
Locking in OS Kernels for SMP Systems
From the seminar

Hot Topics in Operating Systems

TU Berlin, March 2006

Arwed Starke

Abstract: When designing an operating system kernel for a shared memory
symmetric multiprocessor system, shared data has to be protected from
concurrent access. Critical issues in this area are the increasing code
complexity as well as the performance and scalability of a SMP kernel. An
introduction to SMP-safe locking primitives, and how locking can be applied
to SMP kernels will be given, and we will focus on how to increase
scalability by reducing lock contention, and the growing negative impact on
locking performance by caches and memory barriers. New, performance-
aware approaches for mutual exclusion in SMP systems will be presented,
that made it into today's Linux 2.6 kernel: The SeqLock and the read-copy-
update (RCU) mechanism.

1 Introduction

1.1 Introduction to SMP systems
As Moore's law is about to fail, since clock speeds can not be raised by a factor of two
every year any more as it used to be in the "good old times", most of the gains in computing
power are now achieved by increasing the number of processors or processing units
working parallel: The triumph of SMP systems is inevitable.

The abbreviation SMP stands for tightly coupled, shared memory symmetric multiprocessor
system. A set of equal CPUs accesses a common physical memory (and I/O ports) via a
shared front side bus. Thus, the FSB becomes a contended resource. A bus master manages
all read/write accesses to the bus. A read or write operation is guaranteed to complete
atomically, which means, before any other read or write operation is carried out on the bus.
If two CPUs access the bus within the same clock cycle, the bus master
nondeterministically (from the programmers view) selects one of them to be first to access
the bus. If a CPU accesses the bus while it is still occupied, the operation is delayed. This
can be seen as a hardware measure of synchronisation.

1.2 Introduction to Locking
If more than one process can access data at the same time, as is the case in preemptive
multitasking systems and SMP systems, mutual exclusion must be introduced to protect this
shared data.

We can divide mutual exclusion into three classes: Short-term mutual exclusion, short-term
mutual exclusion with interrupts, and long-term mutual exclusion [Sch94]. Let us take a
look at the typical uniprocessor (UP) kernel solutions for these problem classes, and why
they do not work for SMP systems.

Short-term mutual exclusion refers to preventing race conditions in short critical sections.
They occur, when two processes access the same data structure in memory "at the same
time", thus causing inconsistent states of data. On UP systems, this could only occur if one
process is preempted by the other. To protect critical sections, they are guarded with some
sort of preempt_disable/ preempt_enable call to disable preemption, so a process
can finish the critical section without being interrupted by another process. In a non-
preemptive kernel, no measures have to be taken at all. Unfortunately, this does not work
for SMP systems, because processes do not have to be preempted to run "parallel", there
can be two processes executing the exact same line of code at the exact same time. No
disabling of preemption will prevent that.

Short-term mutual exclusion with interrupts involves interrupt handlers that access shared
data. To prevent interrupt handler code from interrupting a process in a critical section, it is
sufficient to guard a critical section in the process context with some sort of cli/sti
(disable/ enable all interrupts) call. Unfortunately, this approach does not work on SMP
systems as well, because all other CPUs' interrupts are still active and can execute the
interrupt handler code at any time.

Long-term mutual exclusion refers to processes being held up accessing a shared resource
for a longer time. For example, once a write system call to a regular file begins, it is
guaranteed by the operating system that any other read or write system calls to the same file

2

will be held until the current one completes. A write system call may require one or more
disk I/O operations in order to complete the system call. Disk I/O operations are relatively
long operations when compared to the amount of work that the CPU can accomplish during
that time. It would therefore be highly undesirable to inhibit preemption for such long
operations, because the CPU would sit idle waiting for the I/O to complete. To avoid this,
the process executing the write system call needs to allow itself to be preempted so other
processes can run. As you probably already know, semaphores are used to solve this
problem. This also holds true for SMP systems.

2 The basic SMP locking primitives
When we talk about mutual exclusion, we mean that we want changes to appear as if they
were an atomic operation. If we can not update data with an atomic operation, we need to
make an update uninterruptible and sequentialize it with all other processes that could
access the data. But sometimes, we can.

2.1 Atomic Operations
Most SMP architectures possess some operations that read and change data within a single,
uninterruptible step, called atomic operations. Common atomic operations are test and set
(TSR), which returns the current value of a memory location and replaces it with a given
new value, compare and swap (CAS), which compares the content of a memory location
with a given value, and, if they equal, replaces it with a given new value, or the load link/
store conditional instruction pair (LL/SC). Many SMP systems also feature atomic
arithmetical operations: Addition by given value, subtraction by given value, atomic
increment, decrement, among others.

The table below is an example of how the line counter++ might appear in assembler
code ([Sch94]). If this line is executed at the same time by two CPUs, the result is wrong,
because the operation is not atomical.

CPU 1 CPU 2
Time Instruction Executed Register

R0
Value of
Counter

Instruction Executed Register
R0

1 load R0, counter 0 0 load R0, counter 0

2 add R0, 1 1 0 add R0, 1 1

3 store R0, counter 1 1 store R0, counter 1

To solve such problems without extra locking, one can use an atomic increment operation
as shown in Listing 1. (In Linux, the atomic operations are defined in atomic.h. Operations
not supported by the hardware are emulated with critical sections.)

The shared data is still there, but the critical section could be eliminated. Atomic updates

3

atomic_t counter = ATOMIC_INIT(0);
atomic_inc(&counter);
Listing 1: Atomic increment in Linux.

can be done on several common occasions, for example the replacement of a linked list
element (Listing 2). Not even a special atomic operation is necessary to do that.

Non-blocking synchronisation algorithms solely rely on atomic operations.

2.2 Spin Locks
Spin locks are based on some atomic operation, for example test and set. The principle is
simple: A flag variable indicates if a process is currently in the critical section (lock_var =
1) or if no process is in the critical section (lock_var = 0). A process spins (busy waits) until
the lock is reset, then sets the lock. Testing and setting of the lock status flag must be done
in one step, with an atomic operation. To release the lock, a process resets the lock variable.
Listing 3 shows a possible implementation for lock and unlock.

Note that a spin lock can not be acquired recursively – it would deadlock on the second call
to lock. This has two consequences: A process holding a spin lock may not be preempted,
or else a deadlock situation could occur. And spin locks can not be used within interrupt
handlers, because if an interrupt handler tries to acquire a lock that is already held by the
process it interrupted, it deadlocks.

2.2.1 IRQ-Safe Spin Locks
The Linux kernel features several spin lock variants that are safe for using with interrupts.
A critical section in process context is guarded by spin_lock_irq and
spin_unlock_irq, while critical sections in interrupt handlers are guarded by the
normal spin_lock and spin_unlock. The only difference between these functions is,
that the irq-safe versions of spin_lock disable all interrupts on the local CPU for the
critical section. The possibility of a deadlock is therefore eliminated.

Figure 1 shows how two CPUs interact when trying to acquire the same irq-safe spin lock.

4

// set up new element
new->data = some_data;
new->next = old->next;
// replace old element with it
prev->next = new;
Listing 2: Atomical update of single linked list, replace
"old" with "new"

void lock(volatile int *lock_var_p) {
while (test_and_set_bit(0, lock_var_p) == 1);

}

void unlock(volatile int *lock_var_p) {
*lock_var_p = 0;

}

Listing 3: Spin lock [Sch94]

While CPU 1 (in process context) is holding the lock, any incoming interrupt requests on
CPU 1 are stalled until the lock is released. An interrupt on CPU 2 busy waits on the lock,
but it does not deadlock. After CPU 1 releases the lock, CPU 2 (in interrupt context) obtains
it, and CPU 1 (now executing the interrupt handler) waits for CPU 2 to release it.

2.2.2 Enhancements of the simple Spin Lock
Sometimes it is wanted to allow spin locks to be nested. To do so, the spin lock is extended
by a nesting counter and a variable indicating which CPU holds the lock. If the lock is held,
the lock function checks if the current CPU is the one holding the lock. In this case, the
nesting counter is incremented and it exits from the spin loop. The unlock function
decrements the nesting counter. The lock is released when the unlock function has been
called the same number of times the lock function was called before. This kind of spin lock
is called a recursive lock.

Locks can also be modified to allow blocking. Linux' and FreeBSD's big kernel lock is
dropped if the process holding it sleeps (blocks), and reacquired when it wakes up.

Solaris 2.x provides a type of locking known as adaptive locks. When one thread attempts
to acquire one of these that is held by another thread, it checks to see if the second thread is
active on a processor. If it is, the first thread spins. If the second thread is blocked, the first
thread blocks as well.

2.3 Semaphores (mutex)
Aside from the classical use of semaphores explained in section 1.1, semaphores (initialized
with a counter value of 1) can also be used for protecting critical sections. For performance
reasons, semaphores used for this kind of work are often realized as a separate primitive,
called mutex, that replaces the counter with a simple lock status flag.

Using mutexes instead of spin locks is productive, if the critical section takes longer than a
context switch. Else, the overhead of blocking compared to busy waiting for a lock to be
released is worse. On the pro side, mutexes imply a kind of fairness, while processes could

5

Figure 1: IRQ-safe spin locks

starve on heavily contended spin locks. Mutexes can not be used in interrupts, because it is
generally not allowed to block in interrupt context.

A semaphore is a complex shared data structure itself, and must therefore be protected by
an own spin lock.

2.4 Reader/Writer Locks
As reading a data structure does not affect the integrity of data, it is not necessary to
mutually exclude two processes from reading the same data at the same time. If a data
structure is read often, allowing readers to operate in parallel is a great advantage for SMP
software.

An rwlock keeps count of the readers currently holding a read-only lock and has a queue
for both waiting writers and waiting readers. If the writer queue is empty, new readers may
grab the lock. If a writer enters the scene, it has to wait for all readers to complete, then it
gets an exclusive lock. Meanwhile arriving writers or readers are queued until the write
lock is dropped. Then, all readers waiting in the queue are allowed to enter, and the game
starts anew (waiting writers are put on hold after a writer completes to prevent starvation of
readers). Figure 2 shows a typical sequence.

The rwlock involves a marginal overhead, but should yield almost linear scalability for
read-mostly data structures (we will see about this later).

3 Locking Granularity in SMP Kernels

3.1 Giant Locking
The designers of the Linux operating systems did not have to worry much about mutual
exclusion in their uniprocessor kernels, because they made the whole kernel non-
preemptive (see section 1.1). The first Linux SMP kernel (version 2.0) used the most simple
approach to make the traditional UP kernel code work on multiple CPUs: It protected the

6

Figure 2: reader/writer lock

whole kernel with a single lock, the big kernel lock (BKL). The BKL is a spin lock that
could be nested and is blocking-safe (see section 2.2.2).

There could be no two CPUs in the kernel at the same time. The only advantage of this was
that the rest of the kernel could be left unchanged.

3.2 Coarse-grained Locking
In Linux 2.2, the BKL was removed from the kernel entry points, and each subsystem was
protected by an own lock. Now, a file system call would not have to wait for a sound driver
routine or a network subsystem call to finish. Still, it was not data that was protected by the
locks, bot rather concurrent function calls that were sequentialized. Also, the BKL could not
be removed from all modules, because it was often unclear which data it protected. And
data protected by the BKL could be accessed anywhere in the kernel.

3.3 Fine-grained Locking
Fine-grained locking means: Individual data structures, not whole subsystems or modules,
are protected by their own locks. The degree of granularity can be increased from locks
protecting big data structures (like, for example, a whole file system or the whole process
table) to locks protecting individual data structures (for example, a single file or a process
control block) or even single elements of a data structure. Fine-grained locking was
introduced in the Linux 2.4 kernel series, and has been furthered in the 2.6 series.

Fine-grained locking has also been introduced into the FreeBSD operating system by the
SMPng team, into the Solaris kernel, and into the Windows NT kernels as well.

Unfortunately, the BKL is still not dead. Changes to locking code had to be implemented
very cautiously, as to not bring in hard to track down deadlock failures. So, every time a
BKL was considered useless for a piece of code, it was moved into the functions this code
called, because it was not always obvious if these functions relied on the BKL. Thus, the
occurrences of BKL increased even more, and module maintainers did not always react to
calls to remove the BKL from their code.

7

Figure 3: Visual description of locking granularity in OS kernels [Kag05]

4 Performance Considerations
The Linux 2.0.40 contains a total of 17 BKL calls, while the Linux 2.4.30 kernel contains a
total of 226 BKL, 329 spin lock and 121 rwlock calls. The Linux 2.6.11.7 kernel contains
101 BKL, 1717 spin lock and 349 rwlock calls, as well as 56 seq lock and 14 RCU (more
on these synchronisation mechanisms later) (numbers taken from [Kag05]).

The reason, why the Linux programmers took so much work upon them, is that coarse-
grained kernels scale poorly on more than 3-4 CPUs. The optimal performance for a n-CPU
SMP system is n times the performance of a 1-CPU system of the same type. But this
optimal performance can only be achieved if all CPUs are doing productive work all the
time. Busy waiting on a lock wastes time, and the more contended a lock is, the more
processors will likely busy wait to get it.

Hence, the kernel developers run special lock contention benchmarks to detect which locks
have to be split up to distribute the invocations on them. The lock variables are extended by
a lock-information structure that contains a counter for hits (successful attempts to grab a
lock), misses (unsuccessful attempts to grab a lock), and spins (total of waiting loops)
[Cam93]. The number of spins/misses shows how contended a lock is. If this number is
high, processes waste a lot of time waiting for the lock.

Measuring lock contention is a common practice to look for bottlenecks. Bryant and
Hawkes wrote a specialized tool to measure lock contention in the kernel, which they used
to analyze filesystem performance [Bry02]. Others [Kra01] focused on contention in the
2.4.x scheduler, which has since been completely rewritten. Today, the Linux scheduler
mostly operates on per-CPU ready queues and scales fine up to 512 CPUs.

Locking is most pronounced with applications that access shared resources, such as the
virtual filesystem (VFS) and network, and applications that spawn many processes. Etison
et. al. used several benchmarks that stress these subsystems as an example of how the
KLogger kernel logging and analysis tool can be used for measuring lock contention , using
varying degrees of parallelization: They measured the percentage of time spent spinning on
locks during make running a parallel compilation of the Linux kernel, Netperf (a network
performance evaluation tool), and an Apache web server with Perl CGI being stress-tested
[Eti05] (see Figure 5).

Measurements like these help to spot and eliminate locking bottlenecks.

8

Figure 4: Extract from a lock-contention benchmark on Unix SVR4/MP [Cam93]

hits misses spins spins/miss

_PageTableLockInfo 1 9,656 80 9,571 120

_DispatcherQueueLockInfo 1 49,979 382 30,508 80

_SleepHashQueueLockInfo 1 25,549 708 56,192 79

4.1 Scalability
Simon Kågström made similar benchmarks to compare the scalability of the Linux kernel
on 1-8 CPUs from version 2.0 to 2.6. He measured the relative speedup in regard to the
(giant locked) 2.0.40 UP kernel with the Postmark benchmark (Figure 6).

The result of this benchmark is not surprising. As we can see, the more we increase locking
granularity (Linux 2.6), the better the system scales. But how far can we increase locking
granularity?

9

Figure 5: Percentage of cycles spent on spinning on locks for
each of the test applications [Eti05]

Figure 6: Postmark benchmark of several Linux kernels, CONFIG_SMP=y [Kag05]

Of course, we cannot ignore the increasing complexity induced by finer locking granularity.
As more locks have to be held to perform a specific operation, the risk of deadlock
increases. There is an ongoing discussion in the Linux community about how much locking
hierarchy is too much. With more locking comes more need for documentation of locking
order, or need for tools like deadlock analyzers. Deadlock faults are among the most
difficult to come by.

The overhead of locking operations matters as well. The CPU does not only spend time in a
critical section, it also takes some time to acquire and to release a lock. Compare the graph
of the 2.6 kernel with the 2.4 kernel for less than four CPUs: The kernel with more locks is
the slower one. The efficiency of executing a critical section can be mathematically
expressed as: Time within critical section / (Time within critical section + Time to acquire
lock + Time to release lock). If you split a critical section into two, the time to acquire and
release a lock can be roughly multiplied by two.

Surprisingly, even one time the acquisition of a lock is generally one time too much, and
the performance penalty of a simple lock acquisition, even if successful at the first attempt,
is becoming worse and worse. To understand why, we have to forget the basic model of a
simple scalar processor without caches and look at today's reality.

4.2 Performance Penalty of Lock Operations
Image 1 shows typical instruction costs of several operations on a 8-CPU 1.45 GHz PPC
system1. The gap between normal instructions, cache-hitting memory accesses (not listed
here; they are generally 3-4 times faster than an atomic increment operation) and a lock
operation becomes obvious.

Let us look at the architecture of today's SMP systems and it's impact on our spin lock.

4.2.1 Caches
As CPU power has increased roughly by factor 2 each year, memory speeds have not kept
pace, and increased by only 10 to 15% each year. Thus, memory operations impose a big
performance penalty on todays' computers.

1 If you wonder why an instruction takes less time then a CPU cycle, remember that we
are looking at a 8-CPU SMP system, and view these numbers as "typical instruction
cost".

10

Image 1: Instruction costs on a 8-CPU 1.45GHz PPC
system [McK05]

As a consequence of this development, small SRAM caches were introduced, which are
much faster than main memory. Due to temporal and spatial locality of reference in
programs (see [Sch94] for explanation), even a comparatively small cache achieves hit
ratios of 90% and higher. On SMP systems, each processor has its own cache. This has the
big advantage that cache hits cause no load on the common memory bus, but it introduces
the problem of cache consistency.

When a memory word is accessed by a CPU, it is first looked up in the CPU's local cache.
If it is not found there, the whole cache line2 containing the memory word is copied into the
cache. This is called a cache miss (to increase the number of cache hits, it is thus very
advisable to align data along cache lines in physical memory and operate on data structures
that fit within a single cache line). Subsequent read accesses to that memory address will
cause a cache hit. But what happens on a write access to a memory word that lies in the
cache? This depends on the "write policy".

"Write through" means that after every write access, the cache line is written back to main
memory. This insures consistency between the cache and memory (and between all caches
of a SMP system, if the other caches snoop the bus for write accesses), but it is also the
slowest method, because a memory access is needed on every write access to a cache line.

The "write back" policy is much more common. On a write access, data is not written back
to memory immediately, but the cache line gets a "modified" tag. If a cache line with a
modified tag is finally replaced by another line, it's content is written back to memory.
Subsequent write operations hit in the cache as long as the line is not removed.

On SMP systems, the same piece from physical memory could lie in more then one cache.
The SMP architecture needs a protocol to insure consistency between all caches. If two
CPUs want to read the same memory word from their cache, everything goes well. In
addition, both read operations can execute at the same time. But if two CPUs wanted to
write to the same memory word in their cache at the same time, there would be a modified
version of this cache line in both caches afterwards and thus, two versions of the same
cache line would exist. To prevent this, a CPU trying to modify a cache line has to get the
"exclusive" right on it. With that, this cache line is marked invalid in all other caches.
Another CPU trying to modify a cache line has to wait until CPU 1 drops the exclusive
right, and has to re-read the cache line from CPU 1's cache.

Let us look at the effects of the simple spin lock code from Listing 3, if a lock is held by
CPU 1, and CPU 2 and 3 wait for it:

The lock variable is set by the test_and_set operation on every spinning cycle. While CPU
1 is in the critical section, CPU 2 and 3 constantly read and write to the cache line
containing the lock variable. The line is constantly transferred from one cache to the other,
because both CPUs must acquire an exclusive copy of the line when they test-and-set the
lock variable again. This is called "cache line bouncing", and it imposes a big load on the
memory bus. The impact on performance would be even worse if the data protected by the
lock was also lying in the same cache line.

We can however modify the implementation of the spin lock to fit the functionality of a

2 To find data in the cache, each line of the cache (think of the cache as a spreadsheet) has
a tag containing it's address. If one cache line would consist of only one memory word,
a lot of lines and thus, a lot of address tags, would be needed. To reduce this overhead,
cache lines contain usually about 32-128 bytes, accessed by the same tag, and the least
significant bits of the address serve as the byte offset within the cache line.

11

cache.

The atomic read-modify-write operation cannot possibly acquire the lock while it is held by
another processor. It is therefore unnecessary to use such an operation until the lock is
freed. Instead, other processors trying to acquire a lock that is in use can simply read the
current state of the lock and only use the atomic operation once the lock has been freed.
Listing 4 gives an alternate implementation of the lock function using this technique.

Here, one attempt is made to acquire the lock before entering the inner loop, which then
waits until the lock is freed. If the lock is already taken again on the test_and_set operation,
the CPU spins again in the inner loop. CPUs spinning in the inner loop only work on a
shared cache line and do not request the cache line exclusive. They work cache-local and
do not waste bus bandwidth. When CPU 1 releases the lock, it marks the cache line
exclusive and sets the lock variable to zero. The other CPUs re-read the cache line and try
to acquire the lock again.

Nevertheless, spin lock operations are still very time-consumptive, because they usually
involve at least one cache line transfer between caches or from memory.

4.2.2 Memory Barriers
With the superscalar architecture, parallelism was introduced into the CPU cores. In a
superscalar CPU, there are several functional units of the same type, along with additional
circuitry to dispatch instructions to the units. For instance, most superscalar designs include
more than one arithmetic-logical unit. The dispatcher reads instructions from memory and
decides which ones can be run in parallel, dispatching them to the two units. The
performance of the dispatcher is key to the overall performance of a superscalar design:
The units' pipelines should be as full as possible. A superscalar CPU's dispatcher hardware
therefore reorders instructions for optimal throughput. This holds true for load/store
operations as well.

For example, imagine a program that adds two integers from main memory. The first
argument that is fetched is not in the cache and must be fetched from main memory.
Meanwhile, the second argument is fetched from the cache. The second load operation is
likely to complete earlier. Meanwhile, a third load operation can be issued. The dispatcher
uses interlocks to prohibit that the add operation is issued before the load operations it
depends on are finished.

Also, most modern CPUs sport a small register set called store buffers, where several store
operations are gathered to be executed at once at a later time. They can be buffered in-order
(which is called total store ordering) or – as common with superscalar CPUs – out of order
(partial store ordering). In short: As long as a load or store operation does not access the

12

void lock(volatile lock_t *lock_status)
{

while (test_and_set(lock_status) == 1)
while (*lock_status == 1); // spin

}

Listing 4: Spin lock implementation avoiding excessive cache line
bouncing [Sch94]

same memory word as a prior store operation (or vice versa), they can be executed in any
possible order by the CPU.

This needs further measures to ensure correctness of SMP code. The simple atomic list
insert code from section 2.1 could be executed as shown in Figure 7.

The method requires the new node's next pointer (and all it's data) to be initialized before
the new element is inserted at the list's head. If these instructions are out of order, the list
will be in an inconsistent state until the second instruction completes. Meanwhile, another
CPU could traverse the list, the thread could be preempted, etc.

It is not necessary that both operations are executed right after each other, but it is
important that the first one was executed before the second. To force finishing of all read or
write operations in the instruction pipeline before the next operation is fetched, superscalar
CPUs have so-called memory barrier instructions. We distinguish read memory barriers
(wait until all pending read operations have completed), write memory barriers, and
memory barriers (wait until all pending memory operations have completed, read and
write). Correct code would read:

Instruction reordering can also cause operations in a critical section to "bleed out" (Figure
8). The line that claims to be in a critical section is obviously not, because the operation
releasing the lock variable was executed earlier. Another CPU could long ago have altered a
part of the data, with the results being unpredictable.

13

new->next = i->next;
smp_wmb(); // write memory barrier!
i->next = new;
Listing 5: Correct code of atomic list insertion on
machines without sequential memory model

Figure 7: Impact of non sequential memory model on atomic list insertion
algorithm

new->next = i->next;
i->next = new;

code in memory: execution order:
i->next = new;
new->next = i->next;

To prevent this, we have to alter our locking operations again (note that it is not necessary
to prevent load/store operations prior to the critical section to "bleed" into it. And of course,
dispatcher units do not override the logical instruction flow, so every operation in the
critical section will be executed after the CPU exits that while loop):

A memory barrier flushes the store buffer and stalls the pipelines (to carry out all pending
read/write operations before new ones are executed), so it negatively impacts the
performance proportional to the number of pipeline stages and number of functional units.
This is why the memory barrier operations take so much time in the chart presented earlier.
Atomic operations take so long because they also flush the store buffer in order to be
carried out immediately.

4.2.3 Hash-Table Benchmark
Below are the results of a benchmark that performed search operations on a hash table with
a dense array of buckets, doubly linked hash chains, and one element per hash chain. Under
the locking designs tested for this hash table were: Global spin lock, global reader/writer

14

void lock(volatile lock_t *lock_var)
{

while (test_and_set(lock_var) == 1)
while (*lock_var == 1); // spin

}

void unlock(volatile lock_t *lock_var)
{

mb(); // read-write memory barrier
*lock_var = 0;

}
Listing 6: Spin lock with memory barrier

Figure 8: Impact of weak store ordering on critical sections

data.foo = y; // in critical section
data.next = &bar;
lock_var = 0; / unlock */

code in memory:

execution order:
lock_var = 0; / unlock */
data.foo = y; // in critical section
data.next = &bar;

lock, per-bucket spin lock and rwlock and Linux' big reader lock. Especially the results for
the allegedly parallel reader/writer locks seem surprising, but only support the things said in
the last two sections: The locking instructions' overhead thwarts any parallelism.

The explanation for this is now rather simple (Figure 9): The acquisition and release of
rwlocks take so much time (remember the cache line bouncing etc.), that the actual critical
section is not executed parallel any more.

15

Image 2: Performance of several locking strategies for a hash
table ([McK01])

5 Lock-Avoiding Synchronization Primitives
Much effort has been put in developing synchronisation primitives that avoid locks. Lock-
free and wait-free synchronisation also plays a major part in real time operating systems,
where time guarantees must be given. Another way to reduce lock contention is by using
per-CPU data.

Two new synchronisation mechanisms that get by totally without locking or atomic
operations on the reader side were introduced into the Linux 2.6 kernel to address the above
issues: The SeqLock and the Read-Copy-Update mechanism. We will discuss them in
particular.

5.1 Seq Locks
Seq locks (short for sequence locks) are a variant of the reader-writer lock, based on spin
locks. They are intended for short critical sections and tuned for fast data access and low
latency.

In contrast to the rwlock, a sequence lock warrants writer access immediately, regardless of
any readers. Writers have to acquire a writer spin lock which provides mutual exclusion for
multiple writers. They then can alter the data without paying regard to possible readers.

Therefore, readers also do not need to acquire any lock to synchronize with possible

16

Figure 9: Effects of cache line bouncing and
memory synchronisation delay on rwlock's
efficiency ([McK03])

writers. Thus, a read access generally does not acquire a lock, but readers are in charge to
check if they read valid data: If a write access took place while the data was read, the data
is invalid and has to be read again. The identification of write accesses is realized with a
counter (see Figure 10). Every writer increments this zero-initialized counter once before
he changes any data, and again after all changes are done. The reader reads the counter
value before he reads the data, then compares it to the current counter value after reading
the data. If the counter value has increased, the reading was tampered by one or more
concurrent writers and the data has to be read again. Also, if the counter value was uneven
at the beginning of the read-side critical section, a writer was in progress while the data was
read and it has to be discarded. So, strictly speaking, the while loop's condition is
((count_pre != count_post) && (count_pre % 2 == 0)).

In the worst case, the readers would have to loop infinitely if there was a non-ending chain
of writers. But under normal conditions, the readers read the data successfully within a few,
if not only one tries. By minimizing the time spent in the read-side critical section, the
probability of being interrupted by a writer can be reduced greatly. Therefore, it is part of
the method to only copy the shared data in the critical section and work on it later.

Listing 7 shows how to read shared data protected by the seq lock functions of the Linux
kernel. time_lock is the seq lock variable, but read_seqbegin and read_
seqretry only read the seq lock's counter and do not access the lock variable.

5.2 The Read-Copy-Update Mechanism
As you can see, synchronisation is a mechanism and a coding convention. The coding
convention for mutual exclusion with a spin lock is, that you have to hold a lock before you
access the data protected by it, and that you have to release it after you are done. The

17

unsigned long seq;

do {
 seq = read_seqbegin(&time_lock);
 now = time;
} while(read_seqretry(&time_lock,seq));
 // value in "now" can now be used

Listing 7: Seq Lock: Read-side critical section

Figure 10: Seq Lock schematics (figure based upon [Qua04])

coding convention for non-blocking synchronisation is, that every data manipulation only
needs a single atomic operation (e.g. CASW, CASW2 or our atomic list update example).

The RCU mechanism is based on something called quiescent states. A quiescent state is a
point in time, where a process that has been reading shared data does not hold any
references to this data any more. With the RCU mechanism, processes can enter a read-
side critical section any time and can assume that the data they read is consistent as long as
they work on it. But after a process leaves it's read-side critical section, it must not hold any
references to the data any longer. The process enters the quiescent state.

This imposes some constraints on how to update shared data structures. As readers do not
check if the data they read is consistent (as in the SeqLock mechanism), writers have to
apply all their changes with one atomical operation. If a reader read the data before the
update, it sees the old state, if the reader reads the data after the update, it sees the new
state. Of course, readers should read data once and than work with it, and not read the same
data several times and than fail if they read differing versions. Consider a linked list
protected by RCU. To update an element of the list (see Figure 11), the writer has to read
the old element's contents, make a copy of them (1), update this element (2), and then
exchange the old element with the new one with an atomic operation (writing the new
element's address to the previous element's next pointer) (3).

As you can see, readers could still read stale data even after the writer has finished
updating, if they entered the read-side critical section before the writer finished (4).
Therefore, the writer cannot immediately delete the old element. It has to defer the
destruction, until all processes that were in a read-side critical section at the time the writer
finished have dropped their references to the stale data (5). Or in other words, entered the
quiescent state. This time span is called the grace period. After that time, there can be
readers holding references to the data, but none of them could possibly reference the old
data, because they started at a time when the old data was not visible any more. The old
element can be deleted (6).

18

Figure 11: The six steps of the RCU mechanism

prev cur next

cur

prev cur next

new

prev old next

new

next

prev next

new

4)

5)

6)3)

2)

1)
prev old

new

nextprev old

new

The RCU mechanism requires data that is stored within some sort of container that is
referenced by a pointer. The update step consists of changing that pointer. Thus, linked lists
are the most common type of data protected by RCU. Insertion and deletion of elements is
done like presented in section 2.1. Of course, we need memory barrier operations on
machines with weak ordering. More complex updates, like sorting a list, need some other
kind of synchronisation mechanism. If we assume that readers traverse a list in search of an
element once, and not several times back and forth (as we assumed anyways), we can also
use doubly linked lists (see Listing 8).

The RCU mechanism is optimal for read-mostly data structures, where readers can tolerate
stale data (it is for example used in the Linux routing table implementation). While readers
generally do not have to worry about much, things get more complex on the writer's side.
First of all, writers have to acquire a lock, just like with the seqlock mechanism. If they
would not, two writers could obtain a copy of a data element, perform their changes, and
then replace it. The data structure will still be intact, but one update would be lost. Second,
writers have to defer the destruction of an old version of the data until sometime. When
exactly is it safe to delete old data?

After all readers that were in a read-side critical section at the time of the update have left
their critical section, or, entered a quiescent state (Figure 12). A simple approach would be
to take a counter that indicates how many processes are within a read-side critical section,
and defer destruction of all stale versions of data elements until that time. But as you can
see, later readers are not taken into account, so this approach fails. We could also include a
reference counter in every data element, if the architecture features an atomic increment
operation. Every reader would increment this reference counter as it gets a reference to the

19

static inline void __list_add_rcu(struct list_head * new,
struct list_head * prev, struct list_head * next)

{
new->next = next;
new->prev = prev;
smp_wmb();
next->prev = new;
prev->next = new;

}
Listing 8: extract from Linux 2.6.14 kernel, list.h

Figure 12: RCU, Grace Period: After all processes that
entered a read-side critical section (gray) before the writer
(red) finished have entered a quiescent state, it is save
delete an old element

data element, and decrement it when the read-side critical section completes. If an old data
element has a refcount of zero, it can be deleted [McK01]. While this solves the problem, it
reintroduces the performance issues of atomic operations that we wanted to avoid.

Let us assume that a process in a RCU read-side critical section does not yield the CPU.
This means: Preemption is disabled while in the critical section and no functions that might
block must be used [McK04]. Then no references can be held across a context switch, and
we can fairly assume a CPU that has gone through a context switch to be in a quiescent
state. The earliest time when we can be absolutely sure that no process on any other CPU is
still holding a reference to stale data, is after every other CPU has gone through a context
switch at least once after the writer finished. The writer has to defer destruction of stale data
until then, either by waiting or by registering a callback function that frees the space
occupied by the stale data. This callback function is called after the grace period is over.
The Linux kernel features both variants.

A simple mechanism to detect when all CPUs have gone through a context switch is to start
a high priority thread on CPU 1 that repeatedly reschedules itself on the next CPU until it
reaches the last CPU. This thread then executes the callback functions or wakes up any
processes waiting for the grace period to end. There are more effective algorithms out there
to detect the end of a grace period, but these are out of the scope of this document.

Listing 9 presents the Linux RCU API (without the Linux RCU list API). Note that, while it
is necessary to guard read-side critical sections with rcu_read_lock and
rcu_read_unlock, the only thing these functions do (except for visually highlighting a
critical section) is disabling preemption for the critical section. If the Linux kernel is
compiled with PREEMPT_ENABLE=no, they do nothing. Write-side critical sections are
protected by spin_lock() and spin_unlock(), and wait for the grace period afterwards with
synchronize_kernel() or register a callback function to destroy the old element
with call_rcu().

20

Figure 13: Simple detection of a grace period: Thread "u"
runs once on every CPU [McK01]

The RCU mechanism is widely believed to have been developed at Sequent Computer
Systems, who were then bought by IBM, who holds several patents on this technique. The
patent holders have given permission to use this mechanism under the GPL. Therefore,
Linux is currently the only major OS using it. RCU is also part of the SCO claims in the
SCO vs. IBM lawsuit.

6 Conclusion
The introduction of SMP systems has greatly increased the complexity of locking in OS
kernels. In order to strive for optimal performance on all platforms, the operating system
designers have to meet conflictive goals: Increase granularity to increase scalability of their
kernels, and reduce using of locks to increase the efficiency of critical sections, and thus the
performance of their code. While a spin lock can always be used, it is not always the right
tool for the job. Non-blocking synchronisation, Seq Locks or the RCU mechanism offer
better performance than spin locks or rwlocks. But these synchronisation methods require
more effort than a simple replacement. RCU requires a complete rethinking and rewriting
of the data structures it is used for, and the code it is used in.

It took half a decade for Linux from it's first giant locked SMP kernel implementation to a
reasonably fine granular. This time could have been greatly reduced, if the Linux kernel had
been written as a preemptive kernel with fine granular locking from the beginning. When it
comes to mutual exclusion, it is always a good thing to think the whole thing through from
the beginning. Starting with an approach that is ugly but works, and tuning it to a well
running solution later, often leaves you coding the same thing twice, and experiencing
greater problems than if you tried to do it nicely from the start.

As multiprocessor systems and modern architectures like superscalar, super pipelined, and
hyperthreaded CPUs as well as multi-level caches become normalcy, simple code that looks
fine at first glance can have severe impact on performance. Thus, programmers need to
have a thorough understanding of the hardware they write code for.

Further Reading

This paper detailed on the performance aspects of locking in SMP kernels. If you are

21

void synchronize_kernel(void);
void call_rcu(struct rcu_head *head,
 void (*func)(void *arg),
 void *arg);
struct rcu_head {
 struct list_head list;
 void (*func)(void *obj);
 void *arg;
};
void rcu_read_lock(void);
void rcu_read_unlock(void);

Listing 9: The Linux 2.6 RCU API functions

interested in the implementation complexity of fine grained SMP kernels or experiences
from performing a multiprocessor port, please refer to [Kag05]. For a more in-depth
introduction to SMP architecture and caching, read Curt Schimmel's book ([Sch94]).

If you want to gain deeper knowledge of the RCU mechanism, you can start at Paul E.
McKenney's RCU website (http://www.rdrop.com/users/paulmck/RCU).

References

[Bry02] R. Bryant, R. Forester, J. Hawkes: Filesystem performance and scalability in
Linux 2.4.17. Proceedings of the Usenix Annual Technical Conference, 2002

[Cam93] Mark D. Campbell, Russ L. Holt: Lock-Granularity Analysis Tools in
SVR4/MP. IEEE Software, March 1993

[Eti05] Yoav Etison, Dan Tsafrir et. al.: Fine Grained Kernel Logging with KLogger:
Experience and Insights. Hebrew University, 2005

[Kag05] Simon Kågström: Performance and Implementation Complexity in
Multiprocessor Operating System Kernels. Blekinge Institute of Technology,
2005

[Kra01] M. Kravetz, H. Franke: Enhancing the Linux scheduler. Proceedings of the
Ottawa Linux Symposium, 2001

[McK01] Paul E. McKenney: Read-Copy Update. Proceedings of the Ottawa Linux
Symposium, 2002

[McK03] Paul E. McKenney: Kernel Korner - Using RCU in the Linux 2.5 Kernel.
Linux Magazine, 2003

[McK04] Paul E. McKenney: RCU vs. Locking Performance on Different Types of CPUs.
http://www.rdrop.com/users/paulmck/RCU/LCA2004.02.13a.pdf, 2004

[McK05] Paul McKenney: Abstraction, Reality Checks, and RCU.
http://www.rdrop.com/users/paulmck/RCU/RCUintro.2005.07.26bt.pdf, 2005

[Qua04] Jürgen Quade, Eva-Katharina Kunst: Linux Treiber entwickeln. Dpunkt.verlag,
2004

[Sch94] Curt Schimmel: UNIX Systems for Modern Architectures: Symmetric
Multiprocessing and Caching for Kernel Programmers. Addison Wesley, 1994

22

	Locking in OS Kernels for SMP Systems
	1Introduction
	1.1Introduction to SMP systems
	1.2Introduction to Locking

	2The basic SMP locking primitives
	2.1Atomic Operations
	2.2Spin Locks
	2.2.1IRQ-Safe Spin Locks
	2.2.2Enhancements of the simple Spin Lock

	2.3Semaphores (mutex)
	2.4Reader/Writer Locks

	3Locking Granularity in SMP Kernels
	3.1Giant Locking
	3.2Coarse-grained Locking
	3.3Fine-grained Locking

	4Performance Considerations
	4.1Scalability
	4.2Performance Penalty of Lock Operations
	4.2.1Caches
	4.2.2Memory Barriers
	4.2.3Hash-Table Benchmark

	5Lock-Avoiding Synchronization Primitives
	5.1Seq Locks
	5.2The Read-Copy-Update Mechanism

	6Conclusion

