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Summary

In this paper we illustrate the usage of text mining workflows to automatically extract
instances of microorganisms and their habitats from free text; these entries can then be
curated and added to different databases. To this end, we use a Conditional Random Field
(CRF) based classifier, as part of the workflows, to extract the mention of microorganisms,
habitats and the inter-relation between organisms and their habitats.

Results indicate a good performance for extraction of microorganisms and the relation ex-
traction aspects of the task (with a precision of over 80%), while habitat recognition is only
moderate (a precision of about 65%). We also conjecture that pdf-to-text conversion can
be quite noisy and this implicitly affects any sentence-based relation extraction algorithms.

1 Introduction

Microorganisms play a significant role in symbiotic relationships with animal hosts ranging
from mutualism, commensalism to parasitism. To gain more insight into the mechanisms in-
volved in the host-microbe interactions, it is essential to be able to contrast genotypic features
of microorganisms from various sources where microbes live, including both host-associated
(from a range of hosts-microbes contexts) and various environmental niches [7]. To date, there
is no detailed data source for this information regarding habitat or isolation source of microor-
ganisms whose genome sequence data are available. GOLD [12] and NCBI [13] databases are
some of the most popular public resources where information describing taxa can be obtained
in a form of flat files.

Due to the large numbers of taxa for which genome sequence data are available, and their in-
crease on daily basis, there is an urgent need to be able to describe the habitat or isolation source
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for each taxon in an automated and consistent fashion. This issue was recently specifically
recognised by the “Minimal information about a Genome Sequence” (MIGS) specifications [8]
and a few papers have discussed this further or applied some initial approaches to address this
issue [9, 10]. In order to gather this scattered information, text-mining approaches are em-
ployed to extract metadata from the published literatures. Here, we present a biological use
case investigating the aspects of mapping habitat to microorganisms via the use of text-mining
techniques.

Extracting microorganisms and their habitats are just a part of the information-processing
paradigm that could involve several other stages.

We address two related issues in this paper:

1. How effective are the statistical approaches for extracting microorganisms and their habi-
tats?

2. Develop workflows to combine text processing, named entity recognition and relation-
mining

2 Related work

A number of investigators have worked on automatic entity extraction for the Biology domain.
Hanisch ef al. [1] have developed a system called ProMiner for identifying entities from sci-
entific literature. They have subsequently expanded this work for identifying proteins, genes
and diseases. Sasaki et al. developed a CRF based Named Entity Recogniser (NER), Nemine
that identifies genes and proteins using domain-specific dictionaries [4]. Using features such as
orthographic features, Part-of-Speech (POS) tags, dictionaries and contextual information an
F-score of 78.72% has been achieved. The same method has been adapted for the recognition
of metabolites (using the dictionary ChemSpider) achieving an F-score of 78.49% (precision
of 83.02%) [15]. Similar NER techniques have been deployed within the advanced search ser-
vice, KLEIO [22], at the National Centre for Text Mining, UK. KLEIO uses NER boosted
by including term variation (acronym detection) and normalisation (spelling variants). Collier
et al. have developed a system called Biocaster [5], which employs ontologies and rules to
support text mining to track public health rumours. Biocaster reported an F-score of 76.97%.
Ananiadou et al. have employed named entity recognisers for type IV secretion systems and
shown the applicability of statistical approaches for this domain [21]. They reported an F-score
of about 90% for named entity recognition for identification of bacteria.

3 Data

Since this task represents novel challenges for application of text mining, there were no prior
standard annotated corpora to serve as training data for machine learning algorithms or to pro-
vide a gold standard for evaluation. Furthermore, the types of relations and patterns of term
occurrence, in which we are interested, are not typically attested in the abstracts of the papers,
but only appear as part of the full text of the articles. Therefore, we developed new training and
evaluation corpus material for these concepts of interest, based on annotation of full papers. In
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the subsequent sections, we describe the criteria used while creating the corpus. In both classes
of entity, i.e., microorganisms and habitats, we followed a similar paradigm, employing inde-
pendent manual annotation of some amount of text and augmenting that material as necessary
through the use of an “accelerated annotation” (Acela) interface [18].

Acela iteratively and interactively trains a machine learning classifier to recognise a specific
concept or entity class, based on the current set of labelled examples, labels new example
sentences. These examples are then given to the human annotator for verification or correction.
In previous work [18], this approach has been shown to achieve full annotation coverage with
roughly 50% of the annotator effort, by focusing on only those sentences, which are most likely
to include items that need to be annotated.

3.1 Organism-habitat corpus

For this corpus, two classes of entities were annotated: microorganisms and habitats.

* Microorganisms: Scientic names of microorganisms, including bacteria, archaea and mi-
crobial eukaryotes, are annotated

1. If they are specified at least to the genus level of precision. Species, strain, and
serovar entries are also tagged, if they are present. Typical examples of microor-
ganisms are Campylobacter spp., Escherichia coli K12 and Trichomonas vaginalis.

2. If they are in sentences which contain habitat or isolation source information for the
organism.

* Habitats: Habitats or isolation sources of organisms, such as those stored in the GOLD
database [12], are tagged

1. If they are context-related or can be referred to as a habitat or isolation source of
an organism. For example, if they refer to a host organism (human, cow), a body
part or organ of a host organism (lung, gut,lung abscess), refer to an environmental
habitat (mine tailing, wastewater), or employ the adjectival forms of habitats listed
above (bovine, pulmonary, rumen).

2. If they are not associated directly with disease e.g. diarrhea, respiratory tract infec-
tion.

3. If they are in sentences, which contain the organism associated with the habitat.
A fully annotated sentence with organism and habitat information is shown here

Bacteroides salyersae sp. nov. isolated from clinical specimens of human intestinal
origin.

An example of the exclusion criterion for organism annotation appears in the sentence below,

where Campylobacter is not tagged because the sentence lacks correct context; there is no
habitat information.

The Campylobacter species were all isolated anaerobically and identified by se-
quencing analysis of the 16S rRNA gene.
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Table 1: Corpus statistics for Newcastle Organism-Habitat data

Microorganisms | Habitats
Annotated sentences 1418 1609
Tokens (words) 57020 57020
Tagged Tokens 40349 47393
Tokens Entities 921 875
Tagged tokens (within the entities) | 1951 1201
Estimated coverage 99.8% 99.4%

3.2 Corpus statistics

Here, the corpus was seeded with a set of annotated excerpts from 22 full papers that specified
organisms and habitats, drawn from a bibliography provided by a domain expert. An additional
set of 10 full text documents from the same expert was employed in the accelerated annotation
process. Annotator instances for the two classes, microorganism and habitat, were created.
An expert annotator then interactively applied the annotation interface to label instances until
an estimated coverage over 99% was achieved. Estimated coverage is a ratio of number of
manually annotated entities to the total number of entities as expected by the CRF classifier.
See [18] for details. Detailed statistics for the resulting corpus are presented in Table 1.

4 Our approach

In this paper, we address the issue of automatically extracting different organisms, their habitats
and the inter-relation from free literature. We employ workflows using text-mining tools for
identification of organisms and habitats. We have used U-Compare [3] to design a workflow to
build a named entity recogniser to accept plain text or a pdf. This workflow can be run both
in the U-Compare environment as a stand-alone or as part of Taverna workflow management
system [2]. Figure 1 shows the schematics view of our workflow.

p
) » Habitats &
organisms

e Free text

articles e Organisms

* pdf « Habitats

\

Figure 1: Overview of our approach.

The pdf-to-text converter component of the workflow was built on the application programming
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interface (API) provided by the Apache group [19]. The component reads individual file and
converts into to raw text.

The workflow implementing the named entity recogniser employs conditional random fields,
CRFs [6] using a combination of dictionary (NCBI/habitat list) features, lexical features, or-
thographic features and contextual features. CRFs are a type of discriminative and undirected
probabilities graphical models often used for tagging sequential data and in named entity recog-
nition in natural language processing and biology domains [16, 17]. In our implementation, we
use the Mallet [23] implementation of CRFs with lexical and orthographic features to train the
CRF model. We have also employed two dictionaries that were tailored to the task from a
combination of established and curated domain ontologies and term lists provided by domain
experts.

4.1 Resources

* Microorganism Resources Two large-scale resources for scientic names for microor-
ganisms were used:

1. Microorganisms’ scientific names from NCBI taxonomy including bacteria, ar-
chaea, microbial eukaryote (http://ncbi.nlm.nih.gov/taxonomy)

2. List of Prokaryotic names and microbial eukaryotes with Standing in Nomenclature
(LPSN) (http://www.bacterio.net)

The bacterial names from these resources were converted to a set of standardised forms to
cover typical variability for these terms including the common abbreviation of the genus
term, removal of species, strain, or serovar components, removal of tags such as ‘subsp.’,
‘str.’, ‘strain’, etc., and generation of plural forms for genus terms. The resulting term

list comprises 52715 entries for 12256 distinct organisms.

* Habitat Resources A key source of habitat terms is the GOLD [12] database, which in-
cludes 135 habitat types. After some simple normalisation to enhance matching between
the terms and running text, the specific dictionary was further enhanced with names of
animals (169306 entries, 166244 head terms) and body parts and organs (120668 entries,
56578 head terms) extracted from the UMLS Metathesaurus [14].

4.2 Features for the CRF model

These experiments incorporate three main sets of base features, inspired by previous research
in biomedical NER [4].

* Lexical features are current word, the root form of the current word, and the part-of-
speech tag of the current word, computed by the Genia tagger [24].

* Orthographic features are made up of substring and word form features. In the word form
features, all uppercase letters are converted to ‘A’, lowercase to ‘a’, and all numbers to
‘0’. The first two & four characters and the last two & four characters of the original
word and the word form are chosen as features.
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* Dictionary features are binary features to indicate the presence of the word in the dictio-
nary and the position of the word within any dictionary entries.

For each of the base features, corresponding features for words within a context window are
added to the representation. The window ranges from 1-3 words preceding and following the
current word.

4.3 Hybrid Dictionary-Machine Learning Based Approach

For entity recognition, we used the CRF based approach. The current approach employs a
sequence classifier, trained on a hand-annotated corpus, which was converted to a standard BIO
(Begin of a sequence, Inside a sequence, Outside a sequence) format. This corpus consisted
of 32 full papers from various journals and was specifically annotated for microorganisms and
habitats. The CRFs were employed with a linear chain model.

4.4 Machine Learning Approach for Relation mining workflows

The main focus of this experiment was to elicit the sentences containing a microorganism-
habitat relation from free-text, typically in a pdf-format.

The workflow had three principal components, as shown in Figure 1:

1. PDF-to-text convertor: this component was based on Apache’s pdfbox API. It converts
each pdf into a stream of text into a Java String object.

2. Named entity recogniser, as described in the earlier section: input from this component
was used to populate the feature-space for CRF component.

3. CRF-component for building a bespoke relation mining apparatus

Relation mining workflow was based on a CRF model trained on co-occurrence of microorgan-
isms and their habitats, thus modelling the relation between a microorganism and its habitat.
Just as for the named entity recognition experiments described in earlier sections, Mallet [23]
implementation was used for these experiments with a feature-space designed for sentences
extraction.

4.5 Features for Relation mining CRF component

These experiments incorporate two main sets of base features

» Entity occurrence in a sentence 1.e. if a sentence had any organism or habitat

* Contextual information (the word preceding the entity and the word following it) around
the occurred entities
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Table 2: Performance of CRF and dictionary-based approaches

Microorganisms Habitats
P (precision) | R (recan) | F(psoe) | P | R | F
Dictionary | 54 75 63 58 | 55|56
CRF 84 79 81 68 | 50 | 57

5 Results & Discussion

5.1 Dictionary-based & CRF approaches

First, we consider the contrast between recognition accuracy for the systems employing the
CREF with all features trained on the annotated corpora with the recognition accuracy obtained
using a simple, longest match strategy using dictionary resources. The results are shown in
Table 2.

We can observe that the results range from F-score of 56% to 63% for dictionary-based ap-
proaches and from 57% to 81% for machine learning based methods, using all features. These
figures show some interesting contrasts. For microorganism tagging, the CRF approach out-
performs the dictionary. While recall remains good for the dictionary-based approach, the
precision is on 54%. In other words, the dictionary-based approach had a high number of false
positives. The precision improved to 84% in the CRF set up; even though the recall is not very
different from the dictionary-based approach.

Furthermore, the habitat annotation task is shown to be particularly challenging. Several factors
such as a very broad class definition spanning animals, anatomy, environment and adjectival
forms thereof, in conjunction with the restriction to organismal contexts and a lack of explicit
word-morphologies restrict the CRF-based approach.

5.2 Hybrid CRF

As can be seen from Table 3, the hybrid classifier has achieved an F-score of about 80% and
60% for Organisms and Habitats respectively on a 9-fold cross validation.

As a general observation, microorganisms had a distinct attributes: word shape features, such
as upper case letters, a subtle pattern in names such as “ccus” or “cci” etc. The current features
that we have used, could model the microorganisms well and an F-Score of 81 is an indicative
of this success. Typical false negatives include hyphenated words such as “B. taylorii-like” and
partial names such as “M. succiniciproducens” of the complete name “M. succiniciproducens
MBELSSE (KCTC 0769BP)”.

Habitats, on the other hand, seemed to lack any such explicit attributes making them more
difficult to model. There were quite a few false negatives such as water, skin, abcess etc. We
conjecture that perhaps more training data (we used only 850 training instances of habitats for
the experiments discussed here) could certainly help alleviate such false negatives. We are also
currently exploring widening our feature-space by including deeper semantic information such
as parse-tree information to enhance the performance of habitat recognition.
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Table 3: Performance of our approach
Class of entities | Precision (%) | Recall (%) | F-score (%)
Microorganism | 84 79 81
Habitats 68 50 57

Table 4: Performance of relation extraction approach

Precision (%) | Recall (%) | F-score(%)
Relations | 85 49 57

6 Relation mining

The relation mining classifier achieved a precision of about 85% and a recall of less than 50%
(Table 4). We conjecture that slightly below par performance of habitats was partly accounted
for by the contextual features as a result of which the precision was not proportional to the
individual precisions of microorganisms and habitats. One of the important factors for the
number of false negatives is the noise generated from pdf-text conversion. Typical examples
of “corrupted” sentences include those where sentence boundaries could not be identified auto-
matically and therefore had more noisy features. This could have had an impact on the perfor-
mance. A typical example of corrupted sentence is a journal title concatenating with the title of
the paper is shown here (taken from [25])

“Biometrika 40:237-264 Hallberg KB, Johnson DB (2003) Novel acidophiles iso-
lated from moderately acidic mine drainage waters.”

And another example where the caption of a figure and some text from the figure itself are
combined with the text from [26] is shown here:

“These mechanisms may have evolved in bacterial pathogens to increase the fre-
quency of phenotypic variation in genes involved in 1 100,000 200,000 300,000
1,600,00 Figure 2 Circular representation of the H. pylori 26695 chromosome.”

Clearly, any paradigm that extracts sentences will be affected by such erroneous conversion.
There are several softwares which convert a pdf-document to text such as Apache’s pdfbox [19],
Utopia [20] and Unix command “pdftotext”. But all of them have the same problems in dealing
with tables and figures in pdfs, which result in such noise. We are currently working eliminating
some of the erroneous sentences using statistical methods such as language modelling. We are
also working on using parsers to eliminate some of HTML-related noise such as captions and
headers etc.

Another factor that we could identify for the lower recall was the below par performance of the
habitat recognition by the automatic named entity recognisers.

6.1 A toy example

Consider a small excerpt about Acinetobacter species [27]
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“Acinetobacter spp are widely distributed in nature and soil. Most infections occur
in immunocompromised individuals, and the strain Acinebacter baumannii is the
second most commonly isolated nonfermenting bacteria in human specimens. It
can survive on the human skin or dry surfaces for weeks.”

[ interactive_temp.txt.xmi E ]

Other Annotations n ; 5 E— N
) Font: Print As: Ao ) (anon)

SourceDocumentinformation Couri = | |~ N N ~ S
CoveredText Acinetobac \L] G0 -ps _png ) (_print.. } ™ orG
DocumentSize 295
LastSegment true Show /Hida M Sentence
OffsetinSource 0 Click underlined sections below to display annotation details. M HAR
Urifile: fUser Acinetobacter spp are widely distributed in nature and seil . Most
DocumentAnnotation infeetions oceur in immunocompromised individuals, and the strain
CoveredText Acinetobac.
Language US_en Acinebacter baumannii is the second most commonly isolated nonfer

menting bacteria in human specimens. It can survive on the human s

kin or dry surfaces for weeks.

Figure 2: The result of our workflow on extraction of microorganisms and habitats in U-Compare

Figure 2 shows the result of our text-mining workflow on this excerpt. All the microorganisms
are underlined in red, the habitats are underlined in green and the relation-indicating sentences
are underlined in yellow. The workflow underlines sentences in yellow if and only if it contains
both microorganisms and their habitats, thus highlighting host-associated habitats from non-
host-associated ones.

7 Conclusion

As can be inferred from the results, the workflows that we have developed achieve a reasonable
accuracy that makes them likely candidates to be ported for other databases and similar applica-
tions. We are planning to implement this workflow to curate a microorganism-habitat database.
As the workflows are inter-operable as sub-workflows in Taverna [2], we hope the scientific
community at large, and biologists in particular, can make use of them for their respective
research projects.
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