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Abstract

Recent work of Eliahou, Kauffmann and Thistlethwaite suggests the use of
braid actions to alter a link diagram without changing the Jones polynomial.
This technique produces non-trivial links (of two or more components) having
the same Jones polynomial as the unlink. In this paper, examples of distinct
knots that can not be distinguished by the Jones polynomial are constructed
by way of braid actions. Moreover, it is shown in general that pairs of knots
obtained in this way are not Conway mutants, hence this technique provides
new perspective on the Jones polynomial, with a view to an important (and
unanswered) question: Does the Jones polynomial detect the unknot?
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Chapter 1

Introduction

The study of knots begins with a straight-forward question: Can we distinguish
between two closed loops, embedded in three dimensions? This leads naturally
to a more general question of links, that is, the ability to distinguish between
two systems of embedded closed loops. Early work by Alexander [1, 2], Artin [3,
4], Markov [24] and Reidemeister [29] made inroads into the subject, developing
the first knot and link invariants, as well as the combinatorial and algebraic
languages with which to approach the subject. The subtle relationship between
the combinatorial and algebraic descriptions continue to set the stage for the
study of knots and links.

With the discovery of the Jones polynomial [15] in 1985, along with a two
variable generalization [12] shortly thereafter, the study of knots was given
new focus. These new polynomial invariants could be viewed as combinatorial
objects, derived directly from a diagram of the knot, or as algebraic objects,
resulting from representations of the braid group. However, although the new
polynomials were able to distinguish between knots that had previously caused
difficulties, they led to new questions in the study of knots that have yet to be
answered.

In particular, we are led to the phenomenon of distinct knots having the same
Jones polynomial. There are many examples of families of knots that share
common Jones polynomials. Such examples have given way to a range of tools
to describe this occurrence [30, 31]. In particular, it is unknown if there is a
non-trivial knot that has trivial Jones polynomial. This question motivates the
understanding of knots that cannot be distinguished by the Jones polynomial,
as well as the development of examples of such along with tools to explain
the phenomenon. The prototypical method for producing two knots having

1



Chapter 1. Introduction 2

the same Jones polynomial is known as Conway mutation. However, it is well
known that this method will not alter an unknot to produce a non-trivial knot.

Recent work of Eliahou, Kauffman and Thistlethwaite [9] suggests the use
of braid group actions in the study links having the same Jones polynomial.
Revisiting earlier work of Kanenobu [18], new families of knots are described in
this work. Once again, there is a subtle relationship between the combinatorics
and the algebra associated with such examples. As a result, the study of knots
obtained through braid actions can be restated in terms of fixed points of an
associated group action.

The study of this braid action certainly merits attention, as the work of Eli-
ahou, Kauffman and Thistlethwaite [9] explores Thistletwaite’s discovery [33]
of links having the trivial Jones polynomial, settling the question for links
having more than one component. As a result, only the case of knots is left
unanswered as of this writing.

This thesis is a study of families of knots sharing a common Jones polynomial.
In chapter 1 the classical definitions and results of knot theory are briefly
reviewed, developing the necessary background for the definitions of the Jones,
Alexander and HOMFLY polynomials in chapter 2. Then, in chapter 3, the
linear theory of tangles (due to Conway [8]) is carefully reviewed. Making use
of this linear structure, we define a new form of mutation by way of an action
of the braid group on the set of tangles.

The main results of this work are contained in chapter 5. We produce exam-
ples of distinct knots that share a common Jones polynomial, and develop a
generalization of knots due to Kanenobu [18]. Moreover, it is shown (theorem
5.3) that knots constructed in this way are not related by Conway mutation.
We conclude by restating the results of Eliahou, Kauffman and Thistlethwaite
[9] in light of this action of the braid group, giving examples of non-trivial
links having trivial Jones polynomial in chapter 6.



Chapter 2

Knots, Links and Braids

2.1 Knots and Links

A knot K is a smooth or piecewise linear embedding of a closed curve in a
3-dimensional manifold. Usually, the manifold of choice is either R3 or S3, so
that the knot K may be denoted

S
1 ↪→ R

3 ⊂ S
3.

While it is important to remember that we are dealing with curves in 3-
dimensions, it is difficult to work with such objects. As a result, we deal
primarily with a projection of a knot to a 2-dimensional plane called a knot
diagram. In this way a knot may be represented on the page as in figure 2.1.

Figure 2.1: Diagrams of the Trefoil Knot

In such a diagram the indicates that the one section of the knot (the

broken line) has passed behind another (the solid line) to form a crossing.
In general there will not be any distinction made between the knot K and a
diagram representing it. That is, we allow a given diagram to represent a knot

3



Chapter 2. Knots, Links and Braids 4

and denote the diagram by K also. It should be pointed out, however, that
there are many diagrams for any given knot. Indeed, K and K ′ are equivalent
knots (denoted K ∼ K ′) if they are related by isotopy in S

3. Therefore, the
diagrams for K and K ′ may be very different.

An n-component link is a collection of knots. That is, a link is a disjoint union
of embedded circles

n∐

i=1

S
1
i ↪→ R

3 ⊂ S
3

where each
S

1
i ↪→ R

3 ⊂ S
3

is a knot. Of course, a 1-component link is simply a knot, and a non-trivial
link can have individual components that are unknotted.

Figure 2.2: The Hopf Link

To study links by way of diagrams, it is crucial to be able to alter a link
diagram in a way that reflects changes in the link resulting from isotopy in S3.
To this end, we introduce the Reidemeister Moves defined in [28, 29].

∼ ∼ (R1)

∼ ∼ (R2)

∼ (R3)

In each of the three moves, it is understood that the diagram is unchanged
outside a small disk inside which the move occurs.

Theorem (Reidemeister). Two link diagrams represent the same link iff the
diagrams are related by planar isotopy, and the Reidemeister moves.
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Assigning an orientation to each component of a link L gives rise to the oriented
link ~L.

Definition 2.1. Let C be the set of crossings of a diagram L. The writhe of
an orientation ~L is obtained taking a sum over all crossings C

w(~L) =
∑

c∈C

w(c)

where w(c) = ±1 is determined by a right hand rule as in

w
( )

= 1 and w
( )

= −1.

While writhe is not a link invariant, it does give rise to the following definition.

Definition 2.2. For components L1 and L2 of L let C′ ⊂ C be the set of
crossings of L formed by the interaction of L1 and L2. The linking number of
L1 and L2 is given by

lk(L1, L2) =
∑

c∈C′

w(c)

2
.

The linking number is a link invariant. Note that, for the Hopf link of figure
2.2, there are two distinct orientations. One orientation has linking number 1,
the other linking number −1 and hence there are two distinct oriented Hopf
links.

2.2 Braids

There are many equivalent definitions of braids (see [6], [10], [27]). In this
setting it is natural to start from a geometric point of view.

Let E ⊂ R3 denote the yz-plane and let E ′ denote its image shifted by 1 in
the x direction. Consider the the collection of points

P = {1, . . . , n} = {(0, 0, 1), . . . , (0, 0, n)} ⊂ E

and denote by
P ′ = {(1, 0, 1), . . . , (1, 0, n)}

the image of P in E ′.
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Definition 2.3. A (n-strand) braid is a collection of embedded arcs (or strands)

αi : [0, 1] ↪→ [0, 1] × E ⊂ R
3

such that

(a) αi(0) = i ∈ P

(b) αi(1) ∈ P ′

(c) αi ∩ αj = ∅ as embedded arcs for i 6= j.

(d) αi is monotone increasing in the x direction.

As with knots, it will be convenient to consider the diagram of a braid by
projecting to the xy-plane. Also, we may consider equivalence of braids via
isotopy (through braids), although we will confuse the notion of a braid and
its equivalence class.

In [3, 4] Artin showed that there is a well defined group structure for braids.
The identity braid is represented by setting each arc to a constant map αi(x) =
(x, 0, i) so that each strand is a straight line. Multiplication of braids is defined
by concatenation, so that inverses are constructed by reflecting in the xz-plane.

The n-strand braid group has presentation

Bn =

〈
σ1 . . . σn−1

∣∣∣∣∣
σiσj = σjσi |i − j| > 1

σiσjσi = σjσiσj |i − j| = 1

〉

where the generators correspond to a crossing formed between the i and i+1
strand as in figure 2.3.

Just as group elements are formed by words in the generators, a braid diagram
for a given element can be constructed by concatenation of braids of the form
shown in figure 2.3.

If E and E′ of an n-strand braid are identified so that P = P ′ pointwise, the
result is a collection of embeddings of S1 in R3 and we obtain a link.

Given any braid β we can form a link β̄ by taking the closure in this way. It is
a theorem of Alexander [1] that every link arises as the closure of some braid.
Given a link diagram L, it is always possible to construct a braid β such that
β̄ = L. Two such constructions (there are many) are due to Morton [26] and
Vogel [34].
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Figure 2.3: The braid generator σi and its inverse
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Figure 2.4: The link β̄ formed from the closure of β.

Now it should be noted that the group operation

σiσ
−1
i = 1 = σ−1

i σi

corresponds exactly to the Reidemeister move R2, while the group relation

σiσjσi = σjσiσj

corresponds to the Reidemeister move R3. This suggests the possibility of
studying equivalence of links through braid representatives. To this end we
define the Markov moves. Suppose β ∈ Bn and write β = (β, n). Then

(β1β2, n) ∼M (β2β1, n) (M1)

(β, n) ∼M (βσ±1
n , n+1) (M2)

where ∼M denotes Markov equivalence. The following theorem, due to Markov
[24], is proved in detail in [6].

Theorem (Markov). Two links β̄1 and β̄2 are equivalent iff β1 ∼M β2.



Chapter 3

Polynomials

3.1 The Jones Polynomial

Define the Kauffman bracket 〈L〉 of a link diagram L recursively by the axioms
〈 〉

= 1 (3.1)

〈 〉
= a

〈 〉
+ a−1

〈 〉
(3.2)

〈
L t

〉
= δ

〈
L

〉
(3.3)

where a is a formal variable and

δ = −a−2 − a2

so that 〈L〉 is an element of the (Laurent) polynomial ring Z[a, a−1]. In some
cases a is specified as a non-zero complex number, in which case 〈L〉 ∈ C.

The Kauffman bracket is invariant under the Reidemeister moves R2 and R3.
To get invariance under R1, we recall definition 2.1 for the writhe of an orien-
tation ~L of the diagram L. The writhe of a crossing is ±1 and is determined
by a right hand rule. That is

w
( )

= 1 and w
( )

= −1

so that w(~L) ∈ Z. Now

−a−3w(~L)〈L〉 ∈ Z[a, a−1]

is invariant under R1 and gives rise to an invariant of oriented links.

8
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Definition 3.1. The Jones Polynomial [15, 19] is given by

V~L(t) = −a−3w(~L)〈L〉
∣∣∣
a=t−

1
4

where t is a commuting variable.

Note that it will often be convenient to work with t = a−4, and the polynomial
obtained through this substitution will be referred to as the Jones Polynomial
also.

As we shall see, there are many examples of distinct links having the same
Jones Polynomial. However, the following is still unknown:

Question 3.2. For a knot K, does V ~K(t) = 1 imply that K ∼ ?

3.2 The Alexander Polynomial

For any knot K, let F be an orientable surface such that ∂F = K. Such a
surface always exists [32], and is called a Seifert surface for the link K. The
homology of such a surface is given by

H1(F, Z) =
⊕

2g

Z

where g is the genus of the surface F . Let {ai} be a set of generators for
H1(F, Z) where i ∈ {1, . . . , 2g} .

Let
D2 = {z ∈ C : |z| < 1}

and consider a tubular neighborhood N (K) ∼= K ×D2 of the link K. That is,
an embedding

S
1 × D2 ↪→ S

3

such that K is the restriction to S1 × {0}.
Now consider the surface F in the complement X = S3 r N (K). Here F is
being confused with its image in the compliment X, by abuse. For a regular
neighborhood

F × [1, 1] ⊂ S
3
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there are natural inclusions

i± : F ↪→ F × {±1}
where F = F ×{0} is the Seifert surface in X. Therefore a cycle x ∈ H1(F, Z)
gives rise to a cycle x± = i±? (x) ∈ H1(X, Z).

Definition 3.3. The Seifert Form is the bilinear form

v : H1(F, Z) × H1(F, Z) → Z

(x, y) 7→ lk(x, y+)

and it is represented by the Seifert Matrix

V =
(
lk(ai, a

+
j )
)

where y+ = i+? (y).

The aim is to construct X̃, the infinite cyclic cover [25, 32] of the knot com-
plement X = S3 rN (K). To do this, start with a countable collection {Xi}i∈Z

of
Xi = X r (F × (−ε, ε))

for some small ε ∈ (0, 1). The boundary of this space contains two identical
copies of F denoted by

F± = F × {±ε},
and the infinite cyclic cover of X is defined

X̃ =

⋃
i∈Z

Xi

/

F+
i ∼ F−

i+1

by identifying F +
i ⊂ ∂Xi with F−

i+1 ⊂ ∂Xi+1 for each i ∈ Z.

The space obtained corresponds to the short exact sequence

1 // π1X̃
// π1X // H1(X, Z) // 0

α � // lk
(
α, ~K

)

so that the infinite cyclic group H1(X, Z) = 〈t〉 gives the covering translations
of X̃ ↘X. Now H1(X̃, Z), although typically not finitely generated as an
abelian group, is finitely generated as a Z[t, t−1]-module by the {ai}. The
variable t corresponds to the 〈t〉-action taking Xi to Xi+1.
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Definition 3.4. H1(X̃, Z) is called the Alexander module and has module
presentation V − tV >, where V is the Seifert matrix. This is a knot invariant.

This gives rise to another polynomial invariant due to Alexander [2].

Definition 3.5. The Laurent polynomial

∆K(t)
.
= det(V − tV >) ∈ Z[t, t−1]

is an invariant of the knot K called the Alexander polynomial. It is defined
up to multiplication by a unit ±t±n (indicated by

.
=).

This knot invariant is of particular interest due to this topological construction.

Question 3.6. Is there a similar topological interpretation for the Jones poly-
nomial?

On the other hand, it is easy to generate knots K such that ∆K(t) = 1 (see
for example, [32]).

Theorem 3.7. For any knot K, ∆K(t)
.
= ∆K(t−1).

proof. Given the n × n Seifert matrix V,

∆K
.
= det(V − tV >)

= det(V > − tV )

= (−t)n det(V − t−1V >)
.
= ∆K(t−1).

Theorem 3.8. For any knot K, ∆K(1) = ±1.

proof. Setting t = 1 and using the standard (symplectic) basis for H1(F, Z)
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gives

V − V > =
(
lk(ai, a

+
j ) − lk(aj , a

+
i )
)

=
(
lk(ai, a

+
j ) − lk(a−j , ai)

)

=
(
lk(ai, a

+
j ) − lk(ai, a

−

j )
)

=




0 1
−1 0

0 1
−1 0

. . .

0 1
−1 0




therefore
∆K(1) = ±det(V − V >) = ±1.

Corollary 3.9. For any knot K

∆K(t)
.
= c0 + c1(t

−1 + t1) + c2(t
−1 + t1)2 + · · ·

where ci ∈ Z.

proof. The symmetry given by ∆K(t)
.
= ∆K(t−1) gives rise to the form

∆K(t)
.
=

m∑

k=0

bkt
k

where cm−r = ±cr, and the same choice of sign is made for each r. Now m

must be even, since m odd gives rise to ∆K(1) even, contradicting theorem
3.8. Further, if cm−r = −cr then cm/2 = 0 and

∆K(1) =

m∑

k=0

bk = 0,

again contradicting theorem 3.8. Therefore cm−r = cr, and

∆K(t)
.
= c0 + c1(t

−1 + t1) + c2(t
−1 + t1)2 + · · ·

as required.
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We will see the form given in corollary 3.9 in the next section. Together with
the normalization ∆K(1) = 1, it is sometimes referred to as the Alexander-
Conway polynomial as it has a recursive definition, originally noticed by Alexan-
der [2] and later exploited by Conway [8].

It should be noted that there are generalizations of this construction to invari-
ants of oriented links that have been omitted. Nevertheless, we shall see that
the recursive definition of ∆K(t) is defined for all oriented links.

3.3 The HOMFLY Polynomial

A two variable polynomial [12, 16] that restricts to each of the polynomials
introduced may be defined, albeit by very different means.

The n-strand braid group Bn generates a group algebra Hn over Z[q, q−1] which
has relations

(i) σiσj = σjσi for |i − j| > 1

(ii) σiσjσi = σjσiσj for |i − j| = 1

(iii) σ2
i = (q − 1)σi + q ∀ i ∈ {1, . . . , n−1}

called the Hecke algebra. By allowing q to take values in C, Hn can be seen
as a quotient of the group algebra CBn. Just as

{1} < B2 < B3 < B4 < · · ·

we have that
Z[q, q−1] ⊂ H2 ⊂ H3 ⊂ H4 ⊂ · · · .

Note that for q = 1, the relation (iii) reduces to σ2
i = 1 and we obtain the

relations for the symmetric group Sn.

Definition 3.10. Sets of positive permutation braids may be defined recur-
sively via

Σ0 = {1}
Σi = {1} ∪ σiΣi−1 for i > 0.

A monomial m ∈ Hn is called normal if it has the form

m = m1m2 . . . mn−1

where mi ∈ Σi.
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The normal monomials form a basis for Hn, and it follows that

dimZ[q,q−1](Hn) = n!.

Moreover, this basis allows us to present any element of Hn+1 in the form

x1 + x2σnx3

for xi ∈ Hn. The relation (i) implies that

xσn = σnx

whenever x ∈ Hn−1, giving rise to the decomposition

Hn+1
∼= Hn ⊕

(
Hn ⊗Hn−1

Hn

)
.

Now we define a linear trace function

tr : Hn −→ Z[q±1, z]

σi 7−→ z

that is normalized so that tr(1) = 1.

Theorem 3.11. tr(x1x2) = tr(x2x1) for xi ∈ Hn.

proof. By linearity, it suffices to show that tr(m1m2) = tr(m2m1) for nor-
mal monomials mi ∈ Hn. Since the theorem is clearly true for the normal
monomials of H2, we proceed by induction.

Suppose first that m1 = m′
1σnm′′

1 where m′
1,m

′′
1 ∈ Hn and m2 ∈ Hn (that is,

m2 contains no σn). Then

tr(m1m2) = tr(m′
1σnm′′

1m2)

= z tr(m′
1m

′′
1m2)

= z tr(m2m
′
1m

′′
1) by induction

= tr(m2m
′
1σnm′′

1)

= tr(m2m1).

Now more generally write

m1 = m′
1σnm′′

1 and m2 = m′
2σnm′′

2

where m′
i,m

′′
i ∈ Hn. In this case we will make use of the following:
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(1) tr(µ1σnµ2σn) = tr(σnµ1σnµ2)

(2) tr(µ1σnµ2σnµ3) = tr(µ3µ1σnµ2σn)

where µi ∈ Hn are in normal form so that µi = µ′
iσn−1µ

′′
i with µ′

i, µ
′′
i ∈ Hn−1.

(1)

tr(µ1σnµ2σn) = tr(µ1σnµ′
2σn−1µ

′′
2σn)

= tr(µ1µ
′
2σnσn−1σnµ′′

2) using (i)

= tr(µ1µ
′
2σn−1σnσn−1µ

′′
2) using (ii)

= z tr(µ1µ
′
2σ

2
n−1µ

′′
2)

= z tr(µ1µ
′
2[(q − 1)σn−1 + q]µ′′

2) using (iii)

= z(q − 1) tr(µ1µ
′
2σn−1µ

′′
2) + zq tr(µ1µ

′
2µ

′′
2)

= z(q − 1) tr(µ1µ2) + zq tr(µ′
1σn−1µ

′′
1µ

′
2µ

′′
2)

= z(q − 1) tr(µ1µ2) + zq tr(µ′
1µ

′′
1µ

′
2σn−1µ

′′
2) induction

= z(q − 1) tr(µ1µ2) + zq tr(µ′
1µ

′′
1µ2)

= z tr(µ′
i[(q − 1)σn−1 + q]µ′′

1µ2)

= z tr(µ′
1σ

2
n−1µ

′′
1µ2) using (iii)

= tr(µ′
1σn−1σnσn−1µ

′′
1µ2)

= tr(µ′
1σnσn−1σnµ′′

1µ2) using (ii)

= tr(σnµ′
1σn−1µ

′′
1σnµ2) using (i)

= tr(σnµ1σnµ2)

(2)

tr(µ1σnµ2σnµ3)

= tr(µ1µ2σnµ3σn) applying (1)

= tr(µ1µ2σnµ′
3σn−1µ

′′
3σn)

= z tr(µ1µ2µ
′
3σ

2
n−1µ

′′
3) as above

= z(q − 1) tr(µ1µ2µ
′
3σn−1µ

′′
3) + zq tr(µ1µ2µ

′
3µ

′′
3) using (iii)

= z(q − 1) tr(µ′
3σn−1µ

′′
3µ1µ2) + zq tr(µ′

3µ
′′
3µ1µ2) induction

= z tr(µ′
3σ

2
n−1µ

′′
3µ1µ2) using (iii)

= tr(σnµ′
3σn−1µ

′′
3σnµ1µ2) as above

= tr(σnµ3σnµ1µ2)

= tr(µ3µ1σnµ2σn) applying (1)
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Now the proof is complete, since

tr(m1m2) = tr(m′
1σnm′′

1m
′
2σnm′′

2)

= tr(m′′
2m

′
1σnm′′

1m
′
2σn) by (2)

= tr(σnm′′
2m

′
1σnm′′

1m
′
2) by (1)

= tr(m′
2σnm′′

2m
′
1σnm′′

1) by (2)

= tr(m2m1).

Now since elements of Hn+1 are of the form x1 + x2σnx3 where xi ∈ Hn, the
trace function may be extended from Hn to Hn+1 by

tr(x1 + x2σnx3) = tr(x1) + z tr(x2x3).

The aim is to use the trace function to define a link invariant. In particular
we would like to make use of this trace on braids in the composite

Bn −→ Hn −→ Z[q±1, z].

To do this, we introduce a change of variables λ = w
qz where

z = − 1 − q

1 − λq
and w = −λq(1 − q)

1 − λq

so that

λ =
1 − q + z

zq
.

Definition 3.12. The HOMFLY polynomial is given by

Xβ̄(q, λ) =

(
− 1 − λq√

λ(1 − q)

)n−1 (√
λ
)e

tr(β)

where β ∈ Bn is a monomial in Hn and e = e(β) is the exponent sum of β

(equivalently, the abelianization Bn → Z).

Note that the closure of the identity braid in Bn gives the n component unlink

· · ·
︸ ︷︷ ︸

n
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and the HOMFLY polynomial for this link is given by

(
− 1 − λq√

λ(1 − q)

)n−1

. (3.4)

Theorem 3.13. Let β̄ = L then XL(q, λ) ∈ Z

[
q±1,

(√
λ
)±1

]
is a link invari-

ant.

proof. By Markov’s theorem, we need only check that XL(q, λ) is invariant
under M1 and M2. The fact that tr(β1β2) = tr(β2β1) from Theorem 3.11 gives
invariance under M1, so it remains to check invariance under M2. Suppose
then that β ∈ Bn. With the above substitution we have

tr(σn) = − 1 − q

1 − λq

so that

Xβσn
(q, λ) =

(
− 1 − λq√

λ(1 − q)

)n (√
λ
)e+1

tr(βσi)

=
√

λ

(
− 1 − λq√

λ(1 − q)

)(
− 1 − q

1 − λq

)
Xβ̄(q, λ)

= Xβ̄(q, λ).

Further, from (iii) we can derive

σ2
i = (q − 1)σi + q

σi = (q − 1) + qσ−1
i

qσ−1
i = σi + 1 − q

σ−1
i = q−1σi + q−1 − 1
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hence

tr(σ−1
i ) = tr(q−1σi + q−1 − 1)

= q−1 tr(σi) + q−1 − 1

= q−1

(
− 1 − q

1 − λq

)
+ q−1 − 1

= q−1

(
− 1 − q

1 − λq
+ 1

)
− 1

= q−1

(−1 + q + 1 − λq

1 − λq

)
− 1

=
1 − λ − 1 + λq

1 − λq

= −λ
1 − q

1 − λq
.

Thus

X
βσ−1

n

(q, λ) =

(
− 1 − λq√

λ(1 − q)

)n (√
λ
)e−1

tr(βσ−1
1 )

=
1√
λ

(
− 1 − λq√

λ(1 − q)

)(
−λ

1 − q

1 − λq

)
Xβ̄(q, λ)

= Xβ̄(q, λ)

and Xβ̄(q, λ) is a link invariant.

Both the single variable polynomials may be retrieved from the HOMFLY
polynomial via the substitutions

VL(t) = XL(t, t)

∆L(t)
.
= XL

(
t, t−1

)
.

Another definition of the HOMFLY polynomial is possible. For β ∈ Bn suppose
that L = β̄, oriented so that the generator σi is a positive crossing (that is,
w(σi) = 1). Suppose that β contains some σi

1 and write

β = γ1σiγ2

1a similar construction is possible for σ−1

i
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for γi ∈ Bn. By applying M1 we can define

L ∼ L0 = γσi

where γ = γ1γ2. Let
L+ = γσ2

i and L− = γ̄.

The relation (iii) gives
γσ2

i = (q − 1)γσi + qγ

so that
tr(γσ2

i ) − q tr(γ) = (q − 1) tr(γσi).

Let e = e(γ) be the exponent sum of γ. Then

1√
q
√

λ
X

γσ2
i

−
√

q
√

λXγ̄

=
1√
q
√

λ

(
− 1 − λq√

λ(1 − q)

)n−1 (√
λ
)e+2

tr(γσ2
i )

−
√

q
√

λ

(
− 1 − λq√

λ(1 − q)

)n−1 (√
λ
)2

tr(γ)

=

(√
λ
)e+1

√
q

(
− 1 − λq√

λ(1 − q)

)n−1 (
tr(γσ2

i ) − q tr(γ)
)

=

(√
λ
)e+1

√
q

(
− 1 − λq√

λ(1 − q)

)n−1

((q − 1) tr(γσi))

=

(√
q − 1√

q

)(
− 1 − λq√

λ(1 − q)

)n−1 (√
λ
)e+1

tr(γσ1)

=

(√
q − 1√

q

)
Xγσ1

and this shows that XL(q, λ) satisfies the skein relation

1√
q
√

λ
XL+

(q, λ) −
√

q
√

λXL−
(q, λ) =

(√
q − 1√

q

)
XL0

(q, λ).

By introducing the substitution

t =
√

q
√

λ and x =
√

q − 1√
q
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we can define
PL(t, x) = XL(q, λ)

where PL(t, x) ∈ Z[t±1, x±1] is computed recursively from the axioms

P (t, x) = 1 (3.5)

t−1PL+
(t, x) − tPL−

(t, x) = xPL0
(t, x). (3.6)

In this setting, L+, L− and L0 are diagrams that are identical except for in a
small region where they differ as in

L+ L− L0

By a simple application of (3.6), the polynomial of the n component unlink is

(
t−1 − t

x

)n−1

(3.7)

in the skein definition of the HOMFLY polynomial. This agrees with (3.4)
under the substitutions

t =
√

q
√

λ and x =
√

q − 1√
q
.

As indicated earlier, both the Jones polynomial and the Alexander polynomial
may be computed recursively as they each satisfy a skein relation by specifying

VL(t) = PL

(
t,
√

t − 1√
t

)

∆L(t)
.
= PL

(
1,
√

t − 1√
t

)
.



Chapter 4

Tangles and Linear Maps

4.1 Conway Tangles

In the recursive computation of the Kauffman bracket of a link, the order in
which the crossings are reduced is immaterial. In many cases it will be conve-
nient to group crossings together in the course of computation. From Conway’s
point of view [8], such groupings or tangles form the building blocks of knots
and links. In addition, this point of view will allow us to take advantage of
the well-developed tools of linear algebra.

Definition 4.1. Given a link L in S
3 consider a 3-ball B3 ⊂ S

3 such that
∂B3 intersects L in exactly 4 points. The intersection B3 ∩ L is called a
Conway tangle (or simply, a tangle) denoted by T . The exterior of the tangle
S3 r B3 ∩ L is called an external wiring, denoted by L r T .

Note that, as S3 r B3 is a ball, the external wiring L r T is a tangle also.

Figure 4.1: Some diagrams of Conway tangles

A tangle, as a subset of a link, may be considered up to equivalence under
isotopy. When a diagram of the link L is considered, a tangle may be repre-
sented by a disk in the projection plane, with boundary intersecting the link

21
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in 4 points. Equivalence of tangle diagrams then, is given by the Reidemeister
moves, where the four boundary points are fixed.

Further, the Kauffman bracket of a tangle T may be computed by way of the
axioms (3.2) and (3.3). Thus the the Kauffman bracket of any tangle may be
written in terms of tangles having no crossings or closed loops. There are only
two such tangles, and they are denoted by

0 = and ∞ = .

These tangles are fundamental in the sense that they form a basis for presenting
the bracket of a given tangle T . That is

〈
T

〉
= x0

〈 〉
+ x∞

〈 〉

where x0, x∞ ∈ Z[a, a−1].

Definition 4.2. Let T be a Conway tangle and

〈
T

〉
=
[
x0 x∞

]



〈 〉

〈 〉




where x0, x∞ ∈ Z[a, a−1]. The bracket vector of T is denoted

br(T ) =
[
x0 x∞

]
.

In this way, the Kauffman bracket divides Conway tangles into equivalence
classes completely determined by br(T ). For example,

〈 〉
= a

〈 〉
+ a−1

〈 〉

and
br
( )

=
[
a a−1

]
.

We can define a product for tangles that is similar to multiplication in the
braid group. Given Conway tangles T and U the product TU is a Conway
tangle obtained by concatenation:

TU =

( � )( � )
= � �

Notice that when T ∈ B2 this is exactly braid multiplication.
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Definition 4.3. The Kauffman bracket skein module S br is the Z[a, a−1]-
module generated by isotopy classes of Conway tangles, modulo equivalence
given by axioms (3.2) and (3.3) defining the Kauffman bracket.

The tangles {0,∞} provide a module basis for S br so that the elements T ∈ Sbr

may be represented by br(T ).

Suppose the tangle T is contained in some link L. Then writing L = L(T ) and
considering T ∈ Sbr gives rise to a Z[a, a−1]-linear map

f : Sbr −→ Z[a, a−1] (4.1)

T 7−→ br(T )

[
〈L(0)〉
〈L(∞)〉

]

where
L(0) = L

( )
and L(∞) = L

( )
.

This map is simply an evaluation map computing the bracket of L(T ) since

〈L(T )〉 = br(T )

[
〈L(0)〉
〈L(∞)〉

]
= f(T ).

Given a tangle T , one may form a link in a number of ways by choosing an
external wiring. As with the previous construction, there are only two such
external wirings which do not produce any new crossings.

Definition 4.4. For any Conway tangle T we may form the numerator closure

TN = �

and the denominator closure

TD = � .

Now returning to the link L(T ), recall that the external wiring L r T is itself
a tangle. Again, all crossings and closed loops may be eliminated using the
bracket axioms so that

〈L r T 〉 = br(L r T )




〈
�

〉

〈
�

〉




=
[
〈T N 〉 〈T D〉

]
br(L r T )>
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This gives rise to another Z[a, a−1]-linear evaluation map

Sbr −→ Z[a, a−1] (4.2)

L r T 7−→
[
〈T N 〉 〈T D〉

]
br(L r T )>

In fact, combining the linear maps (4.1) and (4.2) forms a bilinear map

F : Sbr × Sbr −→ Z[a, a−1] (4.3)

(T,L r T ) 7−→ 〈L(T )〉

where

〈L(T )〉 =
[
〈T N 〉 〈T D〉

]
br(L r T )>

=




x0

〈
N
〉

+ x∞

〈
N
〉

x0

〈
D
〉

+ x∞

〈
D
〉


 br(L r T )>

= br(T )




〈
N
〉 〈

D
〉

〈
N
〉 〈

D
〉


 br(L r T )>

= br(T )

[
δ 1
1 δ

]
br(L r T )>

so that given T,U ∈ Sbr we have

F (T,U) = br(T )

[
δ 1
1 δ

]
br(U)>.

Definition 4.5. For Conway tangles T and U define the link J(T,U) = (TU)N

and call this the join of T and U .

We have that
〈J(T,U)〉 = F (T,U)

by definition, and further

L(T ) ∼ J(T,L r T ).

Definition 4.6. For Conway tangles T and U define the connected sum
TD#UD = (TU)D.
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Since any link L may be written as T D for some tangle T this definition gives
rise to a connected sum for links. It follows that

〈L1#L2〉 = 〈L1〉〈L2〉,
and

VL1#L2
= VL1

VL2

provided orientations agree. A similar argument gives such an equality for the
HOMFLY polynomial, and hence the Alexander polynomial as well.

4.2 Conway Mutation

Consider a link diagram containing some Conway tangle T . We can choose
the coordinate system so that T is contained in the unit disk, for convenience
of notation. Further, we can arrange that the 4 points of intersection between
the link and the boundary of the disk are

(
± 1√

2
,± 1√

2
, 0

)
.

Let ρ be a 180 degree rotation of the unit disk about any of the three coor-
dinate axis. Note that ρ leaves the external wiring unchanged and, for such a
projection, ρ fixes the boundary points as a set.

Definition 4.7. Given a link L(T ) where T ∈ S br define the Conway mutant
denoted by L(ρT ).

Notice that

ρ =

ρ =

ρ =

so that

〈L(T )〉 = br(T )

[
〈L(0)〉
〈L(∞)〉

]

= br(ρT )

[
〈L(0)〉
〈L(∞)〉

]

= 〈L(ρT )〉.
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Moreover, with orientation dictated by the external wiring

w(T ) = w(ρT )

so we have the following theorem.

Theorem 4.8. VL(T ) = VL(ρT ).

While it may be that L(T ) � L(ρT ), it is certain that this method does not
provide an answer to question 3.2: It can be shown that a Conway mutant of
the unknot is always unknotted [30]. Theorem 4.8 is in fact a corollary of a
stronger statement.

Theorem 4.9. PL(T ) = PL(ρT ).

proof. Using the skein relation (3.6) defining the HOMFLY polynomial, it is
possible to decompose any tangle T into a linear combination of the form

T = a1 + a2 + a3

where ai ∈ Z[t±1, x±1]. Therefore, these tangles provide a basis for presenting
the HOMFLY polynomial of a tangle T . Thus, we can define a Z[t±1, x±1]-
module SP generated by isotopy classes of tangles up to equivalence under
the skein relation. Moreover, if L = L(T ) then we have a Z[t±1, x±1]-linear
evaluation map

SP −→ Z[t±1, x±1]

T 7−→ PL(T )

or, more generally, the bi-linear evaluation map

SP × SP −→ Z[t±1, x±1]

(T,U) 7−→ PJ(T,U).

Since the basis {
, ,

}

is ρ-invariant, it follows that PT and PρT are equal hence

SP × SP

ρ×id

��

((RRRRRRRR

Z[t±1, x±1]

SP × SP

66llllllll
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commutes and
PL(T ) = PL(ρT ).

4.3 The Skein Module

Everything that has been said regarding tangles to this point can be stated in
a more general setting [30, 31].

Definition 4.10. Given a link L in S3 consider a 3-ball B3 ⊂ S3 such that
∂B3 intersects L in exactly 2n points. The intersection B3 ∩ L is called an
n-tangle denoted by T . As before, the exterior of the n-tangle S3 r B3 ∩ L is
another n-tangle L r T called an external wiring.

In this setting, Conway tangles arise for n = 2 as 2-tangles.

Let Mn be the (infinitely generated) free Z[a, a−1]-module generated by the
set of equivalence classes of n-tangles. The axioms (3.2) and (3.3) defining the
bracket give rise to an ideal In ⊂ Mn generated by

〈 〉
− a

〈 〉
− a−1

〈 〉
(4.4)

〈
T t

〉
− δ

〈
T

〉
(4.5)

where δ = −a−2 − a2 and the 〈 〉 indicate that the rest of the tangle is left
unchanged.

Definition 4.11. The Z[a, a−1]-module

Sn = Mn

/
In

is called the (Kauffman bracket) skein module. Note that S2 = Sbr.

Due to the form of In it is possible to choose representatives for each equiv-
alence class in Sn that have neither crossings nor closed loops. These tangles
form a basis for Sn. We have seen, for example, that S2 is 2-dimensional as a
module, with basis given by the fundamental Conway tangles

and .
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Theorem 4.12. Sn has dimension

Cn =
(2n)!

n!(n + 1)!

as a module.

proof. Simply put, we need to determine how many n-tangles there are that
have no crossings or closed loops. That is, given a disk in the plane with 2n
marked points on the boundary, how many ways can the points be connected
by non-intersecting arcs (up to isotopy)?

Clearly, C1 = 1, and as discussed earlier C2 = 2.

Now suppose n > 2 and consider a disk with 2n points on the boundary.
Starting at some chosen boundary point and numbering clockwise, the point
labeled 1 must connect to an even labeled point, say 2k. This arc divides the
disk in two: One disk having 2(k − 1) marked points, the other with 2(n− k).
Therefore

Cn =

n∑

k=1

Ck−1Cn−k

= C0Cn−1 + C1Cn−2 + · · · + Cn−1C0

where C0 = 1 by convention. Now consider the generating function

f(x) =

∞∑

i=0

Cix
i

and notice

(f(x))2 =

∞∑

i=0

(
i∑

k=1

Ck−1Cn−k

)
xi

so that
x(f(x))2 = f(x) − 1

and

f(x) =
1 −

√
1 − 4x

2x
.

To deduce the coefficients of f(x), first consider the expansion of
√

z about 1.

√
z =

∞∑

i=0

di(z − 1)i
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where

di =

{
1 i = 0
(−1)i−1(2i−3)!!

2ii!
i > 0

.

Therefore with z = 1 − 4x

√
1 − 4x =

∞∑

i=0

di(−4x)i

= 1 +

∞∑

i=1

(−1)i2i2idix
i

and

f(x) = − 1

2x

∞∑

i=1

(−1)i2i2idix
i

=

∞∑

i=1

(−1)i−12i2i−1dix
i−1

so that

Ci = (−1)i2i+12idi+1

= (−1)i − 2i+12i (−1)i(2i − 1)!!

2i+1(i + 1)!

=
2i(2i − 1)!!

(i + 1)!

for i > 1. Finally, the fact that

2n(2n − 1)!!

(n + 1)!
=

(2n)!

n!(n + 1)!

follows by induction since

2n+1(2(n + 1) − 1)!!

(n + 2)!
=

2(2n + 1)

n + 2

2n(2n − 1)!!

(n + 1)!

=
2(n + 1)(2n + 1)

(n + 2)(n + 1)
Cn

=
(2n + 2)(2n + 1)

(n + 2)(n + 1)

(2n)!

n!(n + 1)!

=
(2(n + 1))!

(n + 1)!(n + 2)!
.
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As an example of theorem 4.12, the 5-dimensional module S3 has basis given
by {

, , , ,
}

. (4.6)

Let a given n-tangle diagram be contained in the unit disk so that, of the
2n boundary points, n have positive x-coordinate while the remaining n have
negative x-coordinate. With this special position, multiplication of tangles
by concatenation, as introduced for Conway tangles, extends to all n-tangles.
When two n-tangles are in fact n-braids, we are reduced to multiplication in
Bn. With this multiplication, Sn has an algebra structure called the Temperly-
Lieb algebra [21, 22].

The n-dimensional Temperly-Lieb algebra TLn over Z[a, a−1] has generators
e1, e2, . . . , en−1 and relations

e2
i = δei (4.7)

eiej = ejei for |i − j| > 1 (4.8)

eiejei = ei for |i − j| = 1. (4.9)

The multiplicative identity for this algebra is exactly the identity in Bn, and
the generators are tangles of the form shown in figure 4.2.

���

���
�

�

�����

	


��

Figure 4.2: The generator ei

For example, TL3 is generated by {e1, e2}, while the basis for the module S3

is the set of elements {1, e1, e2, e1e2, e2e1} as in (4.6).

Notice that there is a representation of the braid group via the Kauffman
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bracket given by

Bn −→ TLn

σi 7−→ a + a−1ei

σ−1
i 7−→ aei + a−1.

4.4 Linear Maps

Let L = L(T1, . . . , Tk) be a link where {Ti} is a collection of subtangles Ti ⊂ L.
If T ′

i is a tangle such that Ti = T ′
i as elements of Sn then, in the most general

setting, L′ = L(T ′
1, . . . , T

′
k) is a mutant of L (relative to the Kauffman bracket).

Therefore when w(L) = w(L′), we have that

VL = VL′ .

Of course, it may be that L � L′ and this approach has been used in attempts
to answer question 3.2 [30, 31].

Let’s first revisit Conway mutation in this context. We have, given the bilinear
evaluation map F and a 180 degree rotation ρ, the commutative diagram

S2 × S2

ρ×id

��

F
((PPPPPPPP

Z[a, a−1]

S2 × S2

F

66nnnnnnnn

since F = F ◦ (ρ × id). We saw that the linear transformation ρ was in fact
the identity transformation on S2, and as a result the link L = J(T,U) and
the mutant L′ = J(ρT, U) have the same Kauffman bracket.

A possible generalization arises naturally at this stage. As was pointed out
earlier, it is possible to construct a link from two tangles in many different and
complicated ways. Starting with T ⊂ B3

T ⊂ S3 and U ⊂ B3
U ⊂ S3, the link

L(T,U) is constructed by choosing an external wiring of S3 r (B3
T ∪ B3

U ). In
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this setting we have

〈L(T,U)〉 = br(T )

[
〈L(0, U)〉
〈L(∞, U)〉

]

= br(T )

[
〈L(0, 0)〉 〈L(0,∞)〉
〈L(∞, 0)〉 〈L(∞,∞)〉

]
br(U)>

= br(T )L br(U)>

which gives rise to the bilinear map

G : S2 × S2 −→ Z[a, a−1]

(T,U) 7−→ br(T )L br(U)>.

If additionally there is a linear transformation

τ : S2 × S2 −→ S2 × S2

(T,U) 7−→ (τ1T, τ2U)

which acts as the identity as a linear transformation of modules, then we have
the commutative diagram

S2 × S2

τ=τ1×τ2

��

G
((PPPPPPPP

Z[a, a−1]

S2 × S2

G

66nnnnnnnn

and finally, if w(L(T,U)) = w(L(τ1T, τ2U)) we can conclude that

VL(T,U) = VL(τ1T,τ2U).

4.5 Braid Actions

The three strand braid group has presentation

B3 = 〈σ1, σ2|σ1σ2σ1 = σ2σ1σ2〉

where

σ1 = and σ2 = .
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� �

Figure 4.3: The tangle T β ∈ S2

Given T ∈ S2 and a β ∈ B3 we can define a new 2-tangle denoted T β as in
figure 4.3.

Proposition 4.13. The map

S2 × B3 −→ S2

(T, β) 7−→ T β

is a well defined group action.

proof. Let idB3
be the identity braid. Then for any tangle T we have

T idB3 = T

since

�
∼ �

For β, β′ ∈ B3, the product ββ ′ is defined by concatenation so that

(T β)β
′

= T ββ′

by planar isotopy of the diagram

� � ���
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Proposition 4.14. For T ∈ S2 and β ∈ B3

br(T σ1) = br(T )

[
−a−3 0
a−1 a

]
(4.10)

br(T σ2) = br(T )

[
a a−1

0 −a−3

]
. (4.11)

proof. Applying the action of σ1 to an arbitrary tangle T , we may decompose
T σ1 into the tangles

and

in S2. Relaxing these diagrams gives rise to the following computation in S2:

br(T σ1) = br(T )




〈 〉

〈 〉




= br(T )




a

〈 〉
+ a−1δ

〈 〉

a

〈 〉
+ a−1

〈 〉




= br(T )

[
−a−3 0
a−1 a

]
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Similarly, for the action of σ2:

br(T σ2) = br(T )




〈 〉

〈 〉




= br(T )




a

〈 〉
+ a−1

〈 〉

a

〈 〉
+ a−1δ

〈 〉




= br(T )

[
a a−1

0 −a−3

]

This gives rise to a group homomorphism

Φ : B3 −→ GL2(Z[a, a−1])

σ1 7−→
[
−a−3 0
a−1 a

]

σ2 7−→
[
a a−1

0 −a−3

]

since

Φ(σ1σ2σ1) =

[
−a−2 −a−4

1 0

] [
−a−3 0
a−1 a

]

=

[
0 −a−3

−a−3 0

]

=

[
a a−1

0 −a−3

] [
−a−2 −a−4

1 0

]

= Φ(σ2σ1σ2).

Question 4.15. Is this representation of B3 faithful?

With the B3-action on S2, consider the linear transformation given by

β : S2 × S2 −→ S2 × S2

(T,U) 7−→ (T β , Uβ−1

).
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For a link of the form L(T,U), this leads to the definition of a new link
L(T β, Uβ−1

).

Denote the evaluation matrix of L(T,U) by

L =

[
〈L(0, 0)〉 〈L(0,∞)〉
〈L(∞, 0)〉 〈L(∞,∞)〉

]

and suppose that L ∈ GL2(Z[a, a−1]), that is, det(L) 6= 0. Note that

〈L(T,U)〉 = br(T )L br(U)>

〈L(T β , Uβ−1

)〉 = br(T )Φ(β)L (Φ(β−1))>br(U)>.

So, defining a second B3-action

B3 × GL2(Z[a, a−1]) −→ GL2(Z[a, a−1])

(β,L) 7−→ Φ(β)L (Φ(β−1))>,

we are led to an algebraic question. When a non-trivial β ∈ B3 gives rise to
a fixed point under this action, the linear transformation given by β is the
identity. Thus G = G ◦ β and we have the commutative diagram

S2 × S2

β

��

G
((PPPPPPPP

Z[a, a−1]

S2 × S2

G

66nnnnnnnn

where L ∈ Fix(β), so that

〈L(T,U)〉 = 〈L(T β , Uβ−1

)〉.

In particular, we would like to study the case where

L(T,U) � L(T β, Uβ−1

).

Question 4.16. For a given link L(T,U) with evaluation matrix L ∈ GL2(Z[a, a−1]),
what are the elements β ∈ B3 such that L ∈ Fix(β)?

This question is the main focus of the following chapters.
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Kanenobu Knots

5.1 Construction

Shortly after the discovery of the HOMFLY polynomial, Kanenobu introduced
families of distinct knots having the same HOMFLY polynomial and hence the
same Jones and Alexander polynomials as well [18]. It turns out that these
knots are members of a much larger class of knots which we will denote by
K(T,U) for tangles T,U ∈ S2.

� �

Figure 5.1: The Kanenobu knot K(T,U)

Proposition 5.1. Suppose x is a non-trivial polynomial in Z[a, a−1] so that

X =

[
x δ

δ δ2

]
∈ GL(Z[a, a−1])

where δ = −a−2 − a2. Then Φ(σ2)X Φ(σ−1
2 )> = X and X ∈ Fix(σ2) under

the B3-action on GL(Z[a, a−1]).

proof. Since

Φ(σ2) =

[
a a−1

0 −a−3

]
and Φ(σ−1

2 ) =

[
a−1 a

0 −a3

]

37
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we have
[
a a−1

0 −a−3

] [
x δ

δ δ2

] [
a−1 0
a −a3

]
=

[
ax + a−1δ aδ + a−1δ2

−a−3δ −a−3δ2

] [
a−1 0
a −a3

]

=

[
x + a−2δ + a2δ + δ2 −a4δ − a2δ2

−a−4δ − a−2δ2 δ2

]

=

[
x + δ(a−2 + a2 + δ) δ(−a4 − a2δ)

δ(−a−4 − a−2δ) δ2

]

=

[
x δ(−a4 + 1 + a4)

δ(−a−4 + a−4 + 1) δ2

]

=

[
x δ

δ δ2

]

with δ = −a−2 − a2.

To compute the bracket of the Kanenobu knot K(T,U), we need the evaluation
matrix

K =




〈 〉 〈 〉

〈 〉 〈 〉




.

Since K(0, 0) is the connected sum of two figure eight knots (the figure eight
is denoted 41 as in [32]), we can compute

〈
41

〉
=
〈

σ2σ
−1
1 σ2σ

−1
1

〉

using the Temperly-Lieb algebra TL3. We have

σ2σ
−1
1 = 1 + a2e1 + a−2e2 + e2e1

as an element of TL3 so that
(
σ2σ

−1
1

)2
= (1 + a2e1 + a−2e2 + e2e1)

2

= 1 + (3a2+a4δ)e1 + (3a−2+a−4δ)e2 + e1e2 + (4+a2δ+a−2δ)e2e1.
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Then the Kauffman bracket is given by
〈(

σ2σ
−1
1

)2
〉

= δ2 + (3a2 + a4δ)δ + (3a−2 + a−4δ)δ + 1 + (4 + a2δ + a−2δ)(1)

= δ(−a−6 + 2a−4 + 2a4 − a6) + 5

= a−8 − a−4 + 1 − a4 + a8

and

〈41#41〉 =
(
a−8 − a−4 + 1 − a4 + a8

)2

= a−16 − 2a−12 + 3a−8 − 4a−4 + 5 − 4a4 + 3a8 − 2a12 + a16.

In addition, it can be seen from the braid closure σ2σ
−1
1 σ2σ

−1
1 ∼ 41 that

w(41) = 0 and hence

w (K(0, 0)) = w(41#41) = 0.

Thus the Jones polynomial of K(0, 0) is given by

VK(0,0) = a−16 − 2a−12 + 3a−8 − 4a−4 + 5 − 4a4 + 3a8 − 2a12 + a16.

Now the evaluation matrix for K(T,U) is given by

K =

[
(a−8 − a−4 + 1 − a4 + a8)2 δ

δ δ2

]

since the three entries for K(0,∞), K(∞, 0) and K(∞,∞) are all equivalent to
unlinks with no crossings via applications of the Reidemeister move R2 (recall
that R2 leaves the Kauffman bracket unchanged).

For any tangle diagram T , denote by T ? the tangle diagram obtained by switch-
ing each crossing of T . That is, for any choice of orientation

w(T ?) = −w(T ).

This can be extended to knot diagrams K, where K ? is the diagram such that

w(K?) = −w(K)

so that K? is the mirror image of K.

When U = T ?,
w(K(T,U)) = 0
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the bilinear evaluation map for the bracket

G(T,U) = br(T )K br(U)>

computes the Jones polynomial

VK(T,U) = br(T )K br(U)>.

Since K is of the form given in proposition 5.1, the bilinear map defined by
the braid σn

2 ∈ B3

σn
2 : S2 × S2 → S2 × S2

(T,U) 7→ (T σn

2 , Uσ−n

2 )

is the identity transformation for every n ∈ Z. Moreover, when U = T ?

w
(
K(T σn

2 , Uσ−n

2 )
)

= 0

so we have the following theorem.

Theorem 5.2. When U = T ?, the family of knots given by

K(T σn

2 , Uσ−n

2 )

for n ∈ Z are indistinguishable by the Jones polynomial.

Of course, that these are in fact distinct knots remains to be seen.

Kanenobu’s original knot families [18] can be recovered from

Kn,m = K
(
T σ2n

2 , T σ2m

2

)

where n,m ∈ Z and T is the 0-tangle.

Theorem (Kanenobu). Kn,m and Kn′,m′ have the same HOMFLY polyno-
mial when |n−m| = |n′−m′|. Moreover, when (n,m) and (n′,m′) are pairwise
distinct, these knots are distinct.

The knots of Kanenobu’s theorem are distinguished by their Alexander module
structure [18].
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5.2 Basic Examples

Consider the Kanenobu knots

K0 = K

(
,

)

K1 = K

(
,

)

K2 = K

(
,

)

and notice that by applying the action of σ2 we have

K0
σ2

// K1
σ2

// K2

so that by construction, these knots have the same Jones polynomial.

First recall that the HOMFLY polynomial of the n-component unlink

· · ·
︸ ︷︷ ︸

n

is given by (
t−1 − t

x

)n−1

.

As this polynomial will be used often, we define

P0 =
t−1 − t

x
.

Now, using the skein relation (3.6) defining the HOMFLY polynomial P (t, x),
we can compute

−t = −t−1 + x

= t−2 − t−1x

and

t−1 = t + x

= t2 + tx .
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Combining these tangles pairwise, we have

(
,

)
=

(
,

)
+ t−1x

(
,

)

− tx

(
,

)
− x2

(
,

)

giving rise to equality among HOMFLY polynomials

PK2
= PK0

+ (t−1x − tx)P0 − x2P 2
0

= PK0
+ (t−1x − tx)

t−1 − t

x
− x2

(
t−1 − t

x

)2

= PK0
.

This common polynomial1 is

PK0
(t, x) = (t−4 − 2t−2 + 3 − 2t2 + t4) + (−2t−2 + 2 − 2t2)x2 + x4.

Notice that this is in agreement with Kanenobu’s theorem.

On the other hand K1 has HOMFLY polynomial

PK1
(t, x) = (2t−2 − 3 + 2t2) + (3t−2 − 8 + 3t2)x2 + (t−2 − 5 + t2)x4 − x6

and we can conclude that K0 and K1 are distinct knots despite having the
same Jones polynomial:

a−16 − 2a−12 + 3a−8 − 4a−4 + 5 − 4a4 + 3a8 − 2a12 + a16

Further, applying theorem 4.9, these knots cannot be Conway mutants as they
have different HOMFLY polynomials.

5.3 Main Theorem

Theorem 5.3. For each 2-tangle T there exists a pair of external wirings for
T that produce distinct links that have the same Jones polynomial. Moreover,
the links obtained are not Conway mutants.

1computed using KNOTSCAPE
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Figure 5.2: Distinct knots that are not Conway mutants

proof. Take U = T ? (that is, the tangle such that w(U) = −w(T )) and define
Kanenobu knots for the pair (T,U)

K = K(T,U) and Kσ2 = K(T σ2 , Uσ2).

Then, by construction, we have that

VK = VKσ2 .

It remains to show that these are in fact distinct knots. To see this, we compute
the HOMFLY polynomials PK and PKσ2 .

Now with the requirement that the tangle U = T ?, there are two choices of
orientations for the tangles that are compatible with an orientation of the knot
(or possibly link, in which case a choice of orientation is made) K(T,U). They
are

Type 1

(
� , �

)

Type 2

(
� , �

)

so we proceed in two cases.

Type 1. Using the skein relation we can decompose

� = aT + bT

� = aU + bU
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where aT , bT , aU , bU ∈ Z[t±, x±]. Combining pairwise we obtain

(
� , �

)
= aT aU

(
,

)
+ aT bU

(
,

)

+ bT aU

(
,

)
+ bT bU

(
,

)

so that

PK = aT aUPK1
+ (aT bU + bT aU )P0 + bT bUP 2

0

= aT aUPK1
+ (aT bU + bT aU )

(
t−1 − t

x

)
+ bT bU

(
t−1 − t

x

)2

= aT aUPK1
+ R

where R = (aT bU + bT aU )
(

t−1−t
x

)
+ bT bU

(
t−1−t

x

)2
. Now applying the action

of σ2 we have

T σ2 =
�

and Uσ−1

2 =
�

therefore

(
T σ2 , Uσ−1

2

)
= aT aU

(
,

)
+ aT bU

(
,

)

+ bT aU

(
,

)
+ bT bU

(
,

)

= aT aU

(
,

)
+ aT bU

(
,

)

+ bT aU

(
,

)
+ bT bU

(
,

)

so that

PKσ2 = aT aUPK2
+ (aT bU + bT aU )P0 + bT bUP 2

0

= PK0
+ R
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since PK2
= PK0

. However, as PK1
6= PK0

we have that

PK 6= PKσ2

giving rise to distinct knots.

Type 2. As before, the tangles are decomposed via the HOMFLY skein
relation

� = aT + bT

� = aU + bU

for some other aT , bT , aU , bU ∈ Z[t±, x±]. Combining pairwise
(

� , �

)
= aT aU

(
,

)
+ aT bU

(
,

)

+ bT aU

(
,

)
+ bT bU

(
,

)

and

PK = aT aUPK0
+ (aT bU + bT aU )P0 + bT bUP 2

0

= aT aUPK0
+ (aT bU + bT aU )

(
t−1 − t

x

)
+ bT bU

(
t−1 − t

x

)2

= aT aUPK0
+ R

with R ∈ Z[t±, x±] as before. Again, applying the action of σ2 we have

(
T σ2 , Uσ−1

2

)
= aT aU

(
,

)
+ aT bU

(
,

)

+ bT aU

(
,

)
+ bT bU

(
,

)

= aT aU

(
,

)
+ aT bU

(
,

)

+ bT aU

(
,

)
+ bT bU

(
,

)

and the HOMFLY polynomial

PKσ2 = aT aUPK1
+ (aT bU + bT aU )P0 + bT bUP 2

0

= aT aUPK1
+ R.
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Once again, as PK1
6= PK0

we have that

PK 6= PKσ2

giving rise to distinct knots.

Finally, as K and Kσ2 have distinct HOMFLY polynomials in both cases, it
follows from theorem 4.9 that these knots cannot be Conway mutants.

5.4 Examples

1. Consider the Kanenobu knot K(T,U) where

T = and U =

as in figure 5.3.

Definition 5.4. A tangle is called rational if it is of the form T β where β ∈ B3

and the tangle T is either the 0-tangle or the ∞-tangle. This is equivalent to
Conway’s definition for rational tangles [8].

As a result, the computation of the bracket for rational tangles is straightfor-
ward. In this example we have

T =
σ−3

1

and U =
σ3
1

so that

br(T ) =
[
0 1

] [−a−3 0
a−1 a

]−3

=
[
0 1

] [−a3 0
a a−1

] [
−a3 0
a a−1

] [
−a3 0
a a−1

]

=
[
0 1

] [ −a9 0
a−1 − a3 + a7 a−3

]

=
[
a−1 − a3 + a7 a−3

]



Chapter 5. Kanenobu Knots 47

and

br(U) =
[
0 1

] [−a−3 0
a−1 a

]3

=
[
0 1

] [−a−3 0
a−1 a

] [
−a−3 0
a−1 a

] [
−a−3 0
a−1 a

]

=
[
a−7 − a−1 + a a3

]
.

Now

〈K(T,U)〉 = br(T )K br(U)>

= br(T )

[
(a−8 − a−4 + 1 − a4 + a8)2 −a−2 − a2

−a−2 − a2 a−4 + 2 + a4

]
br(U)>

= a−24 − 4a−20 + 10a−16 − 19a−12 + 27a−8 − 33a−4

+ 37 − 33a4 + 27a8 − 19a12 + 10a16 − 4a20 + a24

hence

VK(T,U) =a−24 − 4a−20 + 10a−16 − 19a−12 + 27a−8 − 33a−4

+ 37 − 33a4 + 27a8 − 19a12 + 10a16 − 4a20 + a24.

Figure 5.3: Example 1

This gives a collection of knots having the same Jones polynomial

VK(T,U) = V
K(T σ

n
2 ,Uσ

−n

2 )
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since w(K(T σn

2 , Uσ−n

2 )) = 0 for all n ∈ Z.

The Knots K(T,U) and K(T σ2 , Uσ−1

2 ) are distinct as they have different HOM-
FLY polynomials2:

XK(T,U) = − 1 + (6t−2 − 12 + 6t2)x2 + (9t−2 − 24 + 9t2)x4

+ (5t−2 − 19 + 5t2)x6 + (t−2 − 7 + t2)x8 − x10

X
K(T σ2 ,Uσ

−1
2 )

=(t−4 − 4t−2 + 7 − 4t2 + t4)

+ (2t−4 − 7t−2 + 10 − 7t2 + 2t4)x2

+ (t−4 − 6t−2 + 8 − 6t2 + t4)x4

+ (−2t−2 + 4 − 2t2)x6 + x8

In particular, these knots cannot be Conway mutants in view of theorem 4.9.

2. Now consider the case when T,U are not rational tangles. For this example
take

T = and U =

in K(T,U). We can compute

br(T ) =
[
a−5 − 2a−1 + a3 − a7 −a−11 + 2a−7 − 2a−3 + a

]

br(U) =
[
−a−7 + a−3 − 2a + a5 a−1 − 2a3 + 2a7 − a11

]

so that

〈K(T,U)〉 = −a−28 + 5a−24 − 15a−20 + 31a−16 − 52a−12 + 73a−8 − 88a−4

+ 95 − 88a4 + 73a8 − 52a12 + 31a16 − 15a20 + 5a24 − a28.

Again we have a family of knots (distinct from those of example 1) such that

VK(T,U) = V
K(T σn

2 ,Uσ
−n

2 )

since w(K(T σn

2 , Uσ−n

2 )) = 0 for all n ∈ Z.

2computed using KNOTSCAPE
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Figure 5.4: Example 2

The knots K(T,U) and K(T σ2 , Uσ−1

2 ) of this example are distinct as can be
seen by the HOMFLY polynomials3:

XK(T,U) =(−2t−6 + 9t−4 − 22t−2 + 31 − 22t2 + 9t4 − 2t6)

+ (−3t−6 + 22t−4 − 58t−2 + 82 − 58t2 + 22t4 − 3t6)x2

+ (−t−6 + 21t−4 − 67t−2 + 94 − 67t2 + 21t4 − t6)x4

+ (8t−4 − 44t−2 + 62 − 44t2 + 8t4)x6

+ (t−4 − 15t−2 + 28 − 15t2 + t4)x8

+ (−2t−2 + 8 − 2t2)x10 + x12

X
K(T σ2 ,Uσ

−1
2 )

=(−4t−4 + 12t−2 − 15 + 12t2 − 4t4)

+ (−12t−4 + 56t−2 − 84 + 56t2 − 12t4)x2

+ (−13t−4 + 99t−2 − 176 + 99t2 − 13t4)x4

+ (−6t−4 + 87t−2 − 197 + 87t2 − 6t4)x6

+ (−t−4 + 41t−2 − 130 + 41t2 − t4)x8

+ (10t−2 − 51 + 10t2)x10 + (t−2 − 11 + t2)x12 − x14

Once again, from theorem 4.9 it follows that these knots are not related by
Conway mutation.

3computed using KNOTSCAPE
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5.5 Generalisation

We saw in proposition 5.1 under the action

B3 × GL2(Z[a, a−1]) −→ GL2(Z[a, a−1])

that {[
x δ

δ δ2

]
∈ GL2

(
Z[a, a−1]

)}
⊂ Fix(σ2).

As a final task for this chapter, we’ll define a family of links that generate such
evaluation matricies.

Consider a slightly different diagram of the knot K(T,U), given in figure 5.5.

� �

Figure 5.5: Another diagram of the Kanenobu knot K(T,U)

From this diagram, we are led to define a rather exotic braid closure that will
be of use. That is, for the pair of tangles (T,U) and an appropriately chosen
braid β ∈ B6 we define a link |β| as in figure 5.6.

�� �

Figure 5.6: The link |β|

It remains to describe which braids in B6 give rise to an evaluation matrix of
the appropriate form. For this we will need two braid homomorphisms.

Let N � n and define, for each non-negative m ∈ Z, the inclusion homomor-
phism

im : Bn −→ BN

σk 7−→ σk+m
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for each k ∈ {1, . . . , n−1}. Note that when m = 0, this is reduces to the
natural inclusion Bn < BN . Now the group B3 ⊕ B3 arises as a subgroup of
B6 by choosing

B3 ⊕ B3 −→ B6

(α, β) 7−→ i0(α)i3(β).

Notice that the image i0(α)i3(β) contains no occurrence of the generator σ3

and hence
i0(α)i3(β) = i3(β)i0(α)

in B6. Now define the switch homomorphism

s : B3 −→ B3

σ1 7−→ σ−1
2

σ2 7−→ σ−1
1

and note that, given a 180 degree rotation ρ in the projection plane, ρ(sβ) =
β−1.

Definition 5.5. For each α ∈ B3 define the Kanenobu braid i0(α)i3(sα) ∈ B6.

�

���

� �

Figure 5.7: The closure of a Kanenobu braid

Theorem 5.6. Let β be a Kanenobu braid. The evaluation matrix X associ-
ated with the link |β| is an element of Fix(σ2).

proof. We need to compute

X =

[
〈K(0, 0)〉 〈K(0,∞)〉
〈K(∞, 0)〉 〈K(∞,∞)〉

]
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where K(T,U) = |β| for some Kanenobu braid β. Since ρ(sα) = α−1, the link
K(∞,∞) is of the form

�

�
��

which is simply the (usual) braid closure αα−1. Hence

〈
K(∞,∞)

〉
=
〈
αα−1

〉
= δ2

since the group operation σiσ
−1
i coresponds to the Reidemeister move R2, so

that the Kauffman bracket is unchanged. Similarly, the link K(∞, 0) (equiva-
lently, K(0,∞)) is of the form

�

�
��

which reduces, canceling α−1α, to the link

so that
〈K(∞, 0)〉 = 〈K(0,∞)〉 = δ.

Finally, let the polynomial 〈K(0, 0)〉 = x so that

X =

[
x δ

δ δ2

]

is an element of Fix(σ2).
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5.6 More Examples

For the following examples, we introduce the shorthand K(σ2, σ
−1
2 ) referring

to the knot obtained from the action

K(0, 0)
σ2

// K(σ2, σ
−1
2 ).

We continue numbering of examples from section 5.4.

3. Taking the braid σ3
1σ

−1
2 σ1 ∈ B3

Figure 5.8: The braid σ3
1σ

−1
2 σ1

we can form the Kanenobu braid (σ3
1σ

−1
2 σ1)(σ

−3
5 σ4σ

−1
5 ) ∈ B6

Figure 5.9: The Kanenobu braid (σ3
1σ

−1
2 σ1)(σ

−3
5 σ4σ

−1
5 )

and the generalized Kanenobu knot

K(T,U) =
∣∣(σ3

1σ
−1
2 σ1)(σ

−3
5 σ4σ

−1
5 )
∣∣ .

K(T,U) has evaluation matrix

K =

[
x δ

δ δ2

]

where

x = − a−20 + 2a−16 − 4a−12 + 6a−8 − 7a−4

+ 9 − 7a4 + 6a8 − 4a12 + 2a16 − a20.
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� �

Figure 5.10: The knot
∣∣(σ3

1σ
−1
2 σ1)(σ

−3
5 σ4σ

−1
5 )
∣∣

Since w(K(T,U)) = 0 when U = T ?, the Jones Polynomial is given by

VK(T,U) = br(T )K br(U).

In particular,
VK(0,0) = x

and we have that
VK(σ2,σ−1

2
) = x.

It fact K(0, 0) ∼ 52 #5 ?
2 (following the notation in [32]).

These knots are distinct and not Conway mutants, as can be seen from the
HOMFLY polynomial4 of K(0, 0)

(−4t−2 + 9 − 4t2) + (−8t−2 + 20 − 8t2)x2

+ (−5t−2 + 18 − 5t2)x4 + (−t−2 + 7 − t2)x6 + x8

while the HOMFLY polynomial of K(σ2, σ
−1
2 ) is

(−t−4 + 3 − t4)

+ (−t−4 + t−2 + 4 − t2 + t4 − t6)x2

+ (t−2 + 2 + t2)x4

4computed using KNOTSCAPE
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Figure 5.11: The knot K(0, 0) ∼ 52 #5 ?
2

Figure 5.12: The knot K(σ2, σ
−1
2 )
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4. Taking the braid σ2
1σ

−3
2 σ1 ∈ B3

Figure 5.13: The braid σ2
1σ

−3
2 σ1

we can form the Kanenobu braid (σ2
1σ

−3
2 σ1)(σ

−2
5 σ3

4σ
−1
5 ) ∈ B6

Figure 5.14: The Kanenobu braid (σ2
1σ

−3
2 σ1)(σ

−2
5 σ3

4σ
−1
5 )

and the generalized Kanenobu knot

K(T,U) =
∣∣(σ2

1σ
−3
2 σ1)(σ

−2
5 σ3

4σ
−1
5 )
∣∣ .

K(T,U) has evaluation matrix

K =

[
x δ

δ δ2

]

where

x =a−24 − 2a−20 + 4a−16 − 7a−12 + 9a−8 − 11a−4

+ 13 − 11a4 + 9a8 − 7a12 + 4a16 − 2a20 + a24.

Note that K(0, 0) ∼ 61 #6 ?
1 (following the notation in [32]).

Since w(K(T,U)) = 0 when U = T ?, the Jones Polynomial is given by

VK(T,U) = br(T )K br(U).

In particular,
VK(0,0) = x

and we have that
VK(σ2,σ−1

2
) = x.
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� �

Figure 5.15: The knot
∣∣(σ2

1σ
−3
2 σ1)(σ

−2
5 σ3

4σ
−1
5 )
∣∣

Once again we obtain distinct knots. The HOMFLY polynomial5 of K(0, 0) is

(4t−2 − 7 + 4t2) + (16t−2 − 36 + 16t2)x2

+ (17t−2 − 50 + 17t2)x4 + (7t−2 − 31 + 7t2)x6

+ (t−2 − 1 + t2)x8 − x10

While the HOMFLY polynomial of K(σ2, σ
−1
2 ) is

(t−6 − t−4 − t−2 + 3 − t2 − t4 + t6)

+ (−2t−4 − t−2 + 2 − t2 − 2t4)x2 + (t−2 + 2 + t2)x4

Once again we have distinct knots that have the same Jones polynomial but
are not related by Conway mutation.

5computed using KNOTSCAPE
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Figure 5.16: The knot K(0, 0) ∼ 61 #6 ?
1

Figure 5.17: The knot K(σ2, σ
−1
2 )
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5.7 Observations

Definition 5.7. If a link is equivalent to a 3-braid, closed as in figure 5.18, it
is called a 2-bridge link.

�

Figure 5.18: The 2-bridge link obtained from β ∈ B3.

For a generalised Kanenobu knot K(T,U), the knot K(0, 0) is always of the
form L#L? where L is a 2-bridge link.

In the case where K(0, 0) ∼ K#K? is a connected sum of 2-bridge knots with
more that 3 crossings, such a K is generated by taking the 2-bridge closure of
an element α ∈ B3. Such a braid generates the Kanenobu braid i0(α)i2(sα),
and taking the closure

|i0(α)i2(sα)| = K(T,U)

with U = T ? gives rise to the evaluation matrix

K =

[
〈K#K?〉 δ

δ δ2

]

since K#K? = K(0, 0). Now K ∈ Fix(σ2), and with the specification that
U = T ?, the familly of knots

K
(
T σ2 , Uσ−1

2

)

share the common Jones polynomial

V
K(T σn

2 ,Uσ
−n

2 )
= 〈K#K?〉.

By recycling the argument of theorem 5.3, we can reduce the comparison of
the knots

K(T,U) and K
(
T σ2 , Uσ−1

2

)

to the comparison of the HOMFLY polynomials

PK(0,0) and PK(σ2,σ−1

2
).
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As shown by the previous examples, this generates further pairs of distinct
knots that are not Conway mutants despite sharing the same Jones polynomial.

The notable exception is the square knot, obtained from the connected sum of
trefoil knots 31 #3?

1. This is the connected sum of 2-bridge knots. It can be
seen as K(0, 0) in the closure

K(T,U) =
∣∣(σ1σ

−1
2 σ1)(σ

−1
5 σ4σ

−1
5 )
∣∣

but another view is given in figure 5.19.

Figure 5.19: The square knot 31 #3?
1 .

From the diagram in figure 5.20 it can be seen that the action of σ2 can cancel
along a band connecting the tangles.

� �

Figure 5.20: The knot
∣∣(σ1σ

−1
2 σ1)(σ

−1
5 σ4σ

−1
5 )
∣∣.

This cancelation is of the form

�
∼ �

so in the case that T is a rational tangle, their knot type is unaltered, while
a more general tangle results in a Conway mutant of the original diagram. In
particular, there is no change to the Jones polynomial.

In general however, the set of tangles S2 together with the set of 2-bridge
knots (generated by B3) provide a range of knots (and even links) having
evaluation matricies contained in Fix(σ2). In the cases discussed and the
examples produced, we have seen that the HOMFLY polynomial may be used
to distingush these knots. Thus, we conclude that this method of producing
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famillies knots sharing a common Jones polynomial is distinct from Conway
mutation.

In the next chapter, the results of Eliahou, Kauffman and Thistlethwaite [9]
will be restated using the braid actions introduced in this paper.



Chapter 6

Thistlethwaite Links

6.1 Construction

The group action of braids on tangles presented in this work was originally
discussed by Eliahou, Kauffman and Thistlethwaite [9] in the course of study
of the recently discovered links due to Thistlethwaite [33]. While it is still
unknown whether there is a non trivial knot having Jones polynomial V = 1,
Thistlethwaite’s examples allow us to answer the question for links having
more than 1 component.

Theorem (Thislethwaite). For n > 1 there are non trivial n-component
links having trivial Jones polynomial V = δn−1.

In the exploration of these links [9], it is shown that this is in fact a corollary
of a much stronger statement.

Theorem (Eliahou, Kauffman, Thislethwaite). For every n-component
link L there is an infinite family of (n+1)-component links L′ such that VL′ =
δVL.

While these assertions are discussed at length in [9], the goal of this chapter is
to present some of the examples in light of the group actions discussed in this
work.

Definition 6.1. A Thislethwaite link H(T,U) is an external wiring of tangles
T,U ∈ S2 modeled on the Hopf link.

Our first task is to compute the evaluation matrix

H =

[
〈H(0, 0)〉 〈H(0,∞)〉
〈H(∞, 0)〉 〈H(∞,∞)〉

]
.

62
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�

�

Figure 6.1: The Thislethwaite link H(T,U)

It is easy to see, by applications of the Reidemeister move R2, that

〈H(0,∞)〉 = 〈H(∞, 0)〉 = δ2

and
〈H(∞,∞)〉 = δ.

For the non trivial link H(0, 0), the computation of 〈H(0, 0)〉 requires a little
more work.

Figure 6.2: The link H(0, 0)

For this, the following switching formula (stated in [20]) will be useful.

Switching Formula. The equality
〈 〉

−
〈 〉

=
(
a4 − a−4

)(〈 〉
−
〈 〉)

+
(
a2 − a−2

)(〈 〉
+

〈 〉
−
〈 〉

−
〈 〉)

holds for the Kauffman bracket, giving rise to equivalence in TL4.
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proof of the switching formula. First note that the double crossing
may be viewed as the braid σ2σ1σ3σ2 ∈ B4. Thus, as

σi 7−→ a + a−1ei

gives a representation of the braid group in TLn, we can represent this element
of B4 as

(a2 + e1 + e2 + a−2e2e1)(a
2 + e2 + e3 + a−2e3e2)

=a4 + a2e2 + a2e3 + e3e2

+ a2e1 + e1e2 + e1e3 + a−2e1e3e2

+ a2e2 + e2
2 + e2e3 + a−2e2e3e2

+ e2e1 + a−2e2e1e2 + a−2e2e1e3 + a−4e2e1e3e2

=a4 + a2e1 + (2a−2 + δ + 2a2)e2 + a2e3

+ a−2e1e3e2 + a−2e2e1e3 + a−4e2e1e3e2

+ e1e2 + e1e3 + e2e1 + e2e3 + e3e2.

Similarly, the double crossing may be viewed as (σ2σ1σ3σ2)
−1 ∈ B4 so

that
σ−1

i 7−→ a−1 + aei

gives the representation

(a−2 + e1 + e2 + a2e2e1)(a
−2 + e2 + e3 + a2e3e2)

=a−4 + a−2e1 + (2a−2 + δ + 2a2)e2 + a−2e3

+ a2e1e3e2 + a2e2e1e3 + a4e2e1e3e2

+ e1e2 + e1e3 + e2e1 + e2e3 + e3e2.
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Therefore
〈 〉

−
〈 〉

=(a2 + e1 + e2 + a−2e2e1)(a
2 + e2 + e3 + a−2e3e2)

− (a−2 + e1 + e2 + a2e2e1)(a
−2 + e2 + e3 + a2e3e2)

=a4 − a−4 + (a2 − a−2)e1 + (a2 − a−2)e3

+ (a−2 − a2)e1e3e2 + (a−2 − a2)e2e1e3

+ (a−4 − a4)e2e1e3e2

=(a4 − a−4)(1 − e2e1e3e2)

+ (a2 − a−2)(e1 + e3 − e1e3e2 − e2e1e3)

=
(
a4 − a−4

)(〈 〉
−
〈 〉)

+
(
a2 − a−2

)(〈 〉
+

〈 〉
−
〈 〉

−
〈 〉)

as required.

Applying the switching formula twice,

〈 〉
= δ3 +

(
a4 − a−4

)(〈 〉
−
〈 〉)

= δ3 + (a4 − a−4)
[
−(a4 − a−4)(δ − δ3) − (a2 − a−2)(2 − 2δ2)

]

= δ3 + (a4 − a−4)(δ2 − 1)
[
δ(a4 − a−4) + 2(a2 − a−2)

]

= δ3 + (a4 − a−4)(δ2 − 1)
[
a−6 − a−2 + a2 − a6

]

= −a−14 − a−6 − 2a−2 − 2a2 − a6 − a14

so the evaluation matrix is

H =

[
−a−14 − a−6 − 2a−2 − 2a2 − a6 − a14 δ2

δ2 δ

]
.

Now consider the braid ω = σ2
2σ

−1
1 σ2

2
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Figure 6.3: The braid ω ∈ B3

giving rise to the matrices

Φ(ω) =

[
−a−1 + a3 − a7 −a−11 + 2a−7 − 2a−3 + 2a − a5

a−3 a−13 − a−9 + a−5

]

Φ(ω−1) =

[
−a−7 + a−3 − a −a−5 + 2a−1 − 2a3 + 2a7 − a11

a3 a5 − a9 + a13

]
.

It can be checked (using MAPLE, for example) that

Φ(ω)HΦ(ω−1)> = H
so that H ∈ Fix(ω), giving rise to a comutative diagram

S2 × S2

ω

��

((PPPPPPPP

Z[a, a−1]

S2 × S2

66nnnnnnnn

and
〈H(T,U)〉 = 〈H(T ω, Uω−1

)〉.
As a first example, consider the tangles

T = and U =

forming an unlink H(T,U). Under the action of ω, we have

ω
//

ω−1
//
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Therefore, the link H(T ω, Uω−1

) is two linked trefoils and, depending on ori-
entation, w(H(T ω, Uω−1

)) = ±8

Figure 6.4: The link H(T ω, Uω−1

)

so that
〈H(T ω, Uω−1

)〉 = δ

and
V

H(T ω ,Uω−1)
= −a±24δ.

However, the action of ω2 leaves the writhe unchanged. This gives rise to a
family of 2-component Thisltlethwaite links, all having Jones polynomial δ.
Taking tangles T,U as in the previous example, the links

H(T ω2n

, Uω−2n

)

have Jones polynomial δ for all n ∈ Z. Moreover, for n 6= 0 the links obtained
are non-trivial, since each component is the numerator closure of a tangle,
giving rise to a pair of 2-bridge links that are geometrically essential to a pair
of linked solid tori [32].

The first two links in this sequence (for n = 1, 2) are shown in figures 6.5 and
6.6.
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Figure 6.5: The result of ω2 acting on H(T,U)

Figure 6.6: The result of ω4 acting on H(T,U)
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6.2 Some 2-component examples

Thistlethwaite’s original discovery [33] consisted of links that had fewer cross-
ings than those of the infinite sequence constructed above. Starting with the
pair of tangles

(T,U) =


 ,




we obtain a trivial link H(T,U) such that w(H(T,U)) = −3. Applying the
action of ω to this link gives rise to a non-trivial link

Figure 6.7: A non-trivial, 2-component link

such that
〈H(T,U)〉 = 〈H(T ω, Uω−1

)〉
and

w
(
H(T ω, Uω−1

)
)

= −3.

The result is a non-trivial link with trivial Jones polynomial δ.

Similarly, starting with the pair of tangles

(T,U) =


 ,




gives rise to another trivial link H(T,U), in this case having w(H(T,U)) = −1.
Applying the action of ω to this link gives rise to a non-trivial link

such that
〈H(T,U)〉 = 〈H(T ω, Uω−1

)〉
and

w
(
H(T ω, Uω−1

)
)

= −1.
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Figure 6.8: A non-trivial, 2-component link

Again, the result is a non-trivial link with trivial Jones polynomial δ.

It has been shown that these examples are also members of an infinite family
of distinct 2-component links having trivial Jones polynomials [9].

6.3 A 3-component example

It is possible to construct a 16-crossings non-trivial link with trivial Jones
polynomial if we consider links of 3 components.

Starting with the pair of tangles

(T,U) =


 ,


 ,

gives a 3 component trivial link H(T,U). In this case, w(H(T,U)) = −2 and
applying the action of ω, the orientation of the resulting link may be chosen
so that

w
(
H(T ω, Uω−1

)
)

= −2

also. Thus, with this orientation,

V
H(T ω ,Uω−1)

= δ2.

In fact, with orientations chosen appropriately, this choice of tangles produces
another infinite family of links

H(T ωn

, Uω−n

)

for n ∈ Z, each having trivial Jones polynomial [9].

The 16-crossing example is interesting, as it is may be constructed by linking
two simple links: the Whitehead link (52

1), and the trefoil knot (31).
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Figure 6.9: A non-trivial, 3-component link

6.4 Closing Remarks

While the search for an answer to question 3.2 continues, the method of muta-
tion developed in this work provides a new tool in the pursuit of an example of
a non-trivial knot having trivial Jones polynomial. Not only has this type of
mutation produced Thistlethwaite’s examples, it is also able to produce pairs
of distinct knots sharing a common Jones polynomial that are not related by
Conway mutation (theorem 5.3). In light of the fact that Conway mutation
cannot alter an unknot so that it is knotted, it is desirable to have more general
forms of mutation such as this braid action at our disposal.

We have produced pairs of knots sharing a common Jones polynomial. As these
examples can be distinguished by their HOMFLY polynomials, they cannot be
Conway mutants. In our development, it is shown that further such examples
may be obtained either by altering the choice of tangles made, or by forming
a special closure |β| of a Kanenobu braid β ∈ B6. In addition, it is shown that
such a β may be produced from any given 3-braid.

It is hoped that further study of this new form of mutation will lead to a better
understanding of the phenomenon of distinct knots sharing a common Jones
polynomial. As well, it is possible that a better geometric understanding of this
braid action could give rise to a better understanding of the Jones polynomial
itself.
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Hosokawa des lacements fibré. Math. Sem. Notes Kobe Univ., 9:75–84,

1981.

[18] Taizo Kanenobu. Infinitely many knots with the same polynomial invari-

ant. Proc. AMS, 97(1):158–162, 1986.

[19] Louis Kauffman. State models and the Jones polynomial. Topology,

26:395–407, 1987.
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