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Abstract  In longitudinal studies data are collected for the same set of units for two or more occasions. This is in 
contrast to cross-sectional studies where a single outcome is measured for each individual. Some intended 
measurements might not be available for some units resulting in a missing data setting. When the probability of 
missing depends on the missing values, missing mechanism is termed nonrandom. One common type of the missing 
patterns is the dropout where the missing values never followed by an observed value. In nonrandom dropout, 
missing data mechanism must be included in the analysis to get unbiased estimates. The parametric fractional 
imputation method is proposed to handle the missingness problem in longitudinal studies and to get unbiased 
estimates in the presence of nonrandom dropout mechanism. Also, in this setting the jackknife replication method is 
used to find the standard errors for the fractionally imputed estimates. Finally, the proposed method is applied to a 
real data (mastitis data) in addition to a simulation study. 
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1. Introduction 
The defining characteristic of longitudinal studies is 

that sample units are measured repeatedly over time. That 
is, data are collected for the same set of units for two or 
more occasions. Missing values are not uncommon with 
longitudinal data.  

Missing data mechanisms can be classified according to 
the process causing missingness, as defined by Little and 
Rubin [17]. These include; missing completely at random 
(MCAR), missing at random (MAR) and missing not at 
random (MNAR) mechanism. Missing not at random 
mechanism is always termed nonignorable missing data 
mechanism. In this case the missing data mechanism must 
be included in the analysis, so as to get unbiased estimates. 

Another important classification is the missingness 
pattern: the dropout and intermittent pattern. In dropout 
pattern a subject who leaves the study at some time point 
does not appear again; a missing value never followed by 
an observed value, whereas in intermittent pattern a 
missing value may be followed by an observed value. 

Handling missing data requires jointly modeling the 
longitudinal outcome and the missing data process. There 
are many approaches for parametric modeling of the 
longitudinal outcome and the missing data process. The 
first is the selection models [6]. The selection models are 

better choice if the interest is on the inference about the 
marginal distribution of the response. This why we choose 
such models in this article. The second is the pattern 
mixture models [19]. The third is the shared parameter 
models [8]. For more details, refer to Molenberghs and 
Fitzmaurice [22]. 

The stochastic EM algorithm (SEM), suggested by 
Celeux and Diebolt [2], has been developed to facilitate 
the E-step of the EM algorithm. The stochastic EM 
algorithm has been extended to the longitudinal studies by 
Gad and Ahmed [9]. Other alternatives include the 
stochastic approximation EM (SAEM) algorithm [5] and 
the Monte Carlo EM (MCEM) algorithm [25]. Booth and 
Hobert [1] used an automated Monte Carlo EM algorithm 
to compute the E-step of the EM algorithm. A 
disadvantage of the MCEM algorithm is that the generated 
values are updated at each iteration which requires heavy 
computations and as a result this affects the speed of the 
convergence. In addition, the convergence is not 
guaranteed for a fixed Monte Carlo sample size [26].  

Thus, the MCEM is developed using the parametric 
fractional imputation to facilitate the expectation step. 
Also, this can speed the convergence and to guarantee the 
existence of convergence [14,15,16,27]. 

Kim and Kim [16] applied the parametric fractional 
imputation in the context of cross-sectional studies to deal 
with the missingness problem in the case of nonignroable 
missing mechanism. Yang et al. [27] generalized the 
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approach to deal with the nonignorable missing 
mechanism in longitudinal studies using the shared 
parameter model. 

The aim of this article is to develop the parametric 
fractional imputation to handle the nonignorable dropout 
in the context of longitudinal studies using the selection 
model of Diggle and Kenward [6]. In addition, the 
Jackknife replication method is used to obtain the standard 
errors of the fractionally imputed estimates. The 
performance of the proposed method is evaluated using a 
simulation study. Also, the proposed methods are applied 
to a real data (mastitis data). The rest of the article is 
organized as follows. In Section 2, the basic notations are 
introduced. In Section 3 the selection model for 
longitudinal data is introduced. The developed parametric 
fractional imputation method is described in Section 4. 
Section 5 is devoted to the proposed Jackknife method to 
evaluate the standard errors of the estimates. A simulation 
study is presented in Section 6 to evaluate the 
performance of the proposed methods. In Section 7 the 
proposed techniques are applied to the mastitis data 
Finally, Section 8 is devoted to conclusion. 

2. Notations 
Let 𝑦𝑖𝑗 be the sequence of the response outcomes and 

𝑥𝑖𝑗  be the 𝑝 -vector of fully observed covariate for the 
𝑗𝑡ℎ measurement from the ith  subject, made at time tij , 
j = 1, . . , ni, i = 1, . . ,𝑚. Let 𝑡𝑖𝑗  denote the time at which 
the measurements are taken. It is supposed that 𝑡𝑖𝑗  are 
common for all subjects. The set of responses for the 
subject 𝑖  are gathered into a 𝑛𝑖 -vector 𝑌𝑖 = (𝑦𝑖1, . .𝑦𝑖𝑛𝑖) . 
The variable 𝑌𝑖  is assumed to be normally distributed with 
mean 𝜇𝑖  and variance-covariance matrix 𝑉𝑖, i.e.  

 ( )~ MVN , ,i i iY Vµ  

where 𝜇𝑖 = 𝑋𝑖𝛽 , 𝑋𝑖  is 𝑛𝑖 × 𝑝  matrix representing the 
covariates, 𝛽 is 𝑝 × 1 vector of unknown parameters, 𝑉𝑖 is 
the covariance matrix of dimension 𝑛𝑖 × 𝑛𝑖  such that its 
𝑗𝑘-element, 𝜎𝑗𝑘, represents the covariance between 𝑦𝑖𝑗 and 
𝑦𝑖𝑘. 

The response variable 𝑌𝑖  can be modeled using the 
general linear model 

 ,i i iY X β= +  (1) 

where 𝜖𝑖  is assumed to follow multivariate normal 
distribution. That is, 

 𝜖𝑖~MVN(0,𝑉𝑖). 
The responses for all subjects are collected in an 

𝑛𝑖 × 𝑚-vector, 𝑌 = (𝑌1, . . ,𝑌𝑚). The covariance matrix of 
𝑌 is 𝑉. Because it is assumed that the measurements from 
each subject are correlated, but uncorrelated with other 
measurements from other subjects, the matrix 𝑉 is a block 
diagonal matrix with non-zero blocks 𝑉𝑖 . The matrix 𝑉𝑖 
may be unstructured containing 𝑛𝑖(𝑛𝑖 + 1)/2 parameters 
or it may have a parametric structure then it is function of 
a vector of unknown parameters, see Diggle et al. [7]. 

In the missing data context the response 𝑌𝑖  which 
represents the intended observations can be classified into 
two sub-vectors { 𝑌𝑖𝑜𝑏𝑠 ,𝑌𝑖𝑚𝑖𝑠} , where 𝑌𝑖𝑜𝑏𝑠  denotes the 

observed measurements of the ith subject and 𝑌𝑖𝑚𝑖𝑠 
denotes the missing observations. A binary variable 𝑅𝑖𝑗 is 
assumed to represent the missing data process 
parameterized by 𝜙 . The 𝑅𝑖𝑗  equals 1 if 𝑦𝑖𝑗  is observed 
and equals 0 if 𝑦𝑖𝑗  is missing. The 𝑅𝑖𝑗  is assumed to 
follow Bernoulli distribution with a probability 𝜋(𝑌𝑖 ,𝜙). 
The 𝑅𝑖𝑗’s of the subject i can be arranged in a vector 𝑅𝑖. 
The complete data of subject i can be considered as 
(𝑌𝑖 ,𝑅𝑖) . Let 𝐶𝑖  be an indicator of completeness that 𝐶𝑖 
equals one if the individual 𝑖  has the complete 
measurements and zero otherwise. Let 𝑙  represents the 
log-likelihood function of a specific parameter. 

3. Selection Model for Incomplete 
Longitudinal Data 

Under the selection model (Diggle and Kenward, 1994), 
the joint distribution function of the response variable 𝑌𝑖 
and the indicator 𝑅𝑖 can be written as: 

 𝑓(𝑌𝑖 ,𝑅𝑖|𝑋𝑖 ,𝜃,∅) = 𝑓(𝑌𝑖|𝑋𝑖 ,𝜃)𝑃(𝑅𝑖|𝑌𝑖;∅), 

where 𝜃 is a vector of parameters describing the response 
variable 𝑌𝑖 , 𝑋𝑖  is a fully observed matrix of covariates 
(design matrix), and ∅ is a vector of parameters describing 
the response indicator 𝑅𝑖. 

As defined by Little and Rubin [17], missingness is 
defined to be missing completely at random (MCAR) if 𝑅𝑖 
is independent of 𝑌𝑖𝑚𝑖𝑠 and 𝑌𝑖𝑜𝑏𝑠, i.e., 

 𝑃(𝑅𝑖|𝑌𝑖𝑜𝑏𝑠,𝑌𝑖𝑚𝑖𝑠;∅) = 𝑃(𝑅𝑖|∅). 

The missing data mechanism is missing at random (MAR) 
if 𝑅𝑖 is independent of 𝑌𝑖𝑚𝑖𝑠 conditionally on 𝑌𝑖𝑜𝑏𝑠, i.e., 

 𝑃(𝑅𝑖|𝑌𝑖𝑜𝑏𝑠,𝑌𝑖𝑚𝑖𝑠;∅) = 𝑃(𝑅𝑖|𝑌𝑖𝑜𝑏𝑠;∅). 

Otherwise, the missing data mechanism is missing not 
at random (MNAR). 

Following Diggle and Kenward [6], the probability of 
dropout is modeled as a logistic model depending on the 
measurement at the time of dropout 𝑑𝑖; 𝑦𝑑𝑖 , the previous 
measurements; 𝐻𝑑𝑖  and the unknown parameter ∅; that is, 

 𝑃(𝐷𝑖 = 𝑑𝑖| ℎ𝑖𝑠𝑡𝑜𝑟𝑦) = 𝑃𝑑𝑖�𝐻𝑑𝑖 ,𝑦𝑑𝑖 ,∅�, 

and the logistic model for the dropout process can be 
expressed as 

 logit�𝑃𝑑𝑖�𝐻𝑑𝑖 ,𝑦𝑑𝑖 ,∅�� = ∅0 + ∑ ∅𝑗𝑦𝑑𝑖−𝑗+1
𝑑𝑖
𝑗=1 . 

4. Maximum Likelihood Estimation for 
Longitudinal Data with Missing Values 
Using Parametric Fractional Imputation 

The log-likelihood function of θ  and ∅  , 𝑙(θ,∅|Y, R) , 
can be any function proportional to 𝑓(𝑌,𝑅|𝜃,∅) 

 𝑙(θ,∅|Y, R)∝  𝑓(𝑌,𝑅|𝜃,∅). 
If there are missing values, the observed density 

function can be written as 

 
( ) ( )

( )
, | θ, | θ  ( | ; )

, | θ  ( | , ; )
obs mis

obs mis obs mis mis

f Y R f Y P R Y dY

f Y Y P R Y Y dY

∅ ∅

∅

= ∫

= ∫
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and the observed log-likelihood function of θ  and ∅  , 
𝑙(θ,∅|Y𝑜𝑏𝑠, R) , will be any function proportional to 
𝑓(𝑌𝑜𝑏𝑠 ,𝑅|θ,∅), i.e. 

 𝑙(θ,∅|Y𝑜𝑏𝑠, R) ∝ 𝑓(𝑌𝑜𝑏𝑠 ,𝑅|θ,∅). 
Instead of maximizing 𝑙(θ,∅|Y𝑜𝑏𝑠 , R)  to get the 

maximum likelihood estimator of θ  and ∅ , Louis [20] 
tried to obtain the MLE by maximizing  

 ( ) ( )( )θ, θ, |Y,R |Y , .obsQ E l R∅ ∅=  (2) 

This is due to the fact that maximizing the maximizing 
the observed log likelihood function requires getting an 
explicit form for the distribution of the observed data 
which is hard to calculate as we have to integrate over the 
distribution of the observed data. So a suitable solution is 
to use the distribution of the complete data and maximize 
the expectation of the complete data given the observed 
data as a proxy to avoid the calculations of the observed 
log-likelihood function 

The EM algorithm can be applied in the 𝑡𝑡ℎ iteration by 
calculating 𝑄(θ𝑡 ,∅𝑡) in the E-step. In the M-step, θ𝑡+1and 
∅𝑡+1are chosen to maximize the Q-function, i.e. 

 𝑄(θ𝑡+1,∅𝑡+1) ≥  𝑄(θ𝑡 ,∅𝑡).  
However, calculating the conditional expectation in (2) 

is cumbersome and time consuming. Thus, numerical 
approximation is needed. The MCEM approximates the 
Q-function in the E-step but the generated values are changed 
in each iteration and the convergence is not guaranteed.  

The Parametric fractional imputation (PFI) develops the 
MCEM using the idea of the fractional weights where the 
generated values do not change in each iteration. Only the 
fractional weights are updated iteratively which 
guarantees the convergence and accelerates its rate. Kim 
and Kim [16] applied the parametric fractional imputation 
in cross-sectional studies. We will try to develop the 
parametric fractional imputation to longitudinal studies 
context with nonrandom dropout using the selection 
model of Diggle and Kenward [6] and the general linear 
model in (1). 

The Parametric fractional imputation (PFI) algorithm 
can be conducted in the following steps. 

(1) Generate 𝑀 imputed values for the missing data 
𝑌𝑖𝑚𝑖𝑠 . Kim and Kim [16] and Yang et al [27] 
recommended generating the imputed values 
from an initial density 𝑞(𝑌|𝑋)  with the same 
support as the density of the response variable. 
We recommend generating the imputed values 
from the conditional distribution of the missing 
data given the observed data, the response 
indicator and initial parameter estimates, 
𝑓(𝑌𝑖𝑚𝑖𝑠|𝑌𝑖𝑜𝑏𝑠 ,𝑅,𝑋𝑖), which has the same support 
as the density of the outcome variable and take 
into account the dropout process. Unfortunately, 
the distribution doesn’t have a standard form and 
it is not possible to simulate from it. Hence, an 
accept-reject procedure can be used to overcome 
this problem and to mimics the dropout process. 
The imputed values are generated from 
𝑓(𝑌𝑖𝑚𝑖𝑠|𝑌𝑖𝑜𝑏𝑠 ,𝑋𝑖)  instead of 𝑓(𝑌𝑖𝑚𝑖𝑠|𝑌𝑖𝑜𝑏𝑠 ,𝑅,𝑋𝑖) 
and then, using an accept-reject procedure, the 
value can be accepted or rejected. Assuming 
normality, the conditional distribution, 

𝑓(𝑌𝑖𝑚𝑖𝑠|𝑌𝑖𝑜𝑏𝑠 ,𝑋𝑖), is also normal distribution with 
mean 𝑢𝑖𝑚.𝑜 and covariance matrix 𝑉𝑖𝑚.𝑜, where 

 𝑢𝑖𝑚.𝑜 = 𝑢𝑖𝑚 + 𝑉𝑖𝑚𝑜𝑉𝑖𝑜𝑜−1(𝑌𝑖𝑜𝑏𝑠 − 𝑢𝑖𝑜) 

and 

 𝑉𝑖𝑚.𝑜 = 𝑉𝑖𝑚𝑚 − 𝑉𝑖𝑚𝑜𝑉𝑖𝑜𝑜−1𝑉𝑖𝑜𝑚 

 where 𝑢𝑖𝑜, 𝑢𝑖𝑚, 𝑉𝑖𝑜𝑜, 𝑉𝑖𝑜𝑚 and 𝑉𝑖𝑚𝑚 are suitable partitions 
of the mean vector 𝑢𝑖 and the covariance matrix 𝑉𝑖. 

(2) Given the 𝑀 imputed values, 𝑌𝑖𝑚𝑖𝑠
∗(1), ..., 𝑌𝑖𝑚𝑖𝑠

∗(𝑀) for 
the vector of missing for individual 𝑖, 𝑌𝑚𝑖𝑠,𝑖, and 
the current parameter estimates 𝜃𝑡, the joint density 
of the imputed values in the 𝐾𝑡ℎ replicate gathered 
in the vector 𝑌𝑚𝑖𝑠,𝑖

∗(𝐾), for 𝐾 = 1, . . ,𝑀, will be 

 ( )( ) ( )( )* **
, | |

nK k
t tmis i ij

j di

f Y f yθ θ
=

= ∏  

where 𝑦𝑖𝑗
∗(𝑘) is the 𝐾𝑡ℎ imputed value for the 𝑖𝑡ℎ individual 

in the 𝑗𝑡ℎ  time point. The 𝐾𝑡ℎ replicated data for the 𝑖 𝑡ℎ 
individual are denoted by 𝑌𝑖

∗(𝐾) = (𝑌𝑜𝑏𝑠,𝑖 ,𝑌𝑚𝑖𝑠,𝑖
∗(𝐾)) . Given 

𝑌𝑚𝑖𝑠,𝑖
∗(𝐾) and the current estimates 𝜃𝑡  and ∅𝑡 , a fractional 

weight 𝑊𝑖(𝑡)
∗(𝐾) is assigned in the 𝑡𝑡ℎ iteration for each 𝑌𝑖

∗(𝐾) 
and can be calculated by 

 ( )
( )

( ) ( )( ){ }
( )

* **
,*

*
,,

( | )* 1 ,
,

( | )

nK k
t tmis i ijj diK

i t K
obs imis i

f Y y
W

f Y Y

θ π ∅
=

−
=

∏
 

where 𝜋�𝑦𝑖𝑗
∗(𝑘),∅𝑡�  is the probability of missing for the 

value 𝑦𝑖𝑗
∗(𝑘) given the current estimate ∅𝑡. 

(3) Using the 𝐾𝑡ℎ fractional weight, 𝑊𝑖
∗(𝐾) , and the 

𝐾𝑡ℎ  imputed vector, 𝑌𝑖
∗(𝐾) , the Monte Carlo 

approximation of (2) is given by 

 𝑄∗(𝜃𝑡 ,∅𝑡) = [𝑄∗(𝜃𝑡),𝑄∗(∅𝑡)], 
and 

( ) ( ) ( )
( ) ( )* **

1 1
[ ( | ) 1 ( | )]

m M K K
t i t i i t ii t

i K
lQ C Y C W Ylθ θ θ

= =
= + −∑ ∑  

 ( ) ( ) ( )
( ) ( )

*
* *

1
1

( | , )

,
1 ( | , )

i t i im
M K Kt

i t i ii i t
K

C l R Y

Q
C W l R Y

∅

∅
∅=

=

 
 

=  + − 
 

∑ ∑
 

It is worth noting that this step corresponds to the E-
step in the EM algorithm. 
(4) Update the parameter estimates in two sub steps; 

the normal step and the logistic step. In the 
normal step, the maximum likelihood estimate 
for 𝜃  is obtained using an appropriate 
optimization procedure, for example the 
Jennrich- Schulchter algorithm [13]. In the 
logistic step, the maximum likelihood estimates 
for the logistic model 

 ( ){ } 0 1
1

,, ,
di

d d d j d ji i i i
j

logit P H y y∅ ∅ ∅ − +
=

= +∑  
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are obtained using the iterative reweighted least 
squares [3,21]. 

(5) Repeat the previous three sub-steps until 
convergence. 

It is of great interest to mention that the imputed values 
are not necessarily regenerated at each iteration. Only the 
fractional weights are updated in each iteration. Thus, the 
rate of convergence is fast and the convergence is 
guaranteed. For sufficiently large 𝑀 , the final estimates 
are asymptotically equivalent to the ML estimates [16]. 

There are many techniques depends on the idea of 
weights such as importance resampling [24]. However, the 
way of calculating the weights is different in the proposed 
method. Also, the aim of sampling importance resampling 
is to sampling from difficult distributions. This is not the 
case in the proposed method. 

5. Standard Error Estimation 
The standard errors of the estimated parameters, for 

fractionally imputed estimator, can be obtained using a 
replication method such as Jackknife or bootstrap. Kim 
and Kim [16] used Jackknife method to estimate the 
standard errors of the estimates. The Jackknife method can 
be conducted as follows:  

(1) Generate 𝑛  independent samples, 𝑆1, … , 𝑆𝑛  of 
size 𝑛 − 1 from the original sample by deleting 
one individual observation in each sample 
systematically, i.e. 𝑆1  will contain {𝑦2, … ,𝑦𝑛} 
while 𝑆2 will contain {𝑦1,𝑦3, … ,𝑦𝑛}…etc. 

(2) In each of the generated samples, calculate the 
fractionally imputed estimators 𝜃�(𝑖)

∗ , for 𝑖 =
1, … ,𝑛. 

(3) Estimate the standard error of 𝜃�∗  using the 
formula 

  ( ) ( )
* * * 2

.
1

1 (ˆ ,ˆ. ˆ )
n

i
i

nS E
n

θ θ θ
=

−
= −∑  

where  

 ( )
* *
.

1

1ˆ .ˆ
n

i
in

θ θ
=

= ∑  

The Jackknife method is used to obtain the estimated 
standard errors for the estimated parameters. The 
Jackknife method will be applied as in Kim and Kim [16]. 
The only difference is that, in generating the sample 𝑆𝑖 , 
the vector of the observed data of the ith individual, 𝑌𝑖,𝑜𝑏𝑠, 
is omitted instead of deleting the observation 𝑦𝑖 . 

6. The Simulation Study 
The aim of this simulation study is to judge the 

performance of the proposed method. A number of 
replications B = 5000 Monte Carlo samples were 
generated at different sample sizes. Sample sizes are 
chosen as 30, 50, and 100 with five time points for each 
individual. This choice covers small, moderate and large 
sample size. 

The response variable 𝑌𝑖  was simulated from 
MVN(𝑢𝑖,𝑉𝑖)  where 𝑢𝑖 = 𝑋𝑖𝛽.  The matrix 𝑋𝑖  is a design 

matrix and the vector 𝛽 is of length 3; 𝛽 = (𝛽0,  𝛽1,  𝛽2). 
The logistic regression model used for the mastitis data is 
adopted here.  

The covariance matrix is left unstructured. This means 
that there are 15 covariance parameters. Different 
covariance structures are also tried, such as compound 
symmetric, exponential structure. For definition of these 
structures see Diggle et al [7]. Data were generated to 
meet the assumptions of the multivariate normal, the 
assumed covariance model and the missingness model. 
The missing data is generated by a similar technique to 
that used by Kim and Kim [16], that the binary random 
variable is generated from the Bernoulli distribution with 
parameter equal to the probability of missingness for the 
specified value. The value is omitted if its associated 
binary variable is one. The logistics model is used to 
describe the dropout process is 

 ( ){ } 0 1 1 2, ,

2, ,5.

,d id id id idi i i i i

i

logit P H y y y

d
−∅ = ∅ +∅ +∅

= …
 

Under this setup, the vector of parameters is 𝜃 =
(𝛽,𝜎,𝜑) , where 𝛽 = ( 𝛽0,  𝛽1,  𝛽2) , and ∅ = (∅0,∅1,∅2) 
and 

 
2 2 2 2 2
1 2 3 4 5 12 13 14

15 23 24 25 34 35 45

, , , , , , , , .
, , , , , ,

σ σ σ σ σ σ σ σσ
σ σ σ σ σ σ σ

 
=   
 

 

These parameters are fixed at the values 𝛽 = (0.5,1,6), 
𝜎 = (10,10,9,10,10,6,7,6,9,5,6,6,9,7,6)  and ∅ =
(−5.6, 0.03, 0.04)  for low missingness rate and ∅ =
(−5.6, 0.07, 0.04) for high missingness rate respectively. 
The simulation is conducted under two missingness rates 
(percentage of individuals with missing data over the 5000 
replications). The low missingness rate with missingness 
percentage ranges from 13% to 17%; and high 
missingness rate with missingness percentage ranges from 
40% to 50%.  

The parameter estimates have been obtained using the 
following methods; 

(1) The multiple imputation with 𝑀 = 10 where 𝑀 
is the number of the imputed values (MI). 

(2) The fractional regression nearest neighbor 
imputation with 𝑀 = 10 (FRNNI). 

(3) The parametric fractional imputation with 𝑀=10 
(PFI). 

The choice of ten replicates for the PFI is to test if the 
proposed method can compete with other techniques at 
modest number of replicates, also to simplify the 
calculations. As proved by Yang et al [27], the more 
replicates are used, the better estimates are obtained. 
Therefore, it is expected to obtain more precise estimates 
by increasing the number of replicates. In the multiple 
imputations, we use predictive mean matching method 
described in Grannell and Murphy [11]. For the fractional 
regression nearest neighbor imputation, we apply the 
method described in Paik and Larsen [23]. 

The results are shown in Table 1 - Table 6. The multiple 
imputation (MI) estimates of the mean parameters have 
small relative bias but large relative bias for the 
covariance parameters in the case of low missingness rate. 
For high missingness rate, the estimates are seriously 
biased comparable to the other methods. 
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Table 1. The relative bias percentage for the simulation study at 
n=30, high missingness rate; PFI=parametric fractional imputation,, 
FRNNI= fractional nearest neighbor imputation, MI=multiple 
imputation 

parameter PFI FRNNI MI 
 𝛽0 0.0 22.0 24.0 
 𝛽1 0.0 -1.0 0.0 
 𝛽2 0.0 -22.5 -26.8 
𝜎12 -1.1 110.5 201.5 
𝜎22 4.2 92.1 209.3 
𝜎32 -0.9 118.0 240.1 
𝜎42 0.4 103.2 249.5 
𝜎52 -4.3 155.8 369.9 
𝜎12 -12.7 83.2 154.6 
𝜎13 -7.4 71.3 141.8 
𝜎14 -11.9 89.5 172.4 
𝜎15 -2.6 59.1 133.8 
𝜎23 -13.6 85.5 144.2 
𝜎24 -7.9 69.0 146.8 
𝜎25 -10.9 95.6 160.0 
𝜎34 -1.2 15.5 94.8 
𝜎35 -6.6 71.5 153.7 
𝜎45 -11.9 86.8 149.7 
∅0 -4.3 --- --- 
∅1 -8.9 --- --- 
∅2 -5.3 --- --- 

Table 2. The relative bias percentage for the simulation study at 
n=50, high missingness rate ; PFI=parametric fractional imputation, 
FRNNI= fractional nearest neighbor imputation, MI=multiple 
imputation 

parameter PFI FRNNI MI 
 𝛽0 0.0 26.0 32.0 
 𝛽1 0.0 1.0 1.0 
 𝛽2 0.0 -18.0 -24.2 
𝜎12 0.6 16.9 102.1 
𝜎22 5.3 15.1 115.0 
𝜎32 0.8 35.4 125.0 
𝜎42 2.2 29.4 128.5 
𝜎52 -1.7 60.4 214.0 
𝜎12 -10.5 -9.7 55.4 
𝜎13 -6.6 -11.9 51.0 
𝜎14 -11.4 -5.8 61.8 
𝜎15 -1.8 -14.2 41.9 
𝜎23 -12.5 -8.8 55.8 
𝜎24 -7.5 -15.8 47.9 
𝜎25 -9.9 -1.7 72.3 
𝜎34 0.3 -37.0 33.7 
𝜎35 -6.1 -9.9 66.4 
𝜎45 -12.1 -6.3 44.2 
∅0 2.6 --- --- 
∅1 -4.6 --- --- 
∅2 3.8 --- --- 

The fractional regression nearest neighbor (FRNNI) 
imputation leads to reasonable estimates for low 
missingness rate. It leads to relatively biased estimates, 
especially for the covariance model, in the case of high 
missingness rate. This can be noticed clearly for small and 
moderate sample sizes. 

The parametric fractional imputation (PFI) estimates 
are relatively unbiased for most parameters regardless of 
the missingness rate and the sample size. The covariance 
estimates have small bias that has a negative relation with 
the response rate and the sample size. In general, the bias 

ranges from small to moderate and decreases with larger 
sample sizes. Using the proper (right) weights produce 
estimates with small bias. In general, the PFI estimates 
have lower bias rates comparable to the other two methods. 
In fact the parametric fractional imputation (PFI) method 
approximates the maximum likelihood estimates in the 
case of very large replications. 

Table 3. The relative bias percentage for the simulation study at 
n=100, high missingness rate; PFI=parametric fractional imputation, 
FRNNI= fractional nearest neighbor imputation, MI=multiple 
imputation 

parameter PFI FRNNI MI 
 𝛽0 0.0 24.0 -26.0 
 𝛽1 0.0 3.0 4.0 
 𝛽2 0.0 -13.5 -14.2 
𝜎12 -0.1 -30.9 -18.8 
𝜎22 4.3 -23.9 51.9 
𝜎32 -0.5 -10.8 44.1 
𝜎42 1.0 -11.9 82.1 
𝜎52 -2.3 4.4 134.1 
𝜎12 -12.1 -51.2 -56.3 
𝜎13 -7.6 51.3 -53.2 
𝜎14 -12.6 -50.5 -56.6 
𝜎15 -2.6 -50.5 -54.8 
𝜎23 -14.2 -51.0 -49.8 
𝜎24 -8.8 -53.1 -34.5 
𝜎25 -11.4 -46.5 -34.2 
𝜎34 -1.0 -60.9 3.8 
𝜎35 -7.4 -50.0 -22.6 
𝜎45 -11.9 -50.2 -59.4 
∅0 1.2 --- --- 
∅1 -2.5 --- --- 
∅2 1.4 --- --- 

Table 4. The relative bias percentage for the simulation study at 
n=30, low missingness rate; PFI=parametric fractional imputation, 
FRNNI= fractional regression nearest neighbor imputation, 
MI=multiple imputation 

parameter PFI FRNNI MI 
 𝛽0 0.0 6.0 4.0 
 𝛽1 0.0 -1.0 -1.0 
 𝛽2 0.0 -5.7 -5.0 
𝜎12 0.4 8.5 8.1 
𝜎22 0.6 11.6 34.2 
𝜎32 0.0 18.7 37.1 
𝜎42 0.3 18.8 55.7 

𝜎52 -0.8 23.8 78.0 
𝜎12 -1.3 8.3 4.9 
𝜎13 -1.4 2.7 0.2 
𝜎14 -2.4 7.5 3.4 
𝜎15 -0.3 -3.3 -6.4 
𝜎23 -2.4 12.8 5.9 
𝜎24 -1.9 7.1 7.9 
𝜎25 -1.4 7.5 6.8 

𝜎34 -0.1 -5.0 16.8 

𝜎35 -1.6 1.6 8.1 
σ45 -2.6 7.0 -4.1 
∅0 0.7 --- --- 
∅1 -5.2 --- --- 
∅2 2.8 --- --- 
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Table 5. The relative bias percentage for the simulation study at 
n=50, low missingness rate ; PFI=parametric fractional imputation, 
FRNNI= fractional regression nearest neighbor imputation, 
MI=multiple hot deck imputation 

parameter PFI FRNNI MI 
 𝛽0 0.0 4.0 4.0 
 𝛽1 0.0 0.0 0.0 
 𝛽2 0.0 -4.8 -4.3 
𝜎12 0.4 -5.1 -5.5 
𝜎22 -1.0 -2.1 19.6 
𝜎32 -0.9 3.8 21.3 
𝜎42 -0.9 3.9 39.5 
𝜎52 -1.3 7.7 55.0 
𝜎12 -2.1 -6.0 -8.5 
𝜎13 -1.7 -9.2 -10.9 
𝜎14 -3.1 -6.7 -9.8 
𝜎15 -0.6 -13.2 -15.6 
𝜎23 -3.2 -3.6 -7.5 
𝜎24 -2.9 -7.1 -3.8 
𝜎25 -2.6 -7.0 -5.1 
𝜎34 -1.3 -14.1 8.8 
𝜎35 -2.2 -10.3 -1.7 
𝜎45 -3.7 -7.4 -12.4 
∅0 0.9 --- --- 
∅1 -5.1 --- --- 
∅2 3.5 --- --- 

Hence, within the simulation context and depending on 
its results, we can conclude that the parametric fractional 
imputation method (PFI) provides reasonable estimates 
for the parameters in the case of nonrandom dropout even 
with small sample size. 

Table 6. The relative bias percentage for the simulation study at 
n=100, low missingness rate; PFI=parametric fractional imputation, 
FRNNI= fractional regression nearest neighbor imputation, 
MI=multiple imputation 

parameter PFI FRNNI MI 
 𝛽0 0.0 3.7 2.0 
 𝛽1 0.0 -0.5 -1.0 
 𝛽2 0.0 -4.1 -3.5 
𝜎12 0.2 -12.6 -14.2 
𝜎22 -0.1 -10.4 7.2 
𝜎32 -0.1 -5.9 9.3 
𝜎42 0.0 -5.5 25.7 
𝜎52 -0.9 -2.2 36.1 
𝜎12 -2.2 -13.5 -16.6 
𝜎13 -1.4 -15.5 -17.9 
𝜎14 -2.6 -14.0 -17.8 
𝜎15 -0.5 -18.0 -21.0 
𝜎23 -2.8 -12.2 -14.7 
𝜎24 -2.2 -14.5 -11.3 
𝜎25 -2.4 -14.2 -11.6 
𝜎34 -0.3 -18.8 2.1 
𝜎35 -1.4 -16.1 -7.5 
𝜎45 -2.7 -14.4 -15.0 
∅0 2.2 --- --- 
∅1 -3.2 --- --- 
∅2 4.8 --- --- 

7. Application (Mastitis Data) 

 
Figure 1. The first year yield vs. the second year yield of mastitis data 

Mastitis is an infection of the udder causes reduction in 
the milk yield of the infected animals. The data set 
contains the total milk yield, in thousands litres, for 107 
cows from a single herd for two successive years. 27 cows 
became infected in the second year and as a result their 
observations, although recorded, are considered missing in 
the second year. It is intended to compare the average of 
the milk yield in the two years. The data set has been 

analyzed by Diggle and Kenward [6] resulting that the 
type of missing is NMAR. They suggest using Nelder-
Mead simplex algorithm to find parameters estimates. 
Also, the data has been analyzed by Gad and Kenward [10] 
where they used the stochastic EM algorithm to obtain 
parameters estimates. Figure 1 shows a scatter plot of the 
first year yield against the second year milk. 
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It is clearly from the graph that there is a strong positive 
correlation between the two yields and there are two 
values with high milk yield in the second year and low 
milk yield in the first year.  

Figure 2 shows the profile lines of the completers; cows 
with data available for the two years. The graph shows a 
positive increase of the measurements from the first year 
to the second year. 

 
Figure 2. Milk yields for the completers (80 cows) 

The data is analyzed using the linear model 

 𝑌𝑖 = 𝜇 + 𝜖𝑖 for 𝑖 = 1, … ,107 

where 𝑌𝑖  is a vector containing the two observations for 
the 𝑖𝑡ℎ animal, and  

 𝜇 = (𝜇1, 𝜇2), 
where 𝜇1 and 𝜇2 is the average of the response in the first 
and second year respectively. The compound symmetric 
covariance structure is chosen for the covariance matrix. 
In the compound symmetric structure, the covariance 
matrix, V, takes the form 

 𝑉 = 𝜎12𝐼 + 𝜎22𝐽 
where 𝐼  is the identity matrix of order 2 × 2  and 𝐽  is 
2 × 2 matrix all of whose elements are ones. Hence, there 
are two covariance parameters 𝜎12 and 𝜎22.  

The unstructured covariance structure is also used for 
the covariance matrix. In this case three covariance 
parameters need to be estimated; 11 12 22, ,σ σ σ . The 

estimates of the parameters are almost identical with the 
compound symmetric structure. So, the results of the 
unstructured covariance structure are only shown. 

Without loss of generality, we assume that the dropout 
process depends on the measurement at the dropout time, 
the previous measurement and the unknown parameters ∅. 
The dropout process is modeled as 

 ( ){ }2 2 0 1 1 2 2, .d i i iilogit P y H y y∅ ∅ ∅= + +  

The PFI is applied to the data with 𝑀=10 and the 
standard errors are calculated using Jackknife replication 
method. The results are shown in Table 7. MI and FRNNI 
are not applicable in this kind of data where all the 
subjects share the same independent variable, thus we 
apply the MI in this data set using the propensity score 
method described in Grannell and Murphy [12]. For the 
sake of comparison between the proposed method and the 
previous analyses we also include in Table 7 the results of 
Diggle and Kenward [6] and Gad and Kenward [10]. 

Table 7. the PFI estimates and their standard errors for mastitis data. Also, the MI estimates, the Diggle-Kenward estimates and Gad-Kenward 
estimates 

Parameter PFI Estimates S.E D-K Estimates G-K Estimates MI Estimates 
𝜇1 5.76 0.09 5.77 5.76 5.76 
𝜇2 6.32 0.12 6.09 6.09 6.48 
𝜎12 0.87 0.12 0.83 0.87 .87 
𝜎22 1.37 0.28 1.67 1.63 1.17 
𝜎12 0.56 0.18 0.56 0.56 .66 
∅0 2.01 2.09 0.15 0.40 - 
∅1 2.22 0.58 2.38 2.38 - 
∅2 -2.79 0.58 - 2.63 - 2.70 - 

The results in Table 7 show that the average of the 
second year yield is larger than the average of the first 
year yield. The two estimates are statistically significant. 
A closer look at the dropout parameters shows that the 
probability of missingness has a negative relation with the 
second observation. This is natural because the infection 
with mastitis reduces the milk yield and this also supports 
the assumption of MNAR. The estimates of ∅2 is slightly 

bigger in absolute value than ∅1. Both of the estimates are 
statistically significant. The Z-values for testing both the 
null hypotheses are significant at 95% confidence interval. 
For the MI estimates, the estimates of the mean 
parameters are reasonable but it seems the estimate of 𝜎22 
may be underestimated. Our results are similar to the 
results of Diggle and Kenward [6] and Gad and Kenward 
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[10] for the model estimates and the covariance estimates. 
There are slightly differences in the estimates of the 
missingness. This is may be due to using different 
approach and different dropout models. 

8. Conclusion 
The parametric fractional imputation is proposed as an 

innovative tool for parameters estimation in the presence 
of the missing values. If the parametric fractional 
imputation is used to construct the score function, the 
solution to the imputed score equation is approximately 
the maximum likelihood estimator. The PFI is superior to 
the MCEM or SEM in the sense that the imputed values 
are not regenerated at each iteration which guarantees the 
convergence and accelerate its rate. Variance estimation 
can be obtained using a replication method such as 
Jackknife or bootstrap. The simulation results show that 
the proposed techniques provide reasonable estimates. 
However, one limitation of this technique is that its 
accuracy, like other variants of the EM algorithm, depends 
heavily on the assumptions of the selection model which 
may not be totally correct. Kim and Yu (2009) proposed a 
semi parametric approach for applying the fractional 
imputation method when the assumptions of the assumed 
model are suspected. A further research is recommended 
in this topic especially for the repeated measures data but 
this is out of the scope of this article. 
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