
SOCCER 2000 DRAFT 1

Caching Techniques for Streaming Multimedia
over the Internet

Markus Hofmann1, T.S. Eugene Ng2, Katherine Guo1, Sanjoy Paul1, Hui Zhang2

1Bell Laboratories 2Carnegie Mellon University
101 Crawfords Corner Road 5000 Forbes Avenue
Holmdel, NJ 07733, USA Pittsburgh, PA 15213, USA

(hofmann, kguo, sanjoy)@bell-labs.com (eugeneng, hzhang)@cs.cmu.edu

Abstract—Existing solutions for streaming multimedia in
the Internet do not scale in terms of object size and num-
ber of supported streams. Using separate unicast streams,
for example, will overload both network and servers. While
caching is the standard technique for improving scalabil-
ity, existing caching schemes do not support streaming me-
dia well. In this paper, we propose a complete solution for
caching multimedia streams in the Internet by extending ex-
isting techniques and proposing new techniques to support
streaming media. These include segmentation of streaming
objects, dynamic caching, and self-organizing cooperative
caching. We consider these techniques in an integrated fash-
ion. We implemented a complete caching architecture called
SOCCER using the network simulator ns-2 and evaluate the
effectiveness of each proposed technique and compare them
to alternative caching solutions.

Keywords—Streaming Media, Caching, Proxy.

I. INTRODUCTION

Internet and World-Wide-Web are becoming the ubiqui-
tous infrastructure for distributing all kinds of data and ser-
vices, including continuous streaming data such as video
and audio. A significant increase of commercial prod-
ucts for playback of stored video and audio over the Inter-
net [1], [2] has occurred over the past several years, as well
as a proliferation of server sites that support audio/video
contents. However, existing solutions for streaming multi-
media are not efficient because they use a separate unicast
stream for each request, thus they require a stream to travel
from the server to the client across the Internet for every
request. From the content provider’s point of view, server
load increases linearly with the number of receivers. From
the receiver’s point of view, she must endure high start-up
latency and unpredictable playback quality due to network
congestion. From the ISP’s point of view, streaming mul-
timedia under such an architecture poses serious network
congestion problems.

Multicast and caching are two common techniques for
enhancing the scalability of general information dissemi-

nation systems. However, neither of them can be directly
applied to support streaming media playback over the Web.
In multicast, receivers are assumed to be homogeneous and
synchronous. In reality, receivers are generally heteroge-
neous and asynchronous. This problem can be solved by
batching multiple requests into one multicast session, thus,
reducing server load and network load. Unfortunately, this
solution does increase the average start-up latency.

Caching of web objects for improving end-to-end la-
tency and for reducing network load has been studied
extensively starting with CERN httpd [3], followed by
improvements inhierarchical cachingand co-operative
cachingunder the Harvest project [4], [5] and the Squid
project [6], respectively. Surprisingly, there has been very
little work to extend cache systems to support streaming
media. Existing caching schemes are not designed for and
do not take advantage of streaming characteristics. For ex-
ample, video objects are usually too large to be cached in
their entirety. A single, two hour long MPEG movie, for
instance, requires about 1.4 Gbytes of disk space. Given
a finite buffer space, only a few streams could be stored
at a cache, thus, decreasing the hit probability and the ef-
ficiency of the caching system. In addition, transmission
of streaming objects needs to be rate regulated1 and these
timing constraints need to be considered in the design of a
caching system for streaming media.

In this paper, we explore and assess three techniques to
enhance caching systems to better support streaming me-
dia over the Internet, namelysegmentation of streaming
objects, dynamic caching, andself-organizing cooperative
caching. We consider these techniques in an integrated
fashion and define a unified streaming architecture called
Self-Organizing Cooperative Caching Architecture (SOC-
CER)that can realize each of these techniques and allow

1In this paper, we assume the transmission rate of streaming objects
to be a constant bit rate (CBR). However, the described techniques can
be extended to also support streaming objects with variable bit rate
(VBR).

SOCCER 2000 DRAFT 2

us to use any combination of them. The architecture can
use both caching and multicast techniques, and it takes ad-
vantage of unique properties of streaming media. The key
components of the architecture are so-calledhelper ma-
chines, which are caching and streaming agents inside the
network, communicating via a novel scalable state distri-
bution protocol and forming dynamic meshes for forward-
ing streaming data.

The rest of the paper is organized as follows. Section II
discusses techniques for extending caching systems to bet-
ter support streaming media. Section III describes the de-
sign of our unified streaming architecture. To evaluate var-
ious streaming techniques, we have implemented the ar-
chitecture in the ns-2 simulator and built a prototype im-
plementation on the Unix platform. Section IV presents
the simulation results. Related work is discussed in Sec-
tion V and we conclude the paper in Section VI

II. STREAMING EXTENSIONS FORCACHING SYSTEMS

In this section, we discuss techniques to better support
streaming media in caching systems.

A. Segmentation of Streaming Objects and Smart Segment
Replacement

Rather than caching entire streaming objects in an all-
or-nothing fashion, we propose a more promising way by
dividing the objects into smaller segments for caching and
replacement purposes. Suppose the minimal allocation
unit of a cache disk block is sizeS, then we can let the
streaming object segment size be any multiple ofS. For
the rest of this discussion, we simply assume a segment
size ofS. By doing so, segments of a streaming object can
be cached and replaced independently and therefore con-
tention for disk space is greatly reduced and disk space can
be most efficiently used to cache popular portions of large
streaming objects.

A drawback of such independent segment caching is that
when a streaming request (e.g. playback from time 0 sec
to 354 sec) arrives at a cache, the request will most likely
result in a partial cache hit in that only certain parts of
the requested data are in the cache. Therefore, satisfying
such requests requires searching for the missing segments
in other caches. This not only increases signaling cost,
but also increases the probability of losing synchroniza-
tion. To address this issue, we need to control the number
of missing gaps. One way to accomplish this is to increase
the segment size. However, this also increases the con-
tention for disk space, and in the extreme case, this degen-
erates into caching all or nothing. This points to a need
for a large logical unit for caching, while still retains a
fine granularity for disk allocation and replacement. We

Chunk 0 Chunk 1 Chunk 2 Chunk 3

Uncached
Segments

Prefix-cached
Segments

Streaming Multimedia Object

Fig. 1. Segmentation and chunking of streaming objects

propose a logical unit for caching calledchunk. Figure 1
illustrates the various caching units. A chunk is simply a
number of contiguous segments within an object. Thus,
starting from the beginning of an object, everyk segments
form a chunk. Each chunk is then cached independently
using aprefix cachingallocation and replacement policy.
That is,

� the basic unit of caching and cache replacement is a
segment,

� segments allocated for a chunk always form a prefix
of the chunk,

� when any segment within a chunk is being accessed,
no segment within the chunk can be ejected from the
cache,

� when any segment within a chunk is chosen by the
replacement algorithm, the last segment of the prefix-
cached segments is always the actual ejected victim.

By varying the chunk size, we achieve a trade-off be-
tween the maximum number of gaps and the segment re-
placement flexibility. In the extreme case, this degenerates
into performing prefix caching of the entire object. In prac-
tice, finding the missing gaps in the system might require
some form of intelligent prefetching to meet the timing re-
quirements of streaming.

B. Dynamic Caching

As in classical web caching, the contents of cached mul-
timedia data segments do not change over time and their
ejection is controlled by a cache replacement policy. We
refer to this asstatic caching. However, the streaming
nature of multimedia offers new opportunities for further
bandwidth savings than performing static caching alone.
The key observation is that playback requests for stream-
ing media are related bytemporal distances. Normally,
two playback requests require two separate data streams.
However, if we can hide the temporal distance between
the requests, then only one data stream is needed to serve
both requests. This observation was exploited in [7], [8]
for video servers in video-on-demand systems. We gener-
alize this technique for caching systems and name itdy-
namic caching. Figure 2 demonstrates the basic dynamic
caching technique. ReceiverR1 has requested a certain
streaming object from serverS at timet1. At a later time

SOCCER 2000 DRAFT 3

R1
Buffer

S

R2

time

Data
for R1

Data
for R2

t1 t2

∆
?

Patch
∆

Fig. 2. Example illustrating dynamic caching

t2,R2 requests for the same object. Let� = t2� t1 be the
temporal distance between the requests. Att2, the first�
seconds of the stream have already been received byR1.
However, notice that all subsequent data being streamed to
R1 will also be needed to satisfyR2’s request. Thus, by
allocating aring buffer in the network to cache a moving
window of� seconds (starting at playback timet2) of the
data stream forR1, the same data stream can be shared to
satisfyR2’s request� seconds later. The ring buffer has
essentially hidden the temporal distance between the two
requests. Of course,R2 will have to obtain the initial�
seconds of missing data (called apatch) either fromS or
from some cache in the network. This is known aspatch-
ing. These basic techniques have been proposed in [8] in
the context of receivers buffering datalocally in order to
join an in-progress multicast streaming session. We gen-
eralize the techniques to allow any network cache to per-
form dynamic caching for any receivers or any other net-
work caches, and to allow a stream to flow through any
number of dynamic caches in the network. In other words,
dynamic caches form a stream distribution mesh in the net-
work. Of course, dynamic caching also enables IP multi-
cast delivery of streams in our caching system exactly like
that proposed in [8].

Because dynamic caching helps to stream data to mul-
tiple destinations efficiently, it is a complementary tech-
nique to static caching. It is most useful when data are be-
ing streamed to caches or between caches. This happens
when the static caches are being filled, or when caches are
highly loaded. It is remarkable that a small ring buffer can
be enough to deliver a complete streaming object however
large it might be. Nevertheless, when presented with a
choice between accessing a dynamic cache versus a static
cache, there are several interesting trade-offs. First, the
moving window nature of a dynamic cache ensures the de-
livery of the entire streaming object. On the other hand,
static cache usually holds only portions of a streaming
object, requiring more complex operations in order to re-
trieve the entire streaming object from within the system.
Second, using dynamic caches always requires a feeding
stream into the dynamic cache. This possibly increases

network load compared to accessing static caches only.

C. Self-Organizing Cooperative Caching

Cooperation among distributed caching systems re-
quires the ability to identify other caches and to learn about
their current state. Optimally, a cache would always know
the current state of all the other caches. This would allow
it to choose the most suitable cache to cooperate with at
any time. However, it is impractical to keep a consistent
and up-to-date view of all distributed caches.

Existing caching systems solve this problem by stati-
cally defining the neighbors of a cache using a configu-
ration file [6]. This approach limits the ability of dynam-
ically adapting to changes in network load, system load,
and cache contents. Furthermore, it does not support in-
stant identification of active data streams between caches,
which is prerequisite to sharing multicast streams for mul-
tiple user requests.

For these reasons, we propose a mechanism for scalable
state distribution that enables caches to learn about the
state of remote caching systems. Using this mechanism,
loosely coupledcache meshescan be formed to forward
a streaming object to various receivers. We call thisself-
organizing cooperative caching. The details of scalable
state distribution and self-organizing cooperative caching
are given in the following section.

III. U NIFIED CACHING ARCHITECTURE FOR

STREAMING MEDIA

In order to explore and assess streaming extensions for
caching systems, we propose a unified architecture called
Self-Organizing Cooperative Caching Architecture (SOC-
CER) that embodies all the techniques discussed in Sec-
tion II. Its core elements are the so-calledhelpermachines,
which are caching and data forwarding agents inside the
network. Helpers serve requests for streaming objects by
using cached (static or dynamic) data as much as possible.
Close cooperation among helpers is enabled by scalable
state distribution. A receiver interested in getting a cer-
tain streaming object simply sends its request to the ori-
gin server. The request will be redirected to the receiver’s
proxy helpereither transparently by a layer-4 switch or by
configuring the proxy in the client’s software. On receiv-
ing the request, the proxy helper identifies locally avail-
able caches and other helpers that can serve the request
through static and dynamic caching. If no appropriate
helper is found, the request is forwarded directly to the
origin server. Section III-A illustrates the interaction be-
tween static and dynamic caching. The mechanisms and
criteria for enabling helper cooperation are explained in
Section III-B and III-C.

SOCCER 2000 DRAFT 4

(a) (b)

R1

4

5

R2

6

7a

S

8
9

10

H2
7b

H1

R1

4

2

1

H1

5

R2

6

7
H2

S

83
9

10

1

3

2

Fig. 3. Example illustrating the unified architecture (a) using
multicast (b) using unicast

A. Interaction between Static and Dynamic Caching

SOCCER makes use of both static caching and dy-
namic caching. The interaction between static and dy-
namic caching is illustrated in the example shown in Fig-
ure 3. There are two receiversR1 andR2, a video server
S, and two helpersH1 andH2. No data is cached at any
helper initially. Figure 3a illustrates an example using mul-
ticast, while Figure 3b shows an example for unicast only.

ReceiverR1 requests streaming objectO at timet1. The
request is either directly addressed or transparently redi-
rected to the proxy helperH1 (step “1” in Figure 3a). Be-
cause the requested data is not available fromH1’s local
cache nor from any other remote helper, a request is sent
to serverS (step “2”). On receiving the request, serverS
initiates a new data stream for objectO (step “3”). The
new data stream can either be unicast or multicast. For
now, we assume it is multicast.

At time t01, H1 receives the data stream and starts
caching incoming data in an infinitesimally small, default-
sized ring buffer. It also starts caching the data segments in
static cache (as discussed in Section II). Simultaneously,
it streams the data toR1 (step “4”). H1 also begins ad-
vertising its ability to deliver segments of objectO (step
“5”).

At some later time, receiverR2 issues a request for
streaming objectO. The request is redirected and reaches
proxy helperH2 at time t2 (step “6”). Because of state
distribution through advertisements,H2 knows the state of
helperH1 and the multicast stream transmitting the desired
object. Interesting is thatH2 has several options, depend-
ing on whether it is preferable to exploit static or dynamic
caches, or to make use of unicast or multicast techniques:

� Unicast from server: HelperH2 can contact the server
and request the entire streaming object just like what
H1 did. Obviously, this does not require any addi-
tional buffer space, but it increases server and network

load.
� Multicast from server: Dynamic caching enablesH2

to exploit the ongoing multicast transmission. To join
the multicast group,H2 allocates a ring buffer that
can hold�+ � seconds of data, where� = t2 � t01.
The extra� seconds is added to absorb network de-
lays and other random factors.H2 starts buffering
received multicast data (step “7”) and, at the same
time, requests one or more patches to get the first�

seconds of the object.H2 might request a patch ei-
ther from the static cache ofH1 or directly from the
sender (step “8”). Upon receiving the patch (step “9”),
H2 forwards it toR2 (step “10”). As soon asH2 has
forwarded all patching data, it starts forwarding data
from the ring buffer (step “10”).

� Unicast from helper’s dynamic cache: From state dis-
tribution, H2 knows about the content ofH1’s static
and dynamic caches.H2 might decide to exploit the
dynamic cache ofH1. To do this,H2 again allocates a
ring buffer of size�+� seconds and sends a request to
H1 (step “7a” in Figure 3b). On receiving the request,
H1 starts forwarding the data toH2 (step “7b”). Like
before,H2 now has to request a patch either from the
static cache ofH1 or directly from the sender. The
rest of the operations proceed as before (step “8”, “9”
and “10”).

� Unicast from helper’s static cache: It is also possible
for H2 to serveR2’s request solely by accessing static
caches inH1 and by contacting the server in case it
becomes necessary.

B. Mechanisms for Scalable State Distribution

Self-organizing helper cooperation is enabled by scal-
able state distribution. Helpers periodically send adver-
tise messages to a well-known multicast address indicat-
ing their ability to serve requests for certain media objects.
State information is then used to select the best helpers to
cooperate with.

A mechanism for scalable state distribution strives to
balance two conflicting goals: network load should be
kept as low as possible, and the freshness of state infor-
mation should be as high as possible. Obviously, frequent
sending of global advertisements improves freshness but
increases network load. Notice that a helper would pre-
fer getting support from a nearby helper rather than from
a far away helper. Thus, to reduce the overhead caused
by global advertisements, a good trade-off is to have a
helper receive advertisements from other nearby helpers
more frequently than from helpers far away.

These observations motivated our design of theExpand-
ing Ring Advertisement (ERA), which was originally de-

SOCCER 2000 DRAFT 5

Interval No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
TTL 15 31 15 63 15 31 15 127 15 31 15 63 15 31 15 254 15 31

TABLE I
TTL VALUES USED TO SEND ADVERTISEMENTS

Scope Frequency of Reception

Advertising Helper

Helper/Receiver

A

B

C

D

Every Advertisement

Every 2. Advertisement

Every 4. Advertisement

Every 8. Advertisement

15

31

63

127

Fig. 4. Different scoping areas

veloped in the context of reliable multicast protocols [9].
The ERA algorithm makes use of TTL-based scope restric-
tion. However, it could easily be modified to use admin-
istratively scoped multicast addresses or any other scop-
ing mechanism. According to the ERA algorithm, helpers
send their advertisements with dynamically changing TTL
values given in Table I. The given TTL values are defined
according to the scope regions in the current MBone. They
can easily be adjusted to conform to specific network in-
frastructures. In the given scheme, the first message is sent
with a scope of 15 (local), the second one with a scope
of 31 (regional), etc. The effect of this scheme is illus-
trated in Figure 4. Listening helpers within a scope of 15
(e.g., helperA) will get every advertise message (assum-
ing there are no packet losses). Those who have distance
between 16 and 31 (e.g., helperB) will receive every other
advertisement. And every16th advertise message will be
distributed worldwide. This ensures that the frequency of
advertise messages exponentially decreases with increas-
ing scope. Therefore, the scheme reduces network load
while allowing short reaction time within a local scope.
However, it still ensures global visibility of helpers over
a larger time scale. By observing sequence numbers, the
advertisements can also be used to estimate the number
of hops between helpers without requiring access to the
header of received IP packets.

C. Helper Selection

Upon receiving a request for a streaming object, a helper
has to decide where to get the requested data. Data can be
retrieved from its own local cache, directly from the server,
or from any static or dynamic cache of other helpers. The
decision making process is calledhelper selection. In gen-
eral, a helper may get portions of the requested data from

multiple sources. It is the goal of the helper selection al-
gorithm to find a near optimal sequence of static and/or
dynamic cache accesses in order to serve the request. We
propose a helper selection algorithm that uses a step-wise
algorithm to find one cache at a time and finishes stream-
ing data from a selected cache before determining the next
cache in sequence, thus, achieving a step-wise local opti-
mum.

C.1 Algorithm for Helper Selection

During each iteration of our step-wise algorithm, a
helper looks for the best cache (either dynamic or static)
to use. Once it chooses a static cache, it gets as much data
as there is in the selected static cache up to the start of the
next available local cache or up to the end of the request.
Once it chooses a dynamic cache, it gets data from it up to
the end of the clip. The algorithm is outlined in Figure 5.
During each iteration, using a cost function (discussed in
the next section), the algorithm finds the lowest cost cache
currently in the helpers to serve the request. Selection is re-
stricted to static caches2 only if the staticOnly flag is set.
To restrict the number of switches between static caches,
the algorithm requires a static cache to have at leastM seg-
ments of data aftertStart to be considered. If the cache
found is static, the helper gets as much data as possible
from this static cache, up to the point where its own lo-
cal static cache can be used, and advancestStart for the
next iteration to the end of the current request. If the cache
found is dynamic, the helper sends a request to get data
up totEnd from this dynamic cache. At the same time, it
continues searching to get any required patches from one
or more static caches. Using a dynamic cache generally
involves prefetching of future data because the content of
a dynamic cache changes over time. While prefetching
data, the selected dynamic cache might become subop-
timal. However, since the helper has already started to
prefetch data, it keeps using the previously selected dy-
namic cache.

C.2 Cost Function for Helper Selection

Making use of a static or a dynamic cache is associ-
ated with many cost factors. For example, accessing a
cache might cause additional network load and increase
the processing load at the cache, using a dynamic cache

2The origin server is considered a static cache as well.

SOCCER 2000 DRAFT 6

tStart = start playback time;
tEnd = end playback time;
done = false;
staticOnly = false;

while not(done) do
if (staticOnly) then

(H, C) = (helper,static cache) of min
cost;

else
(H, C) = (helper,any cache) of min cost;

fi
if (isStatic(C)) then

send request Rs to H for data from tStart

to min(tEnd,endOf(C),start of next
available local cache)

if (endOf(Rs) == tEnd) then
done = true;

else
tStart = endOf(Rs);
sleep for the playback duration of Rs;

fi
else if (isDynamic(C)) then

send request Rd to H for data from
startOf(C) to tEnd;

if (tStart == startOf(C)) then
done = true;

else
tEnd = startOf(C);
staticOnly = true;

fi
fi

od
Fig. 5. Helper selection algorithm

requires buffer space to absorb the temporal distance, etc.
To keep complexity low, it is reasonable to define a sub-
set of useful indices and to specify a good heuristic to find
appropriate caches. Content providers, network service
providers, and content consumers generally have differ-
ent, sometimes conflicting optimization goals. We define
one possible cost function that tries to find a balance be-
tween network and server/helper load. Before describing
the function, we first specify two important cost factors
that we consider – network load and server/helper load.

Network Load: The network distanceN between two
helpersHi andHj is related to the number of hops on
the path fromHi to Hj. Network distance is used as
an approximation for the network load associated with
data transmission from one host to another. In SOCCER,
helpers implicitly use the ERA algorithm to estimate net-
work distance among themselves and the sender. They
classify remote helpers based on the observed scoping
level and assign distance values to each of the classes ac-
cording to Table II. In addition, to approximate network
load for receiving multicast data, the network distance be-
tween helperHi and multicast groupG is defined to be the

network distance to the closest member of groupG.

class ttl (scope) network distance (d(Hi; Hj))

local 0 - 15 1
regional 16 - 31 2
national 32 - 63 3
global 64 - 255 4

TABLE II
CLASSES OF NETWORK DISTANCE

Server/Helper Load: It is desirable to evenly distribute
load among the helper machines and to avoid overloading
popular helpers. The total number of incoming and outgo-
ing streams is a good indicator of the current processing
load at a server/helper and is, therefore, included in the
advertise messages. Each server/helper has a maximum
number of streams it can serve concurrently. When the
number of streams served is far less than this processing
capacity limit, serving one more stream has little impact
on performance. However, when the server/helper is op-
erating close to its capacity, serving one more stream will
degrade the performance significantly. As a result, the cost
associated with server/helper load should increase mildly
for low load and increase sharply for high load. Therefore,
we define it as follows: If the cache is local or the resulting
stream is multicast, the load related costL for requesting
a stream from helperH (or serverS) is defined as one. If
the resulting stream is unicast, it is defined as

L =
maxLoad

maxLoad� currentLoad
;

wherecurrentLoad is the number of streams at helper
H and maxLoad is the maximum allowable number
of streams atH. Notice that the cost associated with
server/helper load is minimized for both local cache (static
or dynamic) and multicast streams, because these scenar-
ios do not incur any additional load at other helpers or the
server.

Calculating the Normalized Cost: We define the normal-
ized cost function for using a cache as the cost of getting
a single segment from that cache. Using the two cost fac-
tors introduced above, the normalized cost is defined as
C = N �L, whereN is the network cost andL is the cost
associated with server/helper load. This metric is suitable
for static caches. On the other hand, since using a dy-
namic cache involves prefetching data that are potentially
not needed, care must be taken to discourage the use of a
dynamic cache of a very large temporal distance. For ex-
ample, a helper might have prefetchedr segments when
the user aborts the transmission such that onlyx segments

SOCCER 2000 DRAFT 7

Request Time Beginning of Dynamic Buffer

∆ s
x

Fig. 6. Illustration of variables used in normalized cost

are actually used. In this case, the normalized cost for get-
ting thosex segments is increased by a overhead factor of

c =
r

x
(1)

In general, the larger the temporal distance, the larger the
potential waste. Figure 6 illustrates how we estimate this
potential waste when a dynamic cache is selected. The
notations used are as follows:

� �: The temporal distance in segments between the
requesting and the serving helper is denoted by�,
where0 � �.

� s: The number of segments from beginning of dy-
namic cache up to the end of the streaming object is
denoted bys, where0 < s.

� x: The number of segments that are actually used from
the dynamic cache is denoted byx, where0 < x � s.

When a helper has received all the patching data and
starts using data from a dynamic cache, it has already
prefetched� segments. Ifx segments are used, the helper
will have prefetchedx additional segments, until it reaches
the end of the object. Therefore, the number of prefetched
segmentsr after x segments are used is given byr =

min(� + x; s). Thus, it follows that

c =

(
s
x

; if (s��) < x
�+x
x

; if (s��) � x
(2)

x > 0 is assumed. If the considered cache is static or
the temporal distance� is zero, the overhead reduces to
1. At the time the cost calculation is done, a helper does
not know whether or when a user might terminate trans-
mission. Therefore, a helper needs to estimate the value
of x. Assuming that the playback lengths are uniformly
distributed, then playback will on average continue for an-
others=2 segments. By substitutingx = s=2 in equation
(2), we estimate the overhead factor as

c =

(
2 ; if s

2
� �

(2 � �
s
) + 1 ; if � < s

2

(3)

Finally, the normalized cost function used by our helper
selection algorithm is

C =

(
2 �N � L ; if s

2
� �

((2 � �
s
) + 1) �N � L ; if � < s

2

(4)

A different request length distribution will give a dif-
ferent value ofx, resulting in a different normalized cost
function. It is important to note that, this cost function is
minimized for local static cache, where� is zero by def-
inition andN andL are one. As a result, whenever local
static cache is available, the algorithm always makes use
of it to the fullest.

IV. SIMULATION

We use simulations conducted in ns-2 version 2.1b2 [10]
to evaluate the effectiveness of the various techniques for
streaming media. Helpers can be configured to perform
proxy caching, hierarchical caching, or dynamic cooper-
ative caching, using any combination of the techniques
described in Sections II and III. For state distribution,
we use the ns-2 centralized multicast feature with sender
based trees. This option eliminates the periodic flooding
and pruning messages of DVMRP [11]. Multicast routers
in ns-2 always decrement the TTL value of packets be-
ing forwarded by one. Therefore, the ERA algorithm uses
TTL values of 1, 2, 3, and 20 (to ensure delivery to all
helpers) in the simulation instead of 15, 31, 63, and 127,
as described in Section III-B.

25

20

10

5

25

5

10

Sender

25

25

10
20

25

25

25

35

15

10

15

15

10

15

15

20

10

15

7

20

15

15 5

7

20

40

25

5

35

20

20
A

B

C
D

Fig. 7. MCI backbone topology and the static hierarchy built
on top of it. The numbers on the link represent the latency
in milliseconds.A, B, C, andD are parent helpers in the
hierarchy.

We perform our simulation on the MCI backbone
network3 as shown in Figure 7. Link capacities are ir-
relevant since we do not consider network congestion. A
helper and a stub-router are attached to each backbone
router. Each stub-router simulates a subnet of receivers.
The latency between each backbone router and its corre-
sponding stub-router is2 ms. The sender is attached to
routerA through six additional hops of latency10ms each.
3Topology obtained fromwww.caida.orgin October 1998.

SOCCER 2000 DRAFT 8

Parameter Default Value

Simulation Time 10 hours
Average Request Inter-Arrival Time Per Subnet4 minutes
Stream Segment Size 1.67 MB
Stream Chunk Size 10 MB
Helper Static Cache Space 5 GB
Helper Dynamic Cache Space 64 MB
Static Caching On
Dynamic Caching Off
Advertisement Timer 60 seconds
Cost Function ParametermaxLoad 100
Minimum Static Cache Solution Size 1.67 MB
Cache Replacement Policy LFU
Streaming Method Unicast

TABLE III
DEFAULT VALUES OF PARAMETERS

For hierarchical caching, we construct a two-level hierar-
chy, where level 1 composes of nodesA,B,C, andD. The
corresponding children level 2 nodes are assigned based on
the grouping shown in Figure 7. Two versions of the hier-
archy are used. Hierarchy 1 uses 5 GB as the helper static
cache space for all caches. Hierarchy 2 uses 13 GB and 3
GB for level 1 and level 2 caches respectively (total cache
space is the same as in Hierarchy 1).

The sender contains 100 100-minute long streaming me-
dia objects of 1 GB each. A media stream is a constant bit
rate UDP stream with 1 KB packet size and 1.33 Mbps
playback rate. Each subnet of receivers follows a Poisson
request arrival process and the requested object follows the
Zipf [12] distribution. All requests start from the begin-
ning of an object, but vary in the ending time. We use
a bimodal distribution that gives a 40%, 20%, and 40%
chance of playing back 0 to 20 minutes, 20 to 80 minutes,
and 80 to 100 minutes respectively.

Table III specifies a set of default simulation parameters.
Whenever applicable, their default values are used unless
otherwise noted.

We use two performance metrics to evaluate various
techniques, they are network load and sender load. Net-
work load is illustrated as the cumulative number of bytes
of all types of packets transmitted on all links versus time,
whereas sender load is illustrated as the total number of
outgoing streams at the sender versus time. In general,
good performance is indicated by low network and sender
load.

A. Simulation Results

To illustrate the benefits of various multimedia caching
techniques, a set of simulation results are presented in Fig-
ure 8. First, we consider the benefit of segmenting a large
multimedia object by varying the segment size (Figure 8
(a) & (b)). Recall that a segment is the minimum unit of

data cached. When no segmentation is performed, mul-
timedia objects are cached in all-or-nothing fashion. As
shown in the figure, no segmentation leads to the highest
network load and server load due to high contention for
disk space. As the segment size decreases, contention for
disk space is reduced and thus caches perform more ef-
fectively leading to lower overall load. Depending on the
request arrival frequency, continuing reduction in segment
size ceases to provide significant additional benefit. Since
reducing the segment size increases the disk management
overhead, the segment size should be set based on the ex-
pected system load.

Next we consider dynamic caching (Figure 8 (c) & (d)).
As noted before, dynamic caching is most useful when
data are being streamed across the network when caches
are being filled or the caches are heavily loaded. We sim-
ulate a highly loaded system by reducing the average re-
quest inter-arrival time per subnet to one second. Simula-
tion time is reduced to 600 seconds to limit execution time,
but as a result the data does not show the steady state of the
system. Static caching is turned off while dynamic caching
is turned on, and we vary the size of the dynamic cache.
Two points worth noting in this experiment. First, as ex-
pected, network load reduces as the dynamic cache size
increases. Second, by using dynamic caching, the sender
load is decreased only by a small amount because of the
extra patching streams.

The benefit of self-organizing cooperative caching is
shown in Figure 8 (e) & (f). We compare our proposed
scheme against proxy caching and hierarchical caching
(using two cache size configurations). There are several
points to note. First, we see that the performance of hi-
erarchical caching is highly dependent on the cache size
configuration. Hierarchy 1, with 5 GB of space at each
helper, gives similar network load as proxy caching, while
reducing the sender load slightly. Hierarchy 2, with 13
GB caches at level 1 and 5 GB caches at level 2, provides
much better performance. Second, self-organizing coop-
erative caching yields the best performance overall. It re-
duces network load by 44% compared to proxy caching or
hierarchical caching in variant 1, and by 35% compared to
hierarchical caching in variant 2. Third, the network load
reported already accounts for the state distribution data
packets, which contribute less than 0.03% to the total data
traffic. In reality, compression techniques can be used to
further reduce the overhead. We have also experimented
with other advertisement timer values from 240 seconds
to 20 seconds and observed that network load (including
state distribution overhead) reduces slightly as advertise-
ment messages are sent more frequently because the infor-
mation used by helpers is more up-to-date. These results

SOCCER 2000 DRAFT 9

0

2e+12

4e+12

6e+12

8e+12

1e+13

1.2e+13

0 5000 10000 15000 20000 25000 30000 35000 40000

C
um

ul
at

iv
e

B

yt
es

 P
as

se
d

on
 A

ll
Li

nk
s

Simulation Time (sec)

No Segmentation
167 MB/Segment

16.7 MB/Segment
1.67 MB/Segment

(a)

0

1e+12

2e+12

3e+12

4e+12

5e+12

6e+12

7e+12

8e+12

0 100 200 300 400 500 600

C
um

ul
at

iv
e

B

yt
es

 P
as

se
d

on
 A

ll
Li

nk
s

Simulation Time (sec)

No Caching
64 MB Dynamic Cache

128 MB Dynamic Cache
256 MB Dynamic Cache

(c)

0

2e+12

4e+12

6e+12

8e+12

1e+13

1.2e+13

1.4e+13

0 5000 10000 15000 20000 25000 30000 35000 40000

C
um

ul
at

iv
e

B

yt
es

 P
as

se
d

on
 A

ll
Li

nk
s

Simulation Time (sec)

Proxy Cache
Hierarchical Cache 1
Hierarchical Cache 2

SOCCER Static Cache

(e)

0

20

40

60

80

100

120

140

160

0 5000 10000 15000 20000 25000 30000 35000 40000

N
um

be
r

of
 S

tr
ea

m
s

at
 S

en
de

r

Simulation Time (sec)

No Segmentation
167 MB/Segment

16.7 MB/Segment
1.67 MB/Segment

(b)

0

2000

4000

6000

8000

10000

12000

14000

100 150 200 250 300 350 400 450 500 550 600

N
um

be
r

of
 S

tr
ea

m
s

at
 S

en
de

r

Simulation Time (sec)

No Caching
64 MB Dynamic Cache

128 MB Dynamic Cache
256 MB Dynamic Cache

(d)

0

50

100

150

200

250

0 5000 10000 15000 20000 25000 30000 35000 40000

N
um

be
r

of
 S

tr
ea

m
s

at
 S

en
de

r

Simulation Time (sec)

Proxy Cache
Hierarchical Cache 1
Hierarchical Cache 2

SOCCER Static Cache

(f)

Fig. 8. Various simulation results. (a)/(b) Benefit of segmentation. (c)/(d) Benefit of dynamic caching. (e)/(f) Benefit of self-
organizing cooperative caching.

SOCCER 2000 DRAFT 10

Adver Timer (seconds) 240 120 60 20
Total Data (Bytes) 64.0e11 63.1e11 62.6e11 61.7e11
State Dist Data (Bytes) 31.8e6 81.0e6 184e6 733e6

TABLE IV
OVERHEAD OF STATE DISTRIBUTION

Scheme Server Level 1 Helpers Level 2 Helpers

Proxy Max 220 36 43
Avg 173 18 20

Hier 1 Max 196 136 43
Avg 152 85 20

Hier 2 Max 153 125 45
Avg 119 80 21

SOCCER Max 73 45 50
Avg 56 25 27

TABLE V
SERVER AND HELPERS LOAD IN NUMBER OF STREAMS

are summarized in Table IV.
Finally, note that self-organizing cooperative caching

can also distribute load much better than the other
schemes. Table V illustrates the load on the server, level
1 helpers and level 2 helpers under the various caching
schemes. Since helpers within the same level exhibit sim-
ilar load, we provide only the aggregate statistics for each
level. Under proxy caching, the server is extremely over-
loaded. Hierarchical caching reduces the server’s load
slightly, however, much of the burden is carried by the four
Level 1 parent caches. The Level 2 children caches are not
effective. In contrast, under self-organizing cooperative
caching, the maximum and average server load are reduced
by about 67% compared to proxy caching. Furthermore,
the burden is spread quite evenly among the caches. As a
result, network hot-spots are eliminated.

V. RELATED WORK

Related work on web caching systems such as CERN
httpd [3], Harvest [4], [5] and Squid [6] has already been
mentioned in Section I. These systems are designed for
classical web objects and do not offer any support for
streaming media. Furthermore, their static web caching
architecture is very different from self-organizing cache
cooperation and dynamic caching as defined in SOCCER.
In these approaches, parent caches and sibling caches are
statically configured using a configuration file. Thus, they
do not adapt to changes in network and system loads dy-
namically.

Another body of related work is in the area of scalable
video-on-demand systems [8], [13], [14], [15]. The idea is
to reduce server load by grouping multiple requests within
a time-interval and serving the entire group in a single
stream. Chaining andpatchingrefine the basic idea and
define mechanisms to avoid the problem of increased start-

up latency for those requests which arrive earlier in a time-
interval. The proposed techniques are designed for video
on demand systems, and they are not concerned about wide
area bandwidth constraints nor about the client’s buffer
requirements. In fact, they can actually increase clients’
storage requirements, while chaining can also lead to in-
creased network load in wide-area networks. SOCCER, on
the other hand, aims at reducing network load and client
storage requirements in addition to reducing server load.
This goal is achieved by utilizing both temporal distance
as well as network distance (or spatial proximity) to form
the so-called helper mesh. Overall memory requirement is
reduced because helpers share buffers with one another.

Other related work has been done on memory caching
for multimedia servers [16], [7]. While the basic princi-
ple of caching data in different memory levels of a video
server has some similarities with storing data in a dis-
tributed caching system, there is a fundamental difference.
The spatial distance between different memory levels in a
server is zero. In contrast, spatial distance between dis-
tributed caching systems is not negligible and, therefore,
has to be considered in the design of web cache manage-
ment policies. This requirement is reflected in SOCCER’s
helper selection and cost function.

Recently, work has been presented on proxy caching ar-
chitectures for improving video delivery over wide area
networks. The scheme presented in [17] makes use of
prefix caching in order to smooth bursty video streams dur-
ing playback. Prefetching and storing portions of a stream
in network proxies for the purpose of smoothing has also
been proposed in [18]. In [19], a proxy caching mecha-
nism is used for improving delivered quality of layered-
encoded multimedia streams. All these approaches are
based on a relative simple proxy architecture without any
collaboration between the proxies. Our work is comple-
mentary in the sense that it focuses on the design of an ef-
ficient collaborative proxy/caching architecture. The pro-
posed mechanisms for video smoothing and quality adap-
tation can use our architecture with the additional benefits
of a collaborative caching environment.

Finally, the “middleman” architecture presented in [20]
is relevant to SOCCER. It forms clusters of caches where
each cluster uses acoordinatorto keep track of the state of
caches in the cluster. This centralized approach contrasts
sharply with SOCCER’s distributed architecture in which
each helper maintains global state information and makes
local decisions.

VI. CONCLUSIONS ANDFUTURE WORK

This research is a first step to understand the issues of
extending the caching principle to support streaming me-

SOCCER 2000 DRAFT 11

dia over the Internet. We study relevant streaming tech-
niques, generalize and apply them in the context of dis-
tributed caching. Furthermore, we propose several novel
techniques, including segmentation of streaming objects,
combined use of dynamic and static caching, and self-
organizing cooperative caching. We integrate all these
techniques into a complete solution for caching streaming
media in the Internet by defining the Self-Organizing Co-
operative Caching Architecture (SOCCER). Our simula-
tions showed that self-organizing cooperative caching can
significantly reduce network and server load compared to
proxy or hierarchical caching. It turns out that the over-
head for state distribution becomes almost negligible when
using the proposed distribution protocol based on Expand-
ing Ring Advertisement (ERA). Our results also show that
heavily loaded systems will benefit from segmentation of
media objects and from dynamic caching. More work
needs to be done on evaluating and assessing different cost
functions for helper selection and to better understand the
trade-offs between effectiveness and complexity.

Our current implementation of a streaming helper is
in compliance with IETF standard protocols, notably
Real Time Streaming Protocol (RTSP)[21] andReal-time
Transport Protocol (RTP)[22]. Therefore, it can inter-
operate with any standard-compliant streaming server and
client in a transparent way. Detailed information on the
current implementation can be found in [23]. The imple-
mentation will be used for further evaluation in a produc-
tion network.

REFERENCES

[1] Vxtreme, “Internet homepage,” http://www.vxtreme.com, 1999.

[2] Real Networks, “Internet homepage,” http://www.real.com, 1999.

[3] T Berners-Lee A. Lutonen, H.F. Nielsen, “Cern httpd,”

http://www.w3.org/Daemon/Status.html, 1996.

[4] C.M. Bowman, P.B. Danzig, D.R. Hardy, U. Manber, M.F.

Schwartz, and D.P. Wessels, “Harvest: A scalable, customiz-

able discovery and access system,” Tech. Rep. CU-CS-732-94,

University of Colorado, Boulder, USA, 1994.

[5] A. Chankhunthod, P.B. Danzig, C. Neerdaels, M.F. Scwartz, and

K.J. Worrell, “A hierarchical internet object cache,” inProceed-

ings of the 1996 Usenix Technical Conference, 1996.

[6] D. Wessels, “Icp and the squid cache,” National Laboratory for

Applied Network Research, 1999, http://ircache.nlanr.net/Squid.

[7] A. Dan and D. Sitaram, “Multimedia caching strategies for het-

erogeneous application and server environments,”Multimedia

Tools and Applications, vol. 4, no. 3, 1997.

[8] K. A. Hua, Y. Cai, and S. Sheu, “Patching: A multicast technique

for true video-on-demand services,” inProceedings of ACM Mul-

timedia ’98, Bristol, England, Sept. 1998.

[9] M. Hofmann and M. Rohrmuller, “Impact of virtual group struc-

ture on multicast performance,” Fourth International COST 237

Workshop, Lisboa, Portugal, December 15-19, 1997.

[10] UCB/LBNL/VINT, “Network simulator, ns,” http://www-

mash.cs.berkeley.edu/ns, 1999.

[11] D. Waitzman, C. Partridge, and S. Deering, “Distance vector

multicast routing protocol,” Internet Request for Comments 1075,

November 1988.

[12] G. K. Zipf, “Relative freqency as a determinant of phonetic

change,” Reprinted from the Harvard Studies in Classical Philol-

ogy, Volume XL, 1929.

[13] A. Dan, D. Sitaram, and P. Shahabuddin, “Dynamic batching

policies for an on-demand video server,”Multimedia Systems,

vol. 4, no. 3, pp. 51–58, June 1996.

[14] C.C. Aggarwal, J.L. Wolf, and P.S. Yu, “On optimal batching

policies for video-on-demand storage servers,” inProc. of Inter-

national Conference on Multimedia Systems’96, June 1996.

[15] S. Sheu, K. A. Hua, and W. Tavanapong, “Chaining: A general-

ized batching technique for video-on-demand systems,” inPro-

cedings of IEEE International Conference on Multimedia Com-

puting and Systems, Ottawa, Ontario, Canada., 1997.

[16] A. Dan and D. Sitaram, “A generalized interval caching policy for

mixed interactive and long video environments,” inProceedings

of IS&T SPIE Multimedia Computing and Networking Confer-

ence, San Jose, CA, January 1996.

[17] S. Sen, J. Rexford, and D. Towsley, “Proxy prefix caching for

multimedia streams,” inProceedings of IEEE Infocom’99, New

York, USA., 1999.

[18] Y. Wang, Z.-L. Zhang, D. Du, and D. Su, “A network conscious

approach to end-to-end video delivery over wide area networks

using proxy servers,” inProc. of IEEE Infocom, April 1998.

[19] R. Rejaie, M. Handley, H. Yu, and D. Estrin, “Proxy caching

mechanisms for multimedia playback streams in the internet,” in

Proceedings of the 4th International Web Caching Workshop, San

Diego, CA., March 1999.

[20] Soam Acharya,Techniques for Improving Multimedia Communi-

cation Over Wide Area Networks, Ph.D. thesis, Cornell Univer-

sity, Dept. of Computer Science, 1999.

[21] H. Schulzrinne, A. Rao, and R. Lanphier, “Real time streaming

protocol,” Internet Request for Comments 2326, April 1998.

[22] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson, “Rtp:

A transport protocol for real-time applications,” Internet Request

for Comments 1889, January 1996.

[23] E. Bommaiah, K. Guo, M. Hofmann, and S. Paul, “Design and

implementation of a caching system for streaming media,” Tech.

Rep. BL011345-990628-05 TM, Bell Laboratories, June 1999.

