
CONCLUSION
Tissue classification, based on a nearest neighbor al-
gorithm, may be successfully utilized for volumetric
analysis and growth rate determination.  It may also
provide a reliable and accurate method for determin-
ing change in contrast enhancing tissue. Thus the tis-
sue classification method may play a role in determin-
ing response in therapeutic trials.  It may provide in-
formation on the efficacy of therapeutic agents and may
help to identify subgroups of patients particularly re-
sponsive to specific therapies.  The prognostic value
of growth rates, measured in terms of survival time,
was significant (p<0.03) as was the CHO/CR measure
(p<0.02).  Finally, this study is currently engaged in
understanding the relationship between growth rates
and [1H]-MRSI data, specifically CHO/CRE ratios.
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adjustments in the prognosis of the patient.
As an extension of the second arm of this study

we sought to correlate [1H]-MRSI data, specifically
CHO/CRE ratios, with tumor growth rates.  MRS CHO
data provide information on local cellularity and
phosphocholine concentrations, thus reflecting the dy-
namics of differential cellular growth [19,20].
Phosphocholine is an important component of de novo
membrane synthesis.  High CHO concentrations in
neoplastic tissue have been reported to be due to in-
creased membrane turnover in dividing cells [21].  Re-
cent data suggests that certain oncogenes can regulate
the concentration of CHO-containing compounds and
that some phosphocholine may be involved as second
messengers in the modulation of growth factor-stimu-
lated mitogenesis [22].  Linking [1H]-MRS data, and

the picture of cellular growth it provides, with growth
rates determined through serially acquired volumet-
ric analysis would further add to the value of the volu-
metric data. Thus far the data does not indicates a sig-
nificant correlation between growth rates and CHO/
CRE, even though each of these fators was separately
corelated with survival.  There are a number of pos-
sible reasons for this finding: 1) When compared with
low grade tumors correlations between tumor growth
rates and survival times may emerge; 2) Better quan-
titative methods, in part due to the strong partial vol-
ume effect of spectroscopy, might be needed to re-
veal a trend; 3) There may be no correlation between
CHO/CRE and growth rates.

Fig. 6  Change may be tracked on a point-by-point basis with the surface modeling algorithm.  The algorithm is able to follow focal growth
while maintaining stereotaxic space.  This provides a mechanism for accurately guiding biopsies to regions exhibiting differential growth.
Genetic analysis may reveal inhomogeneities between the region of aggressive growth and the remainder of the tumor.  Therapy may then be
specifically tailored to the most aggressive regions.



between age at diagnosis and total survival time (r=-
0.54, p<0.03).  There was a significant negative corre-
lation between growth rates, as determined from con-
trast enhancing tissue, and survival (p<0.03). A CHO/
CRE of > 1.8 was negatively correlated with survival
(p<0.02). Growth rates and CHO/CRE may function
as prognostic markers, ones which may be repeatedly
acquired through the course of therapy.  As such they
may also be used to guide adjustments in therapy.  Fi-
nally, no significant linear relationship was noted be-
tween growth rates and CHO/CRE values.

DISCUSSION
The ability to accurately and systematically

track change in malignant gliomas is important, as is
the identification of asociated prognostic factors.  En-
hancement volume provides an index to measure re-
sponse to therapy, significant in the management of
individual patients, and in assessing the efficacy of
therapeutic agents during clinical trials.  We analyzed
the ability of two volumetric analysis approaches and
validated the results against manually defined tumor
enhancement volumes.

The tissue segmentation approach, based on a
nearest neighbor algorithm, was shown to correlate
well with manually defined contrast enhancing vol-
ume (r2=0.99) and growth rates (r2=0.94) (Fig. 4).
Though the algorithm underestimated enhancement
volumes it did so systematically and may therefore be
applied reliably for enhancement volume estimation.
The nearest-neighbor algorithm has been used in prior
studies [9,10,11,12]. In Kaus et al. (1999), the algo-
rithm accurately determined volumes of menigiomas
and low grade astrocytomas [13].  The algorithm has
certain advantages: (1) It provides stable segmenta-
tion [11,12,14,15]; (2) It is robust to changes in scan-
ner protocol (TE, TR); (3) It is one of the most rapid
algorithms in terms of execution times and operator
input [11,12]; (4) The algorithm detects anatomically
relevant structures while more automated algorithms
may have greater difficulty [8,14].

The surface modeling algorithm has been used
previously for detecting asymmetry in cortical patterns
and for analyzing corpus callosum morphology in
schizophrenic patients [14,15].  The surface modeling
algorithm, in this study, was able to determine and track
change in enhancement volume to a degree that was
highly correlated with manually defined volumes
(r2=0.94).  It was, however, unable to determine growth
rates to the same high level of correlation.  Despite its
inability to determine growth rates with the same ac-

curacy as the nearest neighbor algorithm, in specific cases
the surface modeling algorithm may be better suited for
tracking certain types of tumor changes.  Because the
surface modeling algorithm tracks change on a point-
by-point basis, focal change may be observed.  Since
stereotaxic space is maintained, the surface modeling
algorithm may provide a tool to guide biopsies from a
specific region (Fig. 5).  Genetic analysis of aggressive,
or differentially growing, tumor regions may also reveal
genetic heterogeneity in the tumor.  Therapy, including
combination therapy, could then be tailored to best suit
the underlying genetics of the tumor.

It is worth noting that contrast enhancement rep-
resents the breakdown of the blood brain barrier and the
extravasation of contrast enhancing material into the sur-
rounding parenchyma, and not tumor proper itself.  Con-
trast enhancement, therefore, may serve as an adjunct
marker for tumor volume.  Though both algorithms were
able to track change in contrast enhancement, measures
based on the tissue classification approach were more
highly correlated to the manually defined volumes and
growth rates than the surface modeling algorithm.  Two
reasons for this are: 1) Multiple lesions may be detected
by tissue classification, while the surface modeling ap-
proach is limited to determining single contiguous vol-
umes.  2) The volume determined by the surface model-
ing algorithm includes both contrast enhancing and ne-
crotic areas while the tissue classification may distin-
guish enhancing regions from necrotic areas.  The sur-
face modeling algorithm has, for these two reasons, a
tendency to underestimate or overestimate contrast en-
hancing volumes.

Monitoring edema is important for patient man-
agement.  Further, moderate edema has been correlated
with poor prognosis [16].  Edema was better quantified
on T2-weighted images than T1-weighted images (where
a 13.7% +/- 8.9% underestimation was observed).
Manual determination of edema volumes was more suc-
cessful than either algorithm.  Less contrast between tis-
sue and greater texture on T2-weighted images may have
impaired the detection of edema by the tissue classifica-
tion algorithm more.  The RF-corrector, which assumes
low-frequency signals are artifact, may also have failed
to accurately detect edema due to interpretation of the
edema signal as an inhomogeneity artifact.

Well-known prognostic markers for GBMs in-
clude: age, Karnofsky performance, and the extent of
surgical resection [17].  Growth rates are also a marker
sensitive enough to determine response to therapy [18].
As such they provide valuable insight into the efficacy
of therapy and may provide enough information to make



were calculated in terms of estimated halving times and
doubling times (Fig. 3).  The growth rates as determined
by the tissue segmentation algorithm were highly corre-
lated with the growth rates as determined from the manu-
ally defined volumes (N=21, r2=0.96; manually defined
volumes 9.7 days, SD 99.8 days; algorithm means 8.5
days; SD 125.8 days).  Nonetheless, growth rates as de-
termined by the surface modeling algorithm correlated
poorly with the manually defined growth rates.

Edema volumes from T1 and T2-weighted im-
ages were determined using the tissue segmentation al-
gorithm and manual segmentation.  T1-weighted manu-
ally segmented volumes systematically underestimated
edema values as compared to T2-weighted images (by
13.7% +/- 8.9%).  The tissue segmentation algorithm was
unable to determine edema volumes systematically on
either T1 or T2-weighted images.

A significant negative correlation was also found

Fig. 5  The tissue classification method, based on the nearest neighbor algorithm, is able to systematically and reliably
determine contrast enhancing tissue volumes.  The approach could provide a way of determining efficacy of therapy in  large
scale, multi-center therapy trials..

RESULTS
Enhancement volumes, as determined by the

tissue segmentation algorithm and the surface model-
ing algorithm, were both highly correlated with the
manually defined volumes.  The contrast-enhancing
volumes as determined by the tissue segmentation al-
gorithm had the following correlation: r2=0.99 (manu-
ally defined 20.3cm3 +/- SD 22.9; tissue segmentation
algorithm mean 18.4 cm3 +/- SD 22.1).  The underes-
timation of enhancement volume was on average 9.4%
when tissue segmentation was compared to manually-
defined values.  The correlation between the surface
modeling algorithm and manually defined volumes was
r2=0.94 (manually defined 23.4cm3 +/- SD 27.1; sur-
face modeling algorithm mean 23.4cm3 +/- SD 31.5;
SD difference 4.4), values which approached the high
correlation of the tissue segmentation algorithm.

Growth rates for tumor enhancement volumes



Fig.3  The result of the surface modeling algorithm is a parametric mesh model.  The models may be rendered graphically, used to determine
volumetric data, and, most importantly, track differential growth in tumor tissue.

algorithm were compared to values determined from
manually segmented images.

[1H]-MRS data was processed on a Sun Sparc-
20 computer (Sun Systems, Palo Alto, CA).  The [1H]-
MRSI data were reconstructed from voxels within the
imaged tissue. The five 3mm-thick MRI sections
which corresponded to [1H]-MRSI data were also re-
constructed to create an MR image in register with
the MRS image.  Choline-creatine (CHO/CRE) ratios
were obtained from active tumor and from tissue in
the contralateral hemisphere.

Fig. 4    Growth rates (mm3/d) determined by the nearest neigh-
          bor algorithm were highly correlated with manually determined
          growth rates.



Fig. 1   This figure shows tissue segmentation maps for both
tumor and edema generated by the tissue classification method.

Image Protocol
Images for this study were acquired using a

1.5 T MRI system (Signa 5.x Echospeed, General Elec-
tric Medical Systems, Milwaukee, WI).  The follow-
ing images were collected: T1-weighted volumes (TR/
TE/NEX 550/8/2; slice thickness 3 mm, inter-slice gap
0, matrix 256 x 256, 25 cm field of view) and T2-
weighted (TR/TE1/TE2/NEX 6000/14/126/2, slice
thickness 3 mm, slice gap 0, 256 x 256 matrix).  Post
contrast T1-weighted images were acquired follow-
ing the administration of Gadolinium DTPA, an MRI
contrast agent (Magnevist, Berlex Laboratories,
Wayne, NJ).  The MRI scans obtained prior to the [1H]-
MRS study were used to constrain the acquisition of
[1H]-MRS slices.  ‘PRESS-CSI’ and the echo-CSI
(chemical shift imaging) acquisition software, provided
by the manufacturer, were used to obtain the 1H-MRSI
data.  The following parameters were utilized for the
spectroscopic imaging: TR, 2000msec; TE, 272 msec;
slice thickness 15 mm axial; field of view, 240 mm;
in-plane phase encoded resolution, 24 x 24 or 32 x 32.
Three specifically tailored frequency-selective saturat-
ing pulses were used prior to the acquisition of the
spectroscopic data.  The “short-tau-inversion recov-
ery”  (STIR) method was used for lipid suppression.

SGI 180 MHz R10000 workstations were used
for aligning and segmenting the scans.  Alignment was
performed across MR submodalities and through the
scan series by aligning image volumes into Talairach
stereotaxic space using a 6-parameter rigid transfor-
mation [4].  Software developed at UCLA was used
for manually assisted and automated registration.

ture distribution reflecting the intensities of specific tis-
sue classes at each time point in the scan series.  Tissue
type was differentiated through the use of a nearest
neighbor algorithm (Fig. 1).  Tissue maps for tumor
and edema were generated and manually adjusted so
that class boundaries between tissue types were better
delineated. For the surface modeling algorithm the fol-
lowing steps were performed: an operator defined the
boundaries of the contrast enhancing tumor in serial
sections. Traced points were converted by a surface
modeling algorithm into a tiled parametric mesh model
[8] (Fig 2.).  This was accomplished by uniformly
redigitizing the points at each level in adjacent sections
and reconstructing the surface using triangular tiles (Fig.
3).  Volumes were then determined from the mesh mod-
els.  The tissue classification and the surface modeling

Scans were manually aligned to a population-based av-
erage brain data set [5, 6].  All scans were RF-corrected
to eliminate signal fluctuations due to distortions in the
magnetic field of the scanner [7].  For the tissue seg-
mentation algorithm the following protocol was fol-
lowed: tags, 160 in all, representing points in white
matter, gray matter, CSF, background, tumor and edema
were chosen.   Population-based tissue maps were used
to perform tissue segmentation.  Containing probabilis-
tic information on tissue location in stereotaxic space,
the population-based tissue maps were aligned to the
scan data, adjusted for herniation effects with non-lin-
ear registration, and used to generate a Gaussian mix-

Fig. 2  The surface modeloing algorithm generates 3D parametric
mesh models by uniformly redigitizing traced points.  Points in ad-
jacent 2D MR slices are joined using triangular tiles creating 3D
volumes.
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ABSTRACT
A tissue classification method and a surface modeling algorithm were compared in their ability to analyze changes in brain
tumors, based on volumetric MRI data.  Measures were derived from serially acquired T2 and gadolinium-enhanced T1-weighted
SPGR (spoiled Grass) MRIs. Volumes for contrast enhancing tissue, necrosis, and edema were determined and cross-validated
against manually defined volumes.  Volumes generated by both algorithms were highly correlated with volumes generated by
manual segmentation (r2=0.99 for the tissue segmentation method; r2=0.96 for the surface modeling algorithm).  Growth rates
were calculated from contrast enhancing tissue volumes.  Growth rates derived from the tissue classification approach were
highly correlated with growth rates derived from manually segmented images (r2=0.94).  Growth rates were significantly corre-
lated with survival (p<0.03) as was the choline to creatine ratio (CHO/CRE; p<0.02).  [1H]-MR spectroscopy measures, linked
to the rates of cellular proliferation, were also examined to assess their relationship with growth rates.
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INTRODUCTION
Malignancies of the central nervous system

account for 1 percent of all cancers [1].  Though the
percentage is small the impact on those patients with
central nervous malignancies and their families is enor-
mous. The prognosis for the glioblastoma multiforme
(GBM), the most malignant of the nervous system
neoplasms, is dismal; reported median survival is 50
weeks [2,3] .   The ability to determine and track change
in these tumors by imaging patients with contrast en-
hancement is important.  Currently, there is no method
for tumor quantification in widespread use.  Identifi-
cation of patients responding to therapies would be
useful in planning not only therapies for individual
patients but also in the assessment of  therapeutic effi-
cacy in large scale clinical trials. With improved as-
sessment tools, better therapies could more rapidly be
brought into clinical practice. Further, if patients could
be identified with particular prognostic features thera-
pies could be tailored to better suit the needs and de-
sires of the individual patient.  More effective treat-
ments for specific patient subgroups shown to be more
likely to respond favorably could be utilized, thereby
avoiding less effective therapies associated with se-

vere side effects and reduced quality of life.
As part of a comprehensive longitudinal study

of patients with high grade gliomas we analyzed and
cross-validated the performance of two algorithms in
their ability to determine peritumoral edema, as well as
the volume and growth rates of contrast enhancing tis-
sue.  We also assessed the correlation between growth
rates and survival times. The algorithms tested were a
tissue classification approach based on a nearest neigh-
bor algorithm, and a surface modeling approach, in
which parametric models of tumor boundaries are cre-
ated.  Further, MR spectroscopy was performed and the
prognostic value of the spectroscopic data in relation to
survival time and tumor growth rates was investigated.

METHODS
Fifteen patients with pathologically confirmed

glioblastoma multiforme (GBM) were evaluated.  Pa-
tients ranged in age from 18 to 64 (mean age 47.4
+/-12.8 yrs.) and were scanned longitudinally between
2 and 6 times over a period of up to 6 months.  Prior to
or during the scan interval patients underwent surgery
and received either chemotherapy and radiation therapy
or a combination of both.


