SOCCER 2000 DRAFT 1

Caching Techniques for Streaming Multimedia
over the Internet

Markus Hofmanh, T.S. Eugene Ng Katherine Gué, Sanjoy Padl, Hui Zhang

!Bell Laboratories 2Carnegie Mellon University
101 Crawfords Corner Road 5000 Forbes Avenue
Holmdel, NJ 07733, USA Pittsburgh, PA 15213, USA
(hofmann, kguo, sanjoy)@bell-labs.com (eugeneng, hzhang)@cs.cmu.edu

Abstract—Existing solutions for streaming multimedia in hation systems. However, neither of them can be directly
the Internet do not scale in terms of object size and num- applied to support streaming media playback over the Web.
ber of supported streams. Using separate unicast streams, |n mylticast, receivers are assumed to be homogeneous and
for example, will overload both network and servers. While - o ohronous. In reality, receivers are generally heteroge-
caching is the standard technique for improving scalabil- .
ity, existing caching schemes do not support streaming me- neou; and as.ynchronous. _Thls problem can be TQ’OIVEd by
dia well. In this paper, we propose a complete solution for batchl_ng multiple requests into one multicast session, thL_Js,
caching multimedia streams in the Internet by extending ex- educing server load and network load. Unfortunately, this
isting techniques and proposing new techniques to support solution does increase the average start-up latency.
streaming media. These include segmentation of streaming Caching of web objects for improving end-to-end la-
objects, dynamic caching, and self-organizing cooperative tency and for reducing network load has been studied

caching. We consider these techniques in an integrated fash- . . .
ion. We implemented a complete caching architecture called gxten3|vely starting with CERN httpd [3], followed by

SOCCER using the network simulator ns-2 and evaluate the improvements inhierarchical cachingand co-operative

effectiveness of each proposed technique and compare thenfachingunder the Harvest project [4], [5] and the Squid
to alternative caching solutions. project [6], respectively. Surprisingly, there has been very

Keywords— Streaming Media, Caching, Proxy. little _work _to.extend pache systems to suppo.rt streaming
media. Existing caching schemes are not designed for and
do not take advantage of streaming characteristics. For ex-

|. INTRODUCTION ample, video objects are usually too large to be cached in

Internet and World-Wide-Web are becoming the ubiguiii€ir entirety. A single, two hour long MPEG movie, for

tous infrastructure for distributing all kinds of data and sef?St2nce, requires about 1.4 Gbytes of disk space. Given
vices, including continuous streaming data such as vidgdinite buffer space, only a few streams could be stored
and audio. A significant increase of commercial prodt & cache, thus, decreasing the hit probability and the ef-
ucts for playback of stored video and audio over the Intdf€i€ncy of the caching system. In addition, transmission
net [1], [2] has occurred over the past several years, as viiIfiréaming objects needs to be rate reg.uFalmd these

as a proliferation of server sites that support audio/vidd§ng constraints need to be considered in the design of a
contents. However, existing solutions for streaming mulffaching system for streaming media.

media are not efficient because they use a separate unicakt this paper, we explore and assess three techniques to
stream for each request, thus they require a stream to tr&/ghance caching systems to better support streaming me-
from the server to the client across the Internet for eveja over the Internet, namelyegmentation of streaming
request. From the content provider's point of view, servépjects dynamic cachingandself-organizing cooperative
load increases linearly with the number of receivers. Frofaching We consider these techniques in an integrated
the receiver's point of view, she must endure high start_@j@shion and define a unified streaming architecture called
latency and unpredictable playback quality due to networ€lf-Organizing Cooperative Caching Architecture (SOC-
congestion. From the ISP’s point of view, streaming muFER)that can realize each of these techniques and allow

timedia under such an architecture poses serious network o _ .
congestion problems. In this paper, we assume the transmission rate of streaming objects

. . . to be a constant bit rate (CBR). However, the described techniques can
Mu'“‘?aSt and cachl_ng are two common te?hn'ques f@_é extended to also support streaming objects with variable bit rate
enhancing the scalability of general information dissemivBRr).

SOCCER 2000 DRAFT 2

us to use any combination of them. The architecture cant— Streaming Multimedia Object —————>
use both caching and multicast techniques, and ittakes ad Chunk0 | Chunk1 | Chunk2 | Chunk3 |
vantage of unique properties of streaming media. The key
components of the architecture are so-cakedper ma- H DT 11T \ \ \

chines, which are caching and streaming agents inside ths
network, communicating via a novel scalable state distri-
bution protocol and forming dynamic meshes for forward-
ing streaming data.

The rest of the paper is organized as follows. Sectiongtopose a logical unit for caching calletiunk Figure 1
discusses techniques for extending caching systems to Ristrates the various caching units. A chunk is simply a
ter support streaming media. Section Ill describes the §fmber of contiguous segments within an object. Thus,
sign of our unified Streaming architecture. To evaluate V@i_arting from the beginning of an object, evérgegments
ious streaming techniques, we have implemented the gjrm a chunk. Each chunk is then cached independently

chitecture in the ns-2 simulator and built a prototype inysing aprefix cachingallocation and replacement policy.
plementation on the Unix platform. Section IV presentpnat is,

the simulation results. Related work is discussed in Sec- the basic unit of Caching and cache rep|acement is a
tion V and we conclude the paper in Section VI segment,

» segments allocated for a chunk always form a prefix
of the chunk,

In this section, we discuss techniques to better support when any segment within a chunk is being accessed,
streaming media in caching systems. no segment within the chunk can be ejected from the
cache,
when any segment within a chunk is chosen by the
replacement algorithm, the last segment of the prefix-

Rather than caching entire streaming objects in an all- cached segments is always the actual ejected victim.
or-nothing fashion, we propose a more promising way byBy varying the chunk size, we achieve a trade-off be-
dividing the objects into smaller segments for caching ateleen the maximum number of gaps and the segment re-
replacement purposes. Suppose the minimal allocatlacement flexibility. In the extreme case, this degenerates
unit of a cache disk block is siz&, then we can let the into performing prefix caching of the entire object. In prac-
streaming object segment size be any multipleSofFor tice, finding the missing gaps in the system might require
the rest of this discussion, we simply assume a segmeame form of intelligent prefetching to meet the timing re-
size ofS. By doing so, segments of a streaming object cairements of streaming.
be cached and replaced independently and therefore con-
tention for disk space is greatly reduced and disk space &nPYnamic Caching
be most efficiently used to cache popular portions of largeAs in classical web caching, the contents of cached mul-
streaming objects. timedia data segments do not change over time and their

A drawback of such independent segment caching is tieggction is controlled by a cache replacement policy. We
when a streaming request (e.g. playback from time O sefer to this asstatic caching However, the streaming
to 354 sec) arrives at a cache, the request will most likebature of multimedia offers new opportunities for further
result in a partial cache hit in that only certain parts dfandwidth savings than performing static caching alone.
the requested data are in the cache. Therefore, satisfylrige key observation is that playback requests for stream-
such requests requires searching for the missing segmémgsmedia are related byemporal distances Normally,
in other caches. This not only increases signaling costio playback requests require two separate data streams.
but also increases the probability of losing synchronizétowever, if we can hide the temporal distance between
tion. To address this issue, we need to control the numibee requests, then only one data stream is needed to serve
of missing gaps. One way to accomplish this is to increaleth requests. This observation was exploited in [7], [8]
the segment size. However, this also increases the ctm-video servers in video-on-demand systems. We gener-
tention for disk space, and in the extreme case, this degalize this technique for caching systems and nanoy-t
erates into caching all or nothing. This points to a needmic caching Figure 2 demonstrates the basic dynamic
for a large logical unit for caching, while still retains aaching technique. Receivdt; has requested a certain
fine granularity for disk allocation and replacement. W&reaming object from servés at timet;. At a later time

Prefix-cached Uncached
Segments Segments

Fig. 1. Segmentation and chunking of streaming objects

Il. STREAMING EXTENSIONS FORCACHING SYSTEMS

A. Segmentation of Streaming Objects and Smart Segment
Replacement

SOCCER 2000 DRAFT 3

network load compared to accessing static caches only.

? 1
\ | Data MO C. Self-Organizing Cooperative Caching
\ Pateh : for R2 R e Cooperation among distributed caching systems re-
\Ai ' Data ARl quires the ability to identify other caches and to learn about
Buffer . for R1 their current state. Optimally, a cache would always know
| > .
, 0 o time the current state of all the other caches. This would allow

it to choose the most suitable cache to cooperate with at

Fig. 2. Example illustrating dynamic caching any time. However, it is impractical to keep a consistent
and up-to-date view of all distributed caches.

ta2, Ry requests for the same object. Let=t; —t; bethe Existing caching systems solve this problem by stati-

temporal distance between the requestst.Athe firstA cally defining the neighbors of a cache using a configu-

seconds of the stream have already been receiveli by ration file [6]. This approach limits the ability of dynam-

However, notice that all subsequent data being streameqtiglly adapting to changes in network load, system load,

R, will also be needed to satisfi;’s request. Thus, by and cache contents. Furthermore, it does not support in-

allocating aring bufferin the network to cache a movingstant identification of active data streams between caches,

window of A seconds (starting at playback timg of the which is prerequisite to sharing multicast streams for mul-

data stream foR?;, the same data stream can be sharedtigle user requests.

satisfy Ry’s requestA seconds later. The ring buffer has For these reasons, we propose a mechanism for scalable

essentially hidden the temporal distance between the tétate distribution that enables caches to learn about the

requests. Of coursey, will have to obtain the initialA state of remote caching systems. Using this mechanism,

seconds of missing data (callecpatch either from.S or |oosely coupledcache meshesan be formed to forward

from some cache in the network. This is knownpasch- a streaming object to various receivers. We call Bui-

ing. These basic techniques have been proposed in [8jiyanizing cooperative cachingThe details of scalable

the context of receivers buffering datacally in order to state distribution and self-organizing cooperative caching

join an in-progress multicast streaming session. We geire given in the following section.

eralize the technigues to allow any network cache to per-

form dynamic caching for any receivers or any other net- Ill. UNIFIED CACHING ARCHITECTURE FOR

work caches, and to allow a stream to flow through any STREAMING MEDIA

number of dynamic caches in the network. In other words, |n order to explore and assess streaming extensions for
dynamic caches form a stream distribution mesh in the nghching systems, we propose a unified architecture called
work. Of course, dynamic caching also enables IP multse|f-Organizing Cooperative Caching Architecture (SOC-
cast delivery of streams in our caching system exactly likeeR)that embodies all the techniques discussed in Sec-
that proposed in [8]. tion I1. Its core elements are the so-calleelpermachines,

Because dynamic caching helps to stream data to mwhich are caching and data forwarding agents inside the
tiple destinations efficiently, it is a complementary techmetwork. Helpers serve requests for streaming objects by
nigue to static caching. It is most useful when data are hgsing cached (static or dynamic) data as much as possible.
ing streamed to caches or between caches. This happélsse cooperation among helpers is enabled by scalable
when the static caches are being filled, or when caches st&te distribution. A receiver interested in getting a cer-
highly loaded. It is remarkable that a small ring buffer carin streaming object simply sends its request to the ori-
be enough to deliver a complete streaming object howewgn server. The request will be redirected to the receiver’'s
large it might be. Nevertheless, when presented withpaoxy helpereither transparently by a layer-4 switch or by
choice between accessing a dynamic cache versus a sttitfiguring the proxy in the client’s software. On receiv-
cache, there are several interesting trade-offs. First, ting the request, the proxy helper identifies locally avail-
moving window nature of a dynamic cache ensures the ddsle caches and other helpers that can serve the request
livery of the entire streaming object. On the other hanthrough static and dynamic caching. If no appropriate
static cache usually holds only portions of a streamirelper is found, the request is forwarded directly to the
object, requiring more complex operations in order to rerigin server. Section IlI-A illustrates the interaction be-
trieve the entire streaming object from within the systentween static and dynamic caching. The mechanisms and
Second, using dynamic caches always requires a feedimgeria for enabling helper cooperation are explained in
stream into the dynamic cache. This possibly increas8sction IlI-B and IlI-C.

SOCCER 2000 DRAFT 4

load.
« Multicast from server Dynamic caching enabled,
to exploit the ongoing multicast transmission. To join
the multicast groupH, allocates a ring buffer that
can holdA + e seconds of data, wher® = ¢, — t}.
The extrae seconds is added to absorb network de-
lays and other random factorsH, starts buffering
received multicast data (step “7”) and, at the same
time, requests one or more patches to get the Arst
seconds of the objectH; might request a patch ei-
@ o ther from the static cache df; or directly from the
Fig. 3. Example illustrating the unified architecture (a) using i}en}?er (step -8)- Upon re‘c‘:el\'/,lng the patch (step "9"),
multicast (b) using unicast o forwards it toRz_(step 10.). As soon asH% has
forwarded all patching data, it starts forwarding data
from the ring buffer (step “107).
« Unicast from helper’s dynamic cachErom state dis-
SOCCER makes use of both static caching and dy- tribution, H, knows about the content d¥;’s static
namic caching. The interaction between static and dy- and dynamic cachesd, might decide to exploit the
namic caching is illustrated in the example shown in Fig- dynamic cache OHI- To do this,[{2 again allocates a
ure 3. There are two receiveft; and R, a video server ring buffer of sizeA +¢ seconds and sends a request to
S, and two helperd?; and H,. No data is cached atany f, (step “7a” in Figure 3b). On receiving the request,
helper initially. Figure 3a illustrates an example using mul- f1, starts forwarding the data th> (step “7b”). Like
ticast, while Figure 3b shows an example for unicast only. before, H, now has to request a patch either from the
ReceiverR; requests streaming obje@tat timet;. The static cache offf; or directly from the sender. The
request is either directly addressed or transparently redi- rest of the operations proceed as before (step “8”, “9”
rected to the proxy helpdi; (step “1” in Figure 3a). Be- and “10%).
cause the requested data is not available fédyis local « Unicast from helper’s static cachét is also possible
cache nor from any other remote helper, a request is sent for H, to serveR,’s request solely by accessing static

A. Interaction between Static and Dynamic Caching

to serverS (step “27). On receiving the request, sener caches inH; and by contacting the server in case it
initiates a new data stream for objeot(step “3"). The becomes necessary.

new data stream can either be unicast or multicast. For

now, we assume it is multicast. B. Mechanisms for Scalable State Distribution

At time t;, H; receives the data stream and starts Self-organizing helper cooperation is enabled by scal-
caching incoming data in an infinitesimally small, defauligple state distribution. Helpers periodically send adver-
sized ring buffer. It also starts caching the data segmentsjge messages to a well-known multicast address indicat-
static cache (as discussed in Section Il). Simultaneousfyy their ability to serve requests for certain media objects.
it streams the data t&; (step “4”). H; also begins ad- State information is then used to select the best helpers to
vertising its ability to deliver segments of objeGt(step cooperate with.

“57). A mechanism for scalable state distribution strives to

At some later time, receiveR, issues a request forpalance two conflicting goals: network load should be
streaming objecD. The request is redirected and reach@@pt as low as possible, and the freshness of state infor-
proxy helperH; at timet, (step “6”). Because of statemation should be as high as possible. Obviously, frequent
distribution through advertisementd, knows the state of sending of global advertisements improves freshness but
helperH; and the multicast stream transmitting the desiréfcreases network load. Notice that a helper would pre-
object. Interesting is thall; has several options, dependfer getting support from a nearby helper rather than from
ing on whether it is preferable to exploit static or dynamig far away helper. Thus, to reduce the overhead caused
caches, or to make use of unicast or multicast techniques; global advertisements, a good trade-off is to have a

« Unicast from serverHelper H, can contact the serverhelper receive advertisements from other nearby helpers

and request the entire streaming object just like whattore frequently than from helpers far away.
H, did. Obviously, this does not require any addi- These observations motivated our design offkpand-
tional buffer space, but it increases server and netwarlg Ring Advertisement (ERAVhich was originally de-

SOCCER 2000 DRAFT 5

IntervalNo. || 1 | 2 | 3| 4| 5| 6] 7| 8 |9 |10]11]12|13|14]|15]| 16 |17] 18
TTL || 15]31|15|63| 15|31 15| 127 | 15|31 | 15|63 | 15|31 | 15| 254 15| 31
TABLE |
TTL VALUES USED TO SEND ADVERTISEMENTS

Frequency of Reception mjtiple sources. It is the goal of the helper selection al-
Every Advertisement gorithm to find a near optimal sequence of static and/or
dynamic cache accesses in order to serve the request. We
propose a helper selection algorithm that uses a step-wise
Every 4. Advertisement ~ @lgorithm to find one cache at a time and finishes stream-
ing data from a selected cache before determining the next
cache in sequence, thus, achieving a step-wise local opti-

Every 2. Advertisement

Every 8. Advertisement

ol ®@® ® §

, mum.
Helper/Receiver
Advertising Hel per C.1 Algorithm for Helper Selection
Fig. 4. Different scoping areas During each iteration of our step-wise algorithm, a

lobed in th text of reliabl lticast brotocol 9{lelper looks for the best cache (either dynamic or static)
veloped in the context of reliable multicast protocols [0 use. Once it chooses a static cache, it gets as much data

The ERA algorithm makes use of TTL-based scope rest.rgs- there is in the selected static cache up to the start of the

tion. However, it could easily be modified to use admlrHext available local cache or up to the end of the request.

?stratively sgoped multic_ast addresses or apy other SChce it chooses a dynamic cache, it gets data from it up to
ing mechanism. According to the ERA algorithm, helpe fie end of the clip. The algorithm is outlined in Figure 5.

send their advertisements with dynamically changing T E)uring each iteration, using a cost function (discussed in

valueziglvet:n tlrr: Table I. The glv_entr']r L vaIu?T\AaBre def{?ﬁtﬂe next section), the algorithm finds the lowest cost cache
accor |n|g g edgcotp((ej rteglons%m ?Currenf_ otne. K _‘&erently in the helpers to serve the request. Selection is re-
can easlly be adjusted 1o contorm o Spectlic NEWOrK 1Qg-10 to static cach@wnly if the staticOnly flag is set.

frastructures. In the given scheme, the first message is S*F(S"K‘estrict the number of switches between static caches,

with a scope of 15l¢cal), the second one with a SCOPge algorithm requires a static cache to have at [lkAseg-

of 31 (regiona), etc. The effect of this scheme is iIIus'ments of data aftetStart to be considered. If the cache

trated in Figure 4 Listening helperg within a scope of]T%und is static, the helper gets as much data as possible
(e.g., helperd) will get every advertise message (assurri)r-om this static cache, up to the point where its own lo-

ing there are no packet losses). Those yvho have diStaeg?static cache can be used, and advanSeésrt for the
between 16 and 31 (e.g., help) will receive every other next iteration to the end of the current request. If the cache

advertisement. And everk6"" advertise message will befound is dynamic, the helper sends a request to get data

distributed worldwide. This ensures that the frequency 9% totFEnd from this dynamic cache. At the same time, it

advertise messages exponentially decreases with increC Sitinues searching to get any required patches from one

ing scope. Therefore, the scheme reduces network I%q‘q’nore static caches. Using a dynamic cache generally

while allowing short reaction time within a local SCOPEnvolves prefetching of future data because the content of

However, it still ensures global visibility of helpers over. dynamic cache changes over time. While prefetching

a Iarge_r time scale. By observing sequence numbers, ‘?a, the selected dynamic cache might become subop-
advertisements can also be used to estimate the nu §

fh bet hel thout e 0t al. However, since the helper has already started to
Of hops between heipers WIthout requiring access 10 feetch data, it keeps using the previously selected dy-
header of received IP packets.

namic cache.

C. Helper Selection : .
P C.2 Cost Function for Helper Selection

Upon receiving a request for a streaming object, a helper K f a stafi q _ he i _

has to decide where to get the requested data. Data can 6\4& INg use ot a stalic or a dynamic cache 1S associ-

retrieved from its own local cache, directly from the serve?,teOI W'th_ many cost fa(':t.ors. For example, accessing a
8che might cause additional network load and increase

or from any static or dynamic cache of other helpers. TI§1 ing load at th h . d . h
decision making process is callbdlper selectionin gen- € processing load at the cache, using a dyhamic cache

eral, a helper may get portions of the requested data frorThe origin server is considered a static cache as well.

SOCCER 2000 DRAFT 6

tStart = start playback time; network distance to the closest member of gréup

tEnd = end playback time;
done = false;
staticOnly = false;

class | ttl(scope) | network distanced(H, H;))]

while not(done) do local | 106- 1;1 ;
if (staticOnly) then reg_'onal -
(H, C) = (helper,static cache) of min national || 32-63 3
cost; global 64 - 255 4
else TABLE Il

i (H,C) = (helperany cache) of min cost; CLASSES OF NETWORK DISTANCE

if (isStatic(C)) then

send request R, to H for data from tStart Server/Helper Loadlt is desirable to evenly distribute
to min(tEnd,endOf(C),start of next load among the helper machines and to avoid overloading
. (ear:’;g?(blzg’ci C?CETC% then popular helpers. The total number of incoming and outgo-
done = true: ing streams is a good indicator of the current processing
else load at a server/helper and is, therefore, included in the
tStart = endOf(R;); _ advertise messages. Each server/helper has a maximum
i sleep for the playback duration of Rsi number of streams it can serve concurrently. When the
else if (isDynamic(C)) then number of streams served is far less than this processing
send request Ry to H for data from capacity limit, serving one more stream has little impact
startOf(C) to tEnd, on performance. However, when the server/helper is op-

if (tStart == startOf(C)) then

erating close to its capacity, serving one more stream will
done = true;

degrade the performance significantly. As a result, the cost

elsetEnd = startOf(C); associated with server/helper load should increase mildly
staticOnly = true; for low load and increase sharply for high load. Therefore,
. f we define it as follows: If the cache is local or the resulting
od stream is multicast, the load related caéstor requesting
Fig. 5. Helper selection algorithm a stream from helpeH (or serverS) is defined as one. If

the resulting stream is unicast, it is defined as

requires buffer space to absorb the temporal distance, etc.
To keep complexity low, it is reasonable to define a sub- L=
set of useful indices and to specify a good heuristic to find

appropriate caches. ~Content providers, network servigfere currentLoad is the number of streams at helper
providers, and content consumers generally have diffgf- 3nd mazLoad is the maximum allowable number
ent, sometimes conflicting optimization goals. We defing streams atif. Notice that the cost associated with
one possible cost function that tries to find a balance hgsryer/helper load is minimized for both local cache (static
tween network and server/helper load. Before describigg dynamic) and multicast streams, because these scenar-

the function, we first specify two important cost factorgys do not incur any additional load at other helpers or the
that we consider — network load and server/helper load.ggpyer.

maxLoad

mazLoad — currentLoad

Network Load The network distancéVv between two Calculating the Normalized CasiVe define the normal-
helpersH; and H; is related to the number of hops onzed cost function for using a cache as the cost of getting
the path fromH; to H;. Network distance is used asa single segment from that cache. Using the two cost fac-
an approximation for the network load associated witbrs introduced above, the normalized cost is defined as
data transmission from one host to another. In SOCCHER= N x L, whereN is the network cost andl is the cost
helpers implicitly use the ERA algorithm to estimate nessociated with server/helper load. This metric is suitable
work distance among themselves and the sender. They static caches. On the other hand, since using a dy-
classify remote helpers based on the observed scopiramnic cache involves prefetching data that are potentially
level and assign distance values to each of the classesrat-needed, care must be taken to discourage the use of a
cording to Table Il. In addition, to approximate networklynamic cache of a very large temporal distance. For ex-
load for receiving multicast data, the network distance bample, a helper might have prefetchedegments when
tween helpei/; and multicast groug is defined to be the the user aborts the transmission such that ardgegments

SOCCER 2000 DRAFT 7

minimized for local static cache, wherk is zero by def-
! — x — inition and N and L are one. As a result, whenever local
Fig. 6. lllustration of variables used in normalized cost static cache is available, the algorithm always makes use

)] of it to the fullest.
are actually used. In this case, the normalized cost for get-

Request Time Beginning of Dynamic Buffer A different request length distribution will give a dif-
P P ferent value ofz, resulting in a different normalized cost
(I I | function. It is important to note that, this cost function is
— A—le—s > |
1

ting thoser segments is increased by a overhead factor of IV. SIMULATION
_r We use simulations conducted in ns-2 version 2.1b2 [10]
c=— (1) : . ,
x to evaluate the effectiveness of the various techniques for

In general, the larger the temporal distance, the larger §jg€aming media. Helpers can be configured to perform
potential waste. Figure 6 illustrates how we estimate tHEOXY caching, hierarchical caching, or dynamic cooper-
potential waste when a dynamic cache is selected. T@##¥€ caching, using any combination of the techniques
notations used are as follows: described in Sections Il and Ill. For state distribution,

. A: The temporal distance in segments between tH€ Use the ns-2 centralized multicast feature with sender

requesting and the serving helper is denotedy based trees. This option eliminates the periodic flooding
where0 < A. and pruning messages of DVMRP [11]. Multicast routers

« s The number of segments from beginning of dyjn ns-2 always decrement the TTL value of packets be-

namic cache up to the end of the streaming objecti@ forwarded by one. Therefore, the ERA algorithm uses
denoted bys, where0 < s. TTL values of 1, 2, 3, and 20 (to ensure delivery to all

« 2: The number of segments that are actually used frd#fP€rs) in the simulation instead of 15, 31, 63, and 127,

the dynamic cache is denoted bywhere0 < z < s. as described in Section llI-B.

When a helper has received all the patching data anc
starts using data from a dynamic cache, it has already
prefetchedA segments. If: segments are used, the helper
will have prefetched: additional segments, until it reaches
the end of the object. Therefore, the number of prefetched
segments- after x segments are used is given by=
min(A + z, s). Thus, it follows that

B s, if(s—A)<z
c‘{% i (s—A) >z 2)

x > 0is assumed. If the considered cache is static or
the temporal distanca is zero, the overhead reduces to
1. At the time the cost calculation is done, a helper does
not know whether or when a user might terminate trangy; 7. Mc backbone topology and the static hierarchy built
mission. Therefore, a helper needs to estimate the valueon top of it. The numbers on the link represent the latency
of . Assuming that the playback lengths are uniformly in milliseconds. 4, B, C, andD are parent helpers in the
distributed, then playback will on average continue for an- hierarchy.

others/2 segments. By substituting = s/2 in equation

(2), we estimate the overhead factor as We perform our simulation on the MCI backbone
_ network as shown in Figure 7. Link capacities are ir-
c= { Az) !f 3 <A 3) relevant since we do not consider network congestion. A
2-9)+1 , fA<S helper and a stub-router are attached to each backbone

router. Each stub-router simulates a subnet of receivers.
q'rhe latency between each backbone router and its corre-
sponding stub-router i8 ms. The sender is attached to
routerA through six additional hops of latent9 ms each.

Finally, the normalized cost function used by our help
selection algorithm is
2-N-L , f

¢= { (2-2)+ if

<
1)-N-L |, <

(4)

Dl\)lm
vl >

3Topology obtained fromvww.caida.orgn October 1998.

SOCCER 2000 DRAFT

data cached. When no segmentation is performed, mul-

| Parameter | Default Value]) : . . _ .
Simulation Time 10 hours tlmedla. object_s are cached in all-qr-nothlng fash|on'. As
Average Request Inter-Arrival Time Per Subrjett minutes shown in the figure, no segmentation leads to the highest
Stream Segment Size 1.67 MB network load and server load due to high contention for
Stream Chunk Size 10 MB disk space. As the segment size decreases, contention for
Helper Static Cache Space 5GB disk . d d d th h f f
Helper Dynamic Cache Space 64 MB isk space is reduced an thus caches per orm more ef-
Static Caching On fectively leading to lower overall load. Depending on the
Dynamic Caching Off request arrival frequency, continuing reduction in segment
Advertisement Timer 60 seconds size ceases to provide significant additional benefit. Since
Cost Function ParametaraxLoad 100 duci th t si . the disk t
Minimum Static Cache Solution Size 1.67 MB reducing the segmen sge Increases the disk managemen
Cache Replacement Policy LFU overhead, the segment size should be set based on the ex-
Streaming Method Unicast pected system load.

Next we consider dynamic caching (Figure 8 (¢) & (d)).
As noted before, dynamic caching is most useful when
data are being streamed across the network when caches
For hierarchical caching, we construct a two-level hieraa+e being filled or the caches are heavily loaded. We sim-
chy, where level 1 composes of nodésB, C, andD. The ulate a highly loaded system by reducing the average re-
corresponding children level 2 nodes are assigned basedjoast inter-arrival time per subnet to one second. Simula-
the grouping shown in Figure 7. Two versions of the hietion time is reduced to 600 seconds to limit execution time,
archy are used. Hierarchy 1 uses 5 GB as the helper stétit as a result the data does not show the steady state of the
cache space for all caches. Hierarchy 2 uses 13 GB anslyStem. Static caching is turned off while dynamic caching
GB for level 1 and level 2 caches respectively (total cacligturned on, and we vary the size of the dynamic cache.
space is the same as in Hierarchy 1). Two points worth noting in this experiment. First, as ex-

The sender contains 100 100-minute long streaming np@cted, network load reduces as the dynamic cache size
dia objects of 1 GB each. A media stream is a constant itreases. Second, by using dynamic caching, the sender
rate UDP stream with 1 KB packet size and 1.33 Mbpead is decreased only by a small amount because of the
playback rate. Each subnet of receivers follows a Poissextra patching streams.
request arrival process and the requested object follows th&he benefit of self-organizing cooperative caching is
Zipf [12] distribution. All requests start from the beginshown in Figure 8 (e) & (f). We compare our proposed
ning of an object, but vary in the ending time. We usscheme against proxy caching and hierarchical caching
a bimodal distribution that gives a 40%, 20%, and 40%sing two cache size configurations). There are several
chance of playing back 0 to 20 minutes, 20 to 80 minutgspints to note. First, we see that the performance of hi-
and 80 to 100 minutes respectively. erarchical caching is highly dependent on the cache size

Table Ill specifies a set of default simulation parametersonfiguration. Hierarchy 1, with 5 GB of space at each
Whenever applicable, their default values are used unlégsper, gives similar network load as proxy caching, while
otherwise noted. reducing the sender load slightly. Hierarchy 2, with 13

We use two performance metrics to evaluate vario®B caches at level 1 and 5 GB caches at level 2, provides
techniques, they are network load and sender load. Nefdch better performance. Second, self-organizing coop-
work load is illustrated as the cumulative number of bytesrative caching yields the best performance overall. It re-
of all types of packets transmitted on all links versus timeuces network load by 44% compared to proxy caching or
whereas sender load is illustrated as the total numberhidrarchical caching in variant 1, and by 35% compared to
outgoing streams at the sender versus time. In genetaérarchical caching in variant 2. Third, the network load
good performance is indicated by low network and send@ported already accounts for the state distribution data
load. packets, which contribute less than 0.03% to the total data
traffic. In reality, compression techniques can be used to
further reduce the overhead. We have also experimented

To illustrate the benefits of various multimedia cachingith other advertisement timer values from 240 seconds
techniques, a set of simulation results are presented in Rig20 seconds and observed that network load (including
ure 8. First, we consider the benefit of segmenting a largete distribution overhead) reduces slightly as advertise-
multimedia object by varying the segment size (FigurerBent messages are sent more frequently because the infor-
(@) & (b)). Recall that a segment is the minimum unit ahation used by helpers is more up-to-date. These results

TABLE IlI
DEFAULT VALUES OF PARAMETERS

A. Simulation Results

SOCCER 2000 DRAFT

1.2e+13 T T 160 T T
No Segmentation <— No Segmentation -—
167 MB/Segment -+~ 167 MB/Segment -+-
16.7 MB/Segment -8-- 16.7 MB/Segment -5--
1.67 MB/Segment - 140 1.67 MB/Segment -
le+13 1
2 i
£
- =
I 8e+l2 [g i
§ 8]
b -
Q ©
P 6e+12 1 e 1
=3 @
I~ 5
3 bt
o 2 B
2 £
T 4de+l2 B]
K z
E
5
3 i
2e+12 1
0 Z | | | | | | 0 | | | | | | |
0 5000 10000 15000 20000 25000 30000 35000 40000 0 5000 10000 15000 20000 25000 30000 35000 40000
Simulation Time (sec) Simulation Time (sec)
gses12 [T T] T T T T
No Caching <— No Caching <-—
64 MB Dynamic Cache —+- 14000 |- 64 MB Dynamic Cache -+- 7
128 MB Dynamic Cache -&-- 128 MB Dynamic Cache -8--
7e+12 | 256 MB Dynamic Cache -x-- | 256 MB Dynamic Cache -
12000 [
L
T 6etl2
4 .
= £ 10000 -
<
S set12 @
o ©
2 @
< £ 8000
K 4e+12 g
1 e+ =
I =
=3 17}
& 5
3 5 6000
o
> 3etl2 IE’
g 5
z z
A L
S 2e+12 000
1e+12 2000 - 1
0 — 0 | | | | | | | | |
0 100 200 300 400 500 600 100 150 200 250 300 350 400 450 500 550 600
Simulation Time (sec) Simulation Time (sec)
T T 250 T T
1.4e+13 - Proxy Cache -<— | Proxy Cache —-—
Hierarchical Cache 1 -+ Hierarchical Cache 1 -+-
Hierarchical Cache 2 -8-- Hierarchical Cache 2 -8--
SOCCER Static Cache - SOCCER Static Cache -*
1.2e+13
200 1
L
£
2 tensf 5
2 H
S &
° p 150 1
Q ©
@ 8e+l2 @
m =
o &
] g
8 =4
= 2
L 5
5 6e+l2 5 100 i
o E=]
2 €
s 5
K z
E ge+12 |
o
50 1
2e+12
0 L L L L L L 0 i L L L L L L L
0 5000 10000 15000 20000 25000 30000 35000 40000 5000 10000 15000 20000 25000 30000 35000 40000

Simulation Time (sec)

(e)

Fig. 8. Various simulation results. (a)/(b) Benefit of segmentation. (c)/(d) Benefit of dynamic caching. (e)/(f) Benefit of self-

organizing cooperative caching.

Simulation Time (sec)

(f)

SOCCER 2000 DRAFT 10

Adver Timer (seconds)]| 240 120 50 20 up latency for those requests which arrive earlier in a time-
Total Data (Bytes) 64.0ell| 63.1ell| 62.6ell| 61.7ell interval. The proposed techniques are designed for video
State Dist Data (Bytes)] 31.8e6 | 81.0e6 | 184e6 | 733¢6 on demand systems, and they are not concerned about wide
TABLE IV area bandwidth constraints nor about the client’s buffer
OVERHEAD OF STATE DISTRIBUTION requirements. In fact, they can actually increase clients’
storage requirements, while chaining can also lead to in-
| Scheme || Server| Level 1 Helpers] Level 2 Helpers] creased network load in wide-area networks. SOCCER, on
Proxy Max || 220 36 43 the other hand, aims at reducing network load and client
SRS 7T = 2 storage requirements in addition to reducing server load.
AVg 152 85 20 This goal is achieved by utilizing both temporal distance
Hier 2 X\Z}X ﬁg 18205 ‘21? as well as network distance (or spatial proximity) to form
SOCCER Max 73 25 5 the so-called helper mesh. Overall memory requirement is
Avg 56 25 27 reduced because helpers share buffers with one another.
TABLE V Other related work has been done on memory caching

SERVER AND HELPERS LOAD IN NUMBER OF STREAMs for multimedia servers [16], [7]. While the basic princi-
ple of caching data in different memory levels of a video

are summarized in Table IV. server has some similarities with storing data in a dis-

Finally, note that self-organizing cooperative cachinigibuted caching system, there is a fundamental difference.
can also distribute load much better than the othé&he spatial distance between different memory levels in a
schemes. Table V illustrates the load on the server, legerrver is zero. In contrast, spatial distance between dis-
1 helpers and level 2 helpers under the various cachitigputed caching systems is not negligible and, therefore,
schemes. Since helpers within the same level exhibit siligs to be considered in the design of web cache manage-
ilar load, we provide only the aggregate statistics for eadtent policies. This requirement is reflected in SOCCER'’s
level. Under proxy caching, the server is extremely overelper selection and cost function.
loaded. Hierarchical caching reduces the server's loadRecently, work has been presented on proxy caching ar-
slightly, however, much of the burden is carried by the fowhitectures for improving video delivery over wide area
Level 1 parent caches. The Level 2 children caches are hetworks. The scheme presented in [17] makes use of
effective. In contrast, under self-organizing cooperatiy@efix caching in order to smooth bursty video streams dur-
caching, the maximum and average server load are redutwiplayback. Prefetching and storing portions of a stream
by about 67% compared to proxy caching. Furthermoiig, network proxies for the purpose of smoothing has also
the burden is spread quite evenly among the caches. Ase&n proposed in [18]. In [19], a proxy caching mecha-

result, network hot-spots are eliminated. nism is used for improving delivered quality of layered-
encoded multimedia streams. All these approaches are
V. RELATED WORK based on a relative simple proxy architecture without any

Related work on web caching systems such as CERRIlaboration between the proxies. Our work is comple-
httpd [3], Harvest [4], [5] and Squid [6] has already beefentary in the sense that it focuses on the design of an ef-
mentioned in Section |. These systems are designed figient collaborative proxy/caching architecture. The pro-
classical web objects and do not offer any support fepsed mechanisms for video smoothing and quality adap-
streaming media. Furthermore, their static web cachifion can use our architecture with the additional benefits
architecture is very different from self-organizing cachef @ collaborative caching environment.
cooperation and dynamic caching as defined in SOCCERFinally, the “middleman” architecture presented in [20]
In these approaches, parent caches and sibling cachedsafelevant to SOCCER. It forms clusters of caches where
statically configured using a configuration file. Thus, the§ach cluster usesaordinatorto keep track of the state of
do not adapt to changes in network and system loads @¢ches in the cluster. This centralized approach contrasts
namically. sharply with SOCCER's distributed architecture in which

Another body of related work is in the area of scalabRach helper maintains global state information and makes
video-on-demand systems [8], [13], [14], [15]. The idea I§cal decisions.
to reduce server load by grouping multiple requests within
a time-interval and serving the entire group in a single
stream. Chaining and patchingrefine the basic idea and This research is a first step to understand the issues of
define mechanisms to avoid the problem of increased stattending the caching principle to support streaming me-

VI. CONCLUSIONS ANDFUTURE WORK

SOCCER 2000 DRAFT

dia over the Internet. We study relevant streaming tech-
niques, generalize and apply them in the context of dis-
tributed caching. Furthermore, we propose several noysl
techniques, including segmentation of streaming objects,
combined use of dynamic and static caching, and self-

organizing cooperative caching. We integrate all the%

techniques into a complete solution for caching streaming
media in the Internet by defining the Self-Organizing C?il]
operative Caching Architecture (SOCCER). Our simula-
tions showed that self-organizing cooperative caching can
significantly reduce network and server load compared to
proxy or hierarchical caching. It turns out that the oveP-]
head for state distribution becomes almost negligible when
using the proposed distribution protocol based on Expand-
ing Ring Advertisement (ERA). Our results also show th&t’!
heavily loaded systems will benefit from segmentation of
media objects and from dynamic caching. More work
needs to be done on evaluating and assessing different £&dtC.C. Aggarwal, J.L. Wolf, and P.S. Yu, “On optimal batching
functions for helper selection and to better understand the policies for video-on-demand storage servers,Poc. of Inter-
trade-offs between effectiveness and complexity.

Our current implementation of a streaming helper [$°]

in compliance with IETF standard protocols, notably
Real Time Streaming Protocol (RTR)] andReal-time
Transport Protocol (RTPJ22]. Therefore, it can inter-
operate with any standard-compliant streaming server dmnél
client in a transparent way. Detailed information on the
current implementation can be found in [23]. The imple-
mentation will be used for further evaluation in a produc-

tion network.

(1]
(2]
(3]

[4]

5]

[6]

[7]

(8]

[17]

REFERENCES
(18]

Vxtreme, “Internet homepage,” http://www.vxtreme.com, 1999.
Real Networks, “Internet homepage,” http://www.real.com, 1999.
H.F. Nielsen, “Cern httpd,’{lg]
http://www.w3.org/Daemon/Status.html, 1996.

C.M. Bowman, P.B. Danzig, D.R. Hardy, U. Manber, M.F.
Schwartz, and D.P. Wessels,
able discovery and access system,” Tech. Rep. CU-CS-732-E9%P,]
University of Colorado, Boulder, USA, 1994.

A. Chankhunthod, P.B. Danzig, C. Neerdaels, M.F. Scwartz, and

T Berners-Lee A. Lutonen,

“Harvest: A scalable, customiz-

K.J. Worrell, “A hierarchical internet object cache,” Rroceed-
ings of the 1996 Usenix Technical Conferent@96.

D. Wessels, “Icp and the squid cache,” National Laboratory fo[%2
Applied Network Research, 1999, http://ircache.nlanr.net/Squid.
A. Dan and D. Sitaram, “Multimedia caching strategies for hei—zs]
erogeneous application and server environmentsiultimedia
Tools and Applicationsvol. 4, no. 3, 1997.

K. A. Hua, Y. Cai, and S. Sheu, “Patching: A multicast technique

] UCB/LBNL/VINT,

11

for true video-on-demand services,”Rmoceedings of ACM Mul-
timedia '98 Bristol, England, Sept. 1998.

M. Hofmann and M. Rohrmuller, “Impact of virtual group struc-
ture on multicast performance,” Fourth International COST 237
Workshop, Lisboa, Portugal, December 15-19, 1997.

“Network simulator, ns,” http://www-
mash.cs.berkeley.edu/ns, 1999.

D. Waitzman, C. Partridge, and S. Deering, “Distance vector
multicast routing protocol,” Internet Request for Comments 1075,
November 1988.

G. K. Zipf,
change,” Reprinted from the Harvard Studies in Classical Philol-
ogy, Volume XL, 1929.

A. Dan, D. Sitaram, and P. Shahabuddin,
policies for an on-demand video serverfMultimedia Systems
vol. 4, no. 3, pp. 51-58, June 1996.

“Relative fregency as a determinant of phonetic

“Dynamic batching

national Conference on Multimedia Systems'@éne 1996.

S. Sheu, K. A. Hua, and W. Tavanapong, “Chaining: A general-
ized batching technique for video-on-demand systemsPro:
cedings of IEEE International Conference on Multimedia Com-
puting and System®ttawa, Ontario, Canada., 1997.

A.Dan and D. Sitaram, “A generalized interval caching policy for
mixed interactive and long video environments,” Rroceedings

of IS&T SPIE Multimedia Computing and Networking Confer-
ence, San Jose, CAanuary 1996.

S. Sen, J. Rexford, and D. Towsley, “Proxy prefix caching for
multimedia streams,” ifProceedings of IEEE Infocom’9®New
York, USA., 1999.

Y. Wang, Z.-L. Zhang, D. Du, and D. Su, “A network conscious
approach to end-to-end video delivery over wide area networks
using proxy servers,” iiProc. of IEEE InfocomApril 1998.

R. Rejaie, M. Handley, H. Yu, and D. Estrin, “Proxy caching
mechanisms for multimedia playback streams in the internet,” in
Proceedings of the 4th International Web Caching Workshop, San
Diego, CA, March 1999.

Soam AcharyaTechniques for Improving Multimedia Communi-
cation Over Wide Area Networks$h.D. thesis, Cornell Univer-
sity, Dept. of Computer Science, 1999.

1] H. Schulzrinne, A. Rao, and R. Lanphier, “Real time streaming

protocol,” Internet Request for Comments 2326, April 1998.

] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson, “Rtp:

A transport protocol for real-time applications,” Internet Request
for Comments 1889, January 1996.

E. Bommaiah, K. Guo, M. Hofmann, and S. Paul, “Design and
implementation of a caching system for streaming media,” Tech.
Rep. BL011345-990628-05 TM, Bell Laboratories, June 1999.

