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Processing language requires the retrieval of concepts from memory in response to an ongoing stream of
information. This retrieval is facilitated if one can infer the gist of a sentence, conversation, or document
and use that gist to predict related concepts and disambiguate words. This article analyzes the abstract
computational problem underlying the extraction and use of gist, formulating this problem as a rational
statistical inference. This leads to a novel approach to semantic representation in which word meanings
are represented in terms of a set of probabilistic topics. The topic model performs well in predicting word
association and the effects of semantic association and ambiguity on a variety of language-processing and
memory tasks. It also provides a foundation for developing more richly structured statistical models of
language, as the generative process assumed in the topic model can easily be extended to incorporate
other kinds of semantic and syntactic structure.
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Many aspects of perception and cognition can be understood by
considering the computational problem that is addressed by a
particular human capacity (Anderson, 1990; Marr, 1982). Percep-
tual capacities such as identifying shape from shading (Freeman,
1994), motion perception (Weiss, Simoncelli, & Adelson, 2002),
and sensorimotor integration (Körding & Wolpert, 2004; Wolpert,
Ghahramani, & Jordan, 1995) appear to closely approximate op-
timal statistical inferences. Cognitive capacities such as memory
and categorization can be seen as systems for efficiently making
predictions about the properties of an organism’s environment
(e.g., Anderson, 1990). Solving problems of inference and predic-

tion requires sensitivity to the statistics of the environment. Sur-
prisingly subtle aspects of human vision can be explained in terms
of the statistics of natural scenes (Geisler, Perry, Super, & Gallo-
gly, 2001; Simoncelli & Olshausen, 2001), and human memory
seems to be tuned to the probabilities with which particular events
occur in the world (Anderson & Schooler, 1991). Sensitivity to
relevant world statistics also seems to guide important classes of
cognitive judgments, such as inductive inferences about the prop-
erties of categories (Kemp, Perfors, & Tenenbaum, 2004), predic-
tions about the durations or magnitudes of events (Griffiths &
Tenenbaum, 2006), and inferences about hidden common causes
from patterns of coincidence (Griffiths & Tenenbaum, in press).

In this article, we examine how the statistics of one very
important aspect of the environment—natural language—
influence human memory. Our approach is motivated by an anal-
ysis of some of the computational problems addressed by semantic
memory, in the spirit of Marr (1982) and Anderson (1990). Under
many accounts of language processing, understanding sentences
requires retrieving a variety of concepts from memory in response
to an ongoing stream of information. One way to do this is to use
the semantic context—the gist of a sentence, conversation, or
document—to predict related concepts and disambiguate words
(Ericsson & Kintsch, 1995; Kintsch, 1988; Potter, 1993). The
retrieval of relevant information can be facilitated by predicting
which concepts are likely to be relevant before they are needed.
For example, if the word bank appears in a sentence, it might
become more likely that words like federal and reserve will also
appear in that sentence, and this information could be used to
initiate retrieval of the information related to these words. This
prediction task is complicated by the fact that words have multiple
senses or meanings: Bank should influence the probabilities of
federal and reserve only if the gist of the sentence indicates that it
refers to a financial institution. If words like stream or meadow
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also appear in the sentence, then it is likely that bank refers to the
side of a river, and words like woods and field should increase in
probability.

The ability to extract gist has influences that reach beyond
language processing, pervading even simple tasks such as memo-
rizing lists of words. A number of studies have shown that when
people try to remember a list of words that are semantically
associated with a word that does not appear on the list, the
associated word intrudes on their memory (Deese, 1959; McEvoy,
Nelson, & Komatsu, 1999; Roediger, Watson, McDermott, &
Gallo, 2001). Results of this kind have led to the development of
dual-route memory models, which suggest that people encode not
just the verbatim content of a list of words but also their gist
(Brainerd, Reyna, & Mojardin, 1999; Brainerd, Wright, & Reyna,
2002; Mandler, 1980). These models leave open the question of
how the memory system identifies this gist.

In this article, we analyze the abstract computational problem of
extracting and using the gist of a set of words and examine how
well different solutions to this problem correspond to human
behavior. The key difference between these solutions is the way
that they represent gist. In previous work, the extraction and use of
gist has been modeled using associative semantic networks (e.g.,
Collins & Loftus, 1975) and semantic spaces (e.g., Landauer &
Dumais, 1997; Lund & Burgess, 1996). Examples of these two
representations are shown in Figures 1a and 1b, respectively. We
take a step back from these specific proposals and provide a more
general formulation of the computational problem that these rep-
resentations are used to solve. We express the problem as one of
statistical inference: given some data—the set of words—inferring
the latent structure from which it was generated. Stating the
problem in these terms makes it possible to explore forms of
semantic representation that go beyond networks and spaces.

Identifying the statistical problem underlying the extraction and
use of gist makes it possible to use any form of semantic repre-
sentation; all that needs to be specified is a probabilistic process by
which a set of words is generated using that representation of their
gist. In machine learning and statistics, such a probabilistic process
is called a generative model. Most computational approaches to
natural language have tended to focus exclusively on either struc-
tured representations (e.g., Chomsky, 1965; Pinker, 1999) or sta-

tistical learning (e.g., Elman, 1990; Plunkett & Marchman, 1993;
Rumelhart & McClelland, 1986). Generative models provide a
way to combine the strengths of these two traditions, making it
possible to use statistical methods to learn structured representa-
tions. As a consequence, generative models have recently become
popular in both computational linguistics (e.g., Charniak, 1993;
Jurafsky & Martin, 2000; Manning & Schütze, 1999) and psycho-
linguistics (e.g., Baldewein & Keller, 2004; Jurafsky, 1996), al-
though this work has tended to emphasize syntactic structure over
semantics.

The combination of structured representations with statistical
inference makes generative models the perfect tool for evaluating
novel approaches to semantic representation. We use our formal
framework to explore the idea that the gist of a set of words can be
represented as a probability distribution over a set of topics. Each
topic is a probability distribution over words, and the content of the
topic is reflected in the words to which it assigns high probability.
For example, high probabilities for woods and stream would
suggest that a topic refers to the countryside, whereas high prob-
abilities for federal and reserve would suggest that a topic refers to
finance. A schematic illustration of this form of representation
appears in Figure 1c. Following work in the information retrieval
literature (Blei, Ng, & Jordan, 2003), we use a simple generative
model that defines a probability distribution over a set of words,
such as a list or a document, given a probability distribution over
topics. With methods drawn from Bayesian statistics, a set of
topics can be learned automatically from a collection of docu-
ments, as a computational analogue of how human learners might
form semantic representations through their linguistic experience
(Griffiths & Steyvers, 2002, 2003, 2004).

The topic model provides a starting point for an investigation of
new forms of semantic representation. Representing words using
topics has an intuitive correspondence to feature-based models of
similarity. Words that receive high probability under the same
topics will tend to be highly predictive of one another, just as
stimuli that share many features will be highly similar. We show
that this intuitive correspondence is supported by a formal corre-
spondence between the topic model and Tversky’s (1977) feature-
based approach to modeling similarity. Because the topic model
uses exactly the same input as latent semantic analysis (LSA;
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Figure 1. Approaches to semantic representation. (a) In a semantic network, words are represented as nodes,
and edges indicate semantic relationships. (b) In a semantic space, words are represented as points, and proximity
indicates semantic association. These are the first two dimensions of a solution produced by latent semantic
analysis (Landauer & Dumais, 1997). The black dot is the origin. (c) In the topic model, words are represented
as belonging to a set of probabilistic topics. The matrix shown on the left indicates the probability of each word
under each of three topics. The three columns on the right show the words that appear in those topics, ordered
from highest to lowest probability.
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Landauer & Dumais, 1997), a leading model of the acquisition of
semantic knowledge in which the association between words de-
pends on the distance between them in a semantic space, we can
compare these two models as a means of examining the implica-
tions of different kinds of semantic representation, just as featural
and spatial representations have been compared as models of
human similarity judgments (Tversky, 1977; Tversky & Gati,
1982; Tversky & Hutchinson, 1986). Furthermore, the topic model
can easily be extended to capture other kinds of latent linguistic
structure. Introducing new elements into a generative model is
straightforward, and by adding components to the model that can
capture richer semantic structure or rudimentary syntax, we can
begin to develop more powerful statistical models of language.

The plan of the article is as follows. First, we provide a more
detailed specification of the kind of semantic information we aim
to capture in our models and summarize the ways in which this has
been done in previous work. We then analyze the abstract com-
putational problem of extracting and using gist, formulating this
problem as one of statistical inference and introducing the topic
model as one means of solving this computational problem. The
body of the article is concerned with assessing how well the
representation recovered by the topic model corresponds with
human semantic memory. In an analysis inspired by Tversky’s
(1977) critique of spatial measures of similarity, we show that
several aspects of word association that can be explained by the
topic model are problematic for LSA. We then compare the per-
formance of the two models in a variety of other tasks tapping
semantic representation and outline some of the ways in which the
topic model can be extended.

Approaches to Semantic Representation

Semantic representation is one of the most formidable topics in
cognitive psychology. The field is fraught with murky and poten-
tially never-ending debates; it is hard to imagine that one could
give a complete theory of semantic representation outside of a
complete theory of cognition in general. Consequently, formal
approaches to modeling semantic representation have focused on
various tractable aspects of semantic knowledge. Before present-
ing our approach, we must clarify where its focus lies.

Semantic knowledge can be thought of as knowledge about
relations among several types of elements, including words, con-
cepts, and percepts. Some relations that have been studied include
the following:

Word–concept relations: Knowledge that the word dog refers
to the concept “dog,” the word animal refers to the concept
“animal,” or the word toaster refers to the concept “toaster.”

Concept–concept relations: Knowledge that dogs are a kind
of animal, that dogs have tails and can bark, or that animals
have bodies and can move.

Concept–percept or concept–action relations: Knowledge
about what dogs look like, how a dog can be distinguished
from a cat, or how to pet a dog or operate a toaster.

Word–word relations: Knowledge that the word dog tends to
be associated with or co-occur with words such as tail, bone,

and cat or that the word toaster tends to be associated with
kitchen, oven, or bread.

These different aspects of semantic knowledge are not neces-
sarily independent. For instance, the word cat may be associated
with the word dog because cat refers to cats, dog refers to dogs,
and cats and dogs are both common kinds of animals. Yet different
aspects of semantic knowledge can influence behavior in different
ways and seem to be best captured by different kinds of formal
representations. As a result, different approaches to modeling
semantic knowledge tend to focus on different aspects of this
knowledge, depending on what fits most naturally with the repre-
sentational system they adopt, and there are corresponding differ-
ences in the behavioral phenomena they emphasize. Computa-
tional models also differ in the extent to which their semantic
representations can be learned automatically from some naturally
occurring data or must be hand-coded by the modeler. Although
many different modeling approaches can be imagined within this
broad landscape, there are two prominent traditions.

One tradition emphasizes abstract conceptual structure, focusing
on relations among concepts and relations between concepts and
percepts or actions. This knowledge is traditionally represented in
terms of systems of abstract propositions, such as is-a canary bird,
has bird wings, and so on (Collins & Quillian, 1969). Models in
this tradition have focused on explaining phenomena such as the
development of conceptual hierarchies that support propositional
knowledge (e.g., Keil, 1979), reaction time to verify conceptual
propositions in normal adults (e.g., Collins & Quillian, 1969), and
the decay of propositional knowledge with aging or brain damage
(e.g., Warrington, 1975). This approach does not worry much
about the mappings between words and concepts or associative
relations between words; in practice, the distinction between words
and concepts is typically collapsed. Actual language use is ad-
dressed only indirectly: The relevant experiments are often con-
ducted with linguistic stimuli and responses, but the primary
interest is not in the relation between language use and conceptual
structure. Representations of abstract semantic knowledge of this
kind have traditionally been hand-coded by modelers (Collins &
Quillian, 1969), in part because it is not clear how they could be
learned automatically. Recently there has been some progress in
learning distributed representations of conceptual relations (Rog-
ers & McClelland, 2004), although the input to these learning
models is still quite idealized, in the form of hand-coded databases
of simple propositions. Learning large-scale representations of
abstract conceptual relations from naturally occurring data remains
an unsolved problem.

A second tradition of studying semantic representation has
focused more on the structure of associative relations between
words in natural language use and relations between words and
concepts, along with the contextual dependence of these relations.
For instance, when one hears the word bird, it becomes more likely
that one will also hear words like sing, fly, and nest in the same
context—but perhaps less so if the context also contains the words
thanksgiving, turkey, and dinner. These expectations reflect the
fact that bird has multiple senses, or multiple concepts it can refer
to, including both a taxonomic category and a food category. The
semantic phenomena studied in this tradition may appear to be
somewhat superficial, in that they typically do not tap deep con-
ceptual understanding. The data tend to be tied more directly to
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language use and the memory systems that support online linguis-
tic processing, such as word-association norms (e.g., Nelson, Mc-
Evoy, & Schreiber, 1998), word reading times in sentence pro-
cessing (e.g., Sereno, Pacht, & Rayner, 1992), semantic priming
(e.g., Till, Mross, & Kintsch, 1988), and effects of semantic
context in free recall (e.g., Roediger & McDermott, 1995). Com-
pared with approaches that focus on deeper conceptual relations,
classic models of semantic association tend to invoke much sim-
pler semantic representations, such as semantic spaces or holistic
spreading activation networks (e.g., Collins & Loftus, 1975;
Deese, 1959). This simplicity has its advantages: There has re-
cently been considerable success in learning the structure of such
models from large-scale linguistic corpora (e.g., Landauer & Du-
mais, 1997; Lund & Burgess, 1996).

We recognize the importance of both of these traditions in
studying semantic knowledge. They have complementary
strengths and weaknesses, and ultimately ideas from both are
likely to be important. Our work here is more clearly in the second
tradition, with its emphasis on relatively light representations that
can be learned from large text corpora, and on explaining the
structure of word–word and word–concept associations, rooted in
the contexts of actual language use. Although the interpretation of
sentences requires semantic knowledge that goes beyond these
contextual associative relationships, many theories still identify
this level of knowledge as playing an important role in the early
stages of language processing (Ericsson & Kintsch, 1995; Kintsch,
1988; Potter, 1993). Specifically, it supports solutions to three core
computational problems:

Prediction: Predict the next word or concept, facilitating
retrieval.

Disambiguation: Identify the senses or meanings of words.

Gist extraction: Pick out the gist of a set of words.

Our goal is to understand how contextual semantic association is
represented, used, and acquired. We argue that considering rela-
tions between latent semantic topics and observable word forms
provides a way to capture many aspects of this level of knowledge:
It provides principled and powerful solutions to these three core
tasks, and it is also easily learnable from natural linguistic expe-
rience. Before introducing this modeling framework, we summa-
rize the two dominant approaches to the representation of semantic
association, semantic networks and semantic spaces, establishing
the background to the problems we consider.

Semantic Networks

In an associative semantic network, such as that shown in
Figure 1a, a set of words or concepts is represented as nodes
connected by edges that indicate pairwise associations (e.g., Col-
lins & Loftus, 1975). Seeing a word activates its node, and acti-
vation spreads through the network, activating nodes that are
nearby. Semantic networks provide an intuitive framework for
expressing the semantic relationships between words. They also
provide simple solutions to the three problems for which contex-
tual knowledge might be used. Treating those problems in the
reverse of the order identified above, gist extraction simply con-
sists of activating each word that occurs in a given context and

allowing that activation to spread through the network. The gist is
represented by the pattern of node activities. If different meanings
of words are represented as different nodes, then the network
disambiguates by comparing the activation of those nodes. Finally,
the words that one might expect to see next in that context will be
the words that have high activations as a result of this process.

Most semantic networks that are used as components of cogni-
tive models are considerably more complex than the example
shown in Figure 1a, allowing multiple different kinds of nodes and
connections (e.g., Anderson, 1983; Norman, Rumelhart, & The
LNR Research Group, 1975). In addition to excitatory connec-
tions, in which activation of one node increases activation of
another, some semantic networks feature inhibitory connections,
allowing activation of one node to decrease activation of another.
The need for inhibitory connections is indicated by empirical
results in the literature on priming. A simple network without
inhibitory connections can explain why priming might facilitate
lexical decision, making it easier to recognize that a target is an
English word. For example, a word like nurse primes the word
doctor because it activates concepts that are closely related to
doctor, and the spread of activation ultimately activates doctor.
However, not all priming effects are of this form. For example,
Neely (1976) showed that priming with irrelevant cues could have
an inhibitory effect on lexical decision. To use an example from
Markman (1998), priming with hockey could produce a slower
reaction time for doctor than presenting a completely neutral
prime. Effects like these suggest that we need to incorporate
inhibitory links between words. Of interest, it would seem that a
great many such links would be required, because there is no
obvious special relationship between hockey and doctor; the two
words just seem unrelated. Thus, inhibitory links would seem to be
needed between all pairs of unrelated words in order to explain
inhibitory priming.

Semantic Spaces

An alternative to semantic networks is the idea that the meaning
of words can be captured using a spatial representation. In a
semantic space, such as that shown in Figure 1b, words are nearby
if they are similar in meaning. This idea appears in early work
exploring the use of statistical methods to extract representations
of the meaning of words from human judgments (Deese, 1959;
Fillenbaum & Rapoport, 1971). Recent research has pushed this
idea in two directions. First, connectionist models using distrib-
uted representations for words—which are commonly interpreted
as a form of spatial representation—have been used to predict
behavior on a variety of linguistic tasks (e.g., Kawamoto, 1993;
Plaut, 1997; Rodd, Gaskell, & Marslen-Wilson, 2004). These
models perform relatively complex computations on the underly-
ing representations and allow words to be represented as multiple
points in space, but they are typically trained on artificially gen-
erated data. A second thrust of recent research has been exploring
methods for extracting semantic spaces directly from real linguis-
tic corpora (Landauer & Dumais, 1997; Lund & Burgess, 1996).
These methods are based on comparatively simple models—for
example, they assume each word is represented as only a single
point—but provide a direct means of investigating the influence of
the statistics of language on semantic representation.
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LSA is one of the most prominent methods for extracting a
spatial representation for words from a multidocument corpus of
text. The input to LSA is a word–document co-occurrence matrix,
such as that shown in Figure 2. In a word–document co-occurrence
matrix, each row represents a word, each column represents a
document, and the entries indicate the frequency with which that
word occurred in that document. The matrix shown in Figure 2 is
a portion of the full co-occurrence matrix for the Touchstone
Applied Science Associates (TASA) corpus (Landauer & Dumais,
1997), a collection of passages excerpted from educational texts
used in curricula from the first year of school to the first year of
college.

The output from LSA is a spatial representation for words and
documents. After one applies various transformations to the entries
in a word–document co-occurrence matrix (one standard set of
transformations is described in Griffiths & Steyvers, 2003), sin-
gular value decomposition is used to factorize this matrix into
three smaller matrices, U, D, and V, as shown in Figure 3a. Each
of these matrices has a different interpretation. The U matrix
provides an orthonormal basis for a space in which each word is a
point. The D matrix, which is diagonal, is a set of weights for the
dimensions of this space. The V matrix provides an orthonormal
basis for a space in which each document is a point. An approx-
imation to the original matrix of transformed counts can be ob-
tained by remultiplying these matrices but choosing to use only the
initial portions of each matrix, corresponding to the use of a lower
dimensional spatial representation.

In psychological applications of LSA, the critical result of this
procedure is the first matrix, U, which provides a spatial represen-
tation for words. Figure 1b shows the first two dimensions of U for
the word–document co-occurrence matrix shown in Figure 2. The
results shown in the figure demonstrate that LSA identifies some
appropriate clusters of words. For example, oil, petroleum, and
crude are close together, as are federal, money, and reserve. The
word deposits lies between the two clusters, reflecting the fact that
it can appear in either context.

The cosine of the angle between the vectors corresponding to
words in the semantic space defined by U has proven to be an
effective measure of the semantic association between those words
(Landauer & Dumais, 1997). The cosine of the angle between two
vectors w1 and w2 (both rows of U, converted to column vectors)
is

cos(w1,w2) �
w1

Tw2

�w1��w2�
, (1)

where w1
Tw2 is the inner product of the vectors w1 and w2, and ||w||

denotes the norm, �wTw. Performance in predicting human judg-
ments is typically better when one uses only the first few hundred
derived dimensions, because reducing the dimensionality of the
representation can decrease the effects of statistical noise and
emphasize the latent correlations among words (Landauer & Du-
mais, 1997).

LSA provides a simple procedure for extracting a spatial repre-
sentation of the associations between words from a word–
document co-occurrence matrix. The gist of a set of words is
represented by the average of the vectors associated with those
words. Applications of LSA often evaluate the similarity between
two documents by computing the cosine between the average word
vectors for those documents (Landauer & Dumais, 1997; Rehder et
al., 1998; Wolfe et al., 1998). This representation of the gist of a
set of words can be used to address the prediction problem: We
should predict that words with vectors close to the gist vector are
likely to occur in the same context. However, the representation of
words as points in an undifferentiated euclidean space makes it
difficult for LSA to solve the disambiguation problem. The key
issue is that this relatively unstructured representation does not
explicitly identify the different senses of words. Although deposits
lies between words having to do with finance and words having to
do with oil, the fact that this word has multiple senses is not
encoded in the representation.

Extracting and Using Gist as Statistical Problems

Semantic networks and semantic spaces are both proposals for a
form of semantic representation that can guide linguistic process-
ing. We now take a step back from these specific proposals and
consider the abstract computational problem that they are intended
to solve, in the spirit of Marr’s (1982) notion of the computational
level and Anderson’s (1990) rational analysis. Our aim is to clarify
the goals of the computation and to identify the logic by which
these goals can be achieved, so that this logic can be used as the
basis for exploring other approaches to semantic representation.

Assume we have seen a sequence of words w � �w1,w2, . . . ,wn).
These n words manifest some latent semantic structure l. We will
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Figure 2. A word–document co-occurrence matrix, indicating the frequencies of 18 words across 90 docu-
ments extracted from the Touchstone Applied Science Associates corpus. A total of 30 documents use the word
money, 30 use the word oil, and 30 use the word river. Each row corresponds to a word in the vocabulary, and
each column corresponds to a document in the corpus. Grayscale indicates the frequency with which the 731
tokens of those words appeared in the 90 documents, with black being the highest frequency and white being
zero.
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assume that l consists of the gist of that sequence of words g and
the sense or meaning of each word, z � �z1,z2, . . . ,zn), so l � (g,
z). We can now formalize the three problems identified in the
previous section:

Prediction: Predict wn�1 from w.

Disambiguation: Infer z from w.

Gist extraction: Infer g from w.

Each of these problems can be formulated as a statistical problem.
The prediction problem requires computing the conditional prob-
ability of wn�1 given w, P(wn�1|w). The disambiguation problem
requires computing the conditional probability of z given w,
P(z|w). The gist extraction problem requires computing the prob-
ability of g given w, P(g|w).

All of the probabilities needed to solve the problems of predic-
tion, disambiguation, and gist extraction can be computed from a
single joint distribution over words and latent structures, P(w, l).
The problems of prediction, disambiguation, and gist extraction
can thus be solved by learning the joint probabilities of words and
latent structures. This can be done using a generative model for
language. Generative models are widely used in machine learning
and statistics as a means of learning structured probability distri-
butions. A generative model specifies a hypothetical causal pro-
cess by which data are generated, breaking this process down into
probabilistic steps. Critically, this procedure can involve unob-

served variables, corresponding to latent structure that plays a role
in generating the observed data. Statistical inference can be used to
identify the latent structure most likely to have been responsible
for a set of observations.

A schematic generative model for language is shown in Fig-
ure 4a. In this model, latent structure l generates an observed
sequence of words w � �w1, . . . ,wn). This relationship is illus-
trated using graphical model notation (e.g., Jordan, 1998; Pearl,
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Figure 3. (a) Latent semantic analysis (LSA) performs dimensionality reduction using the singular value
decomposition. The transformed word–document co-occurrence matrix, X, is factorized into three smaller
matrices, U, D, and V. U provides an orthonormal basis for a spatial representation of words, D weights those
dimensions, and V provides an orthonormal basis for a spatial representation of documents. (b) The topic model
performs dimensionality reduction using statistical inference. The probability distribution over words for each
document in the corpus conditioned on its gist, P(w|g), is approximated by a weighted sum over a set of
probabilistic topics, represented with probability distributions over words, P(w|z), where the weights for each
document are probability distributions over topics, P(z|g), determined by the gist of the document, g.

Figure 4. Generative models for language. (a) A schematic representa-
tion of generative models for language. Latent structure l generates words
w. This generative process defines a probability distribution over l, P(l),
and w given l, P(w|l). Applying Bayes’s rule with these distributions makes
it possible to invert the generative process, inferring l from w. (b) Latent
Dirichlet allocation (Blei et al., 2003), a topic model. A document is
generated by choosing a distribution over topics that reflects the gist of the
document, g, choosing a topic zi for each potential word from a distribution
determined by g, and then choosing the actual word wi from a distribution
determined by zi.
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1988). Graphical models provide an efficient and intuitive method
of illustrating structured probability distributions. In a graphical
model, a distribution is associated with a graph in which nodes are
random variables and edges indicate dependence. Unlike artificial
neural networks, in which a node typically indicates a single
unidimensional variable, the variables associated with nodes can
be arbitrarily complex. l can be any kind of latent structure, and w
represents a set of n words.

The graphical model shown in Figure 4a is a directed graphical
model, with arrows indicating the direction of the relationship
among the variables. The result is a directed graph, in which
“parent” nodes have arrows to their “children.” In a generative
model, the direction of these arrows specifies the direction of the
causal process by which data are generated: A value is chosen for
each variable by sampling from a distribution that conditions on
the parents of that variable in the graph. The graphical model
shown in the figure indicates that words are generated by first
sampling a latent structure, l, from a distribution over latent
structures, P(l), and then sampling a sequence of words, w, con-
ditioned on that structure from a distribution P(w|l). The process of
choosing each variable from a distribution conditioned on its
parents defines a joint distribution over observed data and latent
structures. In the generative model shown in Figure 4a, this joint
distribution is P(w, l) � P(w|l)P(l).

With an appropriate choice of l, this joint distribution can be
used to solve the problems of prediction, disambiguation, and gist
extraction identified above. In particular, the probability of the
latent structure l given the sequence of words w can be computed
by applying Bayes’s rule:

P�l�w� �
P(w�l)P(l)

P(w)
, (2)

where

P(w) � �
l

P(w�l)P(l).

This Bayesian inference involves computing a probability that
goes against the direction of the arrows in the graphical model,
inverting the generative process.

Equation 2 provides the foundation for solving the problems of
prediction, disambiguation, and gist extraction. The probability
needed for prediction, P(wn�1�w), can be written as

P(wn�1�w) � �
l

P(wn�1�l,w)P(l�w), (3)

where P(wn�1�l) is specified by the generative process. Distribu-
tions over the senses of words, z, and their gist, g, can be computed
by summing out the irrelevant aspect of l,

P(z�w) � �
g

P(l�w) (4)

P(g�w) � �
z

P(l�w), (5)

where we assume that the gist of a set of words takes on a discrete
set of values—if it is continuous, then Equation 5 requires an
integral rather than a sum.

This abstract schema gives a general form common to all
generative models for language. Specific models differ in the latent
structure l that they assume, the process by which this latent
structure is generated (which defines P(l)), and the process by
which words are generated from this latent structure (which de-
fines P(w|l)). Most generative models that have been applied to
language focus on latent syntactic structure (e.g., Charniak, 1993;
Jurafsky & Martin, 2000; Manning & Schütze, 1999). In the next
section, we describe a generative model that represents the latent
semantic structure that underlies a set of words.

Representing Gist With Topics

A topic model is a generative model that assumes a latent
structure l � (g, z), representing the gist of a set of words, g, as a
distribution over T topics and the sense or meaning used for the ith
word, zi, as an assignment of that word to one of these topics.1

Each topic is a probability distribution over words. A document—a
set of words—is generated by choosing the distribution over topics
reflecting its gist, using this distribution to choose a topic zi for
each word wi and then generating the word itself from the distri-
bution over words associated with that topic. Given the gist of the
document in which it is contained, this generative process defines
the probability of the ith word to be

P(wi�g) � �
zi�1

T

P(wi�zi)P(zi�g), (6)

in which the topics, specified by P(w|z), are mixed together with
weights given by P(z|g), which vary across documents.2 The
dependency structure among variables in this generative model is
shown in Figure 4b.

Intuitively, P(w|z) indicates which words are important to a
topic, whereas P(z|g) is the prevalence of those topics in a docu-
ment. For example, if we lived in a world where people only wrote
about finance, the English countryside, and oil mining, then we
could model all documents with the three topics shown in Figure
1c. The content of the three topics is reflected in P(w|z): The
finance topic gives high probability to words like reserve and
federal, the countryside topic gives high probability to words like
stream and meadow, and the oil topic gives high probability to
words like petroleum and gasoline. The gist of a document, g,
indicates whether a particular document concerns finance, the

1 This formulation of the model makes the assumption that each topic
captures a different sense or meaning of a word. This need not be the
case—there may be a many-to-one relationship between topics and the
senses or meanings in which words are used. However, the topic assign-
ment still communicates information that can be used in disambiguation
and prediction in the way that the sense or meaning must be used.
Henceforth, we focus on the use of zi to indicate a topic assignment, rather
than a sense or meaning for a particular word.

2 We have suppressed the dependence of the probabilities discussed in
this section on the parameters specifying P(w|z) and P(z|g), assuming that
these parameters are known. A more rigorous treatment of the computation
of these probabilities is given in Appendix A.
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countryside, oil mining, or financing an oil refinery in Leicester-
shire, by determining the distribution over topics, P(z|g).

Equation 6 gives the probability of a word conditioned on the
gist of a document. We can define a generative model for a
collection of documents by specifying how the gist of each doc-
ument is chosen. Because the gist is a distribution over topics, this
requires using a distribution over multinomial distributions. The
idea of representing documents as mixtures of probabilistic topics
has been used in a number of applications in information retrieval
and statistical natural language processing, with different models
making different assumptions about the origins of the distribution
over topics (e.g., Bigi, De Mori, El-Beze, & Spriet, 1997; Blei et
al., 2003; Hofmann, 1999; Iyer & Ostendorf, 1999; Ueda & Saito,
2003). We will use a generative model introduced by Blei et al.
(2003) called latent Dirichlet allocation. In this model, the multi-
nomial distribution representing the gist is drawn from a Dirichlet
distribution, a standard probability distribution over multinomials
(e.g., Gelman, Carlin, Stern, & Rubin, 1995).

Having defined a generative model for a corpus based on some
parameters, one can then use statistical methods to infer the pa-
rameters from the corpus. In our case, this means finding a set of
topics such that each document can be expressed as a mixture of
those topics. An algorithm for extracting a set of topics is de-
scribed in Appendix A, and a more detailed description and ap-
plication of this algorithm can be found in Griffiths and Steyvers
(2004). This algorithm takes as input a word–document co-
occurrence matrix. The output is a set of topics, each being a
probability distribution over words. The topics shown in Figure 1c
are actually the output of this algorithm when applied to the
word–document co-occurrence matrix shown in Figure 2. These
results illustrate how well the topic model handles words with
multiple meanings or senses: field appears in both the oil and
countryside topics, bank appears in both finance and countryside,
and deposits appears in both oil and finance. This is a key advan-
tage of the topic model: By assuming a more structured represen-
tation, in which words are assumed to belong to topics, the model
allows the different meanings or senses of ambiguous words to be
differentiated.

Prediction, Disambiguation, and Gist Extraction

The topic model provides a direct solution to the problems of
prediction, disambiguation, and gist extraction identified in the
previous section. The details of these computations are presented
in Appendix A. To illustrate how these problems are solved by the
model, we consider a simplified case in which all words in a
sentence are assumed to have the same topic. In this case, g is a
distribution that puts all of its probability on a single topic, z, and
zi � z for all i. This “single topic” assumption makes the mathe-
matics straightforward and is a reasonable working assumption in
many of the settings we explore.3

Under the single-topic assumption, disambiguation and gist
extraction become equivalent: The senses and the gist of a set of
words are both expressed in the single topic, z, that was respon-
sible for generating words w � �w1,w2,…,wn}. Applying Bayes’s
rule, we have

P( z�w) �
P(w�z)P(z)

P(w)

�

�
i�1

n

P(wi�z)P(z)

�
z

�
i�1

n

P(wi�z)P(z)

, (7)

where we have used the fact that the wi are independent given z. If

we assume a uniform prior over topics, P(z) �
1

T
, the distribution

over topics depends only on the product of the probabilities of each
of the wi under each topic z. The product acts like a logical “and”:
A topic will be likely only if it gives reasonably high probability
to all of the words. Figure 5 shows how this functions to disam-
biguate words, using the topics from Figure 1. When the word
bank is seen, both the finance and the countryside topics have high
probability. Seeing stream quickly swings the probability in favor
of the bucolic interpretation.

Solving the disambiguation problem is the first step in solving
the prediction problem. Incorporating the assumption that words
are independent given their topics into Equation 3, we have

P(wn�1�w) � �
z

P(wn�1�z)P(z�w). (8)

The predicted distribution over words is thus a mixture of topics,
with each topic being weighted by the distribution computed in
Equation 7. This is illustrated in Figure 5: When bank is read, the
predicted distribution over words is a mixture of the finance and
countryside topics, but stream moves this distribution toward the
countryside topic.

Topics and Semantic Networks

The topic model provides a clear way of thinking about how and
why “activation” might spread through a semantic network, and it
can also explain inhibitory priming effects. The standard concep-
tion of a semantic network is a graph with edges between word
nodes, as shown in Figure 6a. Such a graph is unipartite: There is
only one type of node, and those nodes can be interconnected
freely. In contrast, bipartite graphs consist of nodes of two types,
and only nodes of different types can be connected. We can form
a bipartite semantic network by introducing a second class of
nodes that mediate the connections between words. One way to
think about the representation of the meanings of words provided
by the topic model is in terms of the bipartite semantic network

3 It is also possible to define a generative model that makes this assump-
tion directly, having just one topic per sentence, and to use techniques like
those described in Appendix A to identify topics using this model. We did
not use this model because it uses additional information about the struc-
ture of the documents, making it harder to compare against alternative
approaches such as LSA (Landauer & Dumais, 1997). The single-topic
assumption can also be derived as the consequence of having a hyperpa-
rameter � favoring choices of z that employ few topics: The single-topic
assumption is produced by allowing � to approach 0.
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shown in Figure 6b, where the nodes in the second class are the
topics.

In any context, there is uncertainty about which topics are
relevant to that context. When a word is seen, the probability
distribution over topics moves to favor the topics associated with
that word: P(z|w) moves away from uniformity. This increase in
the probability of those topics is intuitively similar to the idea that
activation spreads from the words to the topics that are connected
with them. Following Equation 8, the words associated with those
topics also receive higher probability. This dispersion of probabil-
ity throughout the network is again reminiscent of spreading
activation. However, there is an important difference between
spreading activation and probabilistic inference: The probability
distribution over topics, P(z|w), is constrained to sum to 1. This
means that as the probability of one topic increases, the probability
of another topic decreases.

The constraint that the probability distribution over topics sums
to 1 is sufficient to produce the phenomenon of inhibitory priming
discussed above. Inhibitory priming occurs as a necessary conse-
quence of excitatory priming: When the probability of one topic
increases, the probability of another topic decreases. Conse-
quently, it is possible for one word to decrease the predicted
probability with which another word will occur in a particular
context. For example, according to the topic model, the probability
of the word doctor is .000334. Under the single-topic assumption,
the probability of the word doctor conditioned on the word nurse
is .0071, an instance of excitatory priming. However, the proba-
bility of doctor drops to .000081 when conditioned on hockey. The
word hockey suggests that the topic concerns sports, and conse-

quently topics that give doctor high probability have lower weight
in making predictions. By incorporating the constraint that prob-
abilities sum to 1, generative models are able to capture both the
excitatory and the inhibitory influence of information without
requiring the introduction of large numbers of inhibitory links
between unrelated words.

Topics and Semantic Spaces

Our claim that models that can accurately predict which words
are likely to arise in a given context can provide clues about human
language processing is shared with the spirit of many connectionist
models (e.g., Elman, 1990). However, the strongest parallels be-
tween our approach and work being done on spatial representa-
tions of semantics are perhaps those that exist between the topic
model and LSA. Indeed, the probabilistic topic model developed
by Hofmann (1999) was motivated by the success of LSA and
provided the inspiration for the model introduced by Blei et al.
(2003) that we use here. Both LSA and the topic model take a
word–document co-occurrence matrix as input. Both LSA and the
topic model provide a representation of the gist of a document,
either as a point in space or as a distribution over topics. And both
LSA and the topic model can be viewed as a form of “dimension-
ality reduction,” attempting to find a lower dimensional represen-
tation of the structure expressed in a collection of documents. In
the topic model, this dimensionality reduction consists of trying to
express the large number of probability distributions over words
provided by the different documents in terms of a small number of
topics, as illustrated in Figure 3b.

However, there are two important differences between LSA and
the topic model. The major difference is that LSA is not a gener-
ative model. It does not identify a hypothetical causal process
responsible for generating documents and the role of the meanings
of words in this process. As a consequence, it is difficult to extend
LSA to incorporate different kinds of semantic structure or to
recognize the syntactic roles that words play in a document. This
leads to the second difference between LSA and the topic model:
the nature of the representation. LSA is based on the singular value
decomposition, a method from linear algebra that can yield a
representation of the meanings of words only as points in an
undifferentiated euclidean space. In contrast, the statistical infer-
ence techniques used with generative models are flexible and make
it possible to use structured representations. The topic model
provides a simple structured representation: a set of individually
meaningful topics and information about which words belong to
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Figure 5. Prediction and disambiguation. (a) Words observed in a sen-
tence, w. (b) The distribution over topics conditioned on those words,
P(z|w). (c) The predicted distribution over words resulting from summing
over this distribution over topics, P(wn�1�w) � �
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seeing bank, the model is unsure whether the sentence concerns finance or
the countryside. Subsequently seeing stream results in a strong conviction
that bank does not refer to a financial institution.
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Figure 6. Semantic networks. (a) In a unipartite network, there is only
one class of nodes. In this case, all nodes represent words. (b) In a bipartite
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of different classes. In this case, one class of nodes represents words and
the other class represents topics.
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those topics. We will show that even this simple structure is
sufficient to allow the topic model to capture some of the quali-
tative features of word association that prove problematic for LSA
and to predict quantities that cannot be predicted by LSA, such as
the number of meanings or senses of a word.

Comparing Topics and Spaces

The topic model provides a solution to the problem of extracting
and using the gist of a set of words. In this section, we evaluate the
topic model as a psychological account of the content of human
semantic memory, comparing its performance with that of LSA.
The topic model and LSA use the same input—a word–document
co-occurrence matrix—but they differ in how this input is ana-
lyzed and in the way that they represent the gist of documents and
the meaning of words. By comparing these models, we hope to
demonstrate the utility of generative models for exploring ques-
tions of semantic representation and to gain some insight into the
strengths and limitations of different kinds of representation.

Our comparison of the topic model and LSA has two parts. In
this section, we analyze the predictions of the two models in depth
using a word-association task, considering both the quantitative
and the qualitative properties of these predictions. In particular, we
show that the topic model can explain several phenomena of word
association that are problematic for LSA. These phenomena are
analogues of the phenomena of similarity judgments that are
problematic for spatial models of similarity (Tversky, 1977; Tver-
sky & Gati, 1982; Tversky & Hutchinson, 1986). In the next
section we compare the two models across a broad range of tasks,
showing that the topic model produces the phenomena that were
originally used to support LSA and describing how the model can
be used to predict different aspects of human language processing
and memory.

Quantitative Predictions for Word Association

Are there any more fascinating data in psychology than tables of
association? (Deese, 1965, p. viii)

Association has been part of the theoretical armory of cognitive
psychologists since Thomas Hobbes used the notion to account for
the structure of our “trayne of thoughts” (Hobbes, 1651/1998;
detailed histories of association are provided by Deese, 1965, and
Anderson & Bower, 1974). One of the first experimental studies of
association was conducted by Galton (1880), who used a word-
association task to study different kinds of association. Since
Galton, several psychologists have tried to classify kinds of asso-
ciation or to otherwise divine its structure (e.g., Deese, 1962,
1965). This theoretical work has been supplemented by the devel-
opment of extensive word-association norms, listing commonly
named associates for a variety of words (e.g., Cramer, 1968; Kiss,
Armstrong, Milroy, & Piper, 1973; Nelson, McEvoy, & Schreiber,
1998). These norms provide a rich body of data, which has only
recently begun to be addressed using computational models (Den-
nis, 2003; Nelson, McEvoy, & Dennis, 2000; Steyvers, Shiffrin, &
Nelson, 2004).

Though unlike Deese (1965), we suspect that there may be more
fascinating psychological data than tables of association, word
association provides a useful benchmark for evaluating models of

human semantic representation. The relationship between word
association and semantic representation is analogous to that be-
tween similarity judgments and conceptual representation, being
an accessible behavior that provides clues and constraints that
guide the construction of psychological models. Also, like simi-
larity judgments, association scores are highly predictive of other
aspects of human behavior. Word-association norms are com-
monly used in constructing memory experiments, and statistics
derived from these norms have been shown to be important in
predicting cued recall (Nelson, McKinney, Gee, & Janczura,
1998), recognition (Nelson, McKinney, et al., 1998; Nelson,
Zhang, & McKinney, 2001), and false memories (Deese, 1959;
McEvoy et al., 1999; Roediger et al., 2001). It is not our goal to
develop a model of word association, as many factors other than
semantic association are involved in this task (e.g., Ervin, 1961;
McNeill, 1966), but we believe that issues raised by word-
association data can provide insight into models of semantic rep-
resentation.

We used the norms of Nelson, McEvoy, and Schreiber (1998) to
evaluate the performance of LSA and the topic model in predicting
human word association. These norms were collected using a
free-association task, in which participants were asked to produce
the first word that came into their head in response to a cue word.
The results are unusually complete, with associates being derived
for every word that was produced more than once as an associate
for any other word. For each word, the norms provide a set of
associates and the frequencies with which they were named, mak-
ing it possible to compute the probability distribution over asso-
ciates for each cue. We will denote this distribution P(w2|w1) for a
cue w1 and associate w2 and order associates by this probability:
The first associate has highest probability, the second has the next
highest, and so forth.

We obtained predictions from the two models by deriving semantic
representations from the TASA corpus (Landauer & Dumais, 1997),
which is a collection of excerpts from reading materials commonly
encountered between the first year of school and the first year of
college. We used a smaller vocabulary than previous applications of
LSA to TASA, considering only words that occurred at least 10 times
in the corpus and were not included in a standard “stop” list contain-
ing function words and other high-frequency words with low seman-
tic content. This left us with a vocabulary of 26,243 words, of which
4,235,314 tokens appeared in the 37,651 documents contained in the
corpus. We used the singular value decomposition to extract a 700-
dimensional representation of the word–document co-occurrence sta-
tistics, and we examined the performance of the cosine as a predictor
of word association using this and a variety of subspaces of lower
dimensionality. We also computed the inner product between word
vectors as an alternative measure of semantic association, which we
discuss in detail later in the article. Our choice to use 700 dimensions
as an upper limit was guided by two factors, one theoretical and the
other practical: Previous analyses have suggested that the perfor-
mance of LSA was best with only a few hundred dimensions (Land-
auer & Dumais, 1997), an observation that was consistent with
performance on our task, and 700 dimensions is the limit of standard
algorithms for singular value decomposition with a matrix of this size
on a workstation with 2 GB of RAM.

We applied the algorithm for finding topics described in Ap-
pendix A to the same word–document co-occurrence matrix, ex-
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tracting representations with up to 1,700 topics. Our algorithm is
far more memory efficient than the singular value decomposition,
as all of the information required throughout the computation can
be stored in sparse matrices. Consequently, we ran the algorithm at
increasingly high dimensionalities, until prediction performance
began to level out. In each case, the set of topics found by the
algorithm was highly interpretable, expressing different aspects of
the content of the corpus. A selection of topics from the 1,700-
topic solution is shown in Figure 7.

The topics found by the algorithm pick out some of the key
notions addressed by documents in the corpus, including very
specific subjects like printing and combustion engines. The topics
are extracted purely on the basis of the statistical properties of the
words involved—roughly, that these words tend to appear in the
same documents—and the algorithm does not require any special
initialization or other human guidance. The topics shown in Fig-
ure 7 were chosen to be representative of the output of the
algorithm and to illustrate how polysemous and homonymous
words are represented in the model: Different topics capture dif-
ferent contexts in which words are used and, thus, different mean-
ings or senses. For example, the first two topics shown in the
figure capture two different meanings of characters: the symbols
used in printing and the personas in a play.

To model word association with the topic model, we need to
specify a probabilistic quantity that corresponds to the strength of
association. The discussion of the problem of prediction above
suggests a natural measure of semantic association: P(w2|w1), the
probability of word w2 given word w1. Using the single-topic
assumption, we have

P(w2�w1) � �
z

P(w2�z)P(z�w1), (9)

which is simply Equation 8 with n � 1. The details of evaluating
this probability are given in Appendix A. This conditional proba-
bility automatically compromises between word frequency and
semantic relatedness: Higher frequency words will tend to have
higher probabilities across all topics, and this will be reflected in
P(w2|z), but the distribution over topics obtained by conditioning
on w1, P(z|w1), will ensure that semantically related topics domi-
nate the sum. If w1 is highly diagnostic of a particular topic, then

that topic will determine the probability distribution over w2. If w1

provides no information about the topic, then P(w2|w1) will be
driven by word frequency.

The overlap between the words used in the norms and the
vocabulary derived from TASA was 4,471 words, and all analyses
presented in this article are based on the subset of the norms that
uses these words. Our evaluation of the two models in predicting
word association was based on two performance measures: (a) the
median rank of the first five associates under the ordering imposed
by the cosine or the conditional probability and (b) the probability
of the first associate being included in sets of words derived from
this ordering. For LSA, the first of these measures was assessed by
computing the cosine for each word w2 with each cue w1, ranking
the choices of w2 by cos(w1, w2) such that the highest ranked word
had highest cosine, and then finding the ranks of the first five
associates for that cue. After applying this procedure to all 4,471
cues, we computed the median ranks for each of the first five
associates. An analogous procedure was performed with the topic
model, using P(w2|w1) in the place of cos(w1, w2). The second of
our measures was the probability that the first associate is included
in the set of the m words with the highest ranks under each model,
varying m. These two measures are complementary: The first
indicates central tendency, whereas the second gives the distribu-
tion of the rank of the first associate.

The topic model outperforms LSA in predicting associations
between words. The results of our analyses are shown in Figure 8.
We tested LSA solutions with 100, 200, 300, 400, 500, 600, and
700 dimensions. In predictions of the first associate, performance
levels out at around 500 dimensions, being approximately the same
at 600 and 700 dimensions. We use the 700-dimensional solution
for the remainder of our analyses, although our points about the
qualitative properties of LSA hold regardless of dimensionality.
The median rank of the first associate in the 700-dimensional
solution was 31 out of 4,470, and the word with the highest cosine
was the first associate in 11.54% of cases. We tested the topic
model with 500, 700, 900, 1,100, 1,300, 1,500, and 1,700 topics,
finding that performance levels out at around 1,500 topics. We use
the 1,700-dimensional solution for the remainder of our analyses.
The median rank of the first associate in P(w2|w1) was 18, and the
word with the highest probability under the model was the first

Figure 7. A sample of the 1,700 topics derived from the Touchstone Applied Science Associates corpus. Each
column contains the 20 highest probability words in a single topic, as indicated by P(w|z). Words in boldface
occur in different senses in neighboring topics, illustrating how the model deals with polysemy and homonymy.
These topics were discovered in a completely unsupervised fashion, using just word–document co-occurrence
frequencies.
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associate in 16.15% of cases, in both instances an improvement of
around 40% on LSA.

The performance of both models on the two measures was far
better than chance, which would be 2,235.5 and 0.02% for the
median rank and the proportion correct, respectively. The dimen-
sionality reduction performed by the models seems to improve
predictions. The conditional probability P(w2|w1) computed di-
rectly from the frequencies with which words appeared in different
documents gave a median rank of 50.5 and predicted the first
associate correctly in 10.24% of cases. LSA thus improved on the
raw co-occurrence probability by between 20% and 40%, whereas
the topic model gave an improvement of over 60%. In both cases,
this improvement resulted purely from having derived a lower
dimensional representation from the raw frequencies.

Figure 9 shows some examples of the associates produced by
people and by the two different models. The figure shows two
examples randomly chosen from each of four sets of cues: those
for which both models correctly predict the first associate, those
for which only the topic model predicts the first associate, those
for which only LSA predicts the first associate, and those for
which neither model predicts the first associate. These exam-
ples help to illustrate how the two models sometimes fail. For
example, LSA sometimes latches on to the wrong sense of a

word, as with pen, and tends to give high scores to inappropriate
low-frequency words, such as whale, comma, and mildew. Both
models sometimes pick out correlations between words that do
not occur for reasons having to do with the meaning of those
words: buck and bumble both occur with destruction in a single
document, which is sufficient for these low-frequency words to
become associated. In some cases, as with rice, the most salient
properties of an object are not those that are reflected in its use,
and the models fail despite producing meaningful, semantically
related predictions.

Qualitative Properties of Word Association

Quantitative measures such as those shown in Figure 8 provide
a simple means of summarizing the performance of the two mod-
els. However, they mask some of the deeper qualitative differences
that result from using different kinds of representations. Tversky
(1977; Tversky & Gati, 1982; Tversky & Hutchinson, 1986)
argued against defining the similarity between two stimuli in terms
of the distance between those stimuli in an internalized spatial
representation. Tversky’s argument was founded on violations of
the metric axioms—formal principles that hold for all distance
measures, which are also known as metrics—in similarity judg-

Figure 8. Performance of latent semantic analysis and the topic model in predicting word association. (a) The
median ranks of the first five empirical associates in the ordering predicted by different measures of semantic
association at different dimensionalities. Smaller ranks indicate better performance. The dotted line shows
baseline performance, corresponding to the use of the raw frequencies with which words occur in the same
documents. (b) The probability that a set containing the m highest ranked words under the different measures
would contain the first empirical associate, with plot markers corresponding to m � 1, 5, 10, 25, 50, 100. The
results for the cosine and inner product are the best results obtained over all choices of between 100 and 700
dimensions, whereas the results for the topic model use just the 1,700-topic solution. The dotted line is baseline
performance derived from co-occurrence frequency.
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ments. Specifically, similarity (a) can be asymmetric, because the
similarity of x to y can differ from the similarity of y to x; (b)
violates the triangle inequality, because x can be similar to y and
y to z without x being similar to z; and (c) shows a neighborhood
structure inconsistent with the constraints imposed by spatial rep-
resentations. Tversky concluded that conceptual stimuli are better
represented in terms of sets of features.

Tversky’s arguments about the adequacy of spaces and features
for capturing the similarity between conceptual stimuli have direct
relevance to the investigation of semantic representation. Words
are conceptual stimuli, and LSA assumes that words can be rep-
resented as points in a space. The cosine, the standard measure of
association used in LSA, is a monotonic function of the angle
between two vectors in a high-dimensional space. The angle be-
tween two vectors is a metric, satisfying the metric axioms of
being zero for identical vectors, being symmetric, and obeying the
triangle inequality. Consequently, the cosine exhibits many of the
constraints of a metric.

The topic model does not suffer from the same constraints. In
fact, the topic model can be thought of as providing a feature-based
representation for the meaning of words, with the topics under
which a word has high probability being its features. In Appendix
B, we show that there is actually a formal correspondence between
evaluating P(w2|w1) using Equation 9 and computing similarity in
one of Tversky’s (1977) feature-based models. The association
between two words is increased by each topic that assigns high
probability to both and is decreased by topics that assign high
probability to one but not the other, in the same way that Tverksy
claimed common and distinctive features should affect similarity.

The two models we have been considering thus correspond to
the two kinds of representation considered by Tversky. Word
association also exhibits phenomena that parallel Tversky’s anal-
yses of similarity, being inconsistent with the metric axioms. We

will discuss three qualitative phenomena of word association—
effects of word frequency, violation of the triangle inequality, and
the large-scale structure of semantic networks—connecting these
phenomena to the notions used in Tversky’s (1977; Tversky &
Gati, 1982; Tversky & Hutchinson, 1986) critique of spatial rep-
resentations. We will show that LSA cannot explain these phe-
nomena (at least when the cosine is used as the measure of
semantic association), owing to the constraints that arise from the
use of distances, but that these phenomena emerge naturally when
words are represented using topics, just as they can be produced
using feature-based representations for similarity.

Asymmetries and word frequency. The asymmetry of similar-
ity judgments was one of Tversky’s (1977) objections to the use of
spatial representations for similarity. By definition, any metric d
must be symmetric: d(x, y) � d(y, x). If similarity is a function of
distance, similarity should also be symmetric. However, it is
possible to find stimuli for which people produce asymmetric
similarity judgments. One classic example involves China and
North Korea: People typically have the intuition that North Korea
is more similar to China than China is to North Korea. Tversky’s
explanation for this phenomenon appealed to the distribution of
features across these objects: People’s representation of China
involves a large number of features, only some of which are shared
with North Korea, whereas their representation of North Korea
involves a small number of features, many of which are shared
with China.

Word frequency is an important determinant of whether a word
will be named as an associate. One can see this by looking for
asymmetric associations: pairs of words w1, w2 in which one word
is named as an associate of the other much more often than vice
versa (i.e., either P(w2|w1) P(w1|w2) or P(w1|w2) P(w2|w1)). One
can then evaluate the effect of word frequency by examining the
extent to which the observed asymmetries can be accounted for by

Figure 9. Actual and predicted associates for a subset of cues. Two cues were randomly selected from the sets
of cues for which (from left to right) both models correctly predicted the first associate, only the topic model
made the correct prediction, only latent semantic analysis (LSA) made the correct prediction, and neither model
made the correct prediction. Each column lists the cue, human associates, predictions of the topic model, and
predictions of LSA, presenting the first five words in order. The rank of the first associate is given in parentheses
below the predictions of the topic model and LSA.
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the frequencies of the words involved. We defined two words w1,
w2 to be associated if one word was named as an associate of the
other at least once (i.e., either P(w2|w1) or P(w1|w2) � 0) and
assessed asymmetries in association by computing the ratio of

cue–associate probabilities for all associated words,
P(w2�w1)

P(w1�w2)
. Of

the 45,063 pairs of associated words in our subset of the norms,
38,744 (85.98%) had ratios indicating a difference in probability of
at least an order of magnitude as a function of direction of
association. Good examples of asymmetric pairs include keg–beer,
text–book, trousers–pants, meow–cat, and cobra–snake. In each
of these cases, the first word elicits the second as an associate with
high probability, whereas the second is unlikely to elicit the first.
Of the 38,744 asymmetric associations, 30,743 (79.35%) could be
accounted for by the frequencies of the words involved, with the
higher frequency word being named as an associate more often.

LSA does not predict word frequency effects, including asym-
metries in association. The cosine is used as a measure of the
semantic association between two words partly because it coun-
teracts the effect of word frequency. The cosine is also inherently
symmetric, as can be seen from Equation 1: cos(w1, w2) � cos(w2,
w1) for all words w1, w2. This symmetry means that the model
cannot predict asymmetries in word association without adopting a
more complex measure of the association between words (cf.
Krumhansl, 1978; Nosofsky, 1991). In contrast, the topic model
can predict the effect of frequency on word association. Word
frequency is one of the factors that contribute to P(w2|w1). The
model can account for the asymmetries in the word-association
norms. As a conditional probability, P(w2|w1) is inherently asym-
metric, and the model correctly predicted the direction of 30,905
(79.77%) of the 38,744 asymmetric associations, including all of
the examples given above. The topic model thus accounted for
almost exactly the same proportion of asymmetries as word fre-
quency—the difference was not statistically significant, �2(1,
77488) � 2.08, p � .149.

The explanation for asymmetries in word association provided
by the topic model is extremely similar to Tversky’s (1977)
explanation for asymmetries in similarity judgments. Following
Equation 9, P(w2|w1) reflects the extent to which the topics in
which w1 appears give high probability to topic w2. High-
frequency words tend to appear in more topics than low-frequency
words. If wh is a high-frequency word and wl is a low-frequency
word, wh is likely to appear in many of the topics in which wl

appears, but wl will appear in only a few of the topics in which wh

appears. Consequently, P(wh|wl) will be large, but P(wl|wh) will be
small.

Violation of the triangle inequality. The triangle inequality is
another of the metric axioms: For a metric d, d(x, z) � d(x, y) �
d(y, z). This is referred to as the triangle inequality because if x, y,
and z are interpreted as points composing a triangle, the equation
indicates that no side of that triangle can be longer than the sum of
the other two sides. This inequality places strong constraints on
distance measures and strong constraints on the locations of points
in a space given a set of distances. If similarity is assumed to be a
monotonically decreasing function of distance, then this inequality
translates into a constraint on similarity relations: If x is similar to
y and y is similar to z, then x must be similar to z. Tversky and Gati
(1982) provided several examples in which this relationship does
not hold. These examples typically involve shifting the features on

which similarity is assessed. For instance, taking an example from
James (1890), a gas jet is similar to the moon, as both cast light,
and the moon is similar to a ball, because of its shape, but a gas jet
is not at all similar to a ball.

Word association violates the triangle inequality. A triangle
inequality in association would mean that if P(w2|w1) is high
and P(w3|w2) is high, then P(w3|w1) must be high. It is easy to
find sets of words that are inconsistent with this constraint. For
example, asteroid is highly associated with belt, and belt is
highly associated with buckle, but asteroid and buckle have
little association. Such cases are the rule rather than the excep-
tion, as shown in Figure 10a. Each of the histograms shown in
the figure was produced by selecting all sets of three words w1,
w2, w3 such that P(w2|w1) and P(w3|w2) were greater than some
threshold 	 and then computing the distribution of P(w3|w1).
Regardless of the value of 	, there exist a great many triples in
which w1 and w3 are so weakly associated as not to be named
in the norms.

LSA cannot explain violations of the triangle inequality. As a
monotonic function of the angle between two vectors, the cosine
obeys an analogue of the triangle inequality. Given three vectors
w1, w2, and w3, the angle between w1 and w3 must be less than or
equal to the sum of the angle between w1 and w2 and the angle
between w2 and w3. Consequently, cos(w1, w3) must be greater
than the cosine of the sum of the w1–w2 and w2–w3 angles. Using
the trigonometric expression for the cosine of the sum of two
angles, we obtain the inequality

cos�w1,w3)�cos�w1,w2)cos�w2,w3) � sin�w1,w2)sin�w2,w3),

where sin(w1, w2) can be defined analogously to Equation 1. This
inequality restricts the possible relationships between three words:
If w1 and w2 are highly associated and w2 and w3 are highly
associated, then w1 and w3 must be highly associated. Figure 10b
shows how the triangle inequality manifests in LSA. High values
of cos(w1, w2) and cos(w2, w3) induce high values of cos(w1, w3).
The implications of the triangle inequality are made explicit in
Figure 10d: Even for the lowest choice of threshold, the minimum
value of cos(w1, w3) was above the 97th percentile of cosines
between all words in the corpus.

The expression of the triangle inequality in LSA is subtle. It is
hard to find triples for which a high value of cos(w1, w2) and
cos(w2, w3) induce a high value of cos(w1, w3), although asteroid–
belt–buckle is one such example: Of the 4,470 words in the norms
(excluding self-associations), belt has the 13th highest cosine with
asteroid, buckle has the 2nd highest cosine with belt, and conse-
quently buckle has the 41st highest cosine with asteroid, higher
than tail, impact, or shower. The constraint is typically expressed
not by inducing spurious associations between words but by lo-
cating words that might violate the triangle inequality that are
sufficiently far apart as to be unaffected by the limitations it
imposes. As shown in Figure 10b, the theoretical lower bound on
cos(w1, w3) becomes an issue only when both cos(w1, w2) and
cos(w2, w3) are greater than .70.

As illustrated in Figure 7, the topic model naturally recovers the
multiple senses of polysemous and homonymous words, placing
them in different topics. This makes it possible for violations of the
triangle inequality to occur: If w1 has high probability in Topic 1
but not Topic 2, w2 has high probability in both Topics 1 and 2,
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and w3 has high probability in Topic 2 but not Topic 1, then
P(w2|w1) and P(w3|w2) can be quite high whereas P(w3|w1) stays
low. An empirical demonstration that this is the case for our
derived representation is shown in Figure 10c: Low values of
P(w3|w1) are observed even when P(w2|w1) and P(w3|w2) are both
high. As shown in Figure 10e, the percentile rank of the minimum
value of P(w3|w1) starts very low and increases far more slowly
than the cosine.

Predicting the structure of semantic networks. Word-
association data can be used to construct semantic networks, with
nodes representing words and edges representing a nonzero prob-
ability of a word being named as an associate. The semantic
networks formed in this way can be directed, marking whether a
particular word acted as a cue or an associate using the direction of
each edge, or undirected, with an edge between words regardless
of which acted as the cue. Steyvers and Tenenbaum (2005) ana-
lyzed the large-scale properties of both directed and undirected

semantic networks formed from the word-association norms of
Nelson, McEvoy, and Schreiber (1998), finding that they have
some statistical properties that distinguish them from classical
random graphs. The properties that we focus on here are scale-free
degree distributions and clustering.

In graph theory, the “degree” of a node is the number of edges
associated with that node, equivalent to the number of neighbors.
For a directed graph, the degree can differ according to the direc-
tion of the edges involved: The in-degree is the number of incom-
ing edges, and the out-degree, the number outgoing. By aggregat-
ing across many nodes, it is possible to find the degree distribution
for a particular graph. Research on networks arising in nature has
found that for many such networks the degree k follows a power-
law distribution, with P(k) 
 k–� for some constant �. Such a
distribution is often called “scale free,” because power-law distri-
butions are invariant with respect to multiplicative changes of the
scale. A power-law distribution can be recognized by plotting log
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P(k) against log k: If P(k) 
 k–�, then the result should be a straight
line with slope –�.

Steyvers and Tenenbaum (2005) found that semantic networks
constructed from word-association data have power-law degree
distributions. We reproduced their analyses for our subset of
Nelson, McEvoy, and Schreiber’s (1998) norms, computing the
degree of each word for both directed and undirected graphs
constructed from the norms. The degree distributions are shown in
Figure 11. In the directed graph, the out-degree (the number of
associates for each cue) follows a distribution that is unimodal and
exponential tailed, but the in-degree (the number of cues for which
a word is an associate) follows a power-law distribution, indicated
by the linearity of log P(k) as a function of log k. This relationship
induces a power-law degree distribution in the undirected graph.
We computed three summary statistics for these two power-law
distributions: the mean degree, k�, the standard deviation of k, sk,
and the best fitting power-law exponent, �. The mean degree
serves to describe the overall density of the graph, and sk and � are
measures of the rate at which P(k) falls off as k becomes large. If
P(k) is strongly positively skewed, as it should be for a power-law
distribution, then sk will be large. The relationship between � and
P(k) is precisely the opposite, with large values of � indicating a
rapid decline in P(k) as a function of k. The values of these
summary statistics are given in Table 1.

The degree distribution characterizes the number of neighbors
for any given node. A second property of semantic networks,
clustering, describes the relationships that hold among those neigh-
bors. Semantic networks tend to contain far more clusters of
densely interconnected nodes than would be expected to arise if
edges were simply added between nodes at random. A standard

measure of clustering (Watts & Strogatz, 1998) is the clustering
coefficient, C� , the mean proportion of the neighbors of a node that
are also neighbors of one another. For any node w, this proportion
is

Cw �
Tw

(2
kw)

�
2Tw

kw(kw�1)
,

where Tw is the number of neighbors of w that are neighbors of one
another and kw is the number of neighbors of w. If a node has no
neighbors, Cw is defined to be 1. The clustering coefficient, C� , is
computed by averaging Cw over all words w. In a graph formed
from word-association data, the clustering coefficient indicates the
proportion of the associates of a word that are themselves associ-
ated. Steyvers and Tenenbaum (2005) found that the clustering
coefficient of semantic networks is far greater than that of a
random graph. The clustering proportions Cw have been found to
be useful in predicting various phenomena in human memory,
including cued recall (Nelson, McKinney, et al., 1998), recognition
(Nelson et al., 2001), and priming effects (Nelson & Goodmon,
2002), although this quantity is typically referred to as the “con-
nectivity” of a word.

Power-law degree distributions in semantic networks are signif-
icant because they indicate that some words have extremely large
numbers of neighbors. In particular, the power law in in-degree
indicates that there are a small number of words that appear as
associates for a great variety of cues. As Steyvers and Tenenbaum
(2005) pointed out, this kind of phenomenon is difficult to repro-
duce in a spatial representation. This can be demonstrated by
attempting to construct the equivalent graph using LSA. Because
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Figure 11. Degree distributions for semantic networks. (a) The power-law degree distribution for the undi-
rected graph, shown as a linear function on log–log coordinates. (b)–(c) Neither the cosine nor the inner product
in LSA produces the appropriate degree distribution. (d) The topic model produces a power law with the
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the cosine is symmetric, the simple approach of connecting each
word w1 to all words w2 such that cos(w1, w2) � 	 for some
threshold 	 results in an undirected graph. We used this procedure
to construct a graph with the same density as the undirected
word-association graph and subjected it to the same analyses. The
results of these analyses are presented in Table 1. The degree of
individual nodes in the LSA graph is weakly correlated with the
degree of nodes in the association graph ( � .104). However,
word frequency is a far better predictor of degree ( � .530).
Furthermore, the form of the degree distribution is incorrect, as is
shown in Figure 11. The degree distribution resulting from using
the cosine initially falls off much more slowly than a power-law
distribution, resulting in the estimate � � 1.972, lower than the
observed value of 2.999, and then falls off more rapidly, resulting
in a value of sk of 14.51, lower than the observed value of 18.08.
Similar results are obtained with other choices of dimensionality,
and Steyvers and Tenenbaum found that several more elaborate
methods of constructing graphs (both directed and undirected)
from LSA were also unable to produce the appropriate degree
distribution.

Although they exhibit a different degree distribution from se-
mantic networks constructed from association data, graphs con-
structed by thresholding the cosine seem to exhibit the appropriate
amount of clustering. We found Cw for each of the words in our
subset of the word-association norms and used these to compute
the clustering coefficient C� . We performed the same analysis on
the graph constructed using LSA and found a similar but slightly
higher clustering coefficient. However, LSA differs from the as-
sociation norms in predicting which words should belong to clus-
ters: The clustering proportions for each word in the LSA graph
are only weakly correlated with the corresponding quantities in the
word-association graph,  � .146. Again, word frequency is a
better predictor of clustering proportion, with  � –.462.

The neighborhood structure of LSA seems to be inconsistent
with the properties of word association. This result is reminiscent
of Tversky and Hutchinson’s (1986) analysis of the constraints that
spatial representations place on the configurations of points in
low-dimensional spaces. The major concern of Tversky and
Hutchinson was the neighborhood relations that could hold among
a set of points, and specifically the number of points to which a

point could be the nearest neighbor. In low-dimensional spaces,
this quantity is heavily restricted: In one dimension, a point can be
the nearest neighbor of only two others; in two dimensions, it can
be the nearest neighbor of five. This constraint seemed to be at
odds with the kinds of structure that can be expressed by concep-
tual stimuli. One of the examples considered by Tversky and
Hutchinson was hierarchical structure: It seems that apple, orange,
and banana should all be extremely similar to the abstract notion of
fruit, yet in a low-dimensional spatial representation, fruit can be
the nearest neighbor of only a small set of points. In word asso-
ciation, power-law degree distributions mean that a few words
need to be neighbors of a large number of other words, something
that is difficult to produce even in high-dimensional spatial repre-
sentations.

Semantic networks constructed from the predictions of the topic
model provide a better match to those derived from word-
association data. The asymmetry of P(w2|w1) makes it possible to
construct both directed and undirected semantic networks by
thresholding the conditional probability of associates given cues.
We constructed directed and undirected graphs by choosing the
threshold to match the density, k�, of the semantic network formed
from association data. The semantic networks produced by the
topic model were extremely consistent with the semantic networks
derived from word association, with the statistics given in Table 1.

As shown in Figure 11a, the degree distribution for the undi-
rected graph was power law with an exponent of � � 2.746 and a
standard deviation of sk � 21.36, providing a closer match to the
true distribution than LSA. Furthermore, the degree of individual
nodes in the semantic network formed by thresholding P(w2|w1)
correlated well with the degree of nodes in the semantic network
formed from the word-association data,  � .487. The clustering
coefficient was close to that of the true graph, C� � .303, and the
clustering proportions of individual nodes were also well corre-
lated across the two graphs,  � .396.

For the directed graph, the topic model produced appropriate
distributions for both the out-degree (the number of associates per
cue) and the in-degree (the number of cues for which a word is an
associate), as shown in Figure 11b. The in-degree distribution was
power law, with an exponent of � � 1.948 and a standard devia-
tion of sk � 21.65, both being close to the true values. The

Table 1
Structural Statistics and Correlations for Semantic Networks

Measure

Undirected (k� � 20.16) Directed (k� � 11.67)

Association Cosine
Inner

product Topics Association Topics

Statistics
sk 18.08 14.51 33.77 21.36 18.72 21.65
� 2.999 1.972 1.176 2.746 2.028 1.948
C� .187 .267 .625 .303 .187 .308
L� 3.092 3.653 2.939 3.157 4.298 4.277

Correlations
k (.530) .104 .465 .487 (.582) .606
C (�.462) .146 .417 .396 (�.462) .391

Note. k� and sk are the mean and standard deviation of the degree distribution, � is the power-law exponent, C�
is the mean clustering coefficient, and L� is the mean length of the shortest path between pairs of words.
Correlations in parentheses show the results of using word frequency as a predictor.
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clustering coefficient was similar but slightly higher than the data,
C� � .308, and the predicted in-degree and clustering proportions
of individual nodes correlated well with those for the association
graph,  � .606 and  � .391, respectively.

Inner Products as an Alternative Measure of Association

In our analyses so far, we have focused on the cosine as a
measure of semantic association in LSA, consistent with the vast
majority of uses of the model. However, in a few applications, it
has been found that the unnormalized inner product gives better
predictions (e.g., Rehder et al., 1998). Although it is symmetric,
the inner product does not obey a triangle inequality or have easily
defined constraints on neighborhood relations. We computed the
inner products between all pairs of words from our derived LSA
representations and applied the procedure used to test the cosine
and the topic model. We found that the inner product gave better
quantitative performance than the cosine, but worse than the topic
model, with a median rank for the first associate of 28. A total of
14.23% of the empirical first associates matched the word with the
highest inner product. These results are shown in Figure 8. As is to
be expected for a measure that does not obey the triangle inequal-
ity, there was little effect of the strength of association for (w1, w2)
pairs and (w2, w3) pairs on the strength of association for (w1, w3)
pairs, as shown in Figure 10d and 10e.

As with the other models, we constructed a semantic network by
thresholding the inner product, choosing the threshold to match the
density of the association graph. The inner product does poorly in
reproducing the neighborhood structure of word association, pro-
ducing a degree distribution that falls off too slowly (� � 1.176,
sk � 33.77) and an extremely high clustering coefficient (C� �
.625). However, it does reasonably well in predicting the degree
( � .465) and clustering proportions ( � .417) of individual
nodes. The explanation for this pattern of results is that the inner
product is strongly affected by word frequency, and the frequency
of words is an important component in predicting associations.
However, the inner product gives too much weight to word fre-
quency in forming these predictions, and high-frequency words
appear as associates for a great many cues. This results in the low
exponent and high standard deviation of the degree distribution.
The two measures of semantic association used in LSA represent
two extremes in their use of word frequency: The cosine is only
weakly affected by word frequency, whereas the inner product is
strongly affected. Human semantic memory is sensitive to word
frequency, but its sensitivity lies between these extremes.

Summary

The results presented in this section provide analogues in se-
mantic association to the problems that Tversky (1977; Tversky &
Gati, 1982; Tversky & Hutchinson, 1986) identified for spatial
accounts of similarity. Tversky’s argument was not against spatial
representations per se but against the idea that similarity is a
monotonic function of a metric, such as distance in psychological
space (cf. Shepard, 1987). Each of the phenomena he noted—
asymmetry, violation of the triangle inequality, and neighborhood
structure—could be produced from a spatial representation under
a sufficiently creative scheme for assessing similarity. Asymmetry
provides an excellent example, as several methods for producing

asymmetries from spatial representations have already been sug-
gested (Krumhansl, 1978; Nosofsky, 1991). However, his argu-
ment shows that the distance between two points in psychological
space should not be taken as an absolute measure of the similarity
between the objects that correspond to those points. Analogously,
our results suggest that the cosine (which is closely related to a
metric) should not be taken as an absolute measure of the associ-
ation between two words.

One way to address some of the problems that we have high-
lighted in this section may be to use spatial representations in
which each word is represented as multiple points rather than a
single point. This is the strategy taken in many connectionist
models of semantic representation (e.g., Kawamoto, 1993; Plaut,
1997; Rodd et al., 2004), in which different points in space are
used to represent different meanings or senses of words. However,
typically these representations are learned not from text but from
data consisting of labeled pairs of words and their meanings.
Automatically extracting such a representation from text would
involve some significant computational challenges, such as decid-
ing how many senses each word should have and when those
senses are being used.

The fact that the inner product does not exhibit some of the
problems we identified with the cosine reinforces the fact that the
issue is not with the information extracted by LSA but with using
a measure of semantic association that is related to a metric. The
inner product in LSA has an interesting probabilistic interpretation
that explains why it should be so strongly affected by word
frequency. Under weak assumptions about the properties of a
corpus, it can be shown that the inner product between two word
vectors is approximately proportional to a smoothed version of the
joint probability of those two words (Griffiths & Steyvers, 2003).
Word frequency will be a major determinant of this joint proba-
bility, and hence it has a strong influence on the inner product.
This analysis suggests that although the inner product provides a
means of measuring semantic association that is nominally defined
in terms of an underlying semantic space, much of its success may
actually be a consequence of approximating a probability.

The topic model provides an alternative to LSA that automati-
cally solves the problem of understanding the different senses in
which a word might be used, and gives a natural probabilistic
measure of association that is not subject to the constraints of a
metric. It gives more accurate quantitative predictions of word-
association data than using either the cosine or the inner product in
the representation extracted by LSA. It also produces predictions
that are consistent with the qualitative properties of semantic
association that are problematic for spatial representations. In the
remainder of the article, we consider some further applications of
this model, including other comparisons with LSA, and how it can
be extended to accommodate more complex semantic and syntac-
tic structures.

Further Applications

Our analysis of word association provided an in-depth explora-
tion of the differences between LSA and the topic model. How-
ever, these models are intended to provide an account of a broad
range of empirical data, collected through a variety of tasks that tap
the representations used in processing language. In this section, we
present a series of examples of applications of these models to
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other tasks. These examples show that the topic model reproduces
many of the phenomena that were originally used to support LSA,
provide a broader basis for comparison between the two models,
and illustrate how the representation extracted by the topic model
can be used in other settings.

Synonym Tests

One of the original applications of LSA was to the synonyms
task of the Test of English as a Foreign Language (TOEFL), used
to assess fluency in English for nonnative speakers (Landauer &
Dumais, 1997). To allow direct comparison between the predic-
tions of LSA and the topic model, we replicated these results and
evaluated the performance of the topic model on the same task.
The test contained 90 questions, consisting of a probe word and
four answers. Our analyses included only questions for which all
five words (probe and answers) were in our 26,243-word vocab-
ulary, resulting in a set of 44 questions. We used the solutions
obtained from the TASA corpus, as described in the previous
section. For LSA, we computed the cosine and inner product
between probe and answers for LSA solutions with between 100
and 700 dimensions. For the topic model, we computed
P(wprobe|wanswer) and P(wanswer|wprobe) for between 500 and 1,700
topics, where wprobe and wanswer are the probe and answer words,
respectively, and Equation 8 was used to calculate the conditional
probabilities.

Our first step in evaluating the models was to examine how
often the answer that each model identified as being most similar
to the probe was the correct answer. Landauer and Dumais (1997)
reported that LSA (trained on the TASA corpus but with a larger
vocabulary than we used here) produced 64.4% correct answers,
close to the average of 64.5% produced by college applicants from
non-English-speaking countries. Our results were similar: The best
performance using the cosine was with a solution using 500
dimensions, resulting in 63.6% correct responses. There were no
systematic effects of number of dimensions and only a small
amount of variation. The inner product likewise produced the best
performance with 500 dimensions, getting 61.5% correct.

The topic model performed similarly to LSA on the TOEFL test:
Using P(wprobe|wanswer) to select answers, the model produced the
best performance with 500 topics, with 70.5% correct. Again, there
was no systematic effect of number of topics. Selecting answers
using P(wanswer|wprobe) produced results similar to the cosine for
LSA, with the best performance being 63.6% correct, obtained
with 500 topics. The difference between these two ways of eval-
uating the conditional probability lies in whether the frequencies of
the possible answers are taken into account. Computing
P(wprobe|wanswer) controls for the frequency with which the words
wanswer generally occur and is perhaps more desirable in the
context of a vocabulary test.

As a final test of the two models, we computed the correlation
between their predictions and the actual frequencies with which
people selected the different responses. For the LSA solution with
500 dimensions, the mean correlation between the cosine and
response frequencies (obtained by averaging across items) was r �
.30, with r � .25 for the inner product. For the topic model with
500 topics, the corresponding correlations were r � .46 and .34 for
logP(wprobe|wanswer) and logP(wanswer|wprobe), respectively. Thus,

these models produced predictions that were not just correct but
captured some of the variation in human judgments on this task.

Semantic Priming of Different Word Meanings

Till et al. (1988) examined the time course of the processing of
word meanings using a priming study in which participants read
sentences containing ambiguous words and then performed a lex-
ical decision task. The sentences were constructed to provide
contextual information about the meaning of the ambiguous word.
For example, two of the sentences used in the study were

1A. The townspeople were amazed to find that all of the buildings had
collapsed except the mint. Obviously, it had been built to withstand
natural disasters.

1B. Thinking of the amount of garlic in his dinner, the guest asked for
a mint. He soon felt more comfortable socializing with the others.

which are intended to pick out the different meanings of mint. The
target words used in the lexical decision task either corresponded
to the different meanings of the ambiguous word (in this case,
money and candy) or were inferentially related to the content of the
sentence (in this case, earthquake and breath). The delay between
the presentation of the sentence and the decision task was varied,
making it possible to examine how the time course of processing
affected the facilitation of lexical decisions (i.e., priming) for
different kinds of targets.

The basic result reported by Till et al. (1988) was that both of
the meanings of the ambiguous word and neither of the inference
targets were primed when there was a short delay between sen-
tence presentation and lexical decision, and that there was a
subsequent shift to favor the appropriate meaning and inferentially
related target when the delay was increased. Landauer and Dumais
(1997) suggested that this effect could be explained by LSA, using
the cosine between the ambiguous word and the targets to model
priming at short delays and the cosine between the entire sentence
and the targets to model priming at long delays. They showed that
effects similar to those reported by Till et al. emerged from this
analysis.

We reproduced the analysis of Landauer and Dumais (1997)
using the representations we extracted from the TASA corpus. Of
the 28 pairs of sentences used by Till et al. (1988), there were 20
for which the ambiguous primes and all four target words appeared
in our vocabulary. To simulate priming early in processing, we
computed the cosine and inner product between the primes and the
target words using the representation extracted by LSA. To sim-
ulate priming in the later stages of processing, we computed the
cosine and inner product between the average vectors for each of
the full sentences (including only those words that appeared in our
vocabulary) and the target words. The values produced by these
analyses were then averaged over all 20 pairs. The results for the
700-dimensional solution are shown in Table 2 (similar results
were obtained with different numbers of dimensions).

The results of this analysis illustrate the trends identified by
Landauer and Dumais (1997). Both the cosine and the inner
product give reasonably high scores to the two meanings when just
the prime is used (relative to the distributions shown in Figure 10)
and shift to give higher scores to the meaning and inferentially
related target appropriate to the sentence when the entire sentence
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is used. To confirm that the topic model makes similar predictions
in the context of semantic priming, we used the same procedure
with the topic-based representation, computing the conditional
probabilities of the different targets (a) based just on the prime and
(b) based on the entire sentences, then averaging the log probabil-
ities over all pairs of sentences. The results for the 1,700-topic
solution are shown in Table 2 (similar results were obtained with
different numbers of topics). The topic model produces the same
trends: It initially gives high probability to both meanings and then
switches to give high probabilities to the sentence-appropriate
targets.

Sensitivity of Reading Time to Frequency of Meanings

Examining the time that people take to read words and sentences
has been one of the most widely used methods for evaluating the
contributions of semantic representation to linguistic processing.
In particular, several studies have used reading time to explore the
representation of ambiguous words (e.g., Duffy, Morris, & Rayner,
1988; Rayner & Duffy, 1986; Rayner & Frazier, 1989). Develop-
ing a complete account of how the kind of contextual information
we have been discussing influences reading time is beyond the
scope of this article. However, we used the topic model to predict
the results of one such study, to provide an illustration of how it
can be applied to a task of this kind.

Sereno et al. (1992) conducted a study in which the eye move-
ments of participants were monitored while they read sentences
containing ambiguous words. These ambiguous words were se-
lected to have one highly dominant meaning, but the sentences
established a context that supported the subordinate meaning. For
example, one sentence read

The dinner party was proceeding smoothly when, just as Mary was
serving the port, one of the guests had a heart attack.

where the context supports the subordinate meaning of port. The
aim of the study was to establish whether reading time for ambig-
uous words was better explained by the overall frequency with
which a word occurs in all of its meanings or senses or by the
frequency of a particular meaning. To test this, the experimenters
had participants read sentences containing either the ambiguous
word, a word with frequency matched to the subordinate sense (the
low-frequency control), or a word with frequency matched to the
dominant sense (the high-frequency control). For example, the
control words for port were veal and soup, respectively. The
results are summarized in Table 3: Ambiguous words using their
subordinate meaning were read more slowly than words with a
frequency corresponding to the dominant meaning but not quite as
slowly as words that matched the frequency of the subordinate
meaning. A subsequent study by Sereno, O’Donnell, and Rayner
(2006, Experiment 3) produced the same pattern of results.

Reading time studies present a number of challenges for com-
putational models. The study of Sereno et al. (1992) is particularly
conducive to modeling, as all three target words are substituted
into the same sentence frame, meaning that the results are not
affected by sentences differing in number of words, by the vocab-
ulary of the models, or by other factors that introduce additional
variance. However, to model these data we still need to make an
assumption about the factors influencing reading time. The ab-
stract computational-level analyses provided by generative models
do not make assertions about the algorithmic processes underlying
human cognition and can consequently be difficult to translate into
predictions about the amount of time it should take to perform a

Table 2
Predictions of Models for Semantic Priming Task of Till et al. (1988)

Model/Condition
Meaning A

(e.g., money)
Inference A

(e.g., earthquake)
Meaning B

(e.g., candy)
Inference B

(e.g., breath)

Cosine
Early 0.099 0.038 0.135 0.028
Late A 0.060 0.103 0.046 0.017
Late B 0.050 0.024 0.067 0.046

Inner product
Early 0.208 0.024 0.342 0.017
Late A 0.081 0.039 0.060 0.012
Late B 0.060 0.009 0.066 0.024

Topics (log10 probability)
Early �3.22 �4.31 �3.16 �4.42
Late A �4.03 �4.13 �4.58 �4.77
Late B �4.52 �4.73 �4.21 �4.24

Note. The examples are for sentences containing the ambiguous target word mint.

Table 3
Predictions of Models for Reading Time Task of Sereno et al. (1992)

Measure
Ambiguous

word
Low-frequency

control
High-frequency

control

Human gaze duration (ms) 281 287 257
Cosine .021 .048 .043
Inner product .011 .010 .025
Topics (log10 probability) �4.96 �5.26 �4.68
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task. In the topic model, there are a variety of factors that could
produce an increase in the time taken to read a particular word.
Some possible candidates include uncertainty about the topic of
the sentence, as reflected in the entropy of the distribution over
topics; a sudden change in perceived meaning, producing a differ-
ence in the distribution over topics before and after seeing the
word; or simply encountering an unexpected word, resulting in
greater effort for retrieving the relevant information from memory.
We chose to use only the last of these measures, as it was the
simplest and the most directly related to our construal of the
computational problem underlying linguistic processing, but we
suspect that a good model of reading time would need to incor-
porate some combination of all of these factors.

Letting wtarget be the target word and wsentence be the sequence
of words in the sentence before the occurrence of the target, we
want to compute P(wtarget|wsentence). Applying Equation 8, we
have

P(wtarget�wsentence) � �
z

P(wtarget�z)P(z�wsentence), (10)

where P(z|wsentence) is the distribution over topics encoding the
gist of wsentence. We used the 1,700-topic solution to compute this
quantity for the 21 of the 24 sentences used by Sereno et al. (1992)
for which all three target words appeared in our vocabulary, and
averaged the resulting log probabilities over all sentences. The
results are shown in Table 3. The topic model predicts the results
found by Sereno et al. (1992): The ambiguous words are assigned
lower probabilities than the high-frequency controls, although not
quite as low as the low-frequency controls. The model predicts this
effect because the distribution over topics P(z|wsentence) favors
those topics that incorporate the subordinate sense. As a conse-
quence, the probability of the target word is reduced, because
P(wtarget|z) is lower for those topics. However, if there is any
uncertainty, providing some residual probability to topics in which
the target word occurs in its dominant sense, the probability of the
ambiguous word will be slightly higher than the raw frequency of
the subordinate sense suggests.

For comparison, we computed the cosine and inner product
for the three values of wtarget and the average vectors for
wsentence in the 700-dimensional LSA solution. The results are
shown in Table 3. The cosine does not predict this effect, with
the highest mean cosines being obtained by the control words,
with little effect of frequency. This is due to the fact that the
cosine is relatively insensitive to word frequency, as discussed
above. The inner product, which is sensitive to word frequency,
produces predictions that are consistent with the results of
Sereno et al. (1992).

Semantic Intrusions in Free Recall

Word association involves making inferences about the seman-
tic relationships among a pair of words. The topic model can also
be used to make predictions about the relationships between mul-
tiple words, as might be needed in episodic memory tasks. Since
Bartlett (1932), many memory researchers have proposed that
episodic memory might be based not only on specific memory of
the experienced episodes but also on reconstructive processes that
extract the overall theme or gist of a collection of experiences.

One procedure for studying gist-based memory is the Deese–
Roediger–McDermott (DRM) paradigm (Deese, 1959; Roediger &
McDermott, 1995). In this paradigm, participants are instructed to
remember short lists of words that are all associatively related to a
single word (the critical lure) that is not presented on the list. For
example, one DRM list consists of the words bed, rest, awake,
tired, dream, wake, snooze, blanket, doze, slumber, snore, nap,
peace, yawn, and drowsy. At test, 61% of subjects falsely recall the
critical lure sleep, which is associatively related to all of the
presented words.

The topic model may be able to play a part in a theoretical
account for these semantic intrusions in episodic memory. Previ-
ous theoretical accounts of semantic intrusions have been based on
dual-route models of memory. These models distinguish between
different routes to retrieve information from memory: a verbatim
memory route, based on the physical occurrence of an input, and
a gist memory route, based on semantic content (e.g., Brainerd et
al., 1999, 2002; Mandler, 1980). The representation of the gist or
the processes involved in computing the gist itself have not been
specified within the dual-route framework. Computational model-
ing in this domain has been mostly concerned with the estimation
of the relative strength of different memory routes within the
framework of multinomial processing tree models (Batchelder &
Riefer, 1999).

The topic model can provide a more precise theoretical account
of gist-based memory by detailing both the representation of the
gist and the inference processes based on the gist. We can model
the retrieval probability of a single word at test on the basis of a set
of studied words by computing P(wrecall|wstudy). With the topic
model, we can use Equation 8 to obtain

P(wrecall�wstudy) � �
z

P(wrecall�z)P(z�wstudy). (11)

The gist of the study list is represented by P(z|wstudy), which
describes the distribution over topics for a given study list. In the
DRM paradigm, each list of words will lead to a different distri-
bution over topics. Lists of relatively unrelated words will lead to
flat distributions over topics where no topic is particularly likely,
whereas more semantically focused lists will lead to distributions
where only a few topics dominate. The term P(wrecall|z) captures
the retrieval probability of words given each of the inferred topics.

We obtained predictions from this model for the 55 DRM lists
reported by Roediger et al. (2001), using the 1,700-topic solution
derived from the TASA corpus. Three DRM lists were excluded
because the critical items were absent from the vocabulary of the
model. Of the remaining 52 DRM lists, a median of 14 out of 15
original study words were in our vocabulary. For each DRM list,
we computed the retrieval probability over the whole 26,243-word
vocabulary, which included the studied words as well as extra-list
words. For example, Figure 12 shows the predicted gist-based
retrieval probabilities for the sleep list. The retrieval probabilities
are separated into two lists: the words on the study list and the 8
most likely extra-list words. The results show that sleep is the most
likely word to be retrieved, which qualitatively fits with the ob-
served high false-recall rate of this word.

To assess the performance of the topic model, we correlated the
retrieval probability of the critical DRM words as predicted by the
topic model with the observed intrusion rates reported by Roediger
et al. (2001). The rank-order correlation was .437, with a 95%
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confidence interval (estimated by 1,000-sample bootstrap) of
.217–.621. We compared this performance with the predictions of
the 700-dimensional LSA solution. Using LSA, the gist of the
study list was represented by the average of all word vectors from
the study list. We then computed the cosine of the critical DRM
word with the average word vector for the DRM list and correlated
this cosine with the observed intrusion rate. The correlation was
.295, with a 95% confidence interval (estimated by 1,000-sample
bootstrap) of .041–.497. The improvement in predicting semantic
intrusions produced by the topic model over LSA was thus not
statistically significant but suggests that the two models might be
discriminated through further experiments.

One interesting observation from Figure 12 is that words that do
not appear on the study list, such as sleep, can be given higher
probabilities than the words that actually do appear on the list.
Because participants in free-recall studies generally do well in
retrieving the items that appear on the study list, this illustrates that
the kind of gist-based memory that the topic model embodies is not
sufficient to account for behavior on this task. The gist-based
retrieval process would have to be complemented with a verbatim
retrieval process in order to account for the relatively high retrieval
probability for words on the study list, as assumed in the dual-route
models mentioned above (Brainerd et al., 1999, 2002; Mandler,
1980). These issues could be addressed by extending the topic
model to take into account the possible interaction between the gist
and verbatim routes.

Meanings, Senses, and Topics

The topic model assumes a simple structured representation for
words and documents, in which words are allocated to individually
interpretable topics. This representation differs from that assumed
by LSA, in which the dimensions are not individually interpretable
and the similarity between words is invariant with respect to
rotation of the axes. The topic-based representation also provides
the opportunity to explore questions about language that cannot be
posed using less structured representations. As we have seen
already, different topics can capture different meanings or senses
of a word. As a final test of the topic model, we examined how
well the number of topics in which a word participates predicts the
number of meanings or senses of that word and how this quantity
can be used in modeling recognition memory.

The number of meanings or senses that a word possesses has a
characteristic distribution, as was first noted by Zipf (1965). Zipf
examined the number of entries that appeared in dictionary defi-
nitions for words and found that this quantity followed a power-
law distribution. Steyvers and Tenenbaum (2005) conducted sim-
ilar analyses using Roget’s Thesaurus (Roget, 1911) and the
WordNet lexical database (Miller & Fellbaum, 1998). They also
found that the number of entries followed a power-law distribu-
tion, with an exponent of � � 3. Plots of these distributions in
log–log coordinates are shown in Figure 13.

The number of topics in which a word appears in the topic
model corresponds well with the number of meanings or senses of

Figure 13. The distribution of the number of contexts in which a word can appear has a characteristic form,
whether computed from the number of senses in WordNet, the number of entries in Roget’s Thesaurus, or the
number of topics in which a word appears.
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Figure 12. Retrieval probabilities, P(wrecall|wstudy), for a study list con-
taining words semantically associated with sleep. The upper panel shows
the probabilities of each of the words on the study list. The lower panel
shows the probabilities of the most likely extra-list words. sleep has a high
retrieval probability and would thus be likely to be falsely recalled.

232 GRIFFITHS, STEYVERS, AND TENENBAUM



words as assessed using Roget’s Thesaurus and WordNet, both in
distribution and in the values for individual words. The distribution
of the mean number of topics to which a word was assigned in the
1,700-topic solution is shown in Figure 13.4 The tail of this
distribution matches the tail of the distributions obtained from
Roget’s Thesaurus and WordNet, with all three distributions being
power law with a similar parameter. Furthermore, the number of
topics in which a word appears is closely correlated with these
other measures: The rank-order correlation between number of
topics and number of entries in Roget’s Thesaurus is  � .328,
with a 95% confidence interval (estimated by 1,000-sample boot-
strap) of .300–.358, and the correlation between number of topics
and WordNet senses is  � .508, with a 95% confidence interval
of .486–.531. For comparison, the most obvious predictor of the
number of meanings or senses of a word—word frequency—gives
correlations that fall below these confidence intervals: Word fre-
quency predicts Roget entries with a rank-order correlation of  �
.243 and predicts WordNet senses with  � .431. More details of
the factors affecting the distribution of the number of topics per
word are given in Griffiths and Steyvers (2002).

Capturing Context Variability

The number of topics in which a word appears also provides a
novel means of measuring an important property of words: context
variability. Recent research in recognition memory has suggested that
the number of contexts in which words appear might explain why
some words are more likely than others to be confused for items
appearing on the study list in recognition memory experiments (Den-
nis & Humphreys, 2001; McDonald & Shillcock, 2001; Steyvers &
Malmberg, 2003). The explanation for this effect is that when a word
is encountered in a larger number of contexts, the study list context
becomes less discriminable from these previous exposures (Dennis &
Humphreys, 2001). Steyvers and Malmberg (2003) operationally de-
fined context variability as the number of documents in which a word
appears in a large database of text, a measure we refer to as document
frequency. Steyvers and Malmberg found that this measure has an
effect on recognition memory independent of word frequency. The
document frequency measure is a rough proxy for context variability
because it does not take the other words occurring in documents into
account. The underlying assumption is that documents are equally
different from each other. Consequently, if there are many documents
that cover very similar sets of topics, then context variability will be
overestimated.

The topic model provides an alternative way to assess context
variability. Words that are used in different contexts tend to be
associated with different topics. Therefore, we can assess context
variability by the number of different topics a word is associated
with, a measure we refer to as topic variability. Unlike document
frequency, this measure does take into account the similarity
between different documents in evaluating context variability.

To understand how topic variability compares with word fre-
quency and contextual variability, we performed analyses on the
data from the experiment by Steyvers and Malmberg (2003). There
were 287 distinct words in the experiment, each used as either a
target or a distractor. For each word we computed the sensitivity
(d�), measuring the degree to which subjects could distinguish that
word as a target or distractor in the recognition memory experi-
ment. Table 4 shows the correlations between d� and the three

measures: topic variability, word frequency, and document fre-
quency. All three word measures were logarithmically scaled.

The results show that word frequency, context variability, and
topic variability all correlate with recognition memory perfor-
mance as expected: High word frequency, high document fre-
quency, and high topic variability are all associated with poor
recognition memory performance. Topic variability correlates
more strongly with performance than do the other measures ( p �
.05) and is also less correlated with the other measures. This
suggests that topic variability is a good predictive measure for
recognition memory confusability and is at least as good a predic-
tor as word frequency or document frequency and potentially a
more direct measure of context variability.

Summary

The results presented in this section illustrate that the topic
model can be used to predict behavior on a variety of tasks relating
to linguistic processing and semantic memory. The model repro-
duces many of the phenomena that have been used to support LSA,
and it consistently provides better performance than using the
cosine or the inner product between word vectors to measure
semantic association. The form of the representation extracted by
the topic model also makes it possible to define novel measures of
properties of words such as the number of topics in which they
appear, which seems to be a good guide to the number of senses or
meanings of a word, as well as an effective predictor of recognition
memory performance.

Extending the Generative Model

Formulating the problem of extracting and using gist in terms of
generative models allowed us to explore a novel form of semantic
representation through the topic model. This formulation of the
problem also has other advantages. Generative models provide a
very flexible framework for specifying structured probability dis-
tributions, and it is easy to extend the topic model to incorporate
richer latent structure by adding further steps to the generative

4 As the number of topics to which a word is assigned will be affected
by the number of topics in the solution, these values cannot be taken as
representing the number of meanings or senses of a word directly. As
mentioned previously, the correspondence will be many to one.

Table 4
Correlations of Recognition Memory Sensitivities (d�) With
Word Frequency (WF), Document Frequency (DF), and Topic
Variability (TV)

Variable d� logWF logDF

logWF �.50* —
logDF �.58* .97* —
logTV �.67* .69* .82*

logTV logWFa �.53*

logTV logDFa �.43*

a Partial correlations where the effect of the second variable is partialed out
of the effect of the first variable.
* p � .0001.
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process. We will discuss five extensions to the model: determining
the number of topics, learning topics from other kinds of data,
incorporating collocations, inferring topic hierarchies, and includ-
ing rudimentary syntax.

Learning the Number of Topics

In the preceding discussion, we assumed that the number of
topics, T, in the model was fixed. This assumption seems
inconsistent with the demands of human language processing,
in which more topics are introduced with every conversation.
Fortunately, this assumption is not necessary. Using methods
from nonparametric Bayesian statistics (Muller & Quintana,
2004; Neal, 2000), we can assume that our data are generated
by a model with an unbounded number of dimensions, of which
only a finite subset have been observed. The basic idea behind
these nonparametric approaches is to define a prior probability
distribution on the assignments of words to topics, z, that does
not assume an upper bound on the number of topics. Inferring
the topic assignments for the words that appear in a corpus
simultaneously determines the number of topics as well as their
content. Blei, Griffiths, Jordan, and Tenenbaum (2004) and
Teh, Jordan, Beal, and Blei (2004) have applied this strategy to
learn the dimensionality of topic models. These methods are
closely related to the rational model of categorization proposed
by Anderson (1990), which represents categories in terms of a
set of clusters, with new clusters added automatically as more
data become available (see Neal, 2000).

Learning Topics From Other Data

Our formulation of the basic topic model also assumes that words
are divided into documents or otherwise broken up into units that
share the same gist. A similar assumption is made by LSA, but this is
not true of all methods for automatically extracting semantic repre-
sentations from text (e.g., Dennis, 2004; Jones & Mewhort, 2007;
Lund & Burgess, 1996). This assumption is not appropriate for all
settings in which we make linguistic inferences: Although we might
differentiate the documents we read, many forms of linguistic inter-
action, such as meetings or conversations, lack clear markers that
break them up into sets of words with a common gist. One approach
to this problem is to define a generative model in which the document
boundaries are also latent variables, a strategy pursued by Purver,
Körding, Griffiths, and Tenenbaum (2006). Alternatively, meetings or
conversations might be better modeled by associating the gist of a set
of words with the person who utters those words rather than simply
grouping words in temporal proximity. Rosen-Zvi, Griffiths,
Steyvers, and Smyth (2004) and Steyvers, Smyth, Rosen-Zvi, and
Griffiths (2004) have extensively investigated models of this form.

Inferring Topic Hierarchies

We can also use the generative model framework as the basis
for defining models that use richer semantic representations.
The topic model assumes that topics are chosen independently
when a document is generated. However, people know that
topics bear certain relations to one another and that words have
relationships that go beyond topic membership. For example,
some topics are more general than others, subsuming some of

the content of those other topics. The topic of sport is more
general than the topic of tennis, and the word sport has a wider
set of associates than the word tennis. One can address these
issues by developing models in which the latent structure con-
cerns not just the set of topics that participate in a document but
the relationships among those topics. Generative models that
use topic hierarchies provide one example of this, making it
possible to capture the fact that certain topics are more general
than others. Blei et al. (2004) provided an algorithm that
simultaneously learns the structure of a topic hierarchy and the
topics that are contained within that hierarchy. This algorithm
can be used to extract topic hierarchies from large document
collections. Figure 14 shows the results of applying this algo-
rithm to the abstracts of all articles published in Psychological
Review since 1967. The algorithm recognizes that the journal
publishes work in cognitive psychology,5 social psychology,
vision research, and biopsychology, splitting these subjects into
separate topics at the second level of the hierarchy and finding
meaningful subdivisions of those subjects at the third level.
Similar algorithms can be used to explore other representations
that assume dependencies among topics (Blei & Lafferty,
2006).

Collocations and Associations Based on Word Order

In the basic topic model, the probability of a sequence of words
is not affected by the order in which they appear. As a conse-
quence, the representation extracted by the model can capture only
coarse-grained contextual information, such as the fact that words
tend to appear in the same sort of conversations or documents. This
is reflected in the fact that the input to the topic model, as with
LSA, is a word–document co-occurrence matrix: The order in
which the words appear in the documents does not matter. How-
ever, it is clear that word order is important to many aspects of
linguistic processing, including the simple word-association task
that we discussed extensively earlier in the article (Ervin, 1961;
Hutchinson, 2003; McNeill, 1966).

A first step toward relaxing the insensitivity to word order
displayed by the topic model is to extend the model to incorporate
collocations—words that tend to follow one another with high
frequency. For example, the basic topic model would treat the
phrase united kingdom occurring in a document as one instance of
united and one instance of kingdom. However, these two words
carry more semantic information when treated as a single chunk
than they do alone. By extending the model to incorporate a
sensitivity to collocations, we gain the opportunity to examine how
incorporating this additional source of predictive information af-
fects predictions about the associations that exist between words.

To extend the topic model to incorporate collocations, we in-
troduced an additional set of variables that indicate whether a word
is part of a collocation. Each word wi thus has a topic assignment
zi and a collocation assignment xi. The xi variables can take on two
values. If xi � 1, then wi is part of a collocation and is generated
from a distribution that depends just on the previous word,
P(wi|wi-1, xi � 1). If xi � 0, then wi is generated from the

5 A more precise description would be psychology based on an
information-processing approach to studying the mind.
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distribution associated with its topic, P(wi|zi, xi � 0). It is impor-
tant to note that the value of xi is chosen on the basis of the
previous word, wi-1, being drawn from the distribution P(xi|wi-1).
This means that the model can capture dependencies between
words: If wi-1 is united, it is likely that xi � 1, meaning that wi is
generated solely on the basis that it follows united and not on the
topic. The graphical model corresponding to this extended gener-
ative process is shown in Figure 15. A more detailed description of
the model appears in Appendix C, together with an algorithm that
can be used to simultaneously learn P(wi|wi-1, xi � 1), P(wi|zi, xi �
0), and P(xi � 1|wi-1) from a corpus.

Using this extended topic model, the conditional probability of
one word given another is simply

P(w2�w1) � P(w2�w1,x2 � 1)P(x2�1�w1)

�P(w2�w1,x2 � 0)P(x2 � 0�w1), (12)

where P(w2|w1, x2 � 0) is computed as in the basic topic model,
using Equation 9. Thus, w2 will be highly associated with w1 either
if w2 tends to follow w1 or if the two words tend to occur in the
same semantic contexts. We used the algorithm described in Ap-
pendix C to estimate the probabilities required to compute
P(w2|w1) from the TASA corpus, using the same procedure to
remove stop words as in our previous analyses but supplying the
words to the algorithm in the order in which they actually occurred
within each document. We then examined how well solutions with

500, 900, 1,300, and 1,700 topics predicted the word-association
norms collected by Nelson, McEvoy, and Schreiber (1998).

Introducing the capacity to produce collocations changes the
associates that the model identifies. One way to see this is to
examine cue–associate pairs produced by people that are in the set

Figure 14. A topic hierarchy, learned from the abstracts of articles appearing in Psychological Review since
1967. Each document is generated by choosing a path from the root (the top node) to a leaf (the bottom nodes).
Consequently, words in the root topic appear in all documents, the second-level topics pick out broad trends
across documents, and the topics at the leaves pick out specific topics within those trends. The model
differentiates cognitive, social, vision, and biopsychological research at the second level and identifies finer
grained distinctions within these subjects at the leaves.

Figure 15. Graphical model indicating dependencies among variables in
the collocation model. The variable xi determines whether the word wi is
generated from a distribution that depends only on the previous word,
being a collocation, or from a distribution that depends only on the topic zi.
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of 10 words for which P(w2|w1) is highest under the collocation
model but not in this set for the basic topic model. Considering just
the first associates people produce and using the 1,700-topic
model, we find pairs such as united–kingdom, bumble–bee,
storage–space, metric–system, main–street, evil–devil, foreign–
language, fried–chicken, stock–market, interstate–highway,
bowling–ball, and serial–number. These examples thus show how
the collocation model is able to predict some associations that are
based on word order rather than semantic context. In Table 5 we
compare the median ranks of the associates under the ordering
imposed by P(w2|w1) for the collocation model and the basic topic
model. The results show that the models perform very similarly:
Adding the capacity to capture associations based on word order
does not result in a major improvement in the performance of the
model. Hutchinson (2003) suggested that 11.6% of associations
result from word order, which would lead us to expect some
improvement in performance. The lack of improvement may be a
consequence of the fact that incorporating the extra process for
modeling collocations reduces the amount of data available for
estimating topics, meaning that the model fails to capture some
semantic associations.

Integrating Topics and Syntax

The model described in the previous section provides an ex-
tremely simple solution to the question of how topic models can be
extended to capture word order, but our approach also supports
more sophisticated solutions. Generative models can be used to
overcome a major weakness of most statistical models of lan-
guage: that they tend to model either syntax or semantics (although
recent work provides some exceptions, including Dennis, 2004,
and Jones & Mewhort, 2007). Many of the models used in com-
putational linguistics, such as hidden Markov models and proba-
bilistic context-free grammars (Charniak, 1993; Jurafsky & Mar-
tin, 2000; Manning & Schütze, 1999), generate words purely on
the basis of sequential dependencies among unobserved syntactic
classes, not modeling the variation in content that occurs across
documents. In contrast, topic models generate words in a way that
is intended to capture the variation across documents, but they
ignore sequential dependencies. In cognitive science, methods
such as distributional clustering (Redington, Chater, & Finch,
1998) are used to infer the syntactic classes of words, while
methods such as LSA are used to analyze their meaning, and it is

not clear how these different forms of statistical analysis should be
combined.

Generative models can be used to define a model that captures
both sequential dependencies and variation in content across con-
texts. This hybrid model illustrates the appealing modularity of
generative models. Because a probabilistic language model spec-
ifies a probability distribution over words in a document in terms
of components that are themselves probability distributions over
words, different models are easily combined by mixing their
predictions or embedding one inside the other. Griffiths, Steyvers,
Blei, and Tenenbaum (2005; see also Griffiths & Steyvers, 2003)
explored a composite generative model for language, in which one
of the probability distributions over words used in defining a
syntactic model was replaced with a semantic model. This allows
the syntactic model to choose when to emit a semantically appro-
priate word and allows the semantic model to choose which word
to emit. The syntactic model used in this case was extremely
simple, but this example serves to illustrate two points: that a
simple model can discover categories of words that are defined in
terms of both their syntactic roles and their semantic roles, and that
defining a generative model that incorporates both of these factors
is straightforward. A similar strategy could be pursued with a more
complex probabilistic model of syntax, such as a probabilistic
context-free grammar.

The structure of the composite generative model is shown in
Figure 16. In this model, a word can appear in a document for two
reasons: because it fulfills a functional syntactic role or because it
contributes to the semantic content. Accordingly, the model has
two parts, one responsible for capturing sequential dependencies
produced by syntax and the other expressing semantic dependen-
cies. The syntactic dependencies are introduced via a hidden
Markov model, a popular probabilistic model for language that is
essentially a probabilistic regular grammar (Charniak, 1993; Ju-
rafsky & Martin, 2000; Manning & Schütze, 1999). In a hidden
Markov model, each word wi is generated by first choosing a class
ci from a distribution that depends on the class of the previous
word, ci-1, and then generating wi from a distribution that depends
on ci. The composite model simply replaces the distribution asso-
ciated with one of the classes with a topic model, which captures
the long-range semantic dependencies among words. An algorithm
similar to that described in Appendix A can be used to infer the
distributions over words associated with the topics and classes
from a corpus (Griffiths et al., 2005).

The results of applying the composite model to a combination of
the TASA and Brown (Kučera & Francis, 1967) corpora are shown
in Figure 17. The factorization of words into those that appear as
a result of syntactic dependencies (as represented by the class
distributions) and those that appear as a result of semantic depen-
dencies (represented by the topic distributions) pulls apart function
and content words. In addition to learning a set of semantic topics,
the model finds a set of syntactic classes of words that discriminate
determiners, prepositions, pronouns, adjectives, and present- and
past-tense verbs. The model performs about as well as a standard
hidden Markov model—which is a state-of-the-art method—at
identifying syntactic classes, and it outperforms distributional clus-
tering (Redington et al., 1998) in this task (Griffiths et al., 2005).

The ability to identify categories of words that capture their
syntactic and semantic roles, purely on the basis of their distribu-
tional properties, could be a valuable building block for the initial

Table 5
Median Ranks of the Collocation Model and Basic Topic Model
in Predicting Word Association

Number of
topics

Associate

1st 2nd 3rd 4th 5th

500 27 (29) 66 (70) 104 (106) 139 (141) 171 (175)
900 22 (22) 59 (57) 105 (101) 134 (131) 159 (159)

1300 20 (20) 58 (56) 105 (99) 131 (128) 160 (163)
1700 19 (18) 57 (54) 102 (100) 131 (130) 166 (164)

Note. Numbers in parentheses show the performance of the basic topic
model without collocations.
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stages of language learning or for facilitating the extraction of gist.
For example, learning the syntax of natural language requires a
child to discover the rules of the grammar as well as the abstract
syntactic categories over which those rules are defined. These
syntactic categories and rules are defined only with respect to each
other, making it hard to see how one could learn both starting with
neither. The syntactically organized word classes discovered by
our simple statistical model could provide a valuable starting point

for learning syntax, even though the notion of syntactic structure
used in the model is far too simplistic to capture the syntax of
English or any other natural language. The capacity to separate out
the critical semantic content words in a document from those
words playing primarily syntactic functions could also be valuable
for modeling adult language processing or in machine information-
retrieval applications. Only the semantic content words would be
relevant, for example, in identifying the gist of a document or
sentence. The syntactic function words can be—and usually are,
by expert language processors—safely ignored.

Summary

Using generative models as a foundation for specifying psycho-
logical accounts of linguistic processing and semantic memory
provides a way to define models that can be extended to incorpo-
rate more complex aspects of the structure of language. The
extensions to the topic model described in this section begin to
illustrate this potential. We hope to use this framework to develop
statistical models that will allow us to infer rich semantic struc-
tures that provide a closer match to the human semantic represen-
tation. In particular, the modularity of generative models provides
the basis for exploring the interaction between syntax and seman-
tics in human language processing and suggests how different
kinds of representation can be combined in solving computational
problems that arise in other contexts.

Conclusion

Part of learning and using language is identifying the latent
semantic structure responsible for generating a set of words. Prob-
abilistic generative models provide solutions to this problem, mak-
ing it possible to use powerful statistical learning to infer struc-
tured representations. The topic model is one instance of this
approach and serves as a starting point for exploring how gener-
ative models can be used to address questions about human se-

Figure 16. Graphical model indicating dependencies among variables in
the composite model, in which syntactic dependencies are captured by a
hidden Markov model (with the ci variables being the classes from which
words are generated) and semantic dependencies are captured by a topic
model.

Figure 17. Results of applying a composite model that has both syntactic and semantic latent structure to a
concatenation of the Touchstone Applied Science Associates and Brown corpora. The model simultaneously
finds the kind of semantic topics identified by the topic model and syntactic classes of the kind produced by a
hidden Markov model. Asterisks indicate low-frequency words, occurring fewer than 10 times in the corpus.
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mantic representation. It outperforms LSA, a leading model of the
acquisition of semantic knowledge, in predicting word association
and a variety of other linguistic processing and memory tasks. It
also explains several aspects of word association that are problem-
atic for LSA: word frequency and asymmetry, violation of the
triangle inequality, and the properties of semantic networks. The
success of the model on these tasks comes from the structured
representation that it assumes: By expressing the meaning of
words in terms of different topics, the model is able to capture their
different meanings and senses.

Beyond the topic model, generative models provide a path toward
a more comprehensive exploration of the role of structured represen-
tations and statistical learning in the acquisition and application of
semantic knowledge. We have sketched some of the ways in which
the topic model can be extended to bring it closer to capturing the
richness of human language. Although we are still far from under-
standing how people comprehend and acquire language, these exam-
ples illustrate how increasingly complex structures can be learned
using statistical methods, and they show some of the potential for
generative models to provide insight into the psychological questions
raised by human linguistic abilities. Across many areas of cognition,
perception, and action, probabilistic generative models have recently
come to offer a unifying framework for understanding aspects of
human intelligence as rational adaptations to the statistical structure of
the environment (Anderson, 1990; Anderson & Schooler, 1991; Gei-
sler et al., 2001; Griffiths & Tenenbaum, 2006, in press; Kemp et al.,
2004; Körding & Wolpert, 2004; Simoncelli & Olshausen, 2001;
Wolpert et al., 1995). It remains to be seen how far this approach can
be carried in the study of semantic representation and language use,
but the existence of large corpora of linguistic data and powerful
statistical models for language clearly make this a direction worth
pursuing.
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Appendix A

Statistical Formulation of the Topic Model

A number of approaches to statistical modeling of language
have been based on probabilistic topics. The notion that a topic can
be represented as a probability distribution over words appears in
several places in the natural language processing literature (e.g.,
Iyer & Ostendorf, 1999). Completely unsupervised methods for
extracting sets of topics from large corpora were pioneered by
Hofmann (1999), in his probabilistic latent semantic indexing
method (also known as the aspect model). Blei et al. (2003)
extended this approach by introducing a prior on the distribution
over topics, turning the model into a genuine generative model for
collections of documents. Ueda and Saito (2003) explored a sim-
ilar model, in which documents are balanced mixtures of a small
set of topics. All of these approaches use a common representation,
characterizing the content of words and documents in terms of
probabilistic topics.

The statistical model underlying many of these approaches has
also been applied to data other than text. Erosheva (2002) de-
scribed a model, equivalent to a topic model, applied to disability
data. The same model has been applied to data analysis in genetics
(Pritchard, Stephens, & Donnelly, 2000). Topic models also make
an appearance in the psychological literature on data analysis
(Yantis, Meyer, & Smith, 1991). Buntine (2002) pointed out a
formal correspondence between topic models and principal-
components analysis, providing a further connection to LSA.

A multidocument corpus can be expressed as a vector of words
w � �w1, . . . ,wn}, where each wi belongs to some document di, as in
a word–document co-occurrence matrix. Under the generative model
introduced by Blei et al. (2003), the gist of each document, g, is
encoded using a multinomial distribution over the T topics, with
parameters �(d), and so for a word in document d, P(z�g) � �z

(d). The
zth topic is represented by a multinomial distribution over the W
words in the vocabulary, with parameters �(z), and so P(w�z)
� �w

(z). We then take a symmetric Dirichlet(�) prior on �(d) for all
documents and a symmetric Dirichlet(�) prior on �(z) for all topics.
The complete statistical model can thus be written as

wi�zi,�
(zi)
Discrete���zi))

��z)
Dirichlet���

zi��(di)
Discrete���di))

��d�
Dirichlet���.

The user of the algorithm can specify � and �, which are hyper-
parameters that affect the granularity of the topics discovered by
the model (see Griffiths & Steyvers, 2004).

An Algorithm for Finding Topics

Several algorithms have been proposed for learning topics,
including expectation maximization (Hofmann, 1999), variational
expectation maximization (Blei et al., 2003; Buntine, 2002), ex-

pectation propagation (Minka & Lafferty, 2002), and several forms
of Markov chain Monte Carlo (MCMC; Buntine & Jakulin, 2004;
Erosheva, 2002; Griffiths & Steyvers, 2002, 2003, 2004; Pritchard
et al., 2000). We use Gibbs sampling, a form of MCMC.

We extract a set of topics from a collection of documents in a
completely unsupervised fashion, using Bayesian inference. The
Dirichlet priors are conjugate to the multinomial distributions �, �,
allowing us to compute the joint distribution P(w, z) by integrating
out � and �. Because P(w, z) � P(w|z)P(z) and � and � appear
only in the first and second terms, respectively, we can perform
these integrals separately. Integrating out � gives the first term,

P(w�z) � ���W�)

�(�)W �T�
j�1

T
�
w

�(nj
(w)��)

�(nj
(�) � W�)

, (A1)

in which nj
(w) is the number of times word w has been assigned to

topic j in the vector of assignments z and �(�) is the standard
gamma function. The second term results from integrating out �, to
give

P(z) � ���T�)

�(�)T�D�
d�1

D
�

j

��nj
(d) � ��

��n�
(d) � T�)

,

where nj
(d) is the number of times a word from document d has been

assigned to topic j. We can then ask questions about the posterior
distribution over z given w, given by Bayes’s rule:

P(z�w) �
P(w,z)

�
z

P(w,z)
.

Unfortunately, the sum in the denominator is intractable, having
T n terms, and we are forced to evaluate this posterior using
MCMC.

MCMC is a procedure for obtaining samples from complicated
probability distributions, allowing a Markov chain to converge to
the target distribution and then drawing samples from the Markov
chain (see Gilks, Richardson, & Spiegelhalter, 1996). Each state of
the chain is an assignment of values to the variables being sam-
pled, and transitions between states follow a simple rule. We use
Gibbs sampling, in which the next state is reached by sequentially
sampling all variables from their distribution when conditioned on
the current values of all other variables and the data. We sample
only the assignments of words to topics, zi.

The conditional posterior distribution for zi is given by

P(zi � j�z�i,w)�
n�i,j

(wi) � �

n�i,j
(�) � W�

n�i,j
(di) � �

n�i,�
(di) � T�

, (A2)

(Appendixes continue)
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where z-i is the assignment of all zk such that k � i, and n�i,j
(wi) is the

number of words assigned to topic j that are the same as wi, n�i,j
(�) is

the total number of words assigned to topic j, n�i,j
(di) is the number of

words from document di assigned to topic j, and n�i,�
(di) is the total

number of words in document di, all not counting the assignment
of the current word wi.

The MCMC algorithm is then straightforward. The zi are
initialized to values between 1 and T, determining the initial
state of the Markov chain. The chain is then run for a number
of iterations, each time finding a new state by sampling each zi

from the distribution specified by Equation A2. After enough
iterations for the chain to approach the target distribution, the
current values of the zi are recorded. Subsequent samples are
taken after an appropriate lag to ensure that their autocorrela-
tion is low. Further details of the algorithm are provided in
Griffiths and Steyvers (2004), where we show how it can be
used to analyze the content of document collections.

The variables involved in the MCMC algorithm, and their
modification across samples, are illustrated in Figure A1, which
uses the data from Figure 2. Each word token in the corpus, wi,
has a topic assignment, zi, at each iteration of the sampling

procedure. In this case, we have 90 documents and a total of731
words wi, each with its own zi. In the figure, we focus on the
tokens of three words: money, bank, and stream. Each word
token is initially randomly assigned to a topic, and each itera-
tion of MCMC results in a new set of assignments of tokens to
topics. After a few iterations, the topic assignments begin to
reflect the different usage patterns of money and stream, with
tokens of these words ending up in different topics, and the
multiple senses of bank.

The result of the MCMC algorithm is a set of samples from
P(z|w), reflecting the posterior distribution over topic assignments
given a collection of documents. From any single sample we can
obtain an estimate of the parameters � and � from z via

�̂w
(j) �

nj
(w) � �

nj
(�) � W�

(A3)

�̂j
(d) �

nj
(d) � �

n�
(d) � T�

. (A4)
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Figure A1. Illustration of the Gibbs sampling algorithm for learning topics, using the data from Figure 2. Each
word token wi appearing in the corpus has a topic assignment, zi. The figure shows the assignments of all tokens
of three types—money, bank, and stream—before and after running the algorithm. Each marker corresponds to
a single token appearing in a particular document, and shape and color indicate assignment: Topic 1 is a black
circle, Topic 2 is a gray square, and Topic 3 is a white triangle. Before the algorithm is run, assignments are
relatively random, as shown in the left panel. After the algorithm is run, tokens of money are almost exclusively
assigned to Topic 3, tokens of stream are almost exclusively assigned to Topic 1, and tokens of bank are assigned
to whichever of Topic 1 and Topic 3 seems to dominate a given document. The algorithm consists of iteratively
choosing an assignment for each token using a probability distribution over tokens that guarantees convergence
to the posterior distribution over assignments.
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These values correspond to the predictive distributions over new
words w and new topics z conditioned on w and z, and the posterior
means of � and � given w and z.

Prediction, Disambiguation, and Gist Extraction

The generative model allows documents to contain multiple
topics, which is important in modeling long and complex docu-
ments. Assume we have an estimate of the topic parameters, �.
Then the problems of prediction, disambiguation, and gist extrac-
tion can be reduced to computing

P(wn�1�w;�) � �
z,zn�1

P(wn�1�zn�1;�)P(zn�1�z)P(z�w;�), (A5)

P(z�w;�) �
P(w,z��)

�
z

P(w,z��)
, (A6)

and

P(g�w;�) � �
z

P(g�z)P(z�w;�), (A7)

respectively. The sums over z that appear in each of these expres-
sions quickly become intractable, being over Tn terms, but they
can be approximated using MCMC.

In many situations, such as processing a single sentence, it is
reasonable to assume that we are dealing with words that are
drawn from a single topic. Under this assumption, g is repre-
sented by a multinomial distribution � that puts all of its mass
on a single topic, z, and zi � z for all i. The problems of
disambiguation and gist extraction thus reduce to inferring z.
Applying Bayes’s rule,

P(z�w;�) �
P(w�z;�)P(z)

�
z

P(w�z;�)P(z)
�

�
i�1

n

P(wi�z;�)P(z)

�
z

�
i�1

n

P(wi�z;�)P(z)

�

�
i�1

n

�wi

(z)

�
z

�
i�1

n

�wi

(z)

,

where the last equality assumes a uniform prior, P(z) �
1

T
,

consistent with the symmetric Dirichlet priors assumed above. We
can then form predictions via

P(wn�1�w;�) � �
z

P(wn�1,z�w;�)

� �
z

P(wn�1�z;�)P(z�w;�)

�

�
z

�
i�1

n�1

�wi

(z)

�
z

�
i�1

n

�wi

(z)

.

This predictive distribution can be averaged over the estimates of
� yielded by a set of samples from the MCMC algorithm.

For the results described in the article, we ran three Markov
chains for 1,600 iterations at each value of T, using � � 50/T
and � � .01. We started sampling after 800 iterations, taking
one sample every 100 iterations thereafter. This gave a total of
24 samples for each choice of dimensionality. The topics shown
in Figure 7 are taken from a single sample from the Markov
chain for the 1,700-dimensional model. We computed an esti-
mate of � using Equation A3 and used these values to compute
P(w2|w1) for each sample; then we averaged the results across
all of the samples to get an estimate of the full posterior
predictive distribution. This averaged distribution was used in
evaluating the model on the word-association data.

Appendix B

Topics and Features

Tversky (1977) considered a number of different models for the
similarity between two stimuli, based on the idea of combining
common and distinctive features. Most famous is the contrast model,
in which the similarity between x and y, S(x, y), is given by

S(x,y) � �f(X � Y) � �f(Y � X) � �f(X � Y),

where X is the set of features to which x belongs, Y is the set of
features to which y belongs, X�Y is the set of common features,
Y � X is the set of distinctive features of y, f(�) is a measure over those
sets, and �, �, and � are parameters of the model. Another model
considered by Tversky, which is also consistent with the axioms used
to derive the contrast model, is the ratio model, in which

S(x,y) � 1/�1 �
�f(Y � X) � �f(X � Y)

�f(X � Y) 	.

As in the contrast model, common features increase similarity and
distinctive features decrease similarity. The only difference be-
tween the two models is the form of the function by which they are
combined.

Tversky’s (1977) analysis assumes that the features of x and y
are known. However, in some circumstances, possession of a
particular feature may be uncertain. For some hypothetical feature
h, we might just have a probability that x possesses h, P(x � h).
One means of dealing with this uncertainty is replacing f(�) with its

(Appendixes continue)
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expectation with respect to the probabilities of feature possession.
If we assume that f(�) is linear (as in additive clustering models,
e.g., Shepard & Arabie, 1979) and gives uniform weight to all
features, the ratio model becomes

S(x,y) � 1/
1 �

��
h

[1 � P(x � h)]P(y � h)

� ��
h

[1 � P(y � h)]P(x � h)

��
h

P(x � h)P(y � h) �, (B1)

where we take P(x � h) to be independent for all x and h. The sums
in this equation reduce to counts of the common and distinctive
features if the probabilities all take on values of 0 or 1.

In the topic model, semantic association is assessed in
terms of the conditional probability P(w2|w1). With a uniform
prior on z, this quantity reduces to

P(w2�w1) �

�
z

P(w2�z)P(w1�z)

�
z

P(w1�z)

�

�
z

P(w2�z)P(w1�z)

�
z

P(w2�z)P(w1�z) � �
z

[1 � P(w2�z)]P(w1�z)

� 1/
1 �

�
z

[1 � P(w2�z)]P(w1�z)

�
z

P(w2�z)P(w1�z) �,

which can be seen to be of the same form as the probabilistic ratio
model specified in Equation B1, with � � 1, � � 0, � � 1, topics z
in the place of features h, and P(w|z) replacing P(X � h). This result
is similar to that of Tenenbaum and Griffiths (2001), who showed that
their Bayesian model of generalization was equivalent to the ratio model.

Appendix C

The Collocation Model

Using the notation introduced above, the collocation model can
be written as

wi�zi,xi � 0,��zi) � Discrete(�(zi))

wi�wi�1,xi � 1,��wi�1) � Discrete���wi�1))

��z) � Dirichlet���

��w) � Dirichlet���

zi��(di) � Discrete���di))

��d) � Dirichlet���

xi�wi�1 � Discrete���wi�1))

��w) � Beta��0,�1�,

where ��wi) is the distribution over wi, given wi-1, and ��wi�1) is the
distribution over xi, given wi-1. The Gibbs sampler for this model
is as follows. If xi � 0, then zi is drawn from the distribution

P(zi�z�i,w,x)�
nwi

(zi) � �

n�
(zi) � W�

nzi

di � �

n�T�
,

where all counts exclude the current case and only refer to the
words for which xi � 0, which are the words assigned to the topic
model (e.g., n is the total number of words for which xi � 0, not
the total number of words in the corpus). If xi � 1, then zi is
sampled from

P(zi�z�i,w,x)�
nzi

di � �

n�T�
,

where again the counts are only for the words for which xi � 0.
Finally, xi is drawn from the distribution

P(xi�x�i,w,z)�
nwi

(zi) � �

n�
(zi) � W�

n0
(wi�1) � �0

n�
(wi�1) � �0 � �1

xi � 0

nwi

(wi�1) � �

n�
(wi�1) � W�

n1
(wi�1) � �1

n�
(wi�1) � �0 � �1

xi � 1
,

where n0
(wi�1) and n1

(wi�1) are the number of times the word wi-1 has
been drawn from a topic or formed part of a collocation, respec-
tively, and all counts exclude the current case.

To estimate the parameters of the model for each sample, we can
again use the posterior mean. The estimator for ��z) is just �̂�z) from
Equation A3. A similar estimator exists for the distribution asso-
ciated with successive words:

�̂w2

(w1) �
nw2

(w1) � �

n�
(w1) � W�

.

For ��w1), which is the probability that x2 � 1 given w1, we have

�̂�w1) �
n1

(w1) � �1

n�
(w1) � �0 � �1

.

Using these estimates, Equation 12 becomes

P(w2�w1) � ��w1)�w2

(w1) � (1 � ��w1))�
z

�w2

(z)
�w1

(z)

�
z

�w1

.

The results described in the article were averaged over 24 samples
produced by the MCMC algorithm, with � � .01, � � 50/T, �0 �
0.1, �1 � 0.1, and � � 0.1. The samples were collected from three
chains in the same way as for the basic topic model.
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