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Computer-aided diagnosis in medical imaging:
Historical review, current status and future potential
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bstract

Computer-aided diagnosis (CAD) has become one of the major research subjects in medical imaging and diagnostic radiology. In this article,
he motivation and philosophy for early development of CAD schemes are presented together with the current status and future potential of CAD
n a PACS environment. With CAD, radiologists use the computer output as a “second opinion” and make the final decisions. CAD is a concept
stablished by taking into account equally the roles of physicians and computers, whereas automated computer diagnosis is a concept based on
omputer algorithms only. With CAD, the performance by computers does not have to be comparable to or better than that by physicians, but
eeds to be complementary to that by physicians. In fact, a large number of CAD systems have been employed for assisting physicians in the early
etection of breast cancers on mammograms.

A CAD scheme that makes use of lateral chest images has the potential to improve the overall performance in the detection of lung nodules
hen combined with another CAD scheme for PA chest images. Because vertebral fractures can be detected reliably by computer on lateral

hest radiographs, radiologists’ accuracy in the detection of vertebral fractures would be improved by the use of CAD, and thus early diagnosis
f osteoporosis would become possible. In MRA, a CAD system has been developed for assisting radiologists in the detection of intracranial
neurysms. On successive bone scan images, a CAD scheme for detection of interval changes has been developed by use of temporal subtraction
mages. In the future, many CAD schemes could be assembled as packages and implemented as a part of PACS. For example, the package for chest

AD may include the computerized detection of lung nodules, interstitial opacities, cardiomegaly, vertebral fractures, and interval changes in chest

adiographs as well as the computerized classification of benign and malignant nodules and the differential diagnosis of interstitial lung diseases.
n order to assist in the differential diagnosis, it would be possible to search for and retrieve images (or lesions) with known pathology, which
ould be very similar to a new unknown case, from PACS when a reliable and useful method has been developed for quantifying the similarity of
pair of images for visual comparison by radiologists.
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. Introduction

Recently, computer-aided diagnosis (CAD) has become a part
f the routine clinical work for detection of breast cancer on
ammograms at many screening sites and hospitals [1–25] in

he United States. This seems to indicate that CAD is beginning
o be applied widely in the detection and differential diagno-
is of many different types of abnormalities in medical images
btained in various examinations by use of different imaging
odalities. In fact, CAD has become one of the major research
ubjects in medical imaging and diagnostic radiology [12–25].
lthough early attempts at computerized analysis of medical

mages [26–32] were made in the 1960s, serious and systematic
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nvestigation on CAD began in the 1980s with a fundamental
hange in the concept for utilization of the computer output,
rom automated computer diagnosis to computer-aided diag-
osis. In this article, the motivation and philosophy for early
evelopment of CAD schemes are presented together with the
urrent status and future potential of CAD in the environment
f picture archiving and communication systems (PACS).

. Historical review of the development of CAD

Large-scale and systematic research and development of var-
ous CAD schemes were begun in the early 1980s at the Kurt
ossmann Laboratories for Radiologic Image Research in the

epartment of Radiology at the University of Chicago. Prior

o and since that time, we have been engaged in some of basic
esearch on the effects of digital images on radiologic diagno-
is [33–48], and many investigators in the United States and

mailto:k-doi@uchicago.edu
dx.doi.org/10.1016/j.compmedimag.2007.02.002
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n Europe have become involved in research and development
f some aspects of PACS [49]. Although PACS would be use-
ul and advantageous in the management of radiologic images
n radiology departments and might be beneficial economically
o hospitals, it seemed unlikely at that time that PACS would
ring a significant clinical benefit to radiologists. Therefore, we
hought that a major benefit of digital images must be realized
n radiologists’ daily work. Of course, radiologists’ daily work
onsists of image reading and radiologic diagnosis. Thus, we
ame to the question “how can radiologists’ diagnosis be helped
y the benefits of digital images?” This led immediately to the
oncept of computer-aided diagnosis.

In the 1980s, the concept of automated diagnosis or auto-
ated computer diagnosis was already known from studies

26–31] in the 1960s, but these early attempts were not success-
ul. (The difference and the common aspects between automated
iagnosis and computer-aided diagnosis will be discussed in the
ext section.) Thus, it appeared to be extremely difficult to carry
ut a computer analysis on lesions involved in medical images.
t was, therefore, not easy to predict whether the development
f CAD schemes would be successful or fail. Therefore, we
hought that we should select research subjects which had the
otential to have a major impact in medicine, if CAD could be
eveloped successfully. Some of the most important subjects in
edicine at that time were related to cardiovascular diseases,

ung cancer, and breast cancer. Therefore, we decided to select
hree main research projects: for detection and/or quantitative
nalysis of lesions involved in vascular imaging by Fujita et
l. [50] and Hoffmann et al. [51]; detection of lung nodules
n chest radiographs by Giger et al. [52,53]; and detection of
lustered microcalcifications in mammograms by Chan et al.
54].

In addition, our efforts on research and development of CAD
ave been based on three fundamental ideas from the beginning
o the present time, as described below. First, our basic strat-
gy for development of methods and techniques for detection
nd quantitation of lesions in medical images has been based
n the understanding of processes that would be involved in
mage readings by radiologists [20,25]. This strategy appeared
uite logical and straightforward because radiologists are the
nes who have been carrying out very complex and difficult
asks of image reading and radiologic diagnosis. Therefore, we
ssumed that computer algorithms should be developed based on
he understanding of image readings, such as how radiologists
an detect certain lesions, why they may miss some abnormali-
ies, and how they can distinguish between benign and malignant
esions.

The second thought was related to the way in which the suc-
ess of our efforts could be measured if we were successful in
he development of CAD. It appeared that the best proof of our
uccess would be the daily use of CAD in routine clinical work
t many hospitals around the world. In order for us to realize
his, it would be necessary for many industries to commercial-

ze CAD products for the global medical market. Therefore, we
ecided to produce and protect intellectual properties related to
asic technologies of CAD schemes in the form of patents, and
o promote these in communicating with many individuals in
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n
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edical industries for potential efforts toward commercializa-
ion of CAD products. Subsequently, our first patent on CAD
55], filed in 1987, has become the most commonly cited patent
n the field of CAD technology.

The third thought was to promote the wide acceptance of the
AD concept and to facilitate the global distribution of CAD

esearch by many investigators at many different institutions.
ecause the success of CAD would require overwhelmingly

arge efforts on many aspects of CAD research such as the
evelopment of computerized schemes for many different types
f lesions in many different modalities, observer performance
tudies, clinical trials, and commercialization, it appeared that
e would not be successful if we were the only research group
n CAD. Instead, we could be successful if many researchers
rom many institutions were involved in many aspects of CAD
esearch. Therefore, all researchers on CAD should be consid-
red as promoters and as our colleagues rather than competitors.
herefore, for more than 20 years from the initial phase of
AD research, we have had large scientific exhibits at the
nnual Meetings of the Radiological Society of North America

RSNA) which were held in Chicago. In these exhibits, we have
resented a comprehensive demonstration of CAD research in
hest, breast, and vascular imaging. In 1993, we set up a film dig-
tizer and a computer for real-time demonstration of CAD for
etection of clustered microcalcifications on “unknown” new
ases of mammograms. We invited in advance 118 breast radi-
logists to bring their cases to the RSNA meeting for testing
f our CAD scheme. The results of this informal validation
est were promising [56]. From 1996 to 2001, we carried out
bserver performance studies with a large number of partici-
ants during the RSNA meetings for detection of various lesions
n chest images without and with the computer output, so that
any radiologists would be able to have their own experience of

sing CAD. The usefulness of CAD was clearly demonstrated
57,58]. These demonstrations appeared successful in promoting
he CAD concept widely and quickly.

For CAD research on lung cancer, we attempted to develop
computerized scheme for detection of lung nodules on chest

adiographs. At that time and still now, it is well known that
he visual detection of lung nodules is a difficult task for radi-
logists, who may miss up to 30% of the nodules. Radiologists
ave missed these lesions due to the overlap of normal anatomic
tructures with nodules, i.e., the normal background in chest
mages tends to camouflage nodules [59–63]. Therefore, it was
redicted that the normal background structures in chest images
ould become a large obstacle in the detection of nodules,

ven by computer. Thus, the first step in the computerized
cheme for detection of lung nodules in chest images would be
emoval or suppression of background structures in chest radio-
raphs. A method for suppressing the background structures
s the difference-image technique [64–68], in which the differ-
nce between a nodule-enhanced image and a nodule-suppressed
mage is obtained. This difference-image technique has been

seful in enhancing lesions and suppressing the background not
nly for nodules in chest images [64,65], but also for microcal-
ifications [54,66] and masses [67] in mammograms, and for
odules in CT [68].
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Thus, at the Rossmann Laboratories in the mid-1980s, we
ad already developed basic schemes for the detection of lung
odules in chest images [52,53] and the detection of clustered
icrocalcifications in mammograms [54]. Although the sensi-

ivities of these schemes for detection of lesions were relatively
igh even at that time, the number of false positives was very
arge. It was therefore quite uncertain and unpredictable whether
he output of these computerized schemes could be used by
adiologists in routine clinical work. For example, the average
umber of false positives was four per mammogram in the detec-
ion of clustered microcalcifications by computer, although the
ensitivity was about 85%. However, in order to examine the
ossibility of practical uses of CAD in clinical situations, we
arried out an observer performance study without and with
he computer output. To our surprise, radiologists’ performance
n detecting clustered microcalcifications was improved sig-
ificantly when the computer output was available, even with
uch a large number of false positives. This result was pub-
ished in 1990 by H.P. Chan et al. [66], as described in detail
ater.

. Computer-aided diagnosis and automated computer
iagnosis

Early studies on quantitative analysis of medical images by
omputer [26–31] were reported in the 1960s. At that time, it
as generally assumed that computers could replace radiologists

n detecting abnormalities, because computers and machines
re better at performing certain tasks than are human beings.
hus, the concept of computer diagnosis or automated diagnosis

n radiology was established at that time. Although interesting
esults were reported, these early attempts were not success-
ul, because computers were not sufficiently powerful, advanced
mage-processing techniques were not available, and digital
mages were not easily accessible. However, a serious flaw was
n excessively high expectation from computers. In fact, many
ifferent approaches to automated computer diagnosis have been
ttempted as aids in decision-making in many fields of medicine
ince the 1950s. In the medical subspecialty of hematology, for
xample, R.L. Engle [32], in his review article on 30 years’
xperience, stated in his conclusion, “Thus, we do not see much
romise in the development of computer programs to simulate
he decision-making of a physician. However, after many years
e have concluded that we should stop trying to make computers

ct like diagnosticians.”
In the 1980s, however, another approach emerged which

ssumed that the computer output could be utilized by radiolo-
ists, but not replace them. This concept is currently known as
omputer-aided diagnosis, which has spread widely and quickly.
owever, in the early phase of research on and development
f CAD schemes, some computer scientists criticized CAD by
aying that it simply would not work, which has been proved
o be completely wrong. The reason for this strong criticism at

hat time might have been related to an unsuccessful attempt in
revious research efforts toward the development of automated
omputer diagnosis. This seems to indicate that a failure of a
pecific research project can lead to a strong “incorrect” bias
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oward another area of research that may look similar to the
ailed previous research.

However, these two concepts of automated computer diagno-
is and computer-aided diagnosis clearly exist even at present.
or example, some investigators have been working seriously on

he development of automated computer diagnosis. In addition,
here are many researchers who believe that the technologies
nvolved in the current CAD schemes could be applied as a

eans for primary diagnosis, which would be equivalent to auto-
ated computer diagnosis. During the panel discussion sessions

t two meetings, in 2002, of CARS in Paris and the AAPM in
ontreal, about half of the participants voted for the possibility

hat CAD would be shifted to automated computer diagnosis
ithin 50 years, whereas the other half voted against this pre-
iction. Therefore, it may be useful to understand some of the
ommon features and also the differences between CAD and
utomated computer diagnosis. The common approach to both
AD and automated computer diagnosis is that digital medical

mages are analyzed quantitatively by computers. Therefore, the
evelopment of computer algorithms is required for both CAD
nd computer diagnosis.

A major difference between CAD and computer diagnosis is
he way in which the computer output is utilized for the diagno-
is. With CAD, radiologists use the computer output as a “second
pinion,” and radiologists make the final decisions. Therefore,
or some clinical cases in which radiologists are confident about
heir judgments, radiologists may agree with the computer out-
ut, or disagree and then disregard the computer. However, for
ases in which radiologists are less confident, it is expected that
he final decision can be improved by use of the computer out-
ut. This improvement is possible, of course, only when the
omputer result is correct. The higher the performance of the
omputer, the better the overall effect on the final diagnosis.
owever, the performance level of the computer does not have

o be equal to or higher than that of radiologists. With CAD, the
otential gain is due to the synergistic effect obtained by combin-
ng the radiologist’s competence and the computer’s capability.
ecause of these multiplicative benefits, the current CAD has
ecome widely used in practical clinical situations.

With automated computer diagnosis, however, the perfor-
ance level of the computer output is required to be very high.
or example, if the sensitivity for detection of lesions by com-
uter would be lower than the average sensitivity of physicians, it
ould be difficult to justify the use of automated computer diag-
osis. This is because the patients in most advanced countries
ould not be able to accept a lower level of diagnostic results
y computer than the average level achievable by physicians. In
ddition, the reimbursement for the cost of an automated com-
uter diagnosis may be refused by insurance companies. It would
e difficult also to implement automated computer diagnosis if
he number of false-positive detections by computer were large,
uch as one or more false positives per case. In such instances,
ecause every case analyzed by computer would have a chance

f involving an abnormality, the physician would be required to
erify all of the cases, and this would then not be considered
n automated computer diagnosis. Therefore, high sensitivity
nd high specificity by computer are required for implementing
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and thus a successful clinical CAD system has evolved. This
may be a good example showing that a small positive seed that
germinated at an academic institution can grow substantially by
commercialization efforts in industry.

Table 1
Number of CAD papers related to seven different organs, presented at the Annual
Meetings of the Radiological Society of North America (RSNA) in Chicago from
2000 to 2005

Year

2000 2001 2002 2003 2004 2005

Chest 22 37 53 94 70 48
Breast 23 28 32 37 48 49
Colon 4 10 21 17 15 30
Brain – 4 2 10 9 15
Liver 3 – 5 9 9 9
K. Doi / Computerized Medical Im

utomated computer diagnosis. This requirement is extremely
ifficult to meet for researchers who are developing computer
lgorithms for detection of abnormalities on radiologic images.
n fact, although CAD has been used widely for detection of
reast cancer on mammograms, it would not be possible for
ost advanced countries to employ the current computer results

or automated computer diagnosis.
Another important and distinctive difference between CAD

nd automated computer diagnosis is the way that the perfor-
ance and the usefulness would be evaluated quantitatively. The

erformance level of automated computer diagnosis is equal to
he performance achieved by computer. However, the perfor-

ance level of CAD is equal to the performance achieved by the
hysician who makes the final decision by using the computer
utput as a second opinion. Therefore, it is important and essen-
ial for CAD that the computer results be utilized effectively by
hysicians. It is thus necessary to evaluate quantitatively how
uch physicians can use the computer results to improve their

verall performance. Even if the computer results are poor – for
xample, if both sensitivity and specificity are low – it is possi-
le for physicians to incorporate the computer results efficiently.
or example, if the computer could detect subtle lesions which
ight be difficult for physicians to detect, and also if physi-

ians could disregard “obvious” computer false positives easily,
t would be possible to realize CAD. However, if the computer
esults were poor, automated computer diagnosis could not be
mplemented.

Therefore, it is important for CAD to assess not only the
omputer performance, but also the performance by physicians.
t is thus necessary to evaluate quantitatively and accurately by
se of receiver operating characteristic (ROC) analysis [69–71]
hether the performance by physicians can be improved by
se of the computer results. In fact, even if the ROC curve for
omputer results in detecting clustered microcalcifications on
ammograms is substantially lower than that by radiologists,

he ROC curve obtained by radiologists using the computer
esults can be improved. The extent of this improvement due
o CAD was confirmed to be statistically significant, as reported
y H.P. Chan et al. [66] in 1990, thereby providing the first
cientific evidence for the benefits of CAD in the detection
f lesions. Thereafter, a number of investigators have reported
imilar positive findings on the usefulness of CAD in detect-
ng various lesions, including clustered microcalcifications [66]
nd masses [72] in mammograms, lung nodules [73,74] and
nterstitial opacities [75] in chest radiographs, lung nodules in
T [76], and intracranial aneurysms in MRA [77]. Thus they
ave accelerated research and development on CAD schemes in
any different types of examinations for detection of various

esions.
In summary, although there are some common aspects of

AD and automated computer diagnosis, there are also distinct
ifferences between them. Automated computer diagnosis is a
oncept based on computer algorithms, whereas CAD is a con-

ept that has been established by taking into account equally the
oles of physicians and computers. Because of this fundamental
ifference, the performance levels required for computer algo-
ithms have resulted in a large difference between the two. With
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utomated computer diagnosis, the performance by computers
eeds to be comparable to or better than that by physicians.
ith CAD, however, the performance by computers does not

ave to be comparable to or better than that by physicians, but
eeds to be complementary to that by physicians. In fact, a large
umber of CAD systems in the United States and Europe have
een employed for assisting physicians in the early detection
f breast cancers on mammograms. It should be noted that the
verall performance level of these computers is far below the
verage performance level achievable by physicians, and yet it
an be useful in practical clinical situations.

. Current status of CAD research

The number of papers related to CAD research presented
t the RSNA meetings from 2000 to 2005 is listed in Table 1.
he majority of these presentations were concerned with three
rgans – chest, breast, and colon – but other organs such as brain,
iver, and skeletal and vascular systems were also subjected to
AD research. It may be noted that the detection of cancer in

he breast [1–6], lung [78–84], and colon [85,86] has been or is
eing subjected to screening examinations [87,88]. A large frac-
ion of these examinations give normal results, and the detection
f only a small number of suspicious lesions by radiologists
s considered both difficult and time-consuming. Therefore, it
ppears reasonable that the initial phase of practical CAD in
linical situations has begun in these screening examinations. In
act, commercial CAD systems for detection of these cancers are
ow available for clinical use. Fig. 1 shows a comparison of the
revious performance level (87% sensitivity at 1.0 false positive
er image) in the detection of clustered microcalcifications by
omputer when the CAD technology was licensed to a company
n 1993, with an estimated current performance level (98% sen-
itivity at 0.25 false positive per image) of the latest commercial
AD system. It is obvious from this result that a substantial

mprovement was possible due to efforts by people in industry,
keletal 2 7 7 9 8 5
ascular, etc. 5 – 12 15 2 7

otal 59 86 134 191 161 163
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Fig. 1. Comparison of the previous performance level marked by circles (87%
sensitivity at 1.0 false positive per image) in the detection of clustered microcal-
cifications by computer in 1993, when the CAD technology was licensed to a
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ompany, with the estimated current performance level, marked by a gray square
98% sensitivity at 0.25 false positive per image), of the latest commercial CAD
ystem.

In mammography, investigators [1–6] have reported results
rom prospective studies on large numbers of screenees, ranging
rom 8682 to 115,571, regarding the effect of CAD on the detec-
ion rate of breast cancer, as summarized in Table 2. Although
here is a large variation in the results, it is important to note that
ll of these studies indicated an increase in the detection rates
f breast cancer with use of CAD. In addition, Cupples et al.
4] reported a 164% increase in the detection of small (less than
cm) invasive cancers, and also a reduction of 5.3 years in the
ean age of patients at the time of detection, when CAD was

sed in mammography.
Because several review articles on CADs for mammography,

hest radiography, thoracic CT, CT colonography, and multi-
rgan, multi-dimensional CAD are included in this Special Issue
f the Journal of Computerized Medical Imaging and Graphics,
nly selected topics with recent findings are discussed below.

.1. Detection of lung nodules on PA and lateral chest
adiographs
In chest radiography and thoracic CT, a number of CAD
chemes have been developed, and some commercial systems
re available. CAD schemes in chest radiography include the

able 2
rospective studies on the usefulness of CAD for detection of breast cancers in
creening mammography

uthors No. of cases Gain in cancer
detection rate (%)

Increase in
recall rate (%)

reer et al. [1] 12,860 19.5 18.8
ur et al. [2] 115,571 1.7 0.1
irdwell et al. [3] 8,682 7.4 7.6
upples et al. [4] 27,274 16.1 8.1
orton et al. [5] 18,096 7.6 10.8
ean et al. [6] 9,520 10.8 26.0
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etection and differential diagnosis of lung nodules [89–91]
nd of interstitial lung diseases [92–96], and the detection
f cardiomegaly [97,98], pneumothorax [99], and interval
hanges [100–105]. However, these CAD methods employed
nly posterior–anterior (PA) views of chest images, even if both
A and lateral views for the same patient were available. In fact,
ateral views of chest images were commonly obtained together
ith PA views in many medical centers and clinical institutions.
ven though different opinions have been expressed in the past
bout the necessity of obtaining PA and lateral views [106–111],
t is reasonable to use a lateral view in supporting the perfor-

ance of a CAD scheme for the detection of lung nodules, and
hus in assisting radiologists’ decision-making, if a lateral view
ogether with a PA view has already been obtained.

Recently, Shiraishi et al. [112] developed a computerized
cheme for detection of lung nodules in the lateral views of
hest radiographs, in order to improve the overall performance
n combination with the CAD scheme for PA views. When the
AD scheme was applied only to PA views, the sensitivity in the
etection of lung nodules was 70.5%, with 4.9 false positives per
mage. Although the performance of the computerized scheme
or lateral views was relatively low (60.7% sensitivity with 1.7
alse positives per image), the overall sensitivity (86.9%) was
mproved (6.6 false positives per two views), because 20 (16.4%)
f the 122 nodules in 106 pairs of PA and lateral views of chest
adiographs used in their study were detected only on lateral
iews. Fig. 2 shows relatively large, but very subtle lung nod-
les located in the right mediastinum region which were not
dentified by CAD on the PA view, but were correctly identi-
ed by CAD on the lateral view. Thus, the CAD scheme by use
f lateral-view images has the potential to improve the overall
erformance for detection of lung nodules on chest radiographs
hen combined with a conventional CAD scheme for standard

A views.

.2. Detection of vertebral fractures on lateral chest
adiographs

Vertebral fracture (or vertebral deformity) is a common out-
ome of osteoporosis, which is one of the major public health
oncerns in the world. Early detection of vertebral fractures
s important because timely pharmacologic intervention can
educe the risk of subsequent additional fractures [113–117].
ertebral fractures can be visible on lateral chest radiographs.
owever, investigators [118–121] have noted that about 50%
f vertebral fractures visible on lateral chest radiographs were
nderdiagnosed or underreported, even when the fractures were
evere. Therefore, Kasai et al. [122,123] developed a computer-
zed method for detection of vertebral fractures on lateral chest
adiographs in order to assist radiologists’ image interpretation
nd thus the early diagnosis of osteoporosis. In the computerized
ethod, a curved search area, which included a number of ver-

ebral end plates, was first extracted automatically, and then was

traightened so that vertebral end plates became oriented hori-
ontally. Edge candidates were enhanced by use of a horizontal
ine-enhancement filter in the straightened image, and a multiple
hresholding technique, followed by feature analysis, was used
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ig. 2. Illustration of a relatively large, but very subtle lung nodule (dotted cir
triangles) on the lateral view, but was not marked by CAD on the PA view.

or identification of the vertebral end plates. The height of each
ertebra was determined from locations of identified vertebral
nd plates, and fractured vertebrae were detected by comparison
f the measured vertebral height with the expected height.
The cases used in this study were 20 patients with severe
ertebral fractures and 118 patients without fractures, as con-
rmed by the consensus of two radiologists. Preliminary results

ndicated that the sensitivity of the computerized method for

p
w
i
t

ig. 3. Illustration of the correct detection (arrowhead) by computer of a fractured ver
an be used as a second opinion. Thus, the accuracy of detection of vertebral fracture
iagnosis of osteoporosis could be improved.
located in the right mediastinum region which was correctly marked by CAD

etection of fracture cases was 95% (19/20), with 1.03 (139/135)
alse-positive fractures per image. For a validation test, the detec-
ion accuracy of the computerized method was examined by
se of 32 additional fracture cases which were selected inde-

endently from training cases. The sensitivity for these cases
as 75% (24/32) at 1.03 (33/32) false-positive fractures per

mage. Fig. 3 shows the correct detection of a fractured ver-
ebra on a lateral chest radiograph. Because vertebral fractures

tebra (dotted circles) below the diaphragm on a lateral chest radiograph, which
s by radiologists could be improved on lateral chest radiographs, and the early
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an be detected by computer, radiologists can use the detection
esults as a “second opinion”, and then the detection accuracy
f vertebral fractures by radiologists will be improved on lateral
hest radiographs, with improvement in the early diagnosis of
steoporosis.

.3. Detection of intracranial aneurysms in MRA

During the past decade, there has been considerable inter-
st in the roles of “less invasive” imaging modalities such as
omputed tomographic angiography (CTA) and magnetic res-
nance angiography (MRA) in the detection of intracranial
neurysms [124–131]. However, it is still difficult and time-
onsuming for radiologists to find small aneurysms, and it
ay not be easy to detect even medium-sized aneurysms on
aximum-intensity-projection (MIP) images, because of over-

ap with adjacent vessels and because of unusual locations.
herefore, a CAD scheme would be useful in assisting radiolo-
ists in the detection of intracranial aneurysms, especially those
hat are small, by use of MRA. Recently, Arimura et al. [132,133]
ave developed a computerized scheme for automated detection
f unruptured intracranial aneurysms in MRA, based on the use
f a 3D selective enhancement filter for dots (aneurysms). The
sotropic 3D MRA images were processed by use of a selective,

ulti-scale enhancement filter [134], as illustrated in Fig. 4.
he initial candidates were identified by use of a multiple gray-

evel thresholding technique on the dot-enhanced images and a
egion-growing technique with monitoring of some image fea-
ures. All candidates were classified into four types according to
he size and local structures based on the effective diameter and
he skeleton image of each candidate, i.e., large candidates and
hree types of small candidates: a short-branch type, a single-
essel type, and a bifurcation type. In each group, a number

f false positives were removed by use of different rules on
ocalized image features related to gray levels and morphology.
inear discriminant analysis was employed for further removal
f false positives.

ig. 4. The isotropic 3D MRA image in (a) was processed by use of a selective,
ulti-scale enhancement filter for detection of an intracranial aneurysm (dotted

ircles), as illustrated in the dot-enhanced image in (b).
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The performance of this CAD scheme was evaluated by use
f 207 cases with aneurysms which were obtained from three
nstitutions by use of three different types of MR equipment, and
hus cases from each institution were tested independently based
n a leave-one-out-by-patient test method. The average sensitiv-
ty in detecting intracranial aneurysms with sizes ranging from
mm to 23 mm was 96%, with 3.2 false positives per patient.
n observer study was carried out for examining the effect of

he computer output on radiologists’ detection performance by
se of 22 cases with aneurysms and 28 cases without. The aver-
ge area under the ROC curve (Az value) for 15 radiologists in
he detection of intracranial aneurysms in MRA was improved
rom 0.931 to 0.983 (P = 0.001) when the computer output was
vailable [77]. Therefore, the CAD system would be useful in
ssisting radiologists in the detection of intracranial aneurysms
n MRA.

.4. Detection of interval changes in successive
hole-body bone scans

Bone scintigraphy is the most frequent examination among
arious diagnostic nuclear-medicine procedures. It is a well-
stablished imaging modality for the diagnosis of osseous
etastases and for monitoring of the osseous-tumor response to

hemotherapy and radiation therapy. Although the sensitivity of
one scan examinations for detection of bone abnormalities has
een considered to be very high, it is time-consuming to identify
ultiple lesions such as bone metastases of prostate and breast

ancers [135,136]. In addition, it is very difficult to detect subtle
nterval changes between two successive abnormal bone scans,
ecause of variations in patient conditions, the accumulation of
adioisotopes during each examination, and the image quality of
amma cameras. Therefore, Shiraishi et al. [137] developed a
AD scheme for the detection of interval changes in successive
hole-body bone scans by use of a temporal-subtraction image
hich was obtained with a nonlinear image-warping technique

103]. The computerized scheme consisted of several steps: ini-
ial image density normalization on each image, image matching
or paired images, temporal subtraction by use of the nonlinear
mage-warping technique, initial detection of interval changes
y use of temporal-subtraction images, image feature extraction
f candidates of interval changes, rule-based tests by use of 16
mage features for removing some false positives, and display
f the computer output for identified interval changes.

Based on the consensus of three radiologists, 107 “gold-
tandard” interval changes were determined among the 58 pairs
f successive bone scans in which each scan included both
osterior and anterior views. One hundred and seven “gold stan-
ard” interval changes included 71 hot lesions (i.e., uptake was
ncreased compared with that in the previous scan, or there
as new uptake in the current scan) and 36 cold lesions (i.e.,
ptake was decreased or disappeared) for anterior and poste-
ior views. The overall sensitivity in the detection of interval

hanges, including both hot and cold lesions, evaluated by
se of the resubstitution and the leave-one-case-out methods
ere 95.3% with 5.97 false positives per view and 83.2% with
.02, respectively. Fig. 5 shows the temporal subtraction image
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ig. 5. Illustration of temporal subtraction image obtained from previous and
dark dotted circles) on the subtraction image were correctly marked by compu
he potential to enhance the interval changes between two images.

btained from previous and current bone scan images, and the
orrect detection of one cold lesion and two hot lesions by
omputer. Thus, the temporal-subtraction image for successive
hole-body bone scans has the potential to enhance the interval

hanges between two images. Furthermore, the CAD scheme
or the detection of interval changes would be useful in assisting
adiologists’ interpretation on successive bone scan images.

. Future potential of CAD in the PACS environment

It is likely that, in the future, some CAD schemes will be
ncluded together with other software for image processing in
he workstations associated with some specific imaging modal-
ties such as digital mammography, CT, and MRI. However,

any other CAD schemes will be assembled as packages and
mplemented as a part of PACS. For example, the package for
hest CAD may include the computerized detection of lung nod-
les, interstitial opacities, cardiomegaly, vertebral fractures, and

nterval changes in chest radiographs as well as the computerized
lassification of benign and malignant nodules and the differen-
ial diagnosis of interstitial lung diseases. All of the chest images
aken for whatever purpose will be subjected to a computerized

p
i
t
o

nt bone scan images. One cold lesion (white solid circle) and two hot lesions
hus, the temporal subtraction image for successive whole-body bone scans has

earch for many different types of abnormalities included in the
AD package, and thus potential sites of lesions together with

elevant information such as the likelihood of malignancy and
he probability of a certain disease may be displayed on the
orkstation. For such a package to be used in clinical situations,

t is important to reduce the number of false positives as much as
ossible so that radiologists will not be disturbed by an excessive
umber of false positives, but will be prompted only or mainly
y clinically significant abnormalities.

Radiologists may use this type of CAD package in the work-
tation in two different ways. One is first to read images without
he computer output, and then to request a display of the com-
uter output before making the final decision. If radiologists
eep their initial findings in some manner, this mode may pre-
ent a detrimental effect of the computer output on radiologists’
nitial diagnosis such as to dismiss incorrectly a subtle lesion
ecause of no computer output, although radiologists were very
uspicious of this lesion initially. However, this mode would

robably increase the time required for radiologists’ image read-
ng, which is generally undesirable. Another mode is to display
he computer output first and then the final decision by the radiol-
gist. With this mode, it is very likely that radiologists can reduce
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he reading time for image interpretations, but it is uncertain
hether they may miss some lesions when no computer output
as shown due to computer false negatives. This negative effect

an be reduced if the sensitivity in the detection of abnormalities
s at a very high level, which may be possible with a package
f a number of different, but complementary CAD schemes.
or example, although two CAD schemes may miss some lung
odules and other interstitial opacities, it is possible that the tem-
oral subtraction images obtained from the current and previous
hest images demonstrate the interval changes clearly, because
he temporal-subtraction technique is very sensitive to subtle
hanges between the two images. This would be one of the poten-
ial advantages in packaging of a number of CAD schemes in
he PACS environment.

Over the years, investigators have been developing two dif-
erent types of CAD schemes, one for detection of lesions and
nother for differential diagnosis of detected lesions based on
lassification between malignant and benign lesions, and also
etween different diseases such as different interstitial lung dis-
ases. Although CAD schemes for detection of lesions such as
reast lesions on mammograms have been successfully imple-
ented in clinical situations, no serious attempts have been
ade to apply CAD schemes for differential diagnosis to practi-

al clinical situations, and no commercial systems for CAD for
ifferential diagnosis are available at present. However, the per-
ormance levels of CAD schemes for differential diagnosis have

een reported to be very high [138–143]. For example, a CAD
cheme [142,143] for distinction between benign and malignant
ung nodules on thoracic CT has been developed based on the
etermination of the likelihood of malignancy (%) for detected

b
a
c
m

ig. 6. Illustration of subtle, difficult nodules in HRCT. The correct computer outpu
heir decisions, as indicated by a beneficial change in radiologists’ confidence level t
onfidence ratings by 16 radiologists are shown as initial rating without and 2nd ra
alignant, respectively.
and Graphics 31 (2007) 198–211

odules. Feng Li et al. [143] demonstrated the usefulness of
his scheme in observer performance studies, in which radiol-
gists’ performance with CAD (Az = 0.853) was greater than
hat of either radiologists alone (Az = 0.785) or computer out-
ut alone (Az = 0.831), with statistically significant differences
n Az values. The radiologists generally increased or decreased
heir confidence level when the likelihood of malignancy was
bove or below 50%, respectively, and the changes for most
odules tended toward a beneficial effect of the CAD output.
mportantly, the correct computer output was able to assist radi-
logists in improving their decisions on many subtle cases, as
llustrated in Fig. 6. For some nodules, however, the radiologists’
nitial ratings without CAD were clearly correct; and even when
he computer output indicated incorrect results, no serious detri-

ental effect due to CAD occurred in the radiologists’ ratings,
s shown in Fig. 7. Thus, radiologists were able to maintain their
wn correct judgment when nodules appeared to be obviously
enign or malignant despite an incorrect CAD output. Therefore,
his study indicated that a synergistic improvement in observers’
nterpretation by use of a CAD scheme as a “second opinion”
as possible, because the radiologists were able to maintain their
wn correct opinions on some obvious cases, whereas the com-
uter output assisted in improving their decisions in the majority
f subtle cases.

In order to assist radiologists further in their differential diag-
osis in addition to the likelihood of malignancy (%), it would

e useful to provide a set of benign and malignant images that
re similar to an unknown new case in question. If the new
ase were considered very similar to one or more benign (or
alignant) images by a radiologist, he/she would be more con-

t for the likelihood of malignancy was able to assist radiologists in improving
oward a correct diagnosis for both malignant and benign nodules. The average
ting with computer output, respectively, where 0 and 1.0 indicate benign and
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ig. 7. Illustration of “obvious” nodules in HRCT, in which radiologists were
ven when the computer output indicated incorrect results. Thus, no serious det

dent in deciding that the new case was benign (or malignant).
herefore, similar images may be employed to supplement the
omputed likelihood of malignancy for implementing CAD for
differential diagnosis. The usefulness of similar images has

een demonstrated in an observer performance study [144] in

hich the Az value in the distinction between benign and malig-
ant nodules in thoracic CT was improved. Fig. 8 illustrates the
omparison of an unknown case of a mass in a mammogram in
he center with two benign masses on the left and two malig-

f
w
n
s

ig. 8. Comparison of an unknown case of a mass in a mammogram in the center wi
ay be retrieved from PACS. Most observers were able to identify the unknown case
o maintain their correct initial ratings for both malignant and benign nodules,
tal effect due to CAD occurred in the radiologists’ ratings.

ant masses on the right. In this simple example, most observers
ere able to identify the unknown case correctly as being more

imilar to malignant masses than to benign ones.
There are at least two important issues related to the use of

imilar images in practical clinical situations. One is the need

or a unique database that includes a large number of images
hich can be used as being similar to those of many unknown
ew cases, and another is a sensitive tool for finding images
imilar to an unknown case. Although it may require consid-

th two benign masses on the left and two malignant masses on the right, which
correctly as being more similar to malignant masses than to benign ones.
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rable time and effort, a useful database for this purpose can
e developed in the future by use of images stored in PACS.
t present, the majority of clinical images in PACS have not
een used for clinical purposes, except for images of the same
atients, such as in comparisons of a current image with pre-
ious images. Therefore, it would not be an overstatement to
ay that the vast majority of images in PACS are currently
sleeping” and need to be awakened in the future for daily use
n many clinical situations. It would be possible to search for
nd retrieve very similar cases with similar images from PACS,
f a reliable and useful method were developed for quantify-
ng the similarity on a pair of images (or lesions) for visual
omparison by radiologists. Recent studies indicated that the
imilarity of a pair of lung nodules in CT [144] and of lesions in
ammograms [145,146] may be quantified by a psychophysi-

al measure which can be obtained by use of an artificial neural
etwork trained with the corresponding image features and with
ubjective ratings given by a group of radiologists. However,
urther investigations are required for examining the usefulness
f this type of new tool for searching really similar images in
ACS.

. Conclusion

Computer-aided diagnosis has become a part of clinical work
n the detection of breast cancer by use of mammograms, but is
till in the infancy of its full potential for applications to many
ifferent types of lesions obtained with various modalities. CAD
s a concept based on the equal roles of physician and com-
uter, and thus is distinctly different from automated computer
iagnosis. In the future, it is likely that CAD schemes will be
ncorporated into PACS, and that they will be assembled as a
ackage for detection of lesions and also for differential diag-
osis. CAD will be employed as a useful tool for diagnostic
xaminations in daily clinical work.
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