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Abstract: When designing an operating system kernel for a shared memory 
symmetric  multiprocessor  system,  shared  data  has  to  be  protected  from 
concurrent  access.  Critical  issues  in  this  area  are  the  increasing  code 
complexity as well as the performance and scalability of a SMP kernel. An 
introduction to SMP-safe locking primitives, and how locking can be applied 
to  SMP kernels  will  be  given,  and  we  will  focus  on  how  to  increase 
scalability by reducing lock contention, and the growing negative impact on 
locking  performance  by  caches  and  memory  barriers.  New,  performance-
aware approaches for mutual exclusion in SMP systems will be presented, 
that made it into today's Linux 2.6 kernel: The SeqLock and the read-copy-
update (RCU) mechanism.



1 Introduction

1.1 Introduction to SMP systems
As Moore's law is about to fail, since clock speeds can not be raised by a factor of two 
every year any more as it used to be in the "good old times", most of the gains in computing 
power  are  now  achieved  by  increasing  the  number  of  processors  or  processing  units 
working parallel: The triumph of SMP systems is inevitable.

The abbreviation SMP stands for tightly coupled, shared memory symmetric multiprocessor 
system. A set of equal CPUs accesses a common physical memory (and I/O ports) via a 
shared front side bus. Thus, the FSB becomes a contended resource. A bus master manages 
all  read/write  accesses to the bus.  A read or  write  operation is  guaranteed to complete 
atomically, which means, before any other read or write operation is carried out on the bus. 
If  two  CPUs  access  the  bus  within  the  same  clock  cycle,  the  bus  master 
nondeterministically (from the programmers view) selects one of them to be first to access 
the bus. If a CPU accesses the bus while it is still occupied, the operation is delayed. This 
can be seen as a hardware measure of synchronisation.

1.2 Introduction to Locking
If more than one process can access data at the same time, as is the case in preemptive 
multitasking systems and SMP systems, mutual exclusion must be introduced to protect this 
shared data.

We can divide mutual exclusion into three classes: Short-term mutual exclusion, short-term 
mutual exclusion with interrupts, and long-term mutual exclusion  [Sch94]. Let us take a 
look at the typical uniprocessor (UP) kernel solutions for these problem classes, and why 
they do not work for SMP systems.

Short-term mutual exclusion refers to preventing race conditions in short critical sections. 
They occur, when two  processes access the same data structure in memory "at the same 
time", thus causing inconsistent states of data. On UP systems, this could only occur if one 
process is preempted by the other. To protect critical sections, they are guarded with some 
sort of preempt_disable/ preempt_enable call to disable preemption, so a process 
can  finish  the  critical  section  without  being  interrupted  by  another  process.  In  a  non-
preemptive kernel, no measures have to be taken at all. Unfortunately, this does not work 
for SMP systems, because processes do not have to be preempted to run "parallel", there 
can be two processes executing the exact same line of code at the exact same time. No 
disabling of preemption will prevent that.

Short-term mutual exclusion with interrupts involves interrupt handlers that access shared 
data. To prevent interrupt handler code from interrupting a process in a critical section, it is 
sufficient  to guard a critical section in the process context  with some sort of  cli/sti 
(disable/ enable all interrupts) call.  Unfortunately, this approach does not work on SMP 
systems as well,  because all  other CPUs'  interrupts are still  active and can execute the 
interrupt handler code at any time.

Long-term mutual exclusion refers to processes being held up accessing a shared resource 
for a  longer time. For example,  once a  write system call  to a  regular  file  begins,  it  is 
guaranteed by the operating system that any other read or write system calls to the same file 
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will be held until the current one completes. A write system call may require one or more 
disk I/O operations in order to complete the system call. Disk I/O operations are relatively 
long operations when compared to the amount of work that the CPU can accomplish during 
that  time. It  would therefore be highly undesirable to inhibit  preemption for  such long 
operations, because the CPU would sit idle waiting for the I/O to complete. To avoid this, 
the process executing the write system call needs to allow itself to be preempted so other 
processes  can  run.  As  you  probably  already  know,  semaphores  are  used  to  solve  this 
problem. This also holds true for SMP systems.

2 The basic SMP locking primitives
When we talk about mutual exclusion, we mean that we want changes to appear as if they 
were an atomic operation. If we can not update data with an atomic operation, we need to 
make an  update  uninterruptible  and sequentialize  it  with  all  other  processes  that  could 
access the data. But sometimes, we can.

2.1 Atomic Operations
Most SMP architectures possess some operations that read and change data within a single, 
uninterruptible step, called atomic operations. Common atomic operations are test and set 
(TSR), which returns the current value of a memory location and replaces it with a given 
new value, compare and swap (CAS), which compares the content of a memory location 
with a given value, and, if they equal, replaces it with a given new value, or the load link/ 
store  conditional  instruction  pair  (LL/SC).  Many  SMP  systems  also  feature  atomic 
arithmetical  operations:  Addition  by  given  value,  subtraction  by  given  value,  atomic 
increment, decrement, among others.

The table below is an example of how the line  counter++ might appear in assembler 
code ([Sch94]). If this line is executed at the same time by two CPUs, the result is wrong, 
because the operation is not atomical.

CPU 1 CPU 2
Time Instruction Executed Register 

R0
Value of 
Counter

Instruction Executed Register 
R0

1 load R0, counter 0 0 load R0, counter 0

2 add R0, 1 1 0 add R0, 1 1

3 store R0, counter 1 1 store R0, counter 1

To solve such problems without extra locking, one can use an atomic increment operation 
as shown in Listing 1. (In Linux, the atomic operations are defined in atomic.h. Operations 
not supported by the hardware are emulated with critical sections.)

The shared data is still there, but the critical section could be eliminated. Atomic updates 
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atomic_t counter = ATOMIC_INIT(0);
atomic_inc(&counter);
Listing 1: Atomic increment in Linux. 



can be done on several common occasions, for example the replacement of a linked list 
element (Listing 2). Not even a special atomic operation is necessary to do that.

Non-blocking synchronisation algorithms solely rely on atomic operations.

2.2 Spin Locks
Spin locks are based on some atomic operation, for example test and set. The principle is 
simple: A flag variable indicates if a process is currently in the critical section (lock_var = 
1) or if no process is in the critical section (lock_var = 0). A process spins (busy waits) until 
the lock is reset, then sets the lock. Testing and setting of the lock status flag must be done 
in one step, with an atomic operation. To release the lock, a process resets the lock variable. 
Listing 3 shows a possible implementation for lock and unlock.

Note that a spin lock can not be acquired recursively – it would deadlock on the second call 
to lock. This has two consequences: A process holding a spin lock may not be preempted, 
or else a deadlock situation could occur. And spin locks can not be used within interrupt 
handlers, because if an interrupt handler tries to acquire a lock that is already held by the 
process it interrupted, it deadlocks.

2.2.1 IRQ-Safe Spin Locks
The Linux kernel features several spin lock variants that are safe for using with interrupts. 
A  critical  section  in  process  context  is  guarded  by  spin_lock_irq and 
spin_unlock_irq,  while  critical  sections  in  interrupt  handlers  are  guarded  by  the 
normal spin_lock and spin_unlock. The only difference between these functions is, 
that the irq-safe versions of  spin_lock disable all interrupts on the local CPU for the 
critical section. The possibility of a deadlock is therefore eliminated.

Figure 1 shows how two CPUs interact when trying to acquire the same irq-safe spin lock. 
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// set up new element
new->data = some_data;
new->next = old->next;
// replace old element with it
prev->next = new;
Listing 2: Atomical update of single linked list, replace 
"old" with "new"

void lock(volatile int *lock_var_p) {
while (test_and_set_bit(0, lock_var_p) == 1);

}

void unlock(volatile int *lock_var_p) {
*lock_var_p = 0;

}

Listing 3: Spin lock [Sch94]



While CPU 1 (in process context) is holding the lock, any incoming interrupt requests on 
CPU 1 are stalled until the lock is released. An interrupt on CPU 2 busy waits on the lock, 
but it does not deadlock. After CPU 1 releases the lock, CPU 2 (in interrupt context) obtains 
it, and CPU 1 (now executing the interrupt handler) waits for CPU 2 to release it.

2.2.2 Enhancements of the simple Spin Lock
Sometimes it is wanted to allow spin locks to be nested. To do so, the spin lock is extended 
by a nesting counter and a variable indicating which CPU holds the lock. If the lock is held, 
the lock function checks if the current CPU is the one holding the lock. In this case, the 
nesting  counter  is  incremented  and  it  exits  from  the  spin  loop.  The  unlock  function 
decrements the nesting counter. The lock is released when the unlock function has been 
called the same number of times the lock function was called before. This kind of spin lock 
is called a recursive lock.

Locks can also be modified to allow blocking. Linux' and FreeBSD's big kernel lock is 
dropped if the process holding it sleeps (blocks), and reacquired when it wakes up.

Solaris 2.x provides a type of locking known as adaptive locks. When one thread attempts 
to acquire one of these that is held by another thread, it checks to see if the second thread is 
active on a processor. If it is, the first thread spins. If the second thread is blocked, the first 
thread blocks as well.

2.3 Semaphores (mutex)
Aside from the classical use of semaphores explained in section 1.1, semaphores (initialized 
with a counter value of 1) can also be used for protecting critical sections. For performance 
reasons, semaphores used for this kind of work are often realized as a separate primitive, 
called mutex, that replaces the counter with a simple lock status flag.

Using mutexes instead of spin locks is productive, if the critical section takes longer than a 
context switch. Else, the overhead of blocking compared to busy waiting for a lock to be 
released is worse. On the pro side, mutexes imply a kind of fairness, while processes could 
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Figure 1: IRQ-safe spin locks



starve on heavily contended spin locks. Mutexes can not be used in interrupts, because it is 
generally not allowed to block in interrupt context.

A semaphore is a complex shared data structure itself, and must therefore be protected by 
an own spin lock.

2.4 Reader/Writer Locks
As reading a  data structure does  not  affect  the integrity  of  data,  it  is  not  necessary to 
mutually exclude two processes from reading the same data at the same time. If  a data 
structure is read often, allowing readers to operate in parallel is a great advantage for SMP 
software.

An rwlock keeps count of the readers currently holding a read-only lock and has a queue 
for both waiting writers and waiting readers. If the writer queue is empty, new readers may 
grab the lock. If a writer enters the scene, it has to wait for all readers to complete, then it 
gets an exclusive lock. Meanwhile arriving writers or readers are queued until the write 
lock is dropped. Then, all readers waiting in the queue are allowed to enter, and the game 
starts anew (waiting writers are put on hold after a writer completes to prevent starvation of 
readers). Figure 2 shows a typical sequence.

The rwlock involves a marginal overhead, but  should  yield almost linear scalability for 
read-mostly data structures (we will see about this later).

3 Locking Granularity in SMP Kernels

3.1 Giant Locking
The designers of the Linux operating systems did not have to worry much about mutual 
exclusion  in  their  uniprocessor  kernels,  because  they  made  the  whole  kernel  non-
preemptive (see section 1.1). The first Linux SMP kernel (version 2.0) used the most simple 
approach to make the traditional UP kernel code work on multiple CPUs: It protected the 
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Figure 2: reader/writer lock



whole kernel with a single lock, the big kernel lock (BKL). The BKL is a spin lock that 
could be nested and is blocking-safe (see section 2.2.2).

There could be no two CPUs in the kernel at the same time. The only advantage of this was 
that the rest of the kernel could be left unchanged.

3.2 Coarse-grained Locking
In Linux 2.2, the BKL was removed from the kernel entry points, and each subsystem was 
protected by an own lock. Now, a file system call would not have to wait for a sound driver 
routine or a network subsystem call to finish. Still, it was not data that was protected by the 
locks, bot rather concurrent function calls that were sequentialized. Also, the BKL could not 
be removed from all modules, because it was often unclear which data it protected. And 
data protected by the BKL could be accessed anywhere in the kernel.

3.3 Fine-grained Locking
Fine-grained locking means: Individual data structures, not whole subsystems or modules, 
are protected by their own locks. The degree of granularity can be increased from locks 
protecting big data structures (like, for example, a whole file system or the whole process 
table) to locks protecting individual data structures (for example, a single file or a process 
control  block)  or  even  single  elements  of  a  data  structure.  Fine-grained  locking  was 
introduced in the Linux 2.4 kernel series, and has been furthered in the 2.6 series.

Fine-grained locking has also been introduced into the FreeBSD operating system by the 
SMPng team, into the Solaris kernel, and into the Windows NT kernels as well.

Unfortunately, the BKL is still not dead. Changes to locking code had to be implemented 
very cautiously, as to not bring in hard to track down deadlock failures. So, every time a 
BKL was considered useless for a piece of code, it was moved into the functions this code 
called, because it was not always obvious if these functions relied on the BKL. Thus, the 
occurrences of BKL increased even more, and module maintainers did not always react to 
calls to remove the BKL from their code.
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Figure 3: Visual description of locking granularity in OS kernels [Kag05]



4 Performance Considerations
The Linux 2.0.40 contains a total of 17 BKL calls, while the Linux 2.4.30 kernel contains a 
total of 226 BKL, 329 spin lock and 121 rwlock calls. The Linux 2.6.11.7 kernel contains 
101 BKL, 1717 spin lock and 349 rwlock calls, as well as 56 seq lock and 14 RCU (more 
on these synchronisation mechanisms later) (numbers taken from [Kag05]).

The reason, why the Linux programmers took so much work upon them, is that coarse-
grained kernels scale poorly on more than 3-4 CPUs. The optimal performance for a n-CPU 
SMP system is n times the performance of a 1-CPU system of the same type. But this 
optimal performance can only be achieved if all CPUs are doing productive work all the 
time. Busy waiting on a lock wastes time, and the more contended a lock is, the more 
processors will likely busy wait to get it.

Hence, the kernel developers run special lock contention benchmarks to detect which locks 
have to be split up to distribute the invocations on them. The lock variables are extended by 
a lock-information structure that contains a counter for hits (successful attempts to grab a 
lock),  misses (unsuccessful  attempts  to  grab a lock),  and  spins (total  of  waiting loops) 
[Cam93]. The number of spins/misses shows how contended a lock is. If this number is 
high, processes waste a lot of time waiting for the lock. 

Measuring  lock  contention  is  a  common  practice  to  look  for  bottlenecks.  Bryant  and 
Hawkes wrote a specialized tool to measure lock contention in the kernel, which they used 
to analyze filesystem performance  [Bry02]. Others  [Kra01] focused on contention in the 
2.4.x scheduler,  which has since been completely rewritten.  Today, the Linux scheduler 
mostly operates on per-CPU ready queues and scales fine up to 512 CPUs.

Locking is most pronounced with applications that access shared resources, such as the 
virtual filesystem (VFS) and network, and applications that spawn many processes. Etison 
et.  al.  used several  benchmarks that  stress these subsystems as an example of  how the 
KLogger kernel logging and analysis tool can be used for measuring lock contention , using 
varying degrees of parallelization: They measured the percentage of time spent spinning on 
locks during make running a parallel compilation of the Linux kernel, Netperf (a network 
performance evaluation tool), and an Apache web server with Perl CGI being stress-tested 
[Eti05] (see Figure 5). 

Measurements like these help to spot and eliminate locking bottlenecks.

8

Figure 4: Extract from a lock-contention benchmark on Unix SVR4/MP [Cam93]

hits misses spins spins/miss

_PageTableLockInfo 1 9,656 80 9,571 120

_DispatcherQueueLockInfo 1 49,979 382 30,508 80

_SleepHashQueueLockInfo 1 25,549 708 56,192 79



4.1 Scalability
Simon Kågström made similar benchmarks to compare the scalability of the Linux kernel 
on 1-8 CPUs from version 2.0 to 2.6. He measured the relative speedup in regard to the 
(giant locked) 2.0.40 UP kernel with the Postmark benchmark (Figure 6).

The result of this benchmark is not surprising. As we can see, the more we increase locking 
granularity (Linux 2.6), the better the system scales. But how far can we increase locking 
granularity?
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Figure 5: Percentage of cycles spent on spinning on locks for  
each of the test applications [Eti05]

Figure 6: Postmark benchmark of several Linux kernels, CONFIG_SMP=y [Kag05]



Of course, we cannot ignore the increasing complexity induced by finer locking granularity. 
As  more  locks  have  to  be  held  to  perform  a  specific  operation,  the  risk  of  deadlock 
increases. There is an ongoing discussion in the Linux community about how much locking 
hierarchy is too much. With more locking comes more need for documentation of locking 
order,  or  need  for  tools  like  deadlock  analyzers.  Deadlock  faults  are  among  the  most 
difficult to come by.

The overhead of locking operations matters as well. The CPU does not only spend time in a 
critical section, it also takes some time to acquire and to release a lock. Compare the graph 
of the 2.6 kernel with the 2.4 kernel for less than four CPUs: The kernel with more locks is 
the  slower  one.  The  efficiency  of  executing  a  critical  section  can  be  mathematically 
expressed as: Time within critical section / (Time within critical section + Time to acquire 
lock + Time to release lock). If you split a critical section into two, the time to acquire and 
release a lock can be roughly multiplied by two.

Surprisingly, even one time the acquisition of a lock is generally one time too much, and 
the performance penalty of a simple lock acquisition, even if successful at the first attempt, 
is becoming worse and worse. To understand why, we have to forget the basic model of a 
simple scalar processor without caches and look at today's reality.

4.2 Performance Penalty of Lock Operations
Image 1 shows typical instruction costs of several operations on a 8-CPU 1.45 GHz PPC 
system1. The gap between normal instructions, cache-hitting memory accesses (not listed 
here; they are generally 3-4 times faster than an atomic increment operation) and a lock 
operation becomes obvious.

Let us look at the architecture of today's SMP systems and it's impact on our spin lock.

4.2.1 Caches
As CPU power has increased roughly by factor 2 each year, memory speeds have not kept 
pace, and increased by only 10 to 15% each year. Thus, memory operations impose a big 
performance penalty on todays' computers.

1 If you wonder why an instruction takes less time then a CPU cycle, remember that we 
are looking at a 8-CPU SMP system, and view these numbers as "typical instruction 
cost".
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Image 1: Instruction costs on a 8-CPU 1.45GHz PPC 
system [McK05]



As a consequence of this development, small SRAM caches were introduced, which are 
much  faster  than  main  memory.  Due  to  temporal  and  spatial  locality  of  reference  in 
programs (see  [Sch94] for explanation),  even a comparatively small  cache achieves hit 
ratios  of 90% and higher. On SMP systems, each processor has its own cache. This has the 
big advantage that cache hits cause no load on the common memory bus, but it introduces 
the problem of cache consistency. 

When a memory word is accessed by a CPU, it is first looked up in the CPU's local cache. 
If it is not found there, the whole cache line2 containing the memory word is copied into the 
cache. This is called a cache miss (to increase the number of cache hits, it  is thus very 
advisable to align data along cache lines in physical memory and operate on data structures 
that fit within a single cache line). Subsequent read accesses to that memory address will 
cause a cache hit. But what happens on a write access to a memory word that lies in the 
cache? This depends on the "write policy".

"Write through" means that after every write access, the cache line is written back to main 
memory. This insures consistency between the cache and memory (and between all caches 
of a SMP system, if the other caches snoop the bus for write accesses), but it is also the 
slowest method,  because a memory access is needed on every write access to a cache line.

The "write back" policy is much more common. On a write access, data is not written back 
to memory immediately, but the cache line gets a "modified" tag. If a cache line with a 
modified tag is finally replaced by another line, it's content is written back to memory. 
Subsequent write operations hit in the cache as long as the line is not removed.

On SMP systems, the same piece from physical memory could lie in more then one cache. 
The SMP architecture needs a protocol to insure consistency between all caches. If two 
CPUs want  to read the same memory word from their  cache, everything goes well.  In 
addition, both read operations can execute at the same time. But if two CPUs wanted to 
write to the same memory word in their cache at the same time, there would be a modified 
version of this cache line in both caches afterwards and thus, two versions of the same 
cache line would exist. To prevent this, a CPU trying to modify a cache line has to get the 
"exclusive" right on it.  With that,  this cache line is  marked invalid in all  other caches. 
Another CPU trying to modify a cache line has to wait until CPU 1 drops the exclusive 
right, and has to re-read the cache line from CPU 1's cache.

Let us look at the effects of the simple spin lock code from Listing 3, if a lock is held by 
CPU 1, and CPU 2 and 3 wait for it:

The lock variable is set by the test_and_set operation on every spinning cycle. While CPU 
1  is  in  the  critical  section,  CPU 2  and  3  constantly  read  and  write  to  the  cache  line 
containing the lock variable. The line is constantly transferred from one cache to the other, 
because both CPUs must acquire an exclusive copy of the line when they test-and-set the 
lock variable again. This is called "cache line bouncing", and it imposes a big load on the 
memory bus. The impact on performance would be even worse if the data protected by the 
lock was also lying in the same cache line.

We can however modify the implementation of the spin lock to fit the functionality of a 

2 To find data in the cache, each line of the cache (think of the cache as a spreadsheet) has 
a tag containing it's address. If one cache line would consist of only one memory word, 
a lot of lines and thus, a lot of address tags, would be needed. To reduce this overhead, 
cache lines contain usually about 32-128 bytes, accessed by the same tag, and the least 
significant bits of the address serve as the byte offset within the cache line.
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cache.

The atomic read-modify-write operation cannot possibly acquire the lock while it is held by 
another processor.  It  is therefore unnecessary to use such an operation until  the lock is 
freed. Instead, other processors trying to acquire a lock that is in use can simply read the 
current state of the lock and only use the atomic operation once the lock has been freed. 
Listing 4 gives an alternate implementation of the lock function using this technique.

Here, one attempt is made to acquire the lock before entering the inner loop, which then 
waits until the lock is freed. If the lock is already taken again on the test_and_set operation, 
the CPU spins again in the inner loop. CPUs spinning in the inner loop only work on a 
shared cache line and do not request the cache line exclusive. They work cache-local and 
do  not  waste  bus  bandwidth.  When CPU 1  releases  the  lock,  it  marks  the  cache  line 
exclusive and sets the lock variable to zero. The other CPUs re-read the cache line and try 
to acquire the lock again.

Nevertheless, spin lock operations are still very time-consumptive, because they usually 
involve at least one cache line transfer between caches or from memory.

4.2.2 Memory Barriers
With  the  superscalar  architecture,  parallelism was  introduced into  the  CPU cores.  In  a 
superscalar CPU, there are several functional units of the same type, along with additional 
circuitry to dispatch instructions to the units. For instance, most superscalar designs include 
more than one arithmetic-logical unit. The dispatcher reads instructions from memory and 
decides  which  ones  can  be  run  in  parallel,  dispatching  them  to  the  two  units.  The 
performance of the dispatcher is key to the overall performance of a superscalar design: 
The units' pipelines should be as full as possible. A superscalar CPU's dispatcher hardware 
therefore  reorders  instructions  for  optimal  throughput.  This  holds  true  for  load/store 
operations as well.

For  example,  imagine  a  program that  adds  two integers  from main  memory.  The  first 
argument  that  is  fetched is  not  in  the  cache  and must  be  fetched from main memory. 
Meanwhile, the second argument is fetched from the cache. The second load operation is 
likely to complete earlier. Meanwhile, a third load operation can be issued. The dispatcher 
uses interlocks to prohibit  that  the add operation is  issued before the load operations it 
depends on are finished.

Also, most modern CPUs sport a small register set called store buffers, where several store 
operations are gathered to be executed at once at a later time. They can be buffered in-order 
(which is called total store ordering) or – as common with superscalar CPUs – out of order 
(partial store ordering). In short: As long as a load or store operation does not access the 
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void lock(volatile lock_t *lock_status)
{

while (test_and_set(lock_status) == 1)
while (*lock_status == 1); // spin

}

Listing 4: Spin lock implementation avoiding excessive cache line 
bouncing [Sch94]



same memory word as a prior store operation (or vice versa), they can be executed in any 
possible order by the CPU.

This needs further measures to ensure correctness of SMP code. The simple atomic list 
insert code from section 2.1 could be executed as shown in Figure 7.

The method requires the new node's next pointer (and all it's data) to be initialized before 
the new element is inserted at the list's head. If these instructions are out of order, the list 
will be in an inconsistent state until the second instruction completes. Meanwhile, another 
CPU could traverse the list, the thread could be preempted, etc.

It  is  not  necessary  that  both  operations  are  executed  right  after  each  other,  but  it  is 
important that the first one was executed before the second. To force finishing of all read or 
write operations in the instruction pipeline before the next operation is fetched, superscalar 
CPUs have so-called memory barrier instructions.  We distinguish read memory barriers 
(wait  until  all  pending  read  operations  have  completed),  write  memory  barriers,  and 
memory  barriers  (wait  until  all  pending  memory  operations  have  completed,  read  and 
write). Correct code would read:

Instruction reordering can also cause operations in a critical section to "bleed out" (Figure
8). The line that claims to be in a critical section is obviously not, because the operation 
releasing the lock variable was executed earlier. Another CPU could long ago have altered a 
part of the data, with the results being unpredictable.
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new->next = i->next;
smp_wmb(); // write memory barrier!
i->next = new;
Listing 5: Correct code of atomic list insertion on 
machines without sequential memory model

Figure 7: Impact of non sequential memory model on atomic list insertion 
algorithm

new->next = i->next;
i->next = new;

code in memory: execution order:
i->next = new;
new->next = i->next;



To prevent this, we have to alter our locking operations again (note that it is not necessary 
to prevent load/store operations prior to the critical section to "bleed" into it. And of course, 
dispatcher  units  do not  override  the  logical  instruction  flow,  so every operation in  the 
critical section will be executed after the CPU exits that while loop):

A memory barrier flushes the store buffer and stalls the pipelines (to carry out all pending 
read/write  operations  before  new  ones  are  executed),  so  it  negatively  impacts  the 
performance proportional to the number of pipeline stages and number of functional units. 
This is why the memory barrier operations take so much time in the chart presented earlier. 
Atomic operations take so long because they also flush the store buffer  in order to be 
carried out immediately.

4.2.3 Hash-Table Benchmark
Below are the results of a benchmark that performed search operations on a hash table with 
a dense array of buckets, doubly linked hash chains, and one element per hash chain. Under 
the locking designs tested for this hash table were: Global spin lock, global reader/writer 
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void lock(volatile lock_t *lock_var)
{

while (test_and_set(lock_var) == 1)
while (*lock_var == 1); // spin

}

void unlock(volatile lock_t *lock_var)
{

mb(); // read-write memory barrier
*lock_var = 0;

}
Listing 6: Spin lock with memory barrier

Figure 8: Impact of weak store ordering on critical sections

data.foo = y; // in critical section
data.next = &bar;
*lock_var = 0; /* unlock */

code in memory:

execution order:
*lock_var = 0; /* unlock */
data.foo = y; // in critical section
data.next = &bar;



lock, per-bucket spin lock and rwlock and Linux' big reader lock. Especially the results for 
the allegedly parallel reader/writer locks seem surprising, but only support the things said in 
the last two sections: The locking instructions' overhead thwarts any parallelism.

The explanation for this is now rather simple (Figure 9): The acquisition and release of 
rwlocks take so much time (remember the cache line bouncing etc.), that the actual critical 
section is not executed parallel any more.
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Image 2: Performance of several locking strategies for a hash 
table ([McK01])



5 Lock-Avoiding Synchronization Primitives
Much effort has been put in developing synchronisation primitives that avoid locks. Lock-
free and wait-free synchronisation also plays a major part in real time operating systems, 
where time guarantees must be given. Another way to reduce lock contention is by using 
per-CPU data.

Two  new  synchronisation  mechanisms  that  get  by  totally  without  locking  or  atomic 
operations on the reader side were introduced into the Linux 2.6 kernel to address the above 
issues:  The  SeqLock  and  the  Read-Copy-Update  mechanism.  We will  discuss  them in 
particular.

5.1 Seq Locks
Seq locks (short for sequence locks) are a variant of the reader-writer lock, based on spin 
locks. They are intended for short critical sections and tuned for fast data access and low 
latency.

In contrast to the rwlock, a sequence lock warrants writer access immediately, regardless of 
any readers. Writers have to acquire a writer spin lock which provides mutual exclusion for 
multiple writers. They then can alter the data without paying regard to possible readers.

Therefore,  readers  also  do  not  need  to  acquire  any  lock  to  synchronize  with  possible 
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Figure 9: Effects of cache line bouncing and 
memory synchronisation delay on rwlock's 
efficiency ([McK03])



writers. Thus, a read access generally does not acquire a lock, but readers are in charge to 
check if they read valid data: If a write access took place while the data was read, the data 
is invalid and has to be read again. The identification of write accesses is realized with a 
counter (see  Figure 10). Every writer increments this zero-initialized counter once before 
he changes any data, and again after all changes are done. The reader reads the counter 
value before he reads the data, then compares it to the current counter value after reading 
the data.  If  the counter  value has increased, the reading was tampered by one or more 
concurrent writers and the data has to be read again. Also, if the counter value was uneven 
at the beginning of the read-side critical section, a writer was in progress while the data was 
read  and  it  has  to  be  discarded.  So,  strictly  speaking,  the  while  loop's  condition  is 
((count_pre != count_post) && (count_pre % 2 == 0)).

In the worst case, the readers would have to loop infinitely if there was a non-ending chain 
of writers. But under normal conditions, the readers read the data successfully within a few, 
if not only one tries. By minimizing the time spent in the read-side critical section, the 
probability of being interrupted by a writer can be reduced greatly. Therefore, it is part of 
the method to only copy the shared data in the critical section and work on it later.

Listing 7 shows how to read shared data protected by the seq lock functions of the Linux 
kernel.  time_lock is  the  seq  lock  variable,  but  read_seqbegin and  read_ 
seqretry only read the seq lock's counter and do not access the lock variable.

5.2 The Read-Copy-Update Mechanism
As you can see,  synchronisation is  a  mechanism and a coding convention.  The coding 
convention for mutual exclusion with a spin lock is, that you have to hold a lock before you 
access the data protected by it,  and that you have to release it  after you are done. The 
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unsigned long seq;

do {
   seq = read_seqbegin(&time_lock);
   now = time;
} while( read_seqretry(&time_lock,seq) );
   // value in "now" can now be used

Listing 7: Seq Lock: Read-side critical section

Figure 10: Seq Lock schematics (figure based upon [Qua04])



coding convention for non-blocking synchronisation is, that every data manipulation only 
needs a single atomic operation (e.g. CASW, CASW2 or our atomic list update example).

The RCU mechanism is based on something called quiescent states. A quiescent state is a 
point  in  time,  where  a  process  that  has  been  reading  shared  data  does  not  hold  any 
references to this data any more. With the RCU mechanism,  processes can enter a read-
side critical section any time and can assume that the data they read is consistent as long as 
they work on it. But after a process leaves it's read-side critical section, it must not hold any 
references to the data any longer. The process enters the quiescent state.

This imposes some constraints on how to update shared data structures. As readers do not 
check if the data they read is consistent (as in the SeqLock mechanism), writers have to 
apply  all their changes with  one atomical operation. If a reader read the data before the 
update, it sees the old state, if the reader reads the data after the update, it sees the new 
state. Of course, readers should read data once and than work with it, and not read the same 
data  several  times  and  than  fail  if  they  read  differing  versions.  Consider  a  linked  list 
protected by RCU. To update an element of the list (see Figure 11), the writer has to read 
the old element's contents,  make a copy of them  (1),  update this element  (2),  and then 
exchange the old element with the new one with an atomic operation (writing the new 
element's address to the previous element's next pointer) (3).

As  you  can  see,  readers  could  still  read  stale  data  even  after  the  writer  has  finished 
updating,  if  they  entered  the  read-side  critical  section  before  the  writer  finished  (4). 
Therefore,  the  writer  cannot  immediately  delete  the  old  element.  It  has  to  defer  the 
destruction, until all processes that were in a read-side critical section at the time the writer 
finished have dropped their references to the stale data (5). Or in other words, entered the 
quiescent state. This time span is called the  grace period.  After that time, there can be 
readers holding references to the data, but none of them could possibly reference the old 
data, because they started at a time when the old data was not visible any more. The old 
element can be deleted (6).
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Figure 11: The six steps of the RCU mechanism
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The RCU mechanism requires  data  that  is  stored within some sort  of  container  that  is 
referenced by a pointer. The update step consists of changing that pointer. Thus, linked lists 
are the most common type of data protected by RCU. Insertion and deletion of elements is 
done  like  presented  in  section  2.1.  Of  course,  we  need  memory  barrier  operations  on 
machines with weak ordering. More complex updates, like sorting a list, need some other 
kind of synchronisation mechanism. If we assume that readers traverse a list in search of an 
element once, and not several times back and forth (as we assumed anyways), we can also 
use doubly linked lists (see Listing 8).

The RCU mechanism is optimal for read-mostly data structures, where readers can tolerate 
stale data (it is for example used in the Linux routing table implementation). While readers 
generally do not have to worry about much, things get more complex on the writer's side. 
First of all, writers have to acquire a lock, just like with the seqlock mechanism. If they 
would not, two writers could obtain a copy of a data element, perform their changes, and 
then replace it. The data structure will still be intact, but one update would be lost. Second, 
writers have to defer the destruction of an old version of the data until sometime. When 
exactly is it safe to delete old data?

After all readers that were in a read-side critical section at the time of the update have left 
their critical section, or, entered a quiescent state (Figure 12). A simple approach would be 
to take a counter that indicates how many processes are within a read-side critical section, 
and defer destruction of all stale versions of data elements until that time. But as you can 
see, later readers are not taken into account, so this approach fails. We could also include a 
reference counter in every data element, if the architecture features an atomic increment 
operation. Every reader would increment this reference counter as it gets a reference to the 
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static inline void __list_add_rcu(struct list_head * new,
struct list_head * prev, struct list_head * next)

{
new->next = next;
new->prev = prev;
smp_wmb();
next->prev = new;
prev->next = new;

}
Listing 8: extract from Linux 2.6.14 kernel, list.h

Figure 12: RCU, Grace Period: After all processes that  
entered a read-side critical section (gray) before the writer  
(red) finished have entered a quiescent state, it is save 
delete an old element



data element, and decrement it when the read-side critical section completes. If an old data 
element has a refcount of zero, it can be deleted [McK01]. While this solves the problem, it 
reintroduces the performance issues of atomic operations that we wanted to avoid.

Let us assume that a process in a RCU read-side critical section does not yield the CPU. 
This means: Preemption is disabled while in the critical section and no functions that might 
block must be used [McK04]. Then no references can be held across a context switch, and 
we can fairly assume a CPU that has gone through a context switch to be in a quiescent 
state. The earliest time when we can be absolutely sure that no process on any other CPU is 
still holding a reference to stale data, is after every other CPU has gone through a context 
switch at least once after the writer finished. The writer has to defer destruction of stale data 
until  then,  either  by  waiting  or  by  registering  a  callback  function  that  frees  the  space 
occupied by the stale data. This callback function is called after the grace period is over. 
The Linux kernel features both variants.

A simple mechanism to detect when all CPUs have gone through a context switch is to start 
a high priority thread on CPU 1 that repeatedly reschedules itself on the next CPU until it 
reaches the last CPU. This thread then executes the callback functions or wakes up any 
processes waiting for the grace period to end. There are more effective algorithms out there 
to detect the end of a grace period, but these are out of the scope of this document.

Listing 9 presents the Linux RCU API (without the Linux RCU list API). Note that, while it 
is  necessary  to  guard  read-side  critical  sections  with  rcu_read_lock and 
rcu_read_unlock, the only thing these functions do (except for visually highlighting a 
critical  section)  is  disabling  preemption  for  the  critical  section.  If  the  Linux kernel  is 
compiled with  PREEMPT_ENABLE=no, they do nothing. Write-side critical sections are 
protected by spin_lock() and spin_unlock(), and wait for the grace period afterwards with 
synchronize_kernel() or  register  a  callback function to  destroy the  old element 
with call_rcu().
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Figure 13: Simple detection of a grace period: Thread "u" 
runs once on every CPU [McK01]



The RCU mechanism is widely believed to  have been developed at  Sequent  Computer 
Systems, who were then bought by IBM, who holds several patents on this technique. The 
patent holders have given permission to use this mechanism under the GPL. Therefore, 
Linux is currently the only major OS using it. RCU is also part of the SCO claims in the 
SCO vs. IBM lawsuit.

6 Conclusion
The introduction of SMP systems has greatly increased the complexity of locking in OS 
kernels. In order to strive for optimal performance on all platforms, the operating system 
designers have to meet conflictive goals: Increase granularity to increase scalability of their 
kernels, and reduce using of locks to increase the efficiency of critical sections, and thus the 
performance of their code. While a spin lock can always be used, it is not always the right 
tool for the job. Non-blocking synchronisation, Seq Locks or the RCU mechanism offer 
better performance than spin locks or rwlocks. But these synchronisation methods require 
more effort than a simple replacement. RCU requires a complete rethinking and rewriting 
of the data structures it is used for, and the code it is used in.

It took half a decade for Linux from it's first giant locked SMP kernel implementation to a 
reasonably fine granular. This time could have been greatly reduced, if the Linux kernel had 
been written as a preemptive kernel with fine granular locking from the beginning. When it 
comes to mutual exclusion, it is always a good thing to think the whole thing through from 
the beginning. Starting with an approach that is ugly but works, and tuning it to a well 
running solution later,  often leaves  you coding the same thing twice,  and experiencing 
greater problems than if you tried to do it nicely from the start.

As multiprocessor systems and modern architectures like superscalar, super pipelined, and 
hyperthreaded CPUs as well as multi-level caches become normalcy, simple code that looks 
fine at first glance can have severe impact on performance. Thus, programmers need to 
have a thorough understanding of the hardware they write code for.

Further Reading

This  paper  detailed on the  performance  aspects  of  locking in  SMP kernels.  If  you are 

21

void synchronize_kernel(void);
void call_rcu(struct rcu_head *head,
              void (*func)(void *arg),
              void *arg);
struct rcu_head {
        struct list_head list;
        void (*func)(void *obj);
        void *arg;
};
void rcu_read_lock(void);
void rcu_read_unlock(void);

Listing 9: The Linux 2.6 RCU API functions



interested in the implementation complexity of fine grained SMP kernels or experiences 
from  performing  a  multiprocessor  port,  please  refer  to  [Kag05].  For  a  more  in-depth 
introduction to SMP architecture and caching, read Curt Schimmel's book ([Sch94]).

If you want to gain deeper knowledge of the RCU mechanism, you can start at Paul E. 
McKenney's RCU website (http://www.rdrop.com/users/paulmck/RCU).
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