
Center for Embedded Computer Systems
University of California, Irvine

System-On-Chip Network Modeling Style Guide

Dongwan Shin
Junyu Peng

Andreas Gerstlauer
Rainer Dömer

Daniel D. Gajski

Technical Report CECS-TR-04-23
July 31, 2004



System-On-Chip Network Modeling Style Guide

Dongwan Shin
Junyu Peng

Andreas Gerstlauer
Rainer Dömer

Daniel D. Gajski

Technical Report CECS-TR-04-23
July 31, 2004

Center for Embedded Computer Systems
University of California, Irvine
Irvine, CA 92697-3425, USA

(949) 824-8919

http://www.cecs.uci.edu

Abstract

The SCE system-level design flow consists of a series of refinement steps that gradually transform an
abstract specification model into an architecture model, a network model, a communication model and
finally a detailed implementation model. The transformations can be automated with model refinement
tools.

This report describes the styles of network models automatically generated by the network refinement
tool. Therefore it can help designers understand the network models. It can also be used as a reference
maunal if designers want to write their own network models that are valid input to the communication
refinement tool.



Contents
1 Introduction 1

1.1 SoC Design Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 SpecC Language . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 An Overview of Network Model 3

3 Link Channels 5

4 Memories 6

5 Processing Elements 8
5.1 Two-Shell Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
5.2 Memory-Mapped IO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

6 Communication Elements 10
6.1 Bridges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
6.2 Transducers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

6.2.1 Simple case: Asynchronous Transducers . . . . . . . . . . . . . . . . . . . . . . . 14
6.2.2 More Complex Case: Synchrounous Transducers . . . . . . . . . . . . . . . . . . . 15

7 Top-Level Design Behavior 19

References 21

i



List of Figures
1 SoC design flow. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2 Network model top-level code. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
3 Network model top-level structure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
4 Interfaces implemented by c double handshake channel. . . . . . . . . . . . . . . . . 5
5 Interfaces implemented by c handshake channel. . . . . . . . . . . . . . . . . . . . . . . 6
6 An example of memory behavior. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
7 Two-shell PE structure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
8 Example code of an adapter channel. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
9 Example code of memory-mapped IO modeling. . . . . . . . . . . . . . . . . . . . . . . . . 11
10 An example of bridge behavior. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
11 An example of buffer behavior. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
12 An example of repeater behavior. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
13 An example code of transducer behavior. . . . . . . . . . . . . . . . . . . . . . . . . . 15
14 An example of synchronous transducer for synchronous communication. . . . . . . . . . . . 16
15 An example of synchronous transducer for asynchronous communication. . . . . . . . . . . 17
16 An example of synchronous transducer for asynchronous communication. . . . . . . . . . . 18
17 Example of a top-level design behavior code. . . . . . . . . . . . . . . . . . . . . . . . . . 19

ii



System-On-Chip Network Modeling Style Guide

D. Shin, J. Peng, A. Gerstlauer, R. Dömer and D. D. Gajski.
Center for Embedded Computer Systems

University of California, Irvine

July 31, 2004

Abstract
The SCE system-level design flow consists of a series of refinement steps that gradually transform an ab-
stract specification model into an architecture model, a network model, a communication model and finally
a detailed implementation model. The transformations can be automated with model refinement tools.

This report describes the styles of network models automatically generated by the network refinement tool.
Therefore it can help designers understand the network models. It can also be used as a reference maunal
if designers want to write their own network models that are valid input to the communication refinement
tool.

1 Introduction
System design in the SoC approach takes an initial specification of the system down to an actual implemen-
tation through a series of interactive and automated steps. Starting from a purely functional description of
the desired system behavior, an implementation of the design on a heterogeneous system architecture with
multiple processing elements (PEs) connected through system busses is produced at the end of the design
flow.

This report describes and defines guidelines and rules for developing SpecC based system models in
general, and as input to the SoC tools in particular.

1.1 SoC Design Flow
In the SoC design flow (Figure 1), five design models are used to represent the design at different abstraction
levels. The design models are executable so that they can be simulated to verify the correctness of the design
and obtain design performance metrics at each design step.

The most abstract model is the specification model that serves as the input to SoC tools. Specification
model is a pure functional model that captures the functionality of the desired design. It should not contain
any implementation details.

The architecture model is the output of architecture exploration. It reflects the overall computation ar-
chitecture consisting of processing elements (PEs). The architecture model encapsulates the communication
between PEs through abstract message-passing channels.

After network exploration a network model is produced to reflect the communication network chosen for
the design. It represents the allocation and selection of network stations and the links between them. While
the communication is end-to-end between PEs in the architecture model, it is refined into point-to-point in
the network model.

1



Architecture Explorer

Network Explorer

Communication Synthesizer

PE
Database

CE
Database

Bus
Database

Li
br

ar
y 

B
ui

ld
er

Specification Model

Architecture Model

Network ModelNetwork Model

TLM

Communication Model

SpecC

Simulation
Capture

SpecC

Simulation
Capture

SpecC

Simulation
Capture

Simulation

SpecC

Simulation

Figure 1: SoC design flow.

Finally, the communication model incorporates bus protocols into the model. The communication model
can be pin-accurate or transaction-level. The transaction level model abstracts away the pin-accurate protocol
details.

All the models are captured in SpecC language and they have to adhere to the syntax and semantics of
the SpecC language. Designers only need to write the specification model for the design and then use the
tools to automatically generate the lower level models. SoC tools also support partial specification, which
allows designers to start with a specification with incomplete computational functionality. Later designers
can modify the computation part of the automatically generated models. However, for the modified models
to be valid for the SoC tools, they must follow certain modeling rules. This report in particular defines the
modeling style required for the SoC network model, which is highlighted in the figure. [4], [5], [7] and [6]
focus on the modeling styles of the other models.

1.2 SpecC Language
The SoC design flow is supported by the SpecC system-level design language ([1]). The SpecC language as
an example of a modern system-level design language (SLDL) was developed under support and control of
the SpecC Technology Open Consortium (STOC) ([2]) to satisfy all the requirements for an efficient formal
description of the models in the SoC design flow. It supports behavioral and structural views and contains
features for describing a design at all levels of abstraction.

In the SoC design flow, all five models of the design process starting with the specification model and
down to the implementation model are described in the SpecC language. One common language removes
the need for tedious translation. Furthermore, all the models in SpecC are executable which allows for vali-
dation through simulation while reusing one single testbench throughout the whole design flow. In addition,
the formal nature of the models enables application of formal methods, e.g. for verification or equivalence
checking.

2



Note that this report is not intended to be a tutorial of SpecC language and we assume that the reader of
this report is familiar with the language. This report can be used for two purposes. First, it can help users
understand the meaning of the automatically generated network models by the network explorer. Second,
it can help users modify the automatically generated network models such that they can be accepted by the
communication synthesizer ([?]).

The rest of the report is organized as follows. Section 2 presents the overall structure of a network
model. The major elements of a network model are described one by one in detail. Section 3 describes the
communication channels allowed in the network model. Section 4 describes the modeling of shared memories
in the network model. Section 5 describes the guidelines to model processing elements. Section 6 describes
the modeling of communication elements, such as bridges and transducers in the network model. Finally,
Section 7 describes the rules on how to compose the element together to form an valid network model.

2 An Overview of Network Model
Figure 2 and Figure 3 show an example template for a valid network model. A network model has to be an
executable SpecC model, i.e. it has to define a Main behavior. A network model consists of a testbench
that surrounds the actual design to be implemented. A testbench consists of stimulating (Stimulus) and
monitoring (Monitor) behaviors that are executing concurrently with the design (Design) in the top-most
Main behavior, and that drive the design under test and check the generated output against known golden
outputs.

The actual design to be implemented is modeled by the design behaviors, such as behavior Design and
those composed hierarchically inside Design in Figure 3. Design behaviors form a hierarchy tree by their
composition relations. The root of the tree, for example Design in Figure 3, is called the top-level design
behavior.

Note that the modeling rules and restrictions defined in this report apply only to the design behaviors
since the testbench behaviors will not be considered and touched by SoC tools. Therefor the testbench can
be freely described using any valid SpecC code. For example, while the code of the design to be implemented
has to be available completely in SpecC source form, the testbench can link against external translation units
(libraries) for additional functionality.

In general it is hard for SoC tools themselves to find out which behaviors are testbench behaviors and
which are actual design behaviors. This distinction is made by the designers attaching a predefined annotation
to the network model.

Rule 1 A network model has an annotation SER TOPLEVEL, which contains the name of the top-level
design behavior of the model.

For the example shown in Figure 3, the annotation would look like the following:

n o t e SER TOPLEVEL = ‘ ‘ Des ign ’ ’ ;

Once the top-level design behavior is specified, the SoC tools are able to figure out all other design
behaviors.

If we zoom inside the top-level design behavior of a network model, we can identify a set of finer model
elements which are used to capture both the computation architecture and the communication network.

• PE behaviors are used to model the processing elements allocated to perform the desired computation;

• Memory behaviors are used to model the memories allocated to store data shared by PEs;

• Bridge and transducer behaviors are used to model the communication elements needed to interface
between different communication protocols.

3



i m p o r t ” c d o u b l e h a n d s h a k e ” ;

b e h a v i o r S t i m u l u s ( i s e n d e r i n p u t ) { / / S t i m u l i c r e a t o r
vo id main ( vo id ) {

5 / / w h i l e ( . . . ) { . . . ; i n p u t . send ( . . . ) ; . . . }
}

} ;

b e h a v i o r Moni to r ( i r e c e i v e r o u t p u t ) { / / Ou tpu t m o n i t o r
10 vo id main ( vo id ) {

/ / w h i l e ( . . . ) { . . . ; o u t p u t . r e c e i v e ( . . . ) ; . . . }
}

} ;

15 b e h a v i o r Des ign ( i r e c e i v e r i n p u t , i s e n d e r o u t p u t ) { / / Sys t em d e s i g n
/ / . . .

vo id main ( vo id ) {
/ / f sm { . . . }

20 }
} ;

b e h a v i o r Main ( ) { / / Top l e v e l
c d o u b l e h a n d s h a k e i n p u t , o u t p u t ;

25
S t i m u l u s s t i m u l u s ( i n p u t ) ;
Des ign d e s i g n ( i n p u t , o u t p u t ) ;
Moni to r m o n i t o r ( o u t p u t ) ;

30 i n t main ( vo id ) {
p a r {

s t i m u l u s . main ( ) ;
d e s i g n . main ( ) ;
m o n i t o r . main ( ) ;

35 }
}

} ;

Figure 2: Network model top-level code.

Design MonitorStimulus

Main

Figure 3: Network model top-level structure.

4



• Link channels are used to model the connection between the processing elements and the communica-
tion elements.

Rule 2 The top-level design behavior of a network model has three annotations attached to it: AR PES,
NR CES and CR BUSSES, which contain the names, types and other attributes of processing elements,

communication elements and busses allocated for the design.

In the following sections, we will define these model elements one by one before we describe how to put
them together to form a valid network model.

3 Link Channels
In the network models, SpecC channels are used to represent the links that connect processing elements (see
Section 5) and communication elements (see Section 6). A link only allows sequential and uni-directional
transactions. Transactions that may occur at the same time must go through different links. The links in the
network models are logical since different links may be later implemented on the same physical bus.

Network links can be classified based on the information they convey: data links are used for data transfer
while synchronization links are used for pure synchronization with no data involved. To enable automatic
communication synthesis, both the data links and the synchronization links have to be represented with certain
types of channels defined in the library.

Rule 3 A data link is represented with an instance of untyped c double handshake channel as defined
in SpecC Language Reference Manual.

i n t e r f a c e i s e n d e r {
vo id send ( c o n s t vo id ∗d , u n s i g n e d long l ) ;

} ;

5 i n t e r f a c e i r e c e i v e r {
vo id r e c e i v e ( vo id ∗d , u n s i g n e d long l ) ;

} ;

i n t e r f a c e i t r a n c e i v e r {
10 vo id send ( c o n s t vo id ∗d , u n s i g n e d long l ) ;

vo id r e c e i v e ( vo id ∗d , u n s i g n e d long l ) ;
} ;

Figure 4: Interfaces implemented by c double handshake channel.

The c double handshake channel encapsulates un-buffered type-less data transfer. It implements
three interfaces: i sender, i receiver and i tranceiver as shown in Figure 4.

Rule 4 A synchronization link is represented with an instance of c handshake channel as defined in SpecC
Language Reference Manual.

The c handshake channel encapsulates one-way handshake synchronization that does not need to carry
real data. It implements two interfaces: i send and i receive as shown in Figure 5.

For more information about rules and examples on using c double handshake and c handshake
channels, the reader is referred to SpecC Language Reference Manual ([1]). Note that additional rules will
be presented in Section 7 for connecting the link channel instances to PE ports.

5



i n t e r f a c e i s e n d {
vo id send ( vo id ) ;

} ;

5 i n t e r f a c e i r e c e i v e {
vo id r e c e i v e ( vo id ) ;

} ;

Figure 5: Interfaces implemented by c handshake channel.

4 Memories
In the network models, SpecC behaviors are used to model memory components which store data. For PE
behaviors to access the stored data, a memory behavior has to implement a memory interface which provides
memory read and write methods. Since the data being transferred in the network models is untyped, the
memory interface should not define any type-specific methods. An example code of memory behavior is
shown in Figure 6.

Rule 5 A memory behavior implements exactly one interface, which has two methods with exactly the fol-
lowing signatures:

v o i d read ( u n s i g n e d long o f f s e t , v o i d ∗d , u n s i g n e d long s i z e ) ;
v o i d w r i t e ( u n s i g n e d long o f f s e t , v o i d ∗d , u n s i g n e d long s i z e ) ;

The read method reads size bytes from the memory location starting at offset and puts them in the
variable which is pointed by d. Conversely, the write method writes size bytes data pointed by d to the
memory location starting at offset.

Rule 6 A memory behavior must not have any ports, channel instances and sub-behavior instances. It has
only one variable mem, which is a C struct that exactly describes the actual sizes (in terms of number of
bytes) and the locations of all variables stored in the memory.

Note that the actual sizes for a same data type may vary from processor to processor. For example, a
short may occupy two bytes in one processor while four bytes in another. Assigning locations to variables
has to take the alignment factor into account: can a variable start at byte, word or double-word boundary?
If necessary, padding has to be used to make sure that variables align correctly. In the example shown in
Figure 6, the two variables stored in the memory (x and y) are packed into the struct variable mem. Here we
assume the size of short type is two bytes and the size of float type is four bytes. We also assume that a
variable can start at word boundary.

Note that the body of the main() method is empty, i.e. it does not do anything. Other than the main()
method and the memory interface methods, the memory behavior should not implement any other methods.

Rule 7 Each memory behavior must have a PE BF MODEL annotation, which contains the behavior name
of the memory’s bus-functional model stored in the database.

In order to help the communication synthesizer locate the bus-functional model of the memory, an anno-
tation BF MODEL must be attached to the memory behavior. For example,

Mem1 . PE BF MODEL = ‘ ‘ Samsung\ BF ’ ’ ;

tells the communication synthesizer that the behavior name of the memory’s bus-functional model is Sam-
sung BF.

6



# i n c l u d e <s t r i n g . h>

i n t e r f a c e i Mem1
{

5 vo id r e a d ( u n s i g n e d long , vo id ∗ , u n s i g n e d long ) ;
vo id w r i t e ( u n s i g n e d long , c o n s t vo id ∗ , u n s i g n e d long ) ;

} ;

b e h a v i o r Mem1 implemen t s i Mem1
10 {

s t r u c t {
c h a r x [ 2 ] ; / / s h o r t x ;
c h a r y [ 4 0 ] ; / / f l o a t y [ 1 0 ] ;

} mem;
15

vo id w r i t e ( u n s i g n e d long ofs , c o n s t vo id ∗ da ta , u n s i g n e d long l e n )
{

c h a r ∗ p t r ;
p t r = ( c h a r ∗ ) &mem;

20 memcpy ( p t r + ofs , da t a , l e n ) ;
}

vo id r e a d ( u n s i g n e d long ofs , vo id ∗ da ta , u n s i g n e d long l e n )
{

25 c h a r ∗ p t r ;
p t r = ( c h a r ∗ ) &mem;
memcpy ( da t a , p t r + ofs , l e n ) ;

}

30 vo id main ( vo id )
{
}

} ;

Figure 6: An example of memory behavior.

7



5 Processing Elements
In a network model each processing element is represented by a PE behavior. The PE behavior specifies the
functionality to be implemented by the PE rather than the internal structure of the PE. The basic functionality
of a PE is data processing or computation.

In general, a PE performs computation on typed data, such as integer and float. However, as
we have defined earlier, PEs in the network models must exchange data through c double handshake
channels which only provide type-less data transfer. Therefore PE behaviors in the network models must
model the formatting between typed data and type-less data.

In a network model, transducers may be needed to interface two busses with incompatible protocols. It
may happen that data transfers between two PEs have to go through a transducer when the communicating
PEs are connected to two busses with incompatible protocols. Basically, the transducer receives the data from
one PE, buffers it and then send it out to the other PE. Usually a transducer has a finite amount of internal
buffer, which limits the size of data exchanged between the transducer and the PEs in one transaction. In this
case, PEs have to break data into smaller packets to avoid overflow in the transducer buffer. Therefore PE
behaviors in the network models must also model the packetization process, if necessary.

5.1 Two-Shell Structure

B3

v2

C1
B2

B1
Application 

Shell

Network 
Shell

CA2 CA1

CA3

Figure 7: Two-shell PE structure.

In order to separate the modeling of application domain from that of network domain support, a two-shell
modeling style (Figure 7) has to be followed in a PE behavior.

The inner application shell behavior encapsulates the computation required by the application executed
on the PE. In general, the application shell behavior is hierarchically composed of smaller behaviors (B1,
B2 and B3), where each contains a piece of the compuation assigned to the PE. To model inter-behavior
communication inside the application shell, both channels (C1) and variables (v2) can be connected to the
behavior ports (small squares at behavior boundary). The modeling styles inside the application shell can be
found in SpecC specification model reference manual.

However, the application shell behavior can only have interface type ports and no variable ports. Further-
more, only certain interface types are allowed for the ports.

Rule 8 An application shell behavior has only interface ports and no variable ports. The interface types
allowed are as follows:

8



(a) i sender (typed or un-typed)

(b) i receiver (typed or un-typed)

(c) i tranceiver (typed or un-typed)

(d) i send

(e) i receive

(f) memory interface (Section 4)

i m p o r t ” c d o u b l e h a n d s h a k e ” ;

# i n c l u d e <c t y p e d d o u b l e h a n d s h a k e . sh>

5 /∗ c r e a t e ” f l o a t ” t y p e i n t e r f a c e ” i d a t a 1 t r a n c e i v e r ” ∗ /
DEFINE I TYPED TRANCEIVER ( da ta1 , f l o a t )

/∗ c r e a t e ” f l o a t ” t y p e i n t e r f a c e ” i d a t a 1 s e n d e r ” ∗ /
DEFINE I TYPED SENDER ( da ta1 , f l o a t )

10
/∗ c r e a t e ” f l o a t ” t y p e i n t e r f a c e ” i d a t a 1 r e c e i v e r ” ∗ /
DEFINE I TYPED RECEIVER ( da ta1 , f l o a t )

15 c h a n n e l a d a p t e r ( i t r a n c e i v e r l i n k ) imp lemen t s
i d a t a 1 s e n d e r , i d a t a 1 r e c e i v e r

{
vo id r e c e i v e ( f l o a t ∗ d a t a 1 )
{

20 l i n k . r e c e i v e ( da ta1 , s i z e o f ( f l o a t ) ) ;
}

vo id send ( f l o a t d a t a 1 )
{

25 l i n k . send (& da ta1 , s i z e o f ( f l o a t ) ) ;
}

} ;

Figure 8: Example code of an adapter channel.

The example shown in Figure 8 illustrates how to create typed interfaces that send and/or receive a float
type data (line 5 to 12).

The network shell is needed to format typed data in the application into stream of untyped data transferred
over the network. It may also be needed to break the byte stream into packets that will be routed over the
network if the data transfer goes through a transducer. The network shell is modeled as a hierarchical behavior
that has an instantiation of the application shell behavior. It may also has a set of adapter channel instances
that perform the and typed/untyped conversion and/or packetization. An example of an adapter channel that
converts float data transfer into untyped data transfer is shown in Figure 8 (line 15 to 27).

Rule 9 The network shell behavior contains exactly one behavior instance, whose type is an application shell
behavior. It may contain a set of network shell adapter channel instances.

9



Similar to the application shell behavior, the network shell behavior has only interface ports and only
untyped interface types are allowed. These interface ports will be connected to the link channel instances
defined in Section 3.

Rule 10 A network shell behavior has only interface ports and no variable ports. The interface types allowed
are as follows:

(a) i sender (un-typed)

(b) i receiver (un-typed)

(c) i tranceiver (un-typed)

(d) i send

(e) i receive

(f) memory interface (see Section 4)

Rule 11 The network shell behavior of a software PE has annotation PE BF MODEL attached to it, which
contains the behavior name of the PE’s bus-functional model stored in the database.

5.2 Memory-Mapped IO
A design may use both software and hardware PEs. Software PEs are general purpose programmable proces-
sors while hardware PEs are application specific hardware units that need to be synthesized. One common
practice for communication between a processor and a hardware device is by means of memory mapped-IO.
Basically, the hardware unit uses it internal memory, for example, registers as IO ports that are mapped to
the processor’s memory space. As such, these registers can be accessed by the processor as if they were
memories.

For memory-mapped IO, the internal memory of a hardware PE can be modeled as a memory behavior
described in Section 4. (Note that memory-mapped IO modeling does not apply to the software processors.)
In this case, a hardware PE in the network model is described as a combination of a PE behavior defined in
Section 5.1 and a memory behavior defined in Section 4. More specifically, the memory behavior instantiated
inside the application shell implements an untyped memory interface, which is propagated to the application
shell behavior and the network shell behavior.

However, the application code executed by the hardware PE itself may also need to access the registers as
typed data. Obviously, the local accesses do not go through the network. Therefore in this case, the memory
behavior has to implement an additional typed memory interface for the local access. An example code of a
hardware PE behavior with internal memory is shown in Figure 9.

6 Communication Elements
Two kinds of communication elements, namely bridges and transducers, can be modeled in the network
model.

10



i n t e r f a c e i untyped Mem1 {
vo id r e a d ( u n s i g n e d long , vo id ∗ , u n s i g n e d long ) ;
vo id w r i t e ( u n s i g n e d long , c o n s t vo id ∗ , u n s i g n e d long ) ;

} ;
5

i n t e r f a c e i typed Mem1 {
s h o r t r e a d x ( vo id ) ;
vo id w r i t e x ( s h o r t ) ;

} ;
10

b e h a v i o r Mem1 implemen t s i untyped Mem1 , i typed Mem1
{

/ / code ommited f o r space c o n s i d e r a t i o n
} ;

15
b e h a v i o r Beh ( i typed Mem1 ) ;

b e h a v i o r AppShe l l imp lemen t s i untyped Mem1
{

20 Mem1 M1;
Beh B1 (M1 ) ;

vo id main ( vo id ) { B1 . main ( ) ; }

25 vo id r e a d ( u n s i g n e d long ofs , vo id ∗ d , u n s i g n e d long l e n )
{ M1. r e a d ( ofs , d , l e n ) ; }

vo id w r i t e ( u n s i g n e d long ofs , c o n s t vo id ∗ d , u n s i g n e d long l e n ) ;
{ M1. w r i t e ( o fs , d , l e n ) ; }

30 } ;

b e h a v i o r N e t S h e l l imp lemen t s i untyped Mem1
{

AppShel l App ;
35

vo id main ( vo id ) { App . main ( ) ; }

vo id r e a d ( u n s i g n e d long ofs , vo id ∗ d , u n s i g n e d long l e n )
{ App . r e a d ( ofs , d , l e n ) ; }

40
vo id w r i t e ( u n s i g n e d long ofs , c o n s t vo id ∗ d , u n s i g n e d long l e n ) ;
{ App . w r i t e ( o fs , d , l e n ) ; }

} ;

Figure 9: Example code of memory-mapped IO modeling.

11



i m p o r t ” i s e n d e r ” ;
i m p o r t ” i mem1 ” ;

i n t e r f a c e i s e n d e r L 1
5 {

vo id send L1 ( vo id ∗ , u n s i g n e d long ) ;
} ;

i n t e r f a c e i s e n d e r L 3
10 {

vo id send L3 ( vo id ∗ , u n s i g n e d long ) ;
} ;

b e h a v i o r B r i d g e ( i s e n d e r L1 , i mem1 L2 , i s e n d e r L3 )
15 imp lemen t s i s e n d e r L 1 , i mem1 , i s e n d e r L 3

{
vo id main ( vo id )
{
}

20
vo id send L1 ( vo id ∗d , u n s i g n e d long l e n )
{

L1 . send ( d , l e n ) ;
}

25
vo id r e a d ( u n s i g n e d long ofs , vo id ∗d , u n s i g n e d long l e n )
{

L2 . r e a d ( ofs , d , l e n ) ;
}

30
vo id w r i t e ( u n s i g n e d long ofs , c o n s t vo id ∗d , u n s i g n e d long l e n )
{

L2 . w r i t e ( o fs , d , l e n ) ;
}

35
vo id send L3 ( vo id ∗d , u n s i g n e d long l e n )
{

L3 . send ( d , l e n ) ;
}

40 } ;

Figure 10: An example of bridge behavior.

12



6.1 Bridges
In the network model, a bridge is modeled as a SpecC behavior. An example of bridge behavior is shown in
Figure 10.

Rule 12 A bridge has a set of ports of following types:

(a) i sender (un-typed)

(b) i receiver (un-typed)

(c) i tranceiver (un-typed)

(d) i send

(e) i receive

(f) memory interface (see Section 4)

Due to the defined port types, A bridge can be connected to either c double handshake,
c handshake or memory instances.

Rule 13 A bridge usually implements a set of interfaces. The methods of the implemented interfaces must
have the same argument list as the one of the port interface. In addition, the name of the interface methods
must starts with either “send” or “read”. Therefore, the methods must have one of the following signatures:

v o i d send XXXX ( v o i d ∗ , u n s i g n e d long ) ;
v o i d rece ive XXXX ( v o i d ∗ , u n s i g n e d long ) ;
v o i d send XXXX ( v o i d ) ;
v o i d rece ive XXXX ( v o i d ) ;
v o i d read XXXX ( u n s i g n e d long , v o i d ∗ , u n s i g n e d long ) ;
v o i d wri te XXXX ( u n s i g n e d long , v o i d ∗ , u n s i g n e d long ) ;

Note that XXXX represents an user-defined string.

The bridge shown in Figure 10 has three ports that can be connected to two c double handshake
channel instances and a memory behavior respectively. From the modeling point of view, a bridge is just an
transparent adapter that calls the same kind of methods without modifying the data transfer.

Rule 14 A bridge behavior has annotation CE BF MODEL attached to it, which contains the behavior name
of the bridge’s bus-functional model stored in the database.

When a bridge has only a port of memory interface type and it implements the same interface by itself,
this bridge is actually a meory controller.

The bridge behaviors are later replaced with a bus-functional model during communication synthesis.
Therefore, it must have an annotation to inform the communication synthesizer the name of its corresponding
bus-functional model.

6.2 Transducers
During network exploration, multiple busses may be allocated to realize the communication between PEs.
In the network model, transducer behaviors may be needed to represent the communication elements that
interface two different communication protocols through buffecan moring.

13



6.2.1 Simple case: Asynchronous Transducers

A transducer may need to hand data transfer or data-less synchronization that involves different protocols on
its two sides. We will use buffer behavior to model the handling of data transfer by the transducer and
repeater behavior to model the handling of synchronization by the transducer. A transducer behavior can
then be modeled as a par composition of a set of buffer and repeater behavior instances.

# d e f i n e PACKET SIZE 1

i m p o r t ” i s e n d e r ” ;
i m p o r t ” i r e c e i v e r ” ;

5
b e h a v i o r B u f f e r ( i r e c e i v e r L , i t r a n c e i v e r R)
{

c h a r b u f f e r [ PACKET SIZE ] ;

10 vo id main ( vo id )
{

w h i l e ( 1 )
{

L . r e c e i v e (& b u f f e r [ 0 ] , PACKET SIZE ) ;
15 R . send (& b u f f e r [ 0 ] , PACKET SIZE ) ;

}
}

} ;

Figure 11: An example of buffer behavior.

As shown in Figure 11, a buffer behavior has two ports of interface type, i sender and
i receiver. (We will see later that these two ports are to be mapped to c double handshake channel
instances.) It also has a buffer that is the size of a packet. The main() method is an endless while loop,
where data is received from the i receiver port and stored in the buffer before it is sent out through the
i sender port.

i m p o r t ” i s e n d ” ;
i m p o r t ” i r e c e i v e ” ;

b e h a v i o r R e p e a t e r ( i r e c e i v e L , i s e n d R)
5 {

vo id main ( vo id )
{

w h i l e ( 1 )
{

10 L . r e c e i v e ( ) ;
R . send ( ) ;

}
}

} ;

Figure 12: An example of repeater behavior.

14



Rule 15 A buffer behavior is a leaf behavior that has two ports, one being i sender type and the other
being i receiver type.

As shown in Figure 12, a repeater behavior has two ports which are i send and i receive inter-
face type respectively. (We will see later that these two ports are to be mapped to c handshake channel
instances.) The main() method is an endless while loop, where synchronization is received from the
i receive port before it is passed through the i send port.

Rule 16 A repeater behavior is a leaf behavior that has two ports, one being i sender type and the
other being i receiver type.

A transducer behavior is a hierarchical behavior that may consist of one or more buffer and repeater
behavior instances executing in parallel.

b e h a v i o r T r a n s d u c e r ( i r e c e i v e r L1 , i s e n d e r R1 ,
i s e n d e r L2 , i r e c e i v e r R2 ,
i s e n d L3 , i r e c e i v e R3 )

{
5 B u f f e r b1 ( L1 , R1 ) ;

B u f f e r b2 ( R2 , L2 ) ;
R e p e a t e r r1 ( R3 , L3 ) ;

vo id main ( vo id )
10 {

p a r
{

b1 . main ( ) ;
b2 . main ( ) ;

15 r1 . main ( ) ;
}

}
} ;

Figure 13: An example code of transducer behavior.

Rule 17 A transducer behavior is a hierarchical behavior that has a set of ports and a set of buffer and
repeater behavior instances. The port type can be either i sender, i receiver, i sender, or
i receiver.

Rule 18 Inside the transducer behavior, no ports of the transducer behavior is port-mapped to more than
one sub-behavior.

6.2.2 More Complex Case: Synchrounous Transducers

The transducers presented in Section 6.2.1 are called asynchronous because they do not automatically pre-
serve the synchronicity required by the two communicating parties. For instance, a double-handshake data
transfer between two parties requires both of them to meet at the same time to start the transfer. However,
when an asynchronous transducer is inserted, the double-handshake data transfer is splitted into two sequen-
tial transfers, which lack the synchronicity: the sending party deposits a data item to the transducer then
proceeds without worrying about if the receiving party is there to retrieve the data. In order to retain the

15



/∗ uni−d i r e c t i o n a l s y n c h r o n o u s da ta t r a n s f e r ∗ /
b e h a v i o r TX( i t r a n c e i v e r L1A , i t r a n c e i v e r L1B )
{

vo id main ( vo id )
5 {

l ong i n t s i z e 1 , s i z e 2 ;
u n s i g n e d c h a r d a t a [ PACKET SIZE ] ;

w h i l e ( 1 ) {
10 L1A . r e c e i v e (& s i z e 1 , s i z e o f ( l ong i n t ) ) ;

L1B . r e c e i v e (& s i z e 2 , s i z e o f ( l ong i n t ) ) ;

L1A . r e c e i v e (& d a t a [ 0 ] , s i z e 1 ) ;
L1B . send (& d a t a [ 0 ] , s i z e 2 ) ;

15 }
}

} ;

/∗ bi−d i r e c t i o n a l s y n c h r o n o u s da ta t r a n s f e r ∗ /
20 b e h a v i o r TX( i t r a n c e i v e r L1 , i t r a n c e i v e r L2 )

{
vo id main ( vo id )
{

s h o r t i n t d i r 1 , d i r 2 ;
25 l ong i n t s i z e 1 , s i z e 2 ;

u n s i g n e d c h a r d a t a [ PACKET SIZE ] ;

w h i l e ( 1 ) {
L1 . r e c e i v e (& d i r 1 , s i z e o f ( s h o r t i n t ) ) ;

30 L1 . r e c e i v e (& s i z e 1 , s i z e o f ( l ong i n t ) ) ;
L2 . r e c e i v e (& d i r 2 , s i z e o f ( s h o r t i n t ) ) ;
L2 . r e c e i v e (& s i z e 2 , s i z e o f ( l ong i n t ) ) ;

i f ( d i r 1 == RECEIVE && d i r 2 == SEND)
35 {

L2 . r e c e i v e (& d a t a [ 0 ] , s i z e 2 ) ;
L1 . send (& d a t a [ 0 ] , s i z e 1 ) ;

}
e l s e

40 {
L1 . r e c e i v e (& d a t a [ 0 ] , s i z e 1 ) ;
L2 . send (& d a t a [ 0 ] , s i z e 2 ) ;

}
}

45 }
} ;

Figure 14: An example of synchronous transducer for synchronous communication.

16



desired synchronicity, additional meta-data, such as a flag, has to be sent back and forth between the two
parties.

In this section, we present another approach that uses synchronous transducers, which automatically
preserve the synchronicity required by the data transfers being implemented. As a result, the synchronous
transducers tend to be more costly than the asynchronous transducers which merely perform transparent data
relay. However, the synchronous transducers avoid transfering meta-data for end-to-end synchronization thus
potentially reduce communication traffic.

In this report, we present two types of synchronous transducers, one for implementing synchronous data
transfers (double-handshake) and the other for implementing asynchronous (queue) data transfers.

Synchronous Communication Synchronous communication requires the sending and receiving parties
meet at the same time for the data transfer. Synchronous communication between two end points can be
modeled with a SpecC double-handshake channel that connects them. The double-handshake channel allows
both uni-directional and bi-directional transfers. The example code of synchronous transducers for both uni-
and bi-directional synchronous communication is shown in Figure 14.

Asynchronous Communication Asynchronous communication uses additional storage to buffer trans-
ferred data therefore it does not need the sending and receiving parties to meet at the same time. (Note
that as an extreme case, asynchronous communication degenerates to synchronous communication if buffer
size is zero.) Asynchronous communication between two end points can be modeled with a SpecC queue
channel that connects them. Same as the double-handshake channel, a queue channel also allows uni- and
bi-diretional transfers. The example code of synchronous transducers for both uni- and bi- directional asyn-
chronous communication is shown in Figure 15 and Figure 16, respectively.

b e h a v i o r TX1( i t r a n c e i v e r L1 , i t r a n c e i v e r L2 )
{

vo id main ( vo id )
{

5 l ong i n t s i z e 1 , s i z e 2 ;
u n s i g n e d c h a r d a t a [ PACKET SIZE ] ;

w h i l e ( 1 ) {
L1 . r e c e i v e (& s i z e 1 , s i z e o f ( l ong i n t ) ) ;

10 L1 . r e c e i v e (& d a t a [ 0 ] , s i z e 1 ) ;

L2 . r e c e i v e (& s i z e 2 , s i z e o f ( l ong i n t ) ) ;
L2 . send (& d a t a [ 0 ] , s i z e 2 ) ;

}
15 }

} ;

Figure 15: An example of synchronous transducer for asynchronous communication.

Note that transducers can be synthesized in the same way as the hardware PEs during the back-end
process.

17



b e h a v i o r L e f t ( i t r a n c e i v e r L2A , i s e n d e r cq1 , i r e c e i v e r cq2 )
{

vo id main ( vo id )
{

5 s h o r t i n t s r ;
l ong i n t s i z e ;
l ong i n t d a t a 1 ;
s h o r t i n t d a t a 2 ;

10 w h i l e ( 1 ) {
L2A . r e c e i v e (& sr , s i z e o f ( s h o r t i n t ) ) ;
L2A . r e c e i v e (& s i z e , s i z e o f ( l ong i n t ) ) ;
i f ( s r == SEND)
{

15 L2A . r e c e i v e (& da ta1 , s i z e ) ;
cq1 . send (& da ta1 , s i z e ) ;

}
e l s e
{

20 cq2 . r e c e i v e (& da ta2 , s i z e ) ;
L2A . send (& da ta2 , s i z e ) ;

}
}

}
25 } ;

b e h a v i o r R i g h t ( i t r a n c e i v e r L2B , i r e c e i v e r cq1 , i s e n d e r cq2 )
{

vo id main ( vo id )
30 {

s h o r t i n t s r ;
l ong i n t s i z e ;
l ong i n t d a t a 1 ;
s h o r t i n t d a t a 2 ;

35
w h i l e ( 1 ) {

L2B . r e c e i v e (& sr , s i z e o f ( s h o r t i n t ) ) ;
L2B . r e c e i v e (& s i z e , s i z e o f ( l ong i n t ) ) ;
i f ( s r == SEND)

40 {
L2B . r e c e i v e (& da ta2 , s i z e ) ;
cq2 . send (& da ta2 , s i z e ) ;

}
e l s e

45 {
cq1 . r e c e i v e (& da ta1 , s i z e ) ;
L2B . send (& da ta1 , s i z e ) ;

}
}

50 }
} ;

b e h a v i o r TX2( i t r a n c e i v e r L2A , i t r a n c e i v e r L2B )
{

55 c q u e u e cq1 (500 u l ) , cq2 (500 u l ) ;

L e f t l e f t ( L2A , cq1 , cq2 ) ;
R i g h t r i g h t ( L2B , cq1 , cq2 ) ;

60 vo id main ( vo id )
{

p a r {
l e f t . main ( ) ;
r i g h t . main ( ) ;

65 }
}

} ;

Figure 16: An example of synchronous transducer for asynchronous communication.

18



7 Top-Level Design Behavior
In previous sections, we have defined the set of model elements in a network model. In this section we present
the following rules on connecting the elements together to form a network model that is a valid input to the
communication synthesizer. An example network model is shown in Figure 17.

i m p o r t ” c d o u b l e h a n d s h a k e ” ;

i n t e r f a c e i Memory {
vo id r e a d ( u n s i g n e d long , vo id ∗ , u n s i g n e d long ) ;

5 vo id w r i t e ( u n s i g n e d long , vo id ∗ , u n s i g n e d long ) ;
} ;

b e h a v i o r Memory implemen t s i Memory ;
b e h a v i o r MemCntl ( i Memory ) implemen t s i Memory ;

10 b e h a v i o r T r a n s d u c e r ( i r e c e i v e r , i s e n d e r ) ;
b e h a v i o r CPU( i s e n d e r , i Memory ) ;
b e h a v i o r HW( i r e c e i v e r ) ;

b e h a v i o r Des ign ( vo id )
15 {

c d o u b l e h a n d s h a k e L1 ;
c d o u b l e h a n d s h a k e L2 ;

Memory M;
20 MemCntl B(M) ;

T r a n s d u c e r T ( L1 , L2 ) ;
CPU C( L1 , B ) ;
HW H( L2 ) ;

25 vo id main ( vo id )
{

p a r {
M. main ( ) ;
B . main ( ) ;

30 T . main ( ) ;
C . main ( ) ;
H. main ( ) ;

}
}

35 } ;

Figure 17: Example of a top-level design behavior code.

Rule 19 The top-level design behavior of the network model is a hierarchical behavior that is composed of
following:

(a) instances of link channels as defined in Section 3,

(b) instances of PE behaviors as defined in Section 5,

(c) instances of memory behaviors as defined in Section 4, and

(d) instance of CE behaviors as defined in Section 6.

19



Rule 20 The top-level behavior has exactly one method, the main() method, which contains exactly one
statement that is of par type.

By definition of a hierarchical behavior ([4]), each sub-behavior instance inside the top-level behavior can
be called at most once in the par statement. For example, having two PE1.main() calls in the par statement
is not allowed.

Rule 21 Inside the top-level design behavior, a link channel instance can be connected to only two PEs/CEs.
Each PE or CE has at most one port mapped to a given link channel.

Rule 22 In the network model, at most one CE, either a bridge or a transducer is allowed between two PEs.

Since a bridge implements interfaces, it can be mapped to PE ports like the link channels. A bridge also
has a set of ports therefore it can also connect to a PE using link channels. When a bridge is connected to two
PEs that communicate with each, the following rule has to be obeyed.

Rule 23 Between two communicating PEs, one must be the master and the other be the slave. If there is a
bridge between them, the bridge must be port-mapped to the master PE and be connected to the slave PE
through link channel instances.

Note that the top-level behavior may have a set of ports to communicate with the testbench behaviors. It
is strongly recommended that the top-level behavior keep the same set of ports if the architecture model is
derived from a specification model. The same interface of the top-level behavior enables re-use of testbench
behaviors for simulation of the architecture model without any modification.

20



References
[1] R. Dömer, A. Gerstlauer and D. D. Gajski. SpecC Language Reference Manual, Version 2.0, SpecC

Technology Open Consortium (STOC), Japan, December 2002.

[2] SpecC Technology Open Consortium. http://www.specc.org.

[3] SpecC Compiler V2.2.0, Center for Embedded Computer Systems, University of California, Irvine,
June 2004.

[4] A. Gerstlauer, K. Ramineni, R. Dömer, D. Gajski. System-on-Chip Specification Style Guide, Technical
Report CECS-TR-03-21, Center for Embedded Computer Systems, University of California, Irvine,
June 2003.

[5] J. Peng, A. Gerstlauer, R. Dömer and D. D. Gajski. System-on-Chip Architecture Modeling Style Guide,
Technical Report CECS-TR-04-22, Center for Embedded Computer Systems, University of California,
Irvine, July 2004.

[6] D. Shin, L. Cai, A. Gerstlauer, R. Dömer and D. D. Gajski. System-on-Chip Transaction-Level Modeling
Style Guide, Technical Report CECS-TR-04-24, Center for Embedded Computer Systems, University
of California, Irvine, July 2004.

[7] D. Shin, A. Gerstlauer, R. Dömer and D. D. Gajski. System-on-Chip Communication Modeling Style
Guide, Technical Report CECS-TR-04-25, Center for Embedded Computer Systems, University of
California, Irvine, July 2004.

21


	1 Introduction
	1.1  SoC Design Flow
	1.2 SpecC Language

	2 An Overview of Network Model
	3 Link Channels
	4 Memories
	5 Processing Elements
	5.1 Two-Shell Structure
	5.2 Memory-Mapped IO

	6 Communication Elements
	6.1 Bridges
	6.2 Transducers
	6.2.1 Simple case: Asynchronous Transducers
	6.2.2 More Complex Case: Synchrounous Transducers


	7 Top-Level Design Behavior
	References

