints. The vertical arrows
τ represent test generation using Alloy Analyzer. ∆t rep-
resents a transformation of tests for the base product into
tests for search•base.

To generate tests t3, the traditional approach follows the
path τ • ∆s. The incremental approach follows the alter-
native (but equivalent) path ∆t • τ (dotted arrows). A key
problem in traversing this path is definition of the function
∆t. One solution is to let the user provide the function.
For example, the user could provide a test refinement func-

tion that takes a test for p0 and transforms it into a test for
p3. An alternative solution is to automatically compute ∆t,
given ∆s. We are investigating the use of the Alloy Ana-
lyzer for this computation: using t0 as a seed that provides
a valuation to relations in s0, the analyzer solves the new
constraints ∆s to generate a valuation for the new relations
in s3, thereby generating test t3. Preliminary results show
that the incremental approach holds much promise.

Acknowledgments
This work was funded in part by NSF’s Science of Design
Awards #CCF-0438786 and #IIS-0438967.

5. REFERENCES
[1] C. Barrett and S. Berezin. CVC Lite: A new

implementation of the cooperating validity checker. In
CAV, 2004.

[2] D. Batory. Feature models, grammars, and
propositional formulas. In SPLC, 2005.

[3] D. Batory. From implementation to theory in program
synthesis. In Keynote at POPL, 2007.

[4] D. Batory, G. Chen, E. Robertson, and T. Wang.
Design wizards and visual programming environments
for genvoca generators. Software Engineering,
26(5):441–452, 2000.

[5] D. Batory, B. Lofaso, and Y. Smaragdakis. JTS: tools
for implementing domain-specific languages. In Proc.

International Conference on Software Reuse, 1998.

[6] D. Batory and S. O’Malley. The design and
implementation of hierarchical software systems with
reusable components. ACM Transactions of Software

Engineering Methodology, 1(4):355–398, 1992.

[7] D. Batory, J. N. Sarvela, and A. Rauschmayer. Scaling
step-wise refinement. In ICSE, 2003.

[8] D. Batory, J. N. Sarvela, and A. Rauschmayer. Scaling
step-wise refinement. IEEE Transactions on Software

Engineering, 30(6):355–371, 2004.

[9] T. H. Cormen, C. E. Leiserson, and R. L. Rivest.
Introduction to Algorithms. The MIT Press,
Cambridge, MA, 1990.

[10] J. Goodenough and S. Gerhart. Toward a theory of
test data selection. IEEE Transactions on Software

Engineering, June 1975.

[11] D. Jackson. Software Abstractions: Logic, Language

and Analysis. The MIT Press, Cambridge, MA, 2006.

[12] G. T. Leavens, A. L. Baker, and C. Ruby. Preliminary
design of JML: A behavioral interface specification
language for Java. Technical Report TR 98-06i,
Department of Computer Science, Iowa State
University, June 1998.

[13] B. Liskov and J. Guttag. Program Development in

Java: Abstraction, Specification, and Object-Oriented

Design. Addison-Wesley, 2000.

[14] D. Marinov and S. Khurshid. TestEra: A novel
framework for automated testing of Java programs. In
ASE, 2001.

[15] M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang,
and S. Malik. Chaff: Engineering an efficient SAT
solver. In DAC, 2001.

[16] B. C. Pierce. Basic Category Theory for Computer

Scientists. The MIT Press, Cambridge, MA, 1991.

[17] P. G. Selinger, M. M. Astrahan, D. D. Chamberlin,
R. A. Lorie, and T. G. Price. Access path selection in
a relational database management system. In
SIGMOD, 1979.

[18] E. Torlak and D. Jackson. Kodkod: A relational
model finder. In TACAS, 2007.

[19] S. Trujillo, D. Batory, and O. Diaz. Feature oriented
model driven development: A case study for portlets.
In ICSE, 2007.

528


