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Abstract

We introduce an algorithm for causally estimating three-dimensional shape and motion of an object represented locally as a
rigid collection of planes supporting projectively deforming texture patches. Due to occlusions and the local nature of any
causal algorithm, a drift in the estimates accumulates over time. We describe a method to perform global registration of
local estimates of motion and structure by matching the appearance of feature regions stored over long time periods. The
irradiance is matched using a score function that takes into account contrast and scaling. We show results on real image
sequences that confirm extensive simulation experiments.

1 Introduction

When driving through an unfamiliar town, it is easy to lose one’s bearings and “get lost”, despite the fact that ego-motion is
estimated accurately enough to control a vehicle. However, if a familiar landmark comes into sight (for instance a building
seen previously), then one can re-adjust the global reference and correct the perceived attitude. This phenomenon is the
natural consequence of the fact that visual information can be integrated over time only to the extent that visual features
remain visible. In face of a changing landscape, a drift in the estimate of ego-motion is unavoidable; however, if a lost
feature becomes visible again, ego-motion can be globally registered, thus effectively annihilating the bias (see Figure 1). In
this paper we describe a method for representing and estimating the geometry, photometry and relative motion between the
viewer and the environment that allows integrating visual information globally, when possible.

Figure 1:Motion around an object (left): visual information can only be integrated to the extent that visual features remain
visible. After a full turn, a bias will have accumulated due to features disappearing (middle). However, if visual features
that were part of the original set become visible (right), one can reset the drift and globally register the estimated shape and
motion.

Of course if one could collect all data ahead of time and process them globally as a batch, this problem would not
exist. However, in the applications that we are interested in – for instance virtual architectural walk-through or vision-based
navigation – one must produce an estimate of ego-motion and scene structure at the current time, and therefore data must
be processedcausally. Data can be processed in batches (for instance on a window of past data up to the current time) or
recursively (maintaining and updating an estimate by processing only the current image). Even whenglobalbatch processing
is possible (for instance in video post-processing and animation), one may not necessarily want to do so since the amount of
data would be colossal (we are targeting one hour of video for driving or walking sequences).
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We would like to stress that the drift in the estimate is fundamental and unavoidable even if the data are processed in
batches, as long as processing islocal in time. The only case when drift is not an issue is when the sequence of images is
processed as a whole. However, in the presence of occlusions, this is rarely possible (consider walking around a block: at
some point all features visible at the initial time will disappear, as illustrated in Figure 1). When a long sequence is broken
down into subsequences of a certain time length and each subsequence is processed as a batch, a drift will arise when merging
estimates from different subsequences, and one is faced with the problem of choosing the length of the batches and merging
the corresponding estimates. We choose to work in a recursive estimation framework to avoid the heuristics involved in
partitioning the sequence and merging the estimates from different batches; however, all considerations in this paper apply to
(causal) batch processing just as well.

1.1 Relation to previous work

This paper describes a way to globally integrate results of local structure from motion (SFM) algorithms. In fact, any SFM
algorithm can be used as a starting point. As such, it relates to a vast portion of the literature of Computational Vision that
cannot be reviewed within the space allotted. A few references that we find to be most closely related to our approach are
[1, 3, 4, 5, 11, 7, 8, 12, 10, 13, 16, 29, 19, 20, 21, 23, 22, 26, 30] but the list is by no means complete. The reader can refer to
new and upcoming textbooks for more detailed references on general SFM.

Since we integrate tracking and motion estimation, our work also relates to the large literature on image (2D) motion.
However, most tracking schemes rely on point features and do not exploit feedback from higher levels (e.g. global motion
estimates). If the scene is a rigid collection of features that undergo the same rigid motion, this global constraint can be
enforced by a feature tracker for robustness and precision. A small body of literature on so-called direct methods addresses
this issue, for example [27, 9, 18, 6]. Most work in direct SFM ends up representing shape as a collection of points whose
projections are subject to brightness constancy and undergo the same rigid motion. Integrating motion information over the
whole image, however, is computationally expensive. This suggests representing the scene as a collection of simple shapes.
Of all possible shape models, planes occupy a special place in that the projection of a plane undergoing rigid motion evolves
according to a projective transformation. It is therefore natural to represent a scene as a collection of planes, which has been
done often in the past, as for instance in [28, 25, 24, 2].

1.2 Contributions of this paper

This paper presents a novel causal model for estimating structure and motion of an object represented as a collection of
planar regions supporting projectively deforming texture patches. We pose the problem of global registration ofcausally
estimatedmotion and shape. To the best of our knowledge there is no prior work in this area. In order to integrate visual
information, feature appearance needs to be stored, which forces a representation of the environment via a collection of
geometric-photometric features, in our case planar patches that support a Lambertian reflection distribution. Even if the use
of piecewise planar representations is ubiquitous in the literature, and so are so-called “direct” methods, their use in a causal
framework is novel. Also new is the attempt to perform global registration within a causal framework. In order to improve
the computational efficiency of our algorithm, we develop a heuristic matching strategy to avoid matching feature patches
that are not visible.

2 From local photometry to global dynamics

Let S be a rigid, piecewise smooth surface in space, andX ∈ S the coordinates of a generic point on it. When seen from
a moving frame, the coordinates change in time according to a rigid motionXt = RtX0 + Tt, whereRt ∈ SO(3)1 and
Tt ∈ R3 describe the rigid change of coordinates between the inertial (at time0) and the moving frame (at timet). We
assume to be able to measure, at each instantt, the irradianceI(x, t) at the pointxt = π(Xt)2. As a consequence of motion,
the image undergoes a deformation that can be described by a nonlinear time-varying function of the surfaceS, gS

t (·), such
that

I(x0, 0) = I(gS
t (x0), t) (1)

1SO(3) stands for the space of rotation matrices (orthogonal with determinant1).
2π denotes a camera projection, for instanceπ(X) = X

‖X‖ in the case of central projection. We do not make distinction between the image coordinates
and the homogeneous coordinates (with1 appended).
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when the surface is Lambertian. In generalg is nonlinear and depends on an infinite number of parameters (a representation
of the surfaceS):

gS
t (x0) = π(Rtx0ρ + Tt) with ρ | x0ρ = X0 ∈ S. (2)

However, one can restrict the class of functionsg to depend upon a finite number of parameters (corresponding to a finite-
dimensional parameterization ofS), and therefore represent image deformations as a parametric class. We actually consider
a more general deformation model of the formαI + β in order to account for local contrast and brightness offset.

2.1 A generative model

There is a very simple instance when image deformations are captured by a finite-dimensional deformation model, that is
when we restrict the class of surfaces to planes with unknown normal vectorν

‖ν‖ ∈ S
2 and intercept‖ν‖. In fact, it is well

known that a plane not passing through the origin (the optical center) can be described asΠ = {X | νT X = 1}, and therefore

gΠ
t (x0) = (Rt + TtνT )x0. (3)

Given any matrixMt ∈ R3×3/R with rank at least2, it can be shown that it is in one to one correspondence with matrices of
the formRt + TtνT . Therefore, if the scene consists of a single planar surface, we can integrate photometric information on
the entire surface by finding the matrixM that minimizes a discrepancy measure betweenI(x0, 0) andI(Mtx0, t) integrated
overx0 on the entire image domainD; for instance

T̂t, R̂t, ν̂ = arg min
Tt,Rt,ν

∫

D
‖I(x, 0)− I(Mtx, t)‖dx (4)

for some choice of norm‖ · ‖. Notice that the residual to be minimized is computed in the space of irradiance functions, and
that the current modelMt, together with the first imageI(x0, 0), can be used to predict the next imageI(xt+1, t+1). In this
sense this model is generative.

Of course, planes are quite a restrictive class of surfaces. However, we can use the above residual to test the hypothesis
that a region of the image corresponds to (is well approximate by) a plane in space. Away from discontinuities, the larger the
curvature, the smaller the region that will pass the test. By running the test all over the image (or on the portion of it that
corresponds to high gradient of the irradiance, so as to eliminate at the outset regions with little or no texture), we can segment
the image into a number of patches that correspond to planar approximations of the surfaceS. Obviously discontinuities and
occluding boundaries will fail the test and therefore be rejected as outliers.

As a result of the procedure thus described, we are left with describing a surface with a certain numberK of planar
patches with normalsν1, . . . νK , all undergoing the same rigid motionTt, Rt. Photometric information is integrated within
each patch, while geometric and dynamic information is integrated across patches. In this sense, this model describes the
scene usinglocal photometry and global dynamics. A model of the time evolution of all the unknown quantities is therefore































νi
t+1 = νi

t i = 1 . . . K
Tt+1 = exp(ω̂t)Tt + Vt

Rt+1 = exp(ω̂t)Rt

Vt+1 = Vt + nV (t)
ωt+1 = ωt + nω(t)
I(xi

0, 0) = I(π((Rt + TtνiT
t )xi

0), t) + wt ∀ xi
0 ∈ Di

(5)

wherenV (t) denotes the unknown linear acceleration,nω(t) the rotational acceleration, andDi is the region of the image
that corresponds to the approximation of the surfaceS by thei-th planar patch with normalνi. The noise termwt is modeled
as an independent sequence identically distributed in such a way as to guarantee that the measured imageI is positive.

3 Causal estimation of a photo-geometric model

Having agreed to represent a surface as a rigid collection of planar patches supporting a radiance function that can deform
according to a projective model, we can describe the unknown parameters (plane normals, rigid motion and velocity) as the
state and input of a nonlinear dynamical system (5). Causally inferring a model of the scene then corresponds to estimating
the state of the model (5) from its output (measured images). In order to arrive at a computationally simple solution to this
problem, we will make a number of assumptions on the initial conditions and driving noises of the model (5).
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3.1 Nonlinear filter and implementation

The first step towards implementation is to choose a local coordinate system for the model (5). To this end, we represent
SO(3) locally in canonical exponential coordinates: letΩ be a vector inR3, then a rotation matrix can be represented by
̂Ω ∈ so(3) such thatR = exp(̂Ω)3. It is clear from the measurement equation in (5) that a scale factor betweenν andT has
to be fixed as they appear only as a product. Since we know that for a plane to be visible thez component of its normal vector
has to be strictly positive, we choose to fix thez component of one normal to a positive constant, say1.

Once the model (5) is written in local coordinates it is immediate to use an extended Kalman filter to estimate the state.
For the filter to work in practice, one has to take occlusions into consideration. During the camera motion, objects in the
scene may occlude each other and hence cause some image patches to disappear. On the other hand, some new image patches
can become visible. When a patch disappears, we simply remove the corresponding normal vector from the state. When a
new patch appears, we first estimate its normal with a reduced filter and once its estimate is stable (the innovation of the filter
has reached steady-state) we insert it into the state.

3.2 Occlusions and drift

As we discussed in the previous section, in order to solve the scale factor ambiguity we choose to fix thez component of one
normal. As long as the patch corresponding to the selected normal is visible, all the parameters will be estimated according
to it. However, during a long sequence, visual features are bound to disappear due to occlusions or falling out of the field of
view; hence, when the selected feature disappears, another normal has to be chosen and its third component has to be fixed.
Since we do not have the exact value of the new fixed component with respect to the previous one, using its current estimate
necessarily introduces a error that propagates to all the other estimated parameters. It is global in the sense that it also affects
the global motion estimates:R andT . Therefore, our observation of motion and structure accumulates a drift which is bound
through a constant by the number of times the patches of the fixed normals are lost. Notice that it does not make a difference
whether the scale factor is associated to one particular feature or to a collective property of all points (e.g. the depth of their
centroid), or to the norm of the translation vector:every time any new state is associated with the scale factor, a drift occurs.

As we said, this drift does not occur if at least one visual feature is visible from the beginning to the end of the sequence
(and the scale factor happens to be associated with it). While this is unlikely in any real sequence, it is often the case that
features that disappear become visible again. This can be because they become unoccluded, or due to the relative motion
between the camera and the object (e.g. the viewer returns to a previously visited position). In order to exploit this information
one must be able to match features that were visible at previous times during the sequence. This can be done since our features
are represented as planar patches that support a Lambertian radiance or “texture”, as we discuss in the next subsection.

3.3 Global registration

Features may disappear for a number of reasons as discussed above. Every time this happens, we store a geometric repre-
sentation of the feature (coordinates of a point and the normal to the feature plane in an inertial reference frame) as well as
the texture patch it supports. As the sequence progresses, more patches are added; in the case of the sequence portrayed in
Section 4, as the camera navigates around the object, more and more features are added. However, because no single feature
survives for the duration of the experiment, a small drift is accumulated (see Figure 3). In order to avoid this, the basic idea
is the following: whenever a new feature is selected, the pose of its supporting plane is first estimated relative to the inertial
frame, and then its texture is matched with all neighboring features. If a high score is achieved, we seek local support from
neighboring features, to eventually conclude that the old and the new patch have overlap. Once this decision is made, the drift
is compensated and the trajectory is adjusted, weighted by the covariance of the current estimate of the pose of that feature.

Let x andν be respectively the center and the normal of the patch we are matching, and letx̃ be the matched position.
For each patch, we denoteRi andT i the relative motion between the frame at timeτ , whenx is stored, to the current frame.
Thus, we have the following set of equations:











(R1 + λT 1ν1T )x1 = ρ1x̃1

...
(RN + λTNνN T )xN = ρN x̃N

(6)

3Rodrigues’ formula is a convenient way to compute the exponential.
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whereN is the number of matched points,ρi is the ratio between the depth of theith patch at timeτ and the depth of the
same patch at the current time, andλ is the scale factor drift. Due to noise in determining the matching position, the above
equations do not hold in general. Therefore, we look forλ, ρi that minimize the distance between the estimated positions and
the matching positions:

λ̂, ρ̂1, . . . ρ̂N = arg min
λ,ρ1,...ρN

∑

i

∥

∥

∥(Ri + T iνiT )xi − x̃i
∥

∥

∥ (7)

where‖·‖ is some norm. If we chose theL2 norm as our distance function,λ, ρ1, . . . ρN can be computed using least squares.
Rearranging the equations (6), we have0BB@ −T 1ν1T x1 x̃i . . . 0

...
...

...

−T NνN T
xN 0 . . . x̃i

1CCA
0BBB@

λ
ρ1

...
ρN

1CCCA =

0B@ Rx1

...
RxN

1CA (8)

Therefore, the optimalλ andρi can be computed as follows:0BBB@
λ̂
ρ̂1

...
ρ̂N

1CCCA =

0BB@ −T 1ν1T x1 x̃i . . . 0
...

...
...

−T NνN T
xN 0 . . . x̃i

1CCA
†0B@ R1x1

...
RNxN

1CA (9)

whereA† denotes the pseudo-inverse of the matrixA. In our implementation we weigh the least-squares norm with the
covariance of the parameters estimated by the extended Kalman filter.

Notice that the global registration performed at a certain instant of time does not affect the entire trajectory, but only the
current pose of the camera relative to the inertial frame. This is because – in a causal recursive framework – we are only
concerned with the estimate of shape and motion at the present point in time. If off-line operation is allowed, one may want
to re-adjust the entire trajectory, but this is not the focus of this paper.

As the length of the experiment grows, maintaining a database of all previously visible features and matching each new
feature with the entire database becomes unfeasible. In the next subsection we discuss a few heuristics to avoid a global
search.

3.4 Visibility

Since we assume that the sequence is taken with a calibrated camera, at each time instant the field of view of the camera can
be computed in the inertial frame, and all features that fall outside the visibility cone can be discarded at the outset. However,
in principle one is still faced with having to match each new feature with all features in an infinite cone. While there is no
significant penalty in not matching a visible feature, there possibility of imposing a scale correction because of a wrong match
has to be minimized. Therefore, we employ conservative heuristics: first, we only consider a limited section of the cone (e.g.
within 10 meters), since textures supported by planes at largely different depths cannot be matched due to the difference in
scale and resolution4. To this end we need to determine the depth of each pointxi in the current reference frame. Recall the
plane constraintνT X = 1, therefore at the timeτ when a point is introduced, its depth can be computed as:

ρi
0 =

1

νiT xi
. (10)

Therefore, the depth at the current frame becomes the third component of

Riρi
0x

i + T i

whereRi andT i again are the relative motion. Second, we consider all visible features at that instant of time, and carve
opaque cones around them: if a feature is currently visible, all previously stored features that are occluded by it cannot be

4Note that, since the position of previously visible features is stored in a global reference frame, it is possible to predict their resolution in the current
frame, and therefore adapt the matching lattice in the global registration.
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seen. The visibility of each patch respect to the camera can be computed based on its normal at the initial time. More
precisely, if

xiT Riνi > 0 (11)

we declare the point to be visible, otherwise we declare it occluded. Finally, we restrict our search to a neighborhood of each
new feature,10 pixels around it, to speed up the search and exclude outliers from other heuristics.

Although this global registation can be made more and more sophisticate by considering robust statistics, soft-matching
and a number of other statistical techniques, we found that the procedure described in this section is a good compromise
between accuracy and computational efficiency. Our implementation is just short of real-time at the moment, and we expect
to be able to operate at frame-rate within a year, with the help of faster processor and code optimization.

4 Experiments

In Figure 2 we show a few images of a sequence obtained by moving a camera around an object (the actual motion is
performed by rotating the object on a turntable, which is equivalent to the camera moving around it). This motion is designed
in such a way that no feature remains visible throughout the course of the experiment. Therefore, as expected, drift will
accumulate, as it can be seen in Figure 3 (top). The actual trajectory of the camera is a perfect circle that passes through the

Figure 2:Original dataset: the camera moves around the object so that no feature remains visible throughout the course of
the sequence.

origin, but the estimated trajectory misses the origin due to the drift. Even though the drift may seem small when visualized
in terms of the estimates of motion, it severely affects the estimates of shape, since it results in photometric patches being
misaligned and therefore spoils the meaningful merging of estimates from multiple passes around the object. By matching
visible features, however, the drift can be compensated for, as shown in the solid line on the bottom. Failure to perform global
registration results in a significant drift during the second pass around the object, shown as a dotted line. Once registered,
different sequences around the object can be merged and the shape (position of orientation of planar patches) and photometry
(texture supported on such planes) can be reconstructed. In Figure 4 we overlay the estimates to a set of images of the object,
to show that the texture patches nicely align to the appearance of the object.

5 Discussion

We have introduced a scheme for handling occlusions and global registration by storing the appearance of previously visible
features, and discussed heuristics to avoid a global search of all stored features. We also outlined a direct method to estimate
motion and structure causally from image sequences. Instead of using point features we use planar patches, while non-planar
patches and outliers are rejected using a simple hypothesis test. An extended Kalman filter is used to implement the algorithm
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Figure 3: Causally estimated spatial trajectory for a sequence of images (samples of which are shown in Figure 4). The
trajectory of the camera surrounds the object so that no features survive from the beginning to the end of the experiment.
Despite the fact that the camera goes back to the original configuration, the estimated trajectory does not reach the origin
(top). This can be seen in the detail image on the bottom. This is unavoidable since no visual features are present from the
beginning to the end of the sequence. However, starting from frame524, several features that were visible at some point
become visible again. Our filter stores both the pose and orientation of the planar patches that become occluded, as well as
the texture patch that they support. Matching the current field of view with stored features allows to globally register the
trajectory and effectively eliminate the drift. Not imposing global registration results in a drift, shown in the dotted line,
during a second pass around the object.

in a causal fashion. We perform experiments on real scenes. Even though the model we describe uses planes as primitives,
the algorithm can be readily extended to any parametric representation of non-planar surfaces.
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