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“Cognitive Task Analysis is the extension of traditional task analysis techniques 
to yield information about the knowledge, thought processes and goal structures 
that underlie observable task performance. [It captures information about 
both…] ... overt observable behavior and the covert cognitive functions behind it 
[to] form an integrated whole.” (p. 3, Chipman, Schraagen, & Shalin, 2000) 

 
Cognitive task analysis (CTA) uses a variety of interview and observation 

strategies to capture a description of the knowledge that experts use to perform complex 
tasks. Complex tasks are defined as those where performance requires the integrated use 
of both controlled (conscious, conceptual) and automated (unconscious, procedural or 
strategic) knowledge to perform tasks that often extend over many hours or days (see van 
Merriënboer, Clark, & de Croock, 2002). CTA is often only one of the strategies used to 
describe the knowledge required for performance. It is a valuable approach when 
advanced experts are available who reliably achieve a desired performance standard on a 
target task and the goal is to capture the “cognitive” knowledge used by them (Clark & 
Estes, 1999). Analysts use CTA to capture accurate and complete descriptions of 
cognitive processes and decisions. The outcome is most often a description of the 
performance objectives, equipment, conceptual knowledge, procedural knowledge and 
performance standards used by experts as they perform a task. The descriptions are 
formatted so that they can be used as records of task performance and/or to inform 
novices in a way that helps them achieve the performance goal(s) in any context. CTA is 
most often performed before (or as an integral part of) the design of instruction, work, job 
aids and/or tests. The descriptions are then used to develop expert systems, tests to certify 
job or task competence, and training for acquiring new and complex knowledge for 
attainment of performance goals (Chipman, Schraagen, & Shalin, 2000; Jonassen, 
Tessmer, & Hannum, 1999).  
 
 This chapter presents an overview of the current state of CTA in research and 
practice. The first section presents descriptions of a variety of CTA techniques, their 
common characteristics, and the typical strategies used to elicit knowledge from experts 
and other sources. The second section discusses the integration of CTA with training 
design. The third section describes research on the impact of CTA and synthesizes a 
number of studies and reviews pertinent to issues underlying knowledge elicitation. In the 
fourth section, we present a number of recommendations for future research. The main 
conclusions are given in the final section. 
 

Types of Cognitive Task Analysis Currently in Use 
 

Researchers have identified over 100 types of CTA methods currently in use, 
which can make it difficult for the novice practitioner to choose the appropriate method 
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(Cooke, 1994). The number and variety of CTA methods is due primarily to the diverse 
paths that the development of CTA has taken. It has origins in behavioral task analysis, 
early work in specifying computer system interfaces, and in military applications—each 
with its own demands, uses, and research base. Over the past twenty years, CTA has been 
increasingly informed by advances in cognitive science and has become an important 
component for the design of systems and training in many domains. The growing body of 
literature describing CTA methods, applications, and results mirrors the diverse 
application and development of CTA methods. There are, however, reviews and 
classifications to guide those interested in exploring and applying CTA, including a 
comprehensive “review of reviews” provided by Schraagen, Chipman, and Shute (2000). 
 

Cooke (1994) conducted one of the more extensive reviews of CTA. She 
identified three broad families of techniques: (a) observation and interviews, (b) process 
tracing, and (c) conceptual techniques. Observations and interviews involve watching 
experts and talking with them. Process tracing techniques typically capture an expert’s 
performance of a specific task via either a think-aloud protocol or subsequent recall. In 
contrast, conceptual techniques produce structured, interrelated representations of 
relevant concepts within a domain.  
 

Cooke’s (1994) three families differ in terms of their specificity and formality. 
Generally, observations and interviews are informal and allow knowledge elicitors much 
flexibility during elicitation. Process tracing methods have more structure and specificity, 
although some analysis decisions are left to the elicitor. Conceptual techniques are well-
specified and formal with few judgments on the part of the elicitor. As a further 
comparison, more formal methods require greater training on the mechanisms and 
produce more quantitative data compared to the informal methods, which focus on 
interview skills and generate qualitative output. Because different techniques may result 
in different aspects of the domain knowledge, Cooke recommends the use of multiple 
methods, a recommendation often echoed throughout the CTA literature (see also 
Ericsson & Simon, 1993; Russo, Johnson, & Stephens, 1989; Vosniadou, 1994). 
 

Wei and Salvendy’s (2004) review of CTA methods introduces a fourth family—
formal models—which use simulations to model tasks in the cognitive domain. Their 
review further differs from others by providing practical guidelines on how to use the 
classifications of CTA methods to select appropriate techniques to accomplish various 
objectives. For example, one guideline suggests that when tasks or jobs do not have a 
defined domain, observations and interviews are especially useful in the initial phase of 
CTA to generate a more explicit context and identify boundary conditions.  
 

These reviews provide a starting point to explore the numerous varieties of CTA 
methods and their applications. We examine the overall CTA process and describe in 
depth some methods that have particular application to instructional design. Although 
there are many varieties of CTA methods, most knowledge analysts follow a five-stage 
process (Chipman et al., 2000; Clark, 2006; Coffey & Hoffman, 2003; Cooke, 1994; 
Hoffman, Shadbolt, Burton, & Klein, 1995; Jonassen et al., 1999). The five common 
steps in most of the dominant CTA methods are performed in the following sequence:  
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1) Collect preliminary knowledge  
2) Identify knowledge representations 
3) Apply focused knowledge elicitation methods 
4) Analyze and verify data acquired 
5) Format results for the intended application 

 
 The following sections contain descriptions of common CTA methods and brief 
explanations of each type as it is used during each stage of the general process. 
 
(1) Collect Preliminary Knowledge 

In this initial stage, the analyst identifies the sequence of tasks that will become 
the focus of the CTA. Analysts attempt to become generally familiar with the knowledge 
domain and identify experts to participate in the knowledge elicitation process. Although 
knowledge analysts and instructional developers do not need to become subject matter 
experts themselves, they should be generally familiar with the content, system, or 
procedures being analyzed.  

 
If possible, two or more subject matter experts (SMEs) should be selected to 

participate in the process (Chao & Salvendy, 1994; Lee & Reigeluth, 2003). Although 
specific criteria for identifying experts may change depending on circumstances1, all 
SMEs must have a solid record of successful performance at the task(s) being analyzed. 
Experts are most often interviewed separately to avoid premature consensus regarding the 
knowledge and skills necessary for effective performance. 

 
Techniques typically used during this phase include document analysis, 

observation, and interviews (structured or unstructured). The analyst uses the results of 
this stage to identify the knowledge types and structures involved in performing the tasks. 
 

Document analysis. Analysts often begin their reviews by collecting any available 
written resources describing the tasks and/or related subject matter. This can include a 
wide variety of documents, including promotional literature, brochures, manuals, 
employee handbooks, reports, glossaries, course texts, and existing training materials. 
These documents are analyzed for orientation on the tasks, preparation of the in-depth 
analysis, and confirmation of preliminary ideas (Jonassen et al., 1999). This orientation 
prepares analysts for subsequent task analysis activities. For example, the information 
elicited during structured interviews may be more robust when analysts are already 
familiar with experts’ terminology. Documentation analysis also allows comparison of 
existing materials on a procedure with accounts of expert practitioners to identify any 
immediate discrepancies between doctrine and typical implementation. 
 

Observations. Observation is one of the most frequently used and most powerful 
tools of knowledge elicitation. It can be used to identify the tasks involved, possible 

                                                
1 See extensive discussions of appropriate definitions of expertise and criteria for identifying experts in: 
Cooke (1992), Dawes (1994), Ericsson and Smith (1991), Glaser and Chi (1988), Mullin (1989), and 
Sternberg and Horvath (1998). 
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limitations and constraints for subsequent analysis, and available information necessary 
to perform the task. It also allows analysts to compare an expert’s description of the task 
with actual events. In many CTA systems, analysts will unobtrusively observe experts 
while they are performing the tasks under examination to expand their understanding of 
the domain. Analysts observe and record the natural conditions and actions during events 
that occur in the setting (Cooke, 1994). Although definitive identification of an expert’s 
mental operations cannot be accomplished through observation, analysts may note the 
occasions on which it seems that experts must make decisions, assess situations, or 
engage in analysis. 
 

Unstructured interviews. “The most direct way to find out what someone knows 
is to ask them” (Cooke, 1999, p. 487). In addition to observation, unstructured interviews 
are also common early in the CTA process to provide an overview of the domain and to 
raise issues and questions for exploration in subsequent structured interviews. In 
unstructured interviews, analysts may not dictate the content or sequence of conversation. 
In other instances, however, they may ask an expert to focus on a task, event, or case with 
instructions to “Tell me everything you know about…”  
 
(2) Identify Knowledge Representations 

Using the information collected during the preliminary stage, analysts examine 
each task to identify sub-tasks and types of knowledge required to perform it. Most CTA 
approaches are organized around knowledge representations appropriate for the task, 
such as concept maps, flow charts, semantic nets, and so forth. These representations 
provide direction and order to latter stages in the CTA process because knowledge 
elicitation methods map directly to knowledge types. Some are best used to elicit 
procedural knowledge, while others are more successful for capturing declarative 
knowledge (Chipman et al., 2000). A learning hierarchy is one example of a method to 
organize the types of knowledge required to perform a task. 
 

Learning hierarchy analysis. A learning hierarchy analysis represents the content 
of skills ordered from more complex problem solving skills at the top to simpler forms of 
learning (Jonassen et al., 1999). So for example, problem solving is followed by rule 
learning, which is followed by concepts. Thus, the basic idea is that people can only learn 
rules if they have already mastered prerequisite concepts necessary to learn the rules. 
Analyzing a learning hierarchy begins by identifying the most complex (highest) learning 
outcome and then determining the underlying skills that must be mastered to achieve the 
target outcome. A hierarchy of skills is represented as a chart of tasks for each intellectual 
skill that is acquired to progress to increasingly complex skills.  
 

The learning hierarchy constructed at this stage of the CTA process provides the 
guide to structure the next stage of knowledge elicitation by identifying the information 
that must be captured from the SMEs. Thus, it reflects the reiterative nature of the CTA 
process, in which the details of the knowledge, skills, and cognitive strategies necessary 
for complex learning are revealed, refined, and confirmed.  
(3) Apply Focused Knowledge Elicitation Methods 
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During knowledge elicitation, the analyst applies various techniques to collect the 
knowledge identified in the prior stage. Past research indicates that different elicitation 
methods yield different types of knowledge and that knowledge is rarely articulated 
without being the focus of elicitation (Hoffman, Crandall, & Shadbolt, 1998). Analysts 
attempt to choose methods appropriate to the targeted knowledge type as determined by 
the knowledge representations identified for each task. Consequently, most elicitation 
efforts entail multiple techniques.  

 
Among the many types of knowledge elicitation methods, variations of structured 

and semi-structured interviews are most commonly involved in CTA because they are 
relatively easy to use and require less training than more formal methods such as protocol 
analysis (Ericsson & Simon, 1993) or the use of repertory grids (e.g., Bradshaw, Ford, 
Adams-Webber, & Agnew, 1993). It is the variation in these specific techniques that 
defines the major differences between specific CTA models. Although the methods may 
differ in focus, they share a common purpose in capturing the conditions and cognitive 
processes for necessary for complex problem solving. Following are descriptions of two 
CTA models that have been documented to effectively elicit experts’ knowledge in a 
manner that is particularly effective for instruction (Crandall & Gretchell-Leiter, 1993; 
Velmahos, Toutouzas, Sillin, Chan, Clark, Theodorou, & Maupin, 2004).  
 

Concepts, Processes, and Principles (CPP; Clark, 2004, 2006). CPP involves a 
multi-stage interview technique that captures the automated and unconscious knowledge 
acquired by experts through experience and practice by using multiple SMEs to describe 
the same procedure, followed by cycles of expert self- and peer-review. The initial, semi-
structured interview begins with a description of the CTA process by the analyst. The 
SME is then asked to list or outline the performance sequence of all key sub-tasks 
necessary to perform the larger task being examined. SMEs are also asked to describe (or 
help the interviewer locate) at least five authentic problems that an expert should be able 
to solve if they have mastered the task. Problems should range from routine to highly 
complex whenever possible. The resulting sequence of tasks becomes the outline for the 
training to be designed or the job description produced after the CTA is completed. 
Starting with the first subtask in the sequence, the analyst asks a series of questions to 
collect:  

(a) the sequence of actions (or steps) necessary to complete the sub task;  
(b) the decisions that have to be made to complete the sub task, when each must 

be made and, the alternatives to consider, and the criteria to decide between 
the alternatives;  

(c) all concepts, processes and principles that are the conceptual basis for the 
experts’ approach to the sub-task;  

(d) the conditions or initiating events that must occur to start the correct 
procedure;  

(e) the equipment and materials required;  
(f) the sensory experiences required (e.g., the analyst asks if the expert must 

smell, taste or touch something in addition to seeing or hearing cues in order 
to perform each sub task), and  
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(g) the performance standards required, such as speed, accuracy or quality 
indicators.  

The interview is repeated for each SME, with each interview recorded and transcribed 
verbatim for later analysis. 
 

Critical Decision Method (CDM; Klein, Calderwood, & MacGregor, 1989). CDM 
is a semi-structured interview method that uses a set of cognitive probes to determine the 
bases for situation assessment and decision making during critical (nonroutine) incidents 
(for a full procedural description, see Hoffman et al., 1998). CDM is based on the 
concept of expert decision making as the recognition of cue patterns in the task 
environment without conscious evaluation of alternatives. Thus, situational awareness 
plays a dominant role in experts’ selection of courses of action. The speed with which 
such decisions are made suggests that experts unconsciously assess feasible goals, 
important cues, situational dynamics, courses of action, and expectancies. To elicit this 
knowledge, CDM uses a retrospective, case-based approach with elicitation occurring in 
multiple “sweeps” to gather information in progressively deepening levels of detail.  

 
The technique begins by selecting a critical incident from the expert’s task 

experience that was unusual in some way. The experts involved provide unstructured 
accounts of the incident, from which a timeline is created. Next, the analyst and the 
experts identify specific points in the chronology at which decisions were made. These 
decision points are defined as instances when other reasonable alternative courses of 
action were possible. The decision points are then probed further using questions that 
elicit: (a) the perceptual cues used in making the decision, (b) prior knowledge that was 
applied, (c) the goals considered, (d) decision alternatives, and (e) other situation 
assessment factors. The reports are recorded and transcribed verbatim. 
 
(4) Analyze and Verify Data Acquired 

As noted above, CTA methods vary in structure, formality, and results. Because 
the knowledge elicitation techniques described here are less formal, they require that the 
analyst code and format the results for verification, validation, and applicability for use in 
their intended application. When conducting interviews with experts, practitioners 
recommend recording the interviews and transcribing them for review at a later time, 
rather than trying to take detailed notes during the interview, which may distract from the 
process. Transcripts may be coded to summarize, categorize, and/or synthesize the 
collected data. 

 
Following coding, the formatted output is presented to the participating SMEs for 

verification, refinement, and revision to ensure that the representations of tasks and their 
underlying cognitive components are complete and accurate. Once the information in the 
formatted output has been verified or revised by the expert, the analyst should then 
compare it with the output of other experts to validate that the results accurately reflect 
the desired knowledge representation. 
 

The analysis stage in CPP (Clark, 2004, 2006) begins with the analyst preparing a 
summary of the interview in a standard format that includes the task, a list of sub-tasks, 
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and the conditions, standards, equipment and materials required. For each sub-task, the 
analyst then writes a procedure that includes each action step and decision step required 
to perform the task and gives the procedure to the SME to review. To verify the 
individual CTAs, the analyst gives each SME’s product to one of the other SMEs and 
asks them to edit the document for accuracy and efficiency (that is to determine the 
fewest steps necessary for a novice with appropriate prior knowledge to perform the 
task). In the final stage, the analyst edits the individual CTAs into one formatted 
description of how to accomplish all tasks. After final approval by the SMEs, this final, 
formatted document provides the information for the instructional design process. Clark 
(2006) provides the format of the protocol.  
 

The Critical Decision Method prescribes no single method for coding the 
transcripts that are transcribed verbatim from the recorded interviews, as each specific 
research question defines how the transcripts are coded (Klein et al., 1989).  The coding 
scheme, however, should be domain-relevant and have cognitive functionality; in other 
words, it should tag information that represents perceptual cues, decision points, and 
situational assessments. A sample of a coded protocol can be found in Hoffman et al. 
(1998). 
 
(5) Format Results for the Intended Application 

The results of some highly structured CTA methods (e.g., cognitive modeling) are 
readily applied to expert systems or computer-assisted tutoring applications. For less 
formal CTA methods, such as those described here, the results must be translated into 
models that reveal the underlying skills, mental models, and problem solving strategies 
used by experts when performing highly complex tasks. Further, these models inform the 
instructional design of curriculum, training and other performance applications. The 
Concepts, Processes, and Principles (Clark, 2004, 2006) method generates a description 
of the conceptual knowledge, conditions, and a detailed list of the actions and decisions 
necessary to perform a task. These products can be incorporated into an instructional 
design system. Similarly, products resulting from the application of the Critical Decision 
Method have been used for a variety of instructional applications, including building and 
evaluating expert systems and identifying training requirements.  CDM can provide case 
studies and information rgarding which aspects of a task depend on explicit knowledge 
and which depend on tacit knowledge (Klein et al., 1989). 

 
Current Research Evidence for the Impact of Cognitive Task Analysis  

 
Modern CTA evolved from a behavioral approach to analyzing performance. As 

the understanding of occupational demands evolved from a focus on physical 
performance to a focus on cognitive performance, evidence suggested that key aspects of 
performance entailed knowledge that was not directly observable (Ryder & Redding, 
1993; Schneider, 1985). Applications of behavioral task analysis to training resulted in 
incomplete descriptions that led to decision errors during job performance (Schraagen et 
al., 2000). Early versions of CTA were designed to capture the decisions and analysis that 
could not be directly observed as well as the deeper conceptual knowledge that served as 
the basis for analytical strategies and decisions (Clark & Estes, 1999). Thus, training 
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shifted from the reinforcement of associations between perceptual stimuli and behaviors 
to the development of declarative and procedural knowledge.  

 
Research evidence indicates that the accurate identification of experts’ cognitive 

processes can be adapted into training materials that are substantially more effective than 
those developed through other means (e.g., Merrill, 2002; Schaafstal, Schraagen, & van 
Berlo, 2000; Velmahos et al., 2004). When content is inaccurate or incomplete, any 
instruction based on that knowledge will be flawed (Clark & Estes, 1996; Jonassen et al., 
1999). Such flaws interfere with performance and with the efficacy of future instruction 
(Lohman, 1986; Schwartz & Bransford, 1998). Resulting misconceptions resist 
correction, despite attempts at remediation (Bargh & Ferguson, 2000; Chinn & Brewer, 
1993; Thorley & Stofflet, 1996). 
 
Declarative Knowledge and CTA 
 Declarative knowledge is hierarchically structured propositional, episodic, 
visuospatial information that is accessible in long-term memory and consciously 
observable in working memory (Anderson, 1983; Anderson & Lebiere, 1998; Gagné, 
Briggs, & Wager, 1992). This type of knowledge supports performance through the 
conceptual understanding of processes and principles related to a task and the role that 
the task plays within its broader context (Gagné, 1982).  
 

SMEs possess extensive declarative knowledge of their domains in the form of 
principled frameworks of abstract, schema-based representations. These frameworks 
allow experts to analyze complex problems efficiently (Glaser & Chi, 1988; Zeitz, 1997). 
These elaborate schemas enable experts to retain and recall information, events, and 
problem states with a high degree of accuracy (Cooke, Atlas, Lane, & Berger, 1993; 
Dochy, Segers, & Buehl, 1999; Ericsson & Kintsch, 1995). Further, broad, principled 
understandings of their domains facilitate skill transfer to solve related novel and 
complex problems (Gagné & Medsker, 1996; Hall, Gott, & Pokorny, 1995; van 
Merriënboer, 1997). 
 

When communicated to novices, the organization of experts’ knowledge also 
impacts training outcomes. In an examination of experts’ instructions to novices, Hinds, 
Patterson, and Pfeffer (2001) found that trainees who received explanations from experts 
performed better on transfer tasks than trainees who received their explanations from 
non-experts. The experts provided explanations that were significantly more abstract and 
theoretically oriented than those of the non-experts, so learners in the expert-to-novice 
instructional condition were able to solve transfer problems more quickly and effectively 
than their counterparts in the non-expert-to-novice instructional condition. 

 
Conceptual knowledge alone, however, is insufficient for generating effective 

performance. The non-expert instructors in the study provided more concrete, procedural 
explanations, which facilitated higher performance by trainees when they attempted to 
perform the original target task. The abstractions provided by the experts lacked key 
details and process information necessary for optimal performance. This finding is 
consistent with many others in the training literature suggesting that the most effective 
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learning occurs when all necessary information is available to the learner in the form of 
instruction and/or prior knowledge (for a review, see Kirschner, Sweller, & Clark, 2006). 

 
 Findings from a variety of studies indicate that without CTA to facilitate 
knowledge elicitation, experts in many fields unintentionally misrepresent the conceptual 
knowledge on which they base their performance. In a study by Cooke and Breedin 
(1994), for example, expert physicists attempted to predict the trajectories of various 
objects and provided written explanations of the methods by which they reached their 
conclusions. However, when the researchers attempted to replicate the physicists’ 
predictions on the basis of the explanations provided, they were unable to attain the same 
results. The calculated trajectories were significantly different from those provided by the 
experts. 
 
 In a similar study, expert neuropsychologists evaluated hypothetical patient 
profiles to determine their theoretical levels of intelligence (Kareken & Williams, 1994). 
Participants first articulated the relationships between various predictor variables (e.g., 
education, occupation, gender, and age) and intelligence. Then, they estimated IQ scores 
on the basis of values for the predictor variables they identified. However, their estimates 
differed significantly from the correlations they provided in their explanations of the 
relationships among predictor variables. Many were completely uncorrelated. Clearly, the 
experts’ performance relied on processes that were very different from their declarative 
knowledge of their practice.  
 
Procedural Knowledge and CTA 

Procedural knowledge is required for all skilled performance. Skill acquisition 
often begins with learning declarative knowledge about discrete steps in a procedure. Yet 
the development of automaticity occurs as we practice those procedures. The 
automatization process involves learning to recognize important environmental cues that 
signal when the skill is to be applied and the association of the cues to the discrete covert 
(cognitive) and overt (action) steps required to attain a goal or sub-goal (Neves & 
Anderson, 1981). Through practice, these associations and steps increase in reliability 
and speed of performance. Over time, the procedures require diminishing levels of mental 
effort or self-monitoring to perform until they utilize very few, if any, cognitive resources 
(Wheatley & Wegner, 2001). This consistent, repeated mapping of conditional cues and 
steps manifests as an integrated IF-THEN decision rule between the cue (IF) and the 
procedure (THEN) necessary to attain a goal from a particular problem state (Schneider 
& Shiffrin, 1977). This representation is a production within the ACT-R cognitive model 
of learning proposed by Anderson (1995; Anderson & Lebiere, 1998). 

 
During complex tasks, multiple IF-THEN productions are strung together to 

generate more sophisticated hierarchies of performances. Each individual production 
attains a sub-goal that is a component of the overall goal. To move from one production 
to the next in a sequence, the new sub-goal must be identified and an appropriate 
production selected. For novices, the identification and selection process for nearly every 
sub-goal is a conscious, deliberate decision. However, experts automate this process, so 
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they cannot consciously identify many of these decision points (Blessing & Anderson, 
1996).  

 
Automaticity has two primary properties that limit the effectiveness of unassisted 

explanations by experts2. First, automated knowledge operates outside of conscious 
awareness, and executes much faster than conscious processes (Wheatley & Wegner, 
2001). As such, it is not available for introspection or accurate self-monitoring. Second, 
automated processes are typically uninterruptible, so they cannot be effectively changed 
once they are acquired (Hermans, Crombez, & Eelen, 2000). Consequently, experts’ 
unaided self-reports of their problem-solving processes are typically inaccurate or 
incomplete3 (e.g., Chao & Salvendy, 1994; Feldon, 2004). 

 
Cues. Each element of an IF-THEN production has great importance for effective 

training. For learners to develop effective procedures, they must attend to relevant cues to 
determine correctly which sub-goals and procedures are appropriate. Thus, incorporating 
experts’ knowledge of these cues is important for optimal instruction (Fisk & Eggemeier, 
1988; Klein & Calderwood, 1991).  

 
For example, Crandall and Getchell-Reiter (1993) investigated the procedural 

knowledge of expert nurses specializing in neonatal intensive care for newborn or 
premature babies. The participants were 17 registered nurses who averaged 13 years of 
overall experience and 8.1 years of specialization. Without a formal knowledge 
elicitation technique, they attempted to recall highly detailed accounts of critical incidents 
or measures they had implemented which they believed they had positively influenced a 
baby’s medical condition. The researchers asked the nurses be as specific as possible 
about the assessment parameters, diagnostic cues, and clinical judgments that they used 
in the incident. However, after completing the free recall phase, the researchers used 
CTA to identify additional relevant information that the nurses did not articulate. 
Analysis of the transcripts revealed that the CTA probes elicited significantly more 
indicators of medical distress in the babies than were otherwise reported. Before CTA, 
the nurses’ explanations of the cues they used were either omitted or articulated vaguely 
as “highly generalized constellations of cues” (p. 50). In contrast, 25 of the 70 diagnostic 
cues identified through CTA that were important in the nurses’ diagnosis of problems had 
not been reported during free recall. 

 
Comparison of the elicited cues to those articulated in available medical and 

nursing training at the time revealed that more than one-third of the cues used by expert 
nurses to correctly diagnose infants were not included. These cues spanned seven 
previously unrecognized categories that were subsequently used to train novice nurses 
entering neonatal intensive care (Crandall & Gamblian, 1991). 

                                                
2 The literature on expertise has not reached a consensus on the role of automaticity.  However, much 
empirical evidence suggests it plays a defining role. See Feldon (in press) for an extensive review. 
3 When experts attempt to solve novel problems, the elements of their decision-making processes that are 
newly generated are less likely to be reported inaccurately.  However, pre-existing processes that were 
applied to those problems will continue to be subject to self-report errors (Betsch, Fiedler, & Brinkmann, 
1998). 
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 Decision points. In addition to knowing which cues are important for decision 
making, it is also necessary to correctly identify the points at which those decisions must 
be made. Much of the research on decision-making suggests that many decisions are 
made prior to awareness of the need to make a decision (Bargh, Gollwitzer, Lee-Chai, 
Barndollar, & Trötschel, 2001; Wegner, 2002). Abreu (1999) found that practicing 
psychotherapists evaluated fictitious case studies more negatively when they were primed 
with material about African-American stereotypes than when they rated the same 
information without priming. Similarly, when Bargh et al. (2001) subconsciously primed 
participants with goals of either cooperation or high performance, the actions of the 
participants in a variety of tasks typically conformed to the subliminal goal despite being 
completely unaware of either the content of the prime or the fact that they held the goal 
itself. 
 

In professions, automaticity presents significant problems for training if experts 
are relied upon to explain the points at which decisions must be made. In medicine, for 
example, studies of the reliability of diagnoses by expert physicians for identical 
symptoms presented at different times only correlated between .40 and .50 (Einhorn, 
1974; Hoffman, Slovic, & Rorer, 1968). Despite self-reports suggesting that the 
participants considered extended lists of symptoms, analysis of the symptoms in the cases 
presented indicated that only one to four symptoms actually influenced diagnosis 
decisions (Einhorn, 1974). 

 
Some experts freely acknowledge that they are unable to accurately recall aspects 

of their problem-solving strategies. Johnson (1983) observed significant discrepancies 
between an expert physician’s actual diagnostic technique and the technique that he 
articulated to medical students. Later, he discussed with the physician why his practice 
and his explanation differed. The physician’s explanation for the contradiction was, “Oh, 
I know that, but you see, I don’t know how I do diagnosis, and yet I need things to teach 
students. I create what I think of as plausible means for doing tasks and hope students 
will be able to convert them into effective ones” (Johnson, 1983, p. 81). 

 
 Cognitive skills. Correctly identifying and explaining the sequences of cognitive 
and psychomotor actions that are triggered by cues at decision points are likewise crucial 
to effective instruction. Although psychomotor aspects of a task are relatively simple for 
learners to observe, cognitive operations require articulation for a learner to successfully 
replicate an expert’s performance. However, automaticity often impairs this process. For 
example, a team of engineers and technicians with expertise in the assembly of 
sophisticated research equipment attempted unsuccessfully to generate a complete set of 
assembly instructions, despite extensive and repeated efforts to include every relevant 
fact, process, and heuristic (Collins, Green, & Draper, 1985). When scientists who 
purchased the equipment attempted to assemble it to those instructions, the equipment did 
not function. After many discussions with the engineers, the scientists eventually 
discovered that the expert team had accidentally omitted a necessary step from the 
instructions. The step turned out to be a universally implemented practice among the 
engineers and technicians that they had failed to articulate. 
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Chao and Salvendy (1994) systematically documented the rates at which experts 

omit cognitive skills from self-reports. Six expert programmers were asked to complete a 
series of challenging troubleshooting tasks, and all of their actions were recorded. The 
programmers were then asked to explain their procedures using a variety of different 
knowledge elicitation methods. No single expert was able to report more than 41% of 
their diagnostic actions, 53% of their debugging actions, or 29% of their interpretations, 
regardless of the knowledge elicitation method used. However, when the researchers 
began compiling the elicited explanations from different experts, they found that the 
percentage of actions explained increased. When explanations from all six experts were 
aggregated, the percentages of verbalization for each category of actions increased to 
87%, 88%, and 62%, respectively. The improvement in information elicited reflects the 
experts’ individual differences in which sub-goal productions had been automated to 
greater and lesser extents. Thus, one promising practice for instruction based on expert 
knowledge is to employ CTA methods with multiple experts prior to developing 
instruction. 
 
Instructional Evidence 

Several studies provide direct evidence for the efficacy of CTA-based instruction. 
In a study of medical school surgical instruction, an expert surgeon taught a procedure 
(central venous catheter placement and insertion) to first-year medical interns in a 
lecture/demonstration/practice sequence (Maupin, 2003; Velmahos et al., 2004). The 
treatment group’s lecture was generated through a CTA of two experts in the procedure. 
The control group’s lecture consisted of the expert instructor’s explanation as a free 
recall, which is the traditional instructional practice in medical schools. Both conditions 
allotted equal time for questions, practice, and access to equipment. The students in each 
condition completed a written posttest and performed the procedure on multiple human 
patients during their internships. Students in the CTA condition showed significantly 
greater gains from pretest to posttest than those in the control condition. They also 
outperformed the control group when using the procedure on patients in every measure of 
performance, including an observational checklist of steps in the procedure, number of 
needle insertion attempts needed to insert the catheter into patients veins, frequency of 
required assistance from the attending physician, and time-to completion for the 
procedure. 

 
Similarly, Schaafstal et al. (2000) compared the effectiveness of a pre-existing 

training course in radar system troubleshooting with a new version generated from 
cognitive task analyses. Participants in both versions of the course earned equivalent 
scores on knowledge pretests. However, after instruction, students in the CTA-based 
course solved more than twice as many malfunctions, in less time, as those in the 
traditional instruction group. In all subsequent implementations of the CTA-based 
training design, the performance of every student cohort replicated or exceeded the 
performance advantage over the scores of the original control group. 

 
Merrill (2002) compared CTA-based direct instruction with a discovery learning 

(minimal guidance) format and a traditional direct instruction format in spreadsheet use. 
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The CTA condition provided direct instruction based on strategies elicited from a 
spreadsheet expert. The discovery learning format provided authentic problems to be 
solved and made an instructor available to answer questions initiated by the learners. The 
traditional direct instruction format provided explicit information on skills and concepts 
and guided demonstrations taken from a commercially available spreadsheet training 
course. Scores on the posttest problems favored the CTA-based instruction group (89% 
vs. 64% for guided demonstration vs. 34% for the discovery condition). Further, the 
average times-to-completion also favored the CTA group. Participants in the discovery 
condition required more than the allotted 60 minutes. The guided demonstration 
participants completed the problems in an average of 49 minutes, whereas the 
participants in the CTA-based condition required an average of only 29 minutes. 

 
Generalizability of CTA-based training benefits. Lee (2004) conducted a meta-

analysis to determine how generalizable CTA methods are for improving training 
outcomes across a broad spectrum of disciplines. A search of the literature in 10 major 
academic databases (Dissertation Abstracts International, Article First, ERIC, ED Index, 
APA/PsycInfo, Applied Science Technology, INSPEC, CTA Resource, IEEE, 
Elsevier/AP/Science Direct), using keywords such as “cognitive task analysis,” 
knowledge elicitation,” and “task analysis,” yielded 318 studies. Seven studies qualified, 
based on the qualifications of: Training based on CTA methods with an analyst, 
conducted between 1985 and 2003, and reported pre and post test measures of training 
performance. A total of 39 comparisons of mean effect size for pre- and posttest 
differences were computed from the seven studies. Analysis of the studies found effect 
sizes between .91 and 2.45, which are considered to be large (Cohen, 1992). The mean 
effect size was d=+1.72, and the overall percentage of post-training performance gain 
was 75.2%. Results of a chi-square test of independence on the outcome measures of the 
pre- and posttests (χ2 = 6.50, p < 0.01) indicated that CTA most likely contributed to the 
performance gain. 

 
Cost-benefit studies of CTA. There are few published studies of cost-effectiveness 

or cost-benefit that compare CTA with other task analysis approaches. One exception, 
reported by Clark and Estes (1999), described a field-based comparison of traditional task 
analysis and cognitive analysis by a large (10,000+ employee) European organization that 
redesigned a required training course in emergency and safety procedures for 
approximately 500 managers. The old and new versions of the course continued to be 
offered after the new version of the course was designed in order to compare the relative 
efficacy of the two approaches. All objectives and test items were similar in both the old 
and new versions.  

 
As Table 1 indicates, the use of CTA required a greater front-end investment of 

time (the organization refused to release salary data) both for the CTA itself and the 
training of instructors for the course (data on the time required to train instructors for the 
old course was not available). Yet even with the approximately 85 percent more front-end 
time invested in design, development, and instructor training, the new course resulted in 
2.5 person-years of time savings, because it could be offered in one day (compared with 
two days for the previous course) with equal or greater scores on the performance 
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posttest. While these data are only suggestive, the time savings reported by Clark and 
Estes (1999) reflect similar time savings reported above by Velmahos et al. (2004) and 
Merrill (2002).  

 
  INSERT TABLE 1 ABOUT HERE 

 
Integrating Cognitive Task Analysis and Training Design 

 
For optimal application to instruction, CTA methods should be fully integrated 

with a training design model to facilitate the alignment between learning objectives, 
knowledge (declarative and procedural) necessary for attaining the objectives, and 
instructional methods appropriate to the required knowledge. Currently, there are three 
major systems that take this approach: Integrated Task Analysis Model (ITAM; Redding, 
1995; Ryder & Redding, 1993), Guided Experiential Learning (GEL; Clark, 2004, 2006), 
and the Four Component Instructional Design system (4C/ID; van Merriënboer, 1997; 
van Merriënboer et al., 2002; van Merriënboer & Kirschner, in press). Of these, the 
4C/ID model is the most extensively developed. It can be distinguished from other 
instructional design models in three ways. First, the model’s emphasis is on the integrated 
and coordinated performance of task-specific constituent skills rather than specific 
knowledge types or sequenced performance of tasks. Second, a distinction is made 
between supportive information, which helps learners perform the nonrecurrent aspects 
of a complex skill, and procedural or just-in-time (JIT) information, which is presented to 
learners during practice and helps them to perform the recurrent aspects of a complex 
skill. Third, the 4C/ID model is based on learners performing increasingly complex skills 
as a “whole-task” with part-task practice only of the recurrent skills, whereas traditional 
design methods give emphasis to the deconstruction of a complex task into part-tasks, 
which, once learned separately, are compiled as whole-task practice. 
 

The assumption of the 4C/ID model is that environments supporting complex skill 
learning can be described in terms of four interrelated components: learning tasks, 
supportive information, just-in-time (JIT) information, and part-task practice. 
 

Learning tasks are concrete, authentic whole task experiences, organized 
sequentially from easy to difficult. Learning tasks at the same level of difficulty comprise 
a task class, or group of tasks that draw upon the same body of knowledge. Learning 
tasks within a class initially employ scaffolding that fades gradually over subsequent 
tasks within the class. Learning tasks foster schema development to support nonrecurrent 
aspects of a task. They also facilitate the development of automaticity for schemata used 
during recurrent aspects of a task. 
 

Supportive information assists the learner with interpreting, reasoning, and 
problem solving activities that comprise the nonrecurrent aspects of learning tasks. It 
includes mental models demonstrated through case studies, cognitive strategies modeled 
in examples, and cognitive feedback. Through elaboration, supportive information helps 
learners to apply their prior knowledge when learning new information they need to 
perform the task. 
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JIT information consists of rules, procedures, declarative knowledge, and 

corrective feedback required for learners to perform recurrent aspects of the task. JIT 
information is presented in small units as “how-to” instruction, with demonstrations of 
procedures and definitions of concepts illustrated with examples. As learners perform the 
recurrent aspects of a task and acquire automaticity, the amount of JIT information 
provided diminishes. 
 

Part-task practice opportunities are provided for repetitive performance of the 
recurrent aspects of a task when a high degree of automaticity is required. Part-task 
practice is repeated throughout instruction and mixed with other types of practice. Part-
task practice includes items that vary from very familiar to completely novel. 
 

The 4C/ID model utilizes CTA to accomplish four tasks: (1) decomposing 
complex skills into skill hierarchies; (2) sequencing the training program within task 
classes; (3) analyzing nonrecurrent aspects of complex skills to identify cognitive 
strategies and mental models; and (4) analyzing recurrent aspects of the complex skill to 
identify rules or procedures and their prerequisite knowledge that generate effective 
performance. In general, these activities occur within the framework of the five-stage 
CTA process. However, because this process is highly integrated with the 4C/ID model, 
the instructional design model guides the CTA activities. This integration with the 
instructional design process tends to highlight the reiterative nature of the CTA process. 
 
(1) Decomposition of the Complex Skill 

In the first group of task analysis activities, complex skills are broken down into 
constituent skills, and their interrelationships are identified4. Performance objectives are 
specified5 for all constituent skills, and the objectives are classified as recurrent or 
nonrecurrent. Objectives are classified as nonrecurrent if the desired behavior varies from 
problem to problem and is guided by the use of cognitive strategies or mental models. 
Objectives are recurrent if the desired behavior is highly similar from problem to problem 
and is guided by rules or procedures. Sometimes recurrent constituent skills require a 
high degree of automaticity; these skills are identified for additional part-task practice.  
 

Documentation analysis, observation, and unstructured interviews with SMEs 
provide the information for building a preliminary skills hierarchy to guide further 
knowledge elicitation efforts. Data collection, verification, and validation of the skills 
hierarchy require multiple iterations of knowledge elicitation using multiple SMEs. The 
verified skills hierarchy then serves as a guide for deeper CTA techniques, such as 
Clark’s (2004, 2006) Concepts, Principles, and Processes. The CPP data identifies 
constituent skills and their interrelationships, performance objectives for each constituent 
skill, and classification of the skill as recurrent or nonrecurrent. The CPP method also 
identifies problems ranging from easy to difficult to assist in sequencing task classes. 

                                                
4 There are three categories of interrelationships: coordinate (performed in temporal order), simultaneous 
(performed concurrently), and transposable (performed in any order).   
5 Performance objectives reflect the performance as a result of learning and include an action verb, a 
description of tools used, conditions, and standards for performance.   
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(2) Sequencing Task Classes 
 The second group of task analysis activities involves categorizing learning tasks 
into task classes. The skills hierarchy and classified performance objectives determine the 
sequence of training for individual constituent skills. The 4C/ID-model employs a whole-
task approach, in which trainees learn all constituent skills at the same time. In the first 
task class, learners perform the simplest version of the whole task. As the conditions 
under which the task is performed become increasingly complex, the whole task 
scenarios become more authentic and reflective of those encountered by experts in the 
real world. CTA processes are used both to verify the skills hierarchy and to confirm the 
sequencing of task classes from simple to complex. 

 
(3) Analyze the Nonrecurrent Aspects of the Complex Skill 

The third set of analytic activities identifies the supportive information necessary 
for each task class in the form of mental models (how is the problem domain organized?) 
and cognitive strategies (how to approach problems in the domain?). Knowledge 
elicitation methods commonly used with SMEs to capture data for nonrecurrent aspects 
of a complex skill include interviews and think-aloud protocols. The CTA methods are 
repeated for both simple versions and complex versions of the task in order to capture the 
knowledge required for performing the nonrecurrent aspects of the task. 

 
(4) Analyze the Recurrent Aspects of the Complex Skill 

The final set of task analysis activities in the 4C/ID model is an in-depth analysis 
of the recurrent constituent skills. These are identified during the skill decomposition 
process to identify the JIT information required for the recurrent aspects of the learning 
tasks. Each constituent skill that enables the performance of another constituent skill is 
identified in a reiterative process, until the prerequisite knowledge already mastered by 
learners at the lowest level of ability is identified. 
 

Analysts employ CTA techniques to identify task rules and generate highly 
specific, algorithmic descriptions of task performance. Next, the prerequisite knowledge 
required to apply the procedure is identified. The analysis of concepts occurs through the 
creation of feature lists that identify the characteristics of all instances of a concept. At a 
lower level, facts (which have no prerequisites) are identified. At a higher level, 
processes and principles are identified. When completed, the analyst incorporates these 
prerequisite knowledge components into the rules or procedures for performing the task. 
 

In sum, the results of the four sets of CTA activities in the 4C/ID model provide 
detailed and in-depth information about the skills, sequence, cognitive strategies, mental 
models, rules, and prerequisite knowledge required for complex skill learning through the 
instructional design of its four interrelated components: (a) learning tasks, (b) supportive 
information, (c) JIT information, and (d) part-task practice. Combined, they form a fully 
integrated system for problem-based learning in complex domains. A complete 
description and procedure for implementing the 4C/ID model is found in van 
Merriënboer and Kirschner (in press). 
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The Next Generation of Research on Cognitive Task Analysis 
 
 While CTA appears to have significant potential to improve various kinds of 
performance, it shares many of the challenges reported in studies of instructional design 
theories and models (e.g., Glaser, 1976; Salas & Cannon-Bowers, 2001). We need many 
more well-designed studies that systematically compare the impact of different forms of 
CTA on similar outcome goals and measures. We also need to understand the efficacy of 
different CTA methods when used with different training design models and theories.  
 
  So many types of CTA have been used and reported, and variation in the 
application of methods is so overwhelming that it is doubtful that any generalization 
about CTA will satisfy basic standards of construct validity. Researchers are cautioned to 
look carefully at the description of the methods used to implement CTA in order to 
classify the family origin of the technique being replicated. While we attempted to 
describe five “common elements” of most CTA methods in the first part of this chapter, 
the specific strategies used to implement each of these elements varied across studies. 
The elements we described are focused on the common steps used to implement CTA. 
This is a “sequence” model and is similar to the ADDIE model (Analysis, Design, 
Development, Implementation, and Evaluation) for instructional design. Schraagen et al. 
(2000) and Cooke (1994) have discussed this problem in detail and have attempted to 
organize the various methods into families based on the type of outcome being pursued 
(e.g., training, job design, and assessment). Wei and Salvendy (2004) have suggested 11 
very useful guidelines for selecting the best CTA method to achieve a goal (see Table 2).  
 

INSERT TABLE 2 ABOUT HERE 
 
First Principles of Cognitive Task Analysis 

A different and equally valuable strategy for tackling the multiplicity of CTA 
methods would be to apply Merrill’s (2002) “first principles” approach to a similar 
problem with instructional design models. Merrill classified what appeared to be the most 
psychologically active instructional methods in a group of popular, evidence-based 
instructional design models. One of the principles he suggested is that designs which help 
learners connect with prior knowledge are more successful. An attempt to identify “first 
principles” of CTA would be a benefit to researchers and practitioners by identifying the 
active ingredients in key CTA methods. For example, nearly all CTA methods seem to 
place a heavy premium on the identification of the environmental or contextual “cues” 
that indicate the need to implement a skill. For example, the neonatal nurses in the 
Crandall and Getchell-Reiter (1993) study involved generating more accurate diagnostic 
symptoms (cues) expressed by very sick babies. Since the recognition of conditional cues 
may be automated and unconscious for many SMEs, the need for accurate and exhaustive 
identification of important cues may be one of the most important principles of CTA. In 
the case of the neonatal nursing studies, the cues captured during CTA have changed the 
textbook instructions for future neonatal nurses. Other principles may be associated with 
the identification of the sequence in which productions must be performed and the 
decisions that must be made (including the alternatives that need to be considered and the 
criteria for selecting alternatives). Principles may also be related to the protocols that are 
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used to observe and interview experts to capture the most accurate and exhaustive 
description of their task-based knowledge. It is also likely that a separate set of principles 
would be needed to characterize team or organizational CTA’s (Schraagen et al., 2000).  

 
Research on Automated, Unconscious Expert Knowledge  
 Concerns about experts’ awareness of their own expertise and the strategies used 
to capture unconscious knowledge are arguably the most important research issues 
associated with CTA. The body of research on unconscious, automated knowledge has 
yet to be widely integrated into instructional design or the practice of educational 
psychologists. Most of the research in this area has been conducted by those interested in 
psychotherapy and the dynamics of stereotypes and bias in decision making (e.g., Abreu, 
1999; Bargh & Ferguson, 2000; Wheatley & Wegner, 2001) and motivation (e.g., Clark, 
Howard, & Early, 2006). Yet we have ample evidence of the importance of this issue in 
CTA and training from the results of current research by, for example, Velmahos et al. 
(2004) and Chao and Salvendy (1994). We need to know much more about how 
unconscious expertise influences the accuracy of task analysis. We also need to know 
much more about how to modify automated, unconscious knowledge when people must 
learn to modify skills. Clark and Elen (2006) review past research and make suggestions 
for further study. 
 
Cost Effectiveness and Cost Benefit Research   
 Another promising area of future research is cost-effectiveness and cost-benefit 
analysis (Levin & McEwan, 2000). Existing studies have not explored this issue 
systematically, but preliminary analyses indicating significant learner time savings and 
decreases in significant performance errors (e.g., Clark & Estes, 1999; Merrill, 2002; 
Schaafstal et al., 2000; Velmahos et al., 2004) are very promising.  
 

These data are important in part because many key decision makers have the 
impression that CTA is an overly complex process that requires a great deal of time to 
conduct and should be avoided due to its cost (Cooke, 1994, 1999). It is accurate that 
CTA increases the time and effort required for front-end design—particularly when a 
number of experts who share the same skill must be observed and interviewed. Yet, it is 
also possible that these costs may be offset by delivery-end savings due to increased 
learner accuracy and decreased learning time.  

 
People in formal school settings seldom consider decreased learning time as a 

benefit, but in business and government settings, time is a valuable commodity. The 
conditions under which savings are, and are not, available would be a valuable adjunct to 
continued development of CTA. Many other suggestions are possible but are beyond the 
scope of this chapter.  
 

Conclusion 
 

CTA is one of the major contributions to instructional technology that have 
resulted from the “cognitive revolution” in psychology and education starting in the 
1970’s. CTA does not seek to replace behavioral task analysis (or the analysis of 
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documents and research to support training) but instead adds to existing methods that 
help capture the covert mental processes that experts use to accomplish complex skills. 
The importance of CTA is based on compelling evidence that experts are not fully aware 
of about 70% of their own decisions and mental analysis of tasks (Clark & Elen, 2006; 
Feldon & Clark, 2006) and so are unable to explain them fully even when they intend to 
support the design of training, assessment, job aids or work. CTA methods attempt to 
overcome this problem by specifying observational and interview strategies that permit 
designers to capture more accurate and complete descriptions of how experts succeed at 
complex tasks. Research evidence described in this chapter strongly suggests huge 
potential benefits for designers and learners when CTA-based performance descriptions 
are used in training and job aids. 

 
 Many designers are apparently not aware of, or are not using CTA. As this 
chapter was going to press, we entered search terms in Google Scholar for “task analysis” 
or “task analysis models” and then for “cognitive task analysis” or “cognitive task 
analysis models”. The former terms return about nine to ten times more hits than the 
cognitive task analysis terms. We looked at a number of the texts used to teach 
instructional design and could not find any references to CTA.  
 

CTA has been the subject of research more often than it has been applied in 
practice, so we suspect that few designers have been trained to conduct effective 
cognitive task analyses. It is also possible that the assumptions underlying CTA conflict 
with the assumptions that underlie some of the currently popular design theories such as 
constructivism and problem-based learning (Kirschner et al., 2006). Educators who avoid 
direct instruction in favor of expert-supported group problem solving or “communities of 
practice” would not be inclined to conduct CTA to support a constructivist context for 
learning new skills or to teach CTA in graduate programs.  

 
Our review of the research evidence for CTA strongly indicates that if it is 

adopted, it might make a huge contribution to learning and performance. It is also clear 
that many questions about CTA remain to be answered.  
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Table 1 

Cost Comparison of Behavioral and Cognitive Task Analysis (From Clark & Estes, 1999) 

Comparison 
Activities 

Behavioral Task 
Analysis & Design Days* 

Cognitive Task 
Analysis & Design Days 

Task Analysis & Design 7 38 
Training of Presenters 0 18 
Delivery by Trainers 80 34 
Sub-total 87 90 
Total time for 500 trainers 1,000 500 
Total training days** 1,087 590 
 
*Day = person work day to design and present safety course 
**Total savings with CTA: 1,087 days – 590 days = 497 days or 2.5 person years 
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Table 2 
 
Guidelines for Selecting CTA Methods (Following Wei & Salvendy, 2004) 
 
 

 Families of CTA Methods 

When to use different 
CTA methods 

Observations & 
Interviews 

Process 
Tracing 

Conceptual 
Techniques 

Formal 
 Models 

1. In initial stages when 
tasks and domain are not 
well-defined 

X    

2. Procedures to perform 
a task are not well 
defined 

X    

3. Tasks are 
representative and 
process is clear 

 X   

4. Task process and 
performance need 
tracking 

 X   

5. Verbal data is easily 
captured without 
compromising 
performance  

 X   

6. Domain knowledge 
and structures need 
defining 

  X  

7. Multiple task 
analyzers are used, and 
task requires less 
verbalization 

  X  

8. Task needs 
quantitative predication, 
and task models change 
little when scenario 
changes 

   X 

9. Task performance is 
affected or distracted by 
interference 

 X X X 

10. Task analyzers lack 
significant knowledge 
and techniques 

X X X  

11.  Tasks are: 
(a) Skill-based 
 

X X   

(b) Rule-based 
  X X  

(c) Knowledge-based 
   X X 

 


