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Abstract

Tiling is one of the more important transformations for en-
hancing locality of reference in programs. Intuitively, tiling
a set of loops achieves the effect of interleaving iterations of
these loops. Tiling of perfectly-nested loop nests (which are
loop nests in which all assignment statements are contained
in the innermost loop) is well understood. In practice, many
loop nests are imperfectly-nested, so existing compilers use
heuristics to try to find a sequence of transformations that
convert such loop nests into perfectly-nested ones, but these
heuristics do not always succeed. In this paper, we propose a
novel approach to tiling imperfectly-nested loop nests. The
key idea is to embed the iteration space of every statement in
the imperfectly-nested loop nest into a special space called
the product space which is tiled to produce the final code.
We evaluate the effectiveness of this approach for dense nu-
merical linear algebra benchmarks, relaxation codes, and the
tomcatv code from the SPEC benchmarks. No other single
approach in the literature can tile all these codes automati-
cally.

1 Background and Previous Work

The memory systems of computers are organized as a hier-
archy in which the latency of memory accesses increases by
roughly an order of magnitude from one level of the hier-
archy to the next. Therefore, a program runs well only if
it exhibits enough locality of reference for most of its data
accesses to be satisfied by the faster levels of the memory
hierarchy. Unfortunately, programs produced by straight-
forward coding of most algorithms do not exhibit sufficient
locality of reference. The numerical linear algebra com-
munity has addressed this problem by writing libraries of
carefully hand-crafted programs such as the Basic Linear
Algebra Subroutines (BLAS) [22] and LAPACK [3] for al-
gorithms of interest to their community. However, these li-
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braries are useful only when linear systems solvers or eigen-
solvers are needed; they are not useful when explicit meth-
ods are used to solve partial differential equations (pde’s),
for example.

The restructuring compiler community has explored a
more general-purpose approach in which program locality
is enhanced by a program restructuring compiler which does
not have any specific knowledge of the algorithms being im-
plemented by these programs. In principle, this technology
can be brought to bear on any program without restriction
to problem domain. In practice, most of the work in this
area has focused on perfectly-nested loop nests that manip-
ulate arrays1. Highlights of the restructuring technology for
perfectly-nested loop nests are the following. A loop is said
to carry algorithmic reuse if the same memory location is
accessed by two or more iterations of that loop for fixed
outer loop iterations. Permuting a reuse-carrying loop into
the innermost position in the loop nest allows us to exploit
the reuse. In many programs, there are a number of loops
that carry algorithmic reuse – this can be exploited by tiling,
which interleaves iterations of the tiled loops, thereby en-
abling exploitation of algorithmic reuse in all the tiled loops
rather than in just the innermost one [28]. Sophisticated
heuristics have been proposed for choosing tile sizes [5, 7,
8, 15, 21].

Tiling changes the order in which loop iterations are per-
formed, so it is not always legal to tile a loop nest. If tiling is
not legal, it may be possible to perform linear loop transfor-
mations such as skewing and reversal to enable tiling [2, 4,
16, 23, 26]. This technology has been incorporated into pro-
duction compilers such as the SGI MIPSPro compiler, en-
abling these compilers to produce good code for perfectly-
nested loops.

In real programs though, many loop nests are
imperfectly-nested (that is, one or more assignment state-
ments are contained in some but not all of the loops of the
loop nest). Figure 2 shows a loop nest for solving triangu-
lar systems with multiple right-hand sides; note that state-

1A perfectly-nested loop nest is a set of loops in which all assignment
statements are contained in the innermost loop.



ment S2 is not contained within the k loop, so the loop
nest is imperfectly-nested. Cholesky, LU and QR factoriza-
tions [11] also contain imperfectly-nested loop nests.

A number of approaches have been proposed for en-
hancing locality of reference in imperfectly-nested loop
nests. The simplest approach is to transform each maxi-
mal perfectly-nested loop nest separately. In the triangular
solve code in Figure 2, the c and r loops together, and the k
loop by itself form two maximal perfectly-nested loop nests.
The perfectly-nested loop nest formed by the c and r loops
can be tiled by the techniques described above, but it can
be shown that the resulting code performs poorly compared
to the code in the BLAS library which interleaves iterations
from all three loops [22].

A more aggressive approach taken in some production
compilers such as the SGI MIPSPro compiler is to (i) con-
vert an imperfectly-nested loop nest into a perfectly-nested
loop nest if possible by applying transformations like code
sinking, loop fusion and loop fission [29], and then (ii) use
locality enhancement techniques for the resulting maximal
perfectly-nested loops. In general, there are many ways to
do this conversion, and whether the resulting code could be
tiled depends on how this conversion is done [13]. Sophis-
ticated heuristics to guide this process were implemented by
Wolf et al [27] in the SGI MIPSPro compiler, but our ex-
periments show that the performance of the resulting code
does not approach that of hand-written code in the LAPACK
library [14].

These difficulties led Kodukula et al [13] to propose a
technique called data-shackling. Instead of tiling loop nests,
the compiler blocks data arrays and chooses an order in
which these blocks are brought into the cache; code is sched-
uled so that all statements that touch a given block of data
are executed when that block is brought into the cache, if
that is legal. However, it is not clear how data-shackling
can be used for relaxation codes like Jacobi or Gauss-Seidel
that make multiple traversals over data arrays. A related ap-
proach called iteration space slicing was developed by Pugh
and Rosser [20], but it does not address tiling.

Special-purpose tiling algorithms focused on particular
kinds of imperfectly-nested loops have been proposed in the
literature. For example, Carr et al have shown that factor-
ization codes can be tiled after a specific sequence of loop
transformations have been performed on them [6]. Recently,
Song and Li [24] have proposed a technique for tiling relax-
ation codes like Jacobi, specific to programs with a particu-
lar structure consisting of an outermost time-step loop that
contains a sequence of perfectly-nested loop nests. Their al-
gorithm identifies one loop from each loop nest, fuses these
together and skews them with respect to the time-step loop.
However, this transformation strategy is not applicable to
codes such as matrix factorizations.

In our previous work [1], we developed a general frame-
work to enhance locality in imperfectly-nested loops. Our
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Figure 1: Tiling Imperfectly-nested Loop Nests

strategy is shown in Figure 1. Each statement Si in an
imperfectly-nested loop nest is first assigned a unique iter-
ation space Si called the statement iteration space. These
statement iteration spaces are embedded into a large iteration
space called the product space which is simply the Cartesian
product of the individual statement iteration spaces. Em-
beddings generalize transformations like code-sinking and
loop fusion that convert imperfectly-nested loop nests into
perfectly-nested ones, and are specified by embedding func-
tions Fi as shown in Figure 1.

In this paper, we show how this framework can be used
to tile imperfectly-nested loops. In Section 3, we show how
embedding functions that enable tiling can be determined. In
Section 3.3, we describe an algorithm that finds nested lay-
ers of tilable dimensions of the product-space. Section 3.4
describes how to determine tile sizes for these dimensions.
We are currently implementing our approach, and in Sec-
tion 4, we discuss experimental results obtained by using
our approach to tile common benchmarks for the two-level
cache hierarchy of an SGI octane. Finally, we discuss ongo-
ing work in Section 5.

The advantages of our approach are the following. By
embedding statements in the product space, we abstract
away the syntactic structure of the code. Therefore we do
not require the to code conform to a particular structure. Sec-
ondly, by directly determining embeddings that allow us to
perform tiling, we avoid the problem of searching for a se-
quence of transformations that enables tiling. We know of no
other single technique that is capable of tiling all the classes
of programs discussed in the paper.

2 Product Spaces and Embeddings

The kernel in Figure 2 will be our running example. Trian-
gular systems of equations of the form Lx = b where L is
a lower triangular matrix, b is a known vector and x is the
vector of unknowns arise frequently in applications. Some-
times, it is necessary to solve multiple triangular systems
that have the same co-efficient matrix L. Such multiple sys-
tems can obviously be viewed as computing a matrix X that
satisfies the equation LX = B where B is a matrix whose
columns are constituted from the right-hand sides of all the



for c = 1,M
for r = 1,N
for k = 1,r-1

S1: B(r,c) = B(r,c) - L(r,k)*B(k,c)
S2: B(r,c) = B(r,c)/L(r,r)

Figure 2: Triangular Solve with Multiple Right-hand Sides

triangular systems. The code in Figure 2 solves such multi-
ple triangular systems, overwriting B with the solution.

2.1 Statement Iteration Spaces

We associate a distinct iteration space with each statement
in the loop nest, as described in Definition 1.

Definition 1 Each statement in a loop nest has a statement
iteration space whose dimension is equal to the number of
loops that surround that statement.

We will use S1, S2, . . . , Sn to name the statements in the
loop nest in syntactic order. The corresponding statement
iteration spaces will be named S�, S�, . . . , Sn. In Figure 2,
the iteration space S� of statement S1 is a three-dimensional
space c� � r� � k�, while the iteration space S� of S2 is a
two-dimensional space c� � r�.

The bounds on statement iteration spaces can be speci-
fied by integer linear inequalities. For our running example,
these bounds are the following:

S� � M � c� � � S� � M � c� � �
N � r� � � N � r� � �

r� � � � k� � �

An instance of a statement is a point within that state-
ment’s iteration space.

2.2 Dependences

We show how the existence of a dependence can be formu-
lated as a set of linear inequalities.

A dependence exists from instance is of statement Ss to
instance id of statement Sd if the following conditions are
satisfied.

1. Loop bounds: Both source and destination statement
instances lie within the corresponding iteration space
bounds. Since the iteration space bounds are affine
expressions of index variables, we can represent these
constraints as Bs � is � bs � � and Bd � id � bd � �
for suitable matrices Bs� Bd and vectors bs� bd.

2. Same array location: Both statement instances refer-
ence the same array location and at least one of them
writes to that location. Since the array references are
assumed to be affine expressions of the loop variables,
these references can be written as As � is � as and

Ad � id � ad. Hence the existence of a dependence
requires that As � is � as � Ad � id � ad.

3. Precedence order: Instance is of statement Ss oc-
curs before instance id of statement Sd in program
execution order. If commonsd is a function that re-
turns the loop index variables of the loops common
to both is and id, this condition can be written as
commonsd�id� � commonsd�is� if Sd follows Ss
syntactically or commonsd�id� � commonsd�id� if it
does not, where � is the lexicographic ordering rela-
tion.
This condition can be translated into a disjunction of
matrix inequalities of the formXs�is�Xd�id�x � �.

If we express the dependence constraints as a disjunction
of conjunctions, each term in the resulting disjunction can
be represented as a matrix inequality of the following form.

D

�
is
id

�
�d �

�
�����

Bs �
� Bd

As �Ad

�As Ad

Xs �Xd

�
�����
�
is
id

�
�

�
�����

bs
bd

as � ad
ad � as

x

�
����� � �

Each such matrix inequality will be called a dependence
class, and will be denoted by D with an appropriate sub-
script. For our running example in Figure 2, it is easy to
show that there are two dependence classes2. The first de-
pendence class D� arises because statement S1 writes to a
location B(r,c) which is then read by statement S2; sim-
ilarly, the second dependence class D� arises because state-
ment S2 writes to location B(r,c) which is then read by
reference B(k,c) in statement S1. For simplicity, they are
presented as sets of inequalities rather than in matrix nota-
tion.

D� � M � c� � � M � c� � �
N � r� � � N � r� � �

r� � � � k� � �
r� � r�
c� � c�

D� � M � c� � � M � c� � �
N � r� � � N � r� � �

r� � � � k� � �
k� � r�
c� � c�

2.3 Product Spaces and Embedding Functions

The product space for a loop nest is the Cartesian product
of the individual statement iteration spaces of the statements
within that loop nest. The order in which this product is
formed is the syntactic order in which the statements appear
in the loop nest.

2There are other dependences, but they are redundant.



The relationship between statement iteration spaces and
the product space is specified by projection and embedding
functions. Suppose P � S� � S����� Sn. Projection func-
tions �i � P � Si extract the individual statement itera-
tion space components of a point in the product space, and
are obviously linear functions. For our running example,
�� �

�
I��� �

	
and �� �

�
� I���

	
.

An embedding function Fi on the other hand maps a
point in statement iteration space Si to a point in the prod-
uct space. Unlike projection functions, embedding functions
can be chosen in many ways. In our framework, we consider
only those embedding functions Fi � Si � P that satisfy the
following conditions.

Definition 2 Let Si be a statement whose statement itera-
tion space is Si, and let P be the product space. An embed-
ding function Fi � Si � P must satisfy the following condi-
tions.

1. Fi must be affine.
2. �i�Fi�q�� � q for all q � Si.

The first condition is required by our use of integer linear
programming techniques. We will allow symbolic constants
in the affine part of the embedding functions. The second
condition states that if point q � Si is mapped to a point
p � P , then the component in p corresponding to Si is q
itself. Each Fi is therefore one-to-one, but points from two
different statement iteration spaces may be mapped to a sin-
gle point in the product space. Affine embedding functions
can be decomposed into their linear and offset parts as fol-
lows: Fj�ij� � Gjij � gj .

2.3.1 Examples of Embeddings

Embeddings can be viewed as a generalization of tech-
niques like code-sinking, loop fission and fusion that are
used in current compilers such as the SGI MIPSPro to
convert imperfectly-nested loop nests into perfectly-nested
ones. Figure 3 illustrates this for loop fission. After loop
fission, all instances of statement S1 in Figure 3(a) are exe-
cuted before all instances of statement S2. It is easy to verify
that this effect is achieved by the transformed code of Fig-
ure 3(b). Intuitively, the loop nest in this code corresponds
to the product space; the embedding functions for different
statements can be read off from the guards in this loop nest
and are shown in Figure 3(c).

Code sinking is similar and is shown in Figure 4.

2.3.2 Dimension of Product Space

The number of dimensions in the product space can be quite
large, and one might wonder if it is possible to embed state-
ment iteration spaces into a smaller space without restricting
program transformations. For example, in Figure 4(b), state-
ments in the body of the transformed code are executed only

for i = 1, N
for j = 1, N

S1: C(i,j) = 0
for k = 1, N

S2: B(i,k) = 0

(a) Original code

for i1 = 1, N
for j1 = 1, N
for i2 = 1, N
for k2 = 1, N
if ((i2==1)&&(k2==1))

S1: C(i1,j1) = 0
if ((i1==N)&&(j1==N))

S2: B(i2,k2) = 0

(b) Transformed code
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(c) Embeddings

Figure 3: Embeddings for Loop Fission

when i2 = i1, so it is possible to eliminate the i2 loop
entirely, replacing all occurrences of i2 in the body by i1.
Therefore, dimension i� of the product space is redundant,
as is dimension j�. More generally, we can state the follow-
ing result.

Theorem 1 Let P � be any space and let fF�� F�� � � � � Fng
be a set of affine embedding functions Fj � Sj � P � satisfy-
ing the conditions in Definition 2. Let Fj�ij� � Gjij � gj .
The number of independent dimensions of the space P � is
equal to the rank of the matrix G � �G�G� � � �Gn�.

In Figure 4, the rank of this matrix

G �

�
����

� � � � �

� � � � �

� � � � �

� � � � �

� � � � �

�
����

is 3, which is also the number of independent dimensions in
the product space. The remaining 2 dimensions are redun-
dant.

Corollary 1 Let P be the product space.

1. Any space P � bigger than P has redundant dimensions
under any set of affine embedding functions.



for i = 1, N
for j = 1, N

S1: C(i,j) = 0
for k = 1, N

S2: C(i,j) += A(i,k)*B(k,j)

(a) Original Code

for i1 = 1, N
for j1 = 1, N
for i2 = 1, N
for j2 = 1, N
for k2 = 1, N
if ((i2==i1)&&(j2==j1)&&(k2==1))

S1: C(i1,j1) = 0
if ((i1==i2)&&(j1==j2))

S2: C(i2,j2) += A(i2,k2)*B(k2,j2)

(b) Transformed code
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(c) Embeddings

Figure 4: Embeddings for Code Sinking

2. There exist affine embedding functions
fF�� F�� � � � � Fng for which no dimension of P is
redundant.

Intuitively, Corollary 1 states that the product space is
“big enough” to model any affine transformation of the orig-
inal code. Furthermore, there are affine transformations that
utilize all dimensions of the product space. For example,
there are no redundant dimensions in the product space of
completely fissioned code, as Figure 3 illustrates.

In general, therefore, it is the embeddings that deter-
mine whether there are redundant dimensions in the product
space. Since we compute embeddings and transformations
simultaneously, we use the full product space to avoid re-
stricting transformations unnecessarily. At the end, our code
generation algorithm suppresses redundant dimensions au-
tomatically, so there is no performance penalty in the gener-
ated code from these extra dimensions.

2.4 Transformed Product Spaces and Valid Em-
beddings

If p is the dimension of the product space, let T p�p be a uni-
modular matrix. Any such matrix defines an order in which
the points of the product space are visited. We will say a set

of embeddings is valid for a given order of traversal of the
product space if this traversal respects all dependences (see
Figure 1). More formally, we have the following definitions.

Definition 3 The space that results from transforming a
product space P by a unimodular matrix T is called the
transformed product space under transformation T .

For a set of embedding functions fF�� F�� � � � Fng and a
transformation matrix T , we model execution of the trans-
formed code by walking the transformed product space lexi-
cographically and executing all statement instances mapped
to each point as we visit it. We say that the pair
�fF�� F�� � � � Fng� T � defines an execution order for the pro-
gram. For an execution order to be legal, a lexicographic
order of traversal of the transformed product space must sat-
isfy all dependencies. To formulate this condition, it is con-
venient to define the following concept.

Definition 4 Let fF�� F�� � � � Fng be a set of embedding
functions for a program, and let T p�p be a unimodular ma-
trix. Let

D � D

�
is
id

�
� d � �

be a dependence class for this program. The difference vec-
tor for a pair �is� id� � D is the vector

VD�is� id� � T �Fd�id�� Fs�is�� �

The set of difference vectors for all points in a depen-
dence class D will be called the difference vectors for D;
abusing notation, we will refer to this set as VD .

The set of all difference vectors for all dependence
classes of a program will be called the difference vectors
of that program; we will refer to this set as V .

With these definitions, it is easy to express the condition
under which a lexicographic order of traversal of the trans-
formed product space respects all program dependences.

Definition 5 Let T p�p be a unimodular matrix. A set of
embedding functions fF�� F�� � � � � Fng is said to be valid for
T if v � � for all v � V .

3 Tiling

We now show how this framework can be used to tile
imperfectly-nested loop nests. The intuitive idea is to embed
all statement iteration spaces in the product space, and then
tile the product space after transforming it if necessary by a
unimodular transformation. Tiling is legal if the transformed
product space is fully permutable—that is, if its dimensions
can be permuted arbitrarily without violating dependences.
This approach is a generalization of the approach used to
tile perfectly-nested loop nests [17, 26]; the embedding step
is not required for perfectly-nested loop nests because all
statements have the same iteration space to begin with.



3.1 Determining Constraints on Embeddings and
Transformations

The condition for full permutability of the transformed prod-
uct space is the following.

Lemma 1 Let fF�� F�� � � � � Fng be a set of embeddings,
and let T be a unimodular matrix. The transformed prod-
uct space is fully permutable if v � � for all v � V .

The proof of this result is trivial: if every entry in ev-
ery difference vector is non-negative, the space is fully per-
mutable, so it can be tiled. Thus our goal is to find embed-
dings Fi and a product space transformation T that satisfy
the condition of Lemma 1.

Let D � D

�
is
id

�
� d � � be any dependence class. For

affine embedding functions, the condition v � � in Lemma 1
can be written as follows:

T
�
�Gs Gd

	 � is
id

�
� T �gd � gs� � ��

The affine form of Farkas’ Lemma lets us express the
unknown matrices T ,Gs,gs,Gd and gd in terms of D [9].

Lemma 2 (Farkas) Any affine function f�x� which is non-
negative everywhere over a polyhedron defined by the in-
equalities Ax� b � � can be represented as follows:

f�x� � �� �	TAx�	T b

�� � ��	 � �

where 	 is a vector of length equal to the number of rows of
A. �� and 	 are called the Farkas multipliers.

Applying Farkas’ Lemma to our dependence equations
we obtain

T
�
�Gs Gd

	 � is
id

�
� T �gd � gs�

� y � Y TD

�
is
id

�
� Y T d

y � �� Y � ��

where the vector y and the matrix Y are the Farkas multipli-
ers.

Equating coefficients of is, id on both sides, we get

T
�
�Gs Gd

	
� Y TD

T �gd � gs� � y � Y T d (1)

y � �� Y � ��

The Farkas multipliers in System (1) can be eliminated
through Fourier-Motzkin projection to give a system of in-
equalities constraining the unknown embedding coefficients

and transformation matrix. Since we require that all differ-
ence vector elements be non-negative, we can apply this pro-
cedure to each dimension of the product space separately.

Applying the above procedure to all dependence classes
results in a system of inequalities constraining the embed-
ding functions and transformation. A fully permutable prod-
uct space is possible if and only if that system has a solution.
The subset of dimensions for which the equations do have a
solution will constitute a fully permutable sub-space of the
product space.

3.2 Solving for Embeddings and Transformations

In System (1), T is unknown while each Gi is partially spec-
ified3. To solve such systems, we will heuristically restrict
T and solve the resulting linear system for appropriate em-
beddings if they exist.

3.2.1 Example

Before describing the algorithm, we illustrate this for the
running example. The embedding functions for this program
can be written as follows:

F��
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r�
k�

�
�� �

�
�����

c�
r�
k�
fc��
fr��

�
����� F��

�
c�
r�

�
� �

�
�����

fc��
fr��
fk��
c�
r�

�
�����

where f c�� etc. are unknown affine functions that must be
determined. Assume that T is the identity matrix. We apply
our procedure dimension by dimension to the product space.

Consider the first dimension. We have to ensure two con-
ditions:

1. f c�� �c�� r��� c� � � for all points in D�, and
2. c� � fc�� �c�� r�� � � for all points in D�.

Consider the first condition. Let f c�� �c�� r�� � gc�c� �
gr�r� � gMM � gNN � g�. Applying Farkas’ Lemma, we
get f c�� �c�� r�� � c� � �� � ���M � c�� � ���c� � �� �
	 	 	�����c��c�������c��c�� where ��, . . . , ��� are non-
negative4. Projecting the �’s out, we find out that the coeffi-
cients of f c�� �c�� r�� must satisfy the following inequalities:

gM � �

gN � �

gc� � gM � �

gr� � gN � �

gc� � 
gr� � gM � 
gN � g� � �

3The embedding functions are partially fixed because of condition (2) in
Definition 2.

4There are 14 inequalities that define D� in Section 2.2, so there are 14
Farkas multipliers �� � � � ���.



Similarly, for the second condition, this procedure deter-
mines the following constraints:

gM 
 �

gN 
 �

gc� � gM 
 �

gr� � gN 
 �

gc� � gr� � gM � 
gN � g� 
 �

The conjunction of these inequalities gives the solution
fc�� �c�� r�� � c�.

Applying the same procedure to the other dimensions of
the product space, we obtain the following set of legal em-
beddings:

fc�� �c�� r�� � c�

fr�� �c�� r�� � fr�� r� � �g

fk�� �c�� r�� � fr�� r� � �g

fc�� �c�� r�� k�� � c�

fr�� �c�� r�� k�� � fr�� r� � �� k�� k� � �g�

In this case, we get more than one solution, and any one
of them can be used to obtain a fully permutable product
space.

3.2.2 Reversal and Skewing

In general, it may not be possible to find embeddings that
make the product space fully permutable (that is, with T re-
stricted to the identity matrix). For such programs, trans-
forming the product space by a non-trivial transformation T
may result in a fully permutable space that can be tiled. This
is the case for the relaxation codes discussed in Section 4. If
our algorithm fails to find embeddings with T restricted to
the identity matrix, it tries to find combinations of loop per-
mutation, reversal and skewing for which it can find valid
embeddings. The framework presented in Section 3.1 can
be used to find these transformations.

Loop reversal for a given dimension of the product space
is handled by requiring the entry in that dimension of each
difference vector to be non-positive. For a dependence class
D, the condition that the jth entry of all of its difference
vectors VD are non-positive can be written as follows:
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Loop skewing is handled as follows. We replace the non-
negativity constraints on the jth entries of all difference vec-

tors in V by linear constraints that guarantee that these en-
tries are bounded below by a negative constant, as follows:
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id

�
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j
d � gjs � � � �� � � � (2)

where � is an additional variable introduced into the sys-
tem. The smallest value of � that satisfies this system can be
found by projecting out the other variables and picking the
lower bound of �. If the system has a solution, the negative
entries in the jth entry of all difference vectors are bounded
by the value of �. If every difference vector that has a neg-
ative value in dimension j, has a strictly positive entry in a
dimension preceding j, loop skewing can be used to make
all entries in dimension j positive.

3.3 Algorithm

Our algorithm is shown in Figure 5. The determination of
the embedding functions and of the transformation are inter-
leaved, and they are computed incrementally one dimension
at a time. Each iteration of the outer j loop determines one
dimension of the transformed product space by determin-
ing the embedding functions for dimension q of the product
space, and permuting that dimension into the j th position of
the transformed product space, reversing that dimension and
skewing that dimension by outer dimensions if necessary.

The algorithm as shown in Figure 5 does not stop after
identifying the outer set of permutable dimensions. Suppose
we are trying to determine the jth dimension of the trans-
formed product space. If none of the remaining dimensions
of the product space can be made permutable with the outer
j � � dimensions (even allowing reversal and skewing), the
algorithm continues and determines a subset of these dimen-
sions that can be made permutable with respect to each other
(but not with the outer dimensions). By applying this suc-
cessively, the algorithm creates a transformed product space
that consists of nested layers of permutable dimensions.

An important notion in this algorithm is that of a satis-
fied dependence class which is similar to this notion in the
context of perfectly-nested loop nests [28]. At the j th itera-
tion of the outer loop, we say that a dependence class D is
satisfied if all (partially determined) difference vectors VD
are lexicographically positive. Intuitively, a lexicographic
traversal of the first j dimensions of the transformed prod-
uct space is guaranteed to respect all the difference vectors
of this dependence class, regardless of how the remaining
dimensions of the transformed product space are traversed.
In checking whether a particular dimension q of the prod-
uct space can be made permutable with the outer dimen-
sions, the linear system we construct specifies that all unsat-
isfied dependence classes DU must have non-negative en-
tries along this dimension5 while the satisfied dependence

5non-positive for the reversal case



ALGORITHM DetermineEmbeddings

Q := Set of dimensions of product space
J := Current layer (initialized to 1)
DU := Set of unsatisfied dependence classes

(initialized to all dependence classes of program)
DS := Set of satisfied dependence classes

for the current layer (initialized to empty set)
T := Transformation matrix (initialized to Identity)

for dimension j = 1,p of the transformed product space

process_dimension :
for each q in Q

Construct system S constraining the qth dimension
of every embedding function as follows:
for each unsatisfied dependence class u � DU
Add constraints so that each entry
in dimension q of all difference vectors
of u is non-negative;

for each satisfied dependence class s � DS
Add constraints so that each entry
in dimension q of all difference vectors
of s � positive � is non-negative;

if system has solutions
Pick a solution corresponding to smallest �;
Update DS and DU;
Delete q from Q and make q the jth dimension
of the transformed product space;

Update row j of T;
Continue j loop;

endif

// if the previous system does not have a solution
// check whether reversing the dimension
// permits solutions
Construct system S constraining the qth dimension
of every embedding function as follows:
for each unsatisfied dependence class u � DU

Add constraints so that each entry
in dimension q of all difference vectors
of u is non-positive;

for each satisfied dependence class s � DS
Add constraints so that each entry
in dimension q of all difference vectors
of s � positive � is non-positive;

if system has solutions
Pick a solution corresponding to smallest �;
Update DS and DU;
Delete q from Q and make q the jth dimension
of the transformed product space;
Update row j of T;
Continue j loop;

endif
endfor

// Reach here if no further dimension of Q
// can be added to the current layer
J := J + 1 // Start a new layer
DS := empty set
goto process_dimension

endfor

Figure 5: Determining Embeddings and Transformation

classes DS are allowed to have entries greater than some
constant negative6 � to allow skewing by an outer dimen-
sion. This ensures that a solution with skewing is accepted
only if it is legal. By choosing a solution that corresponds
to minimum �, we choose embedding functions that require
the least amount of skewing for successful tiling. If the min-

6positive � in the reversal case

imum value of � is �, then no skewing is required.
When determining the jth dimension of the transformed

space, we may fail to find a dimension of the product space
to add to our current set of permutable dimensions. If so,
we start a new layer of permutable dimensions nested within
the outer layers. To do this, we simply need to drop from
consideration the satisfied dependence classes (DS).

The correctness of the algorithm follows from this theo-
rem.

Theorem 2 The algorithm DetermineEmbeddings has
the following properties:

1. It always produces embeddings fF�� F�� � � � � Fng and
transformation matrix T defining a legal execution or-
der.

2. T orders the dimensions of the transformed product
space P into layers J . The dimensions within a layer
are fully permutable.

Note that although in the worst case the algorithm could
require O�p�� executions of the q loop in Figure 5, in prac-
tice the number of executions of the q loop is closer to
O�p�. Each iteration of the q loop needs to perform Fourier-
Motzkin elimination which could potentially be exponential;
this can be engineered to work well in practice [19].

Once the transformed product space is determined, we
have in effect found a perfectly-nested loop nest with a le-
gal execution order. The loops are grouped into layers and
loops within each layer are fully permutable within the layer
and can be tiled. Dependence information for this loop nest
can be summarized using directions and distances, and stan-
dard techniques for locality enhancement like height reduc-
tion [16] can be applied. After this, redundant dimensions
are eliminated, fully-permutable loops are tiled, and code is
generated using well-understood techniques [2, 12].

3.3.1 Picking good embedding functions

As far as tiling is concerned, any solution to the system S

created by the algorithm in the q loop would allow that di-
mension of the transformed product space to be fully per-
mutable with the other dimensions in the current layer. If
our only concern is to produce tiled code, then any of the
solutions will do. But not all solutions are equally effective.
For example, consider the code fragment in Figure 6 which
will benefit from tiling since the accesses to arrays A and B
in statement S1 cannot be made unit-stride at the same time.

Two valid embeddings for T � I that allow this code to
be tiled are the following:
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for i1 = 1, N
for j1 = 1, N

S1: A(i1,j1) = B(j1,i1)

for i2 = 1, N
for j2 = 1, N

S2: A(i2,j2) = A(i2,j2) + B(i2,j2)

Figure 6: To Fuse Or Not To Fuse?

This embedding corresponds to the original program
execution order. Tiling the resulting transformed prod-
uct space would in effect tile the two loop nests sepa-
rately.
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This embedding corresponds to fusing i1 and i2 loops
and the j1 and j2 loops. The resulting fused i and j
loops can now be tiled.

By fusing the two loops, the second solution is able to
reduce the distance between the write to array A in state-
ment S1 and the subsequent read in statement S2. In
fact, in this solution, both the source and destination of
this data reuse are mapped to the same point in the prod-
uct space. The distance between the source and the des-
tination statement instances can be represented by the dif-
ference vector for this dependence class. For the first solu-
tion, the difference vector corresponding to this dependence
is �N � i�� N � j�� i� � �� j� � ��

T while it is ��� �� �� ��
T

for the second solution. For this code fragment, we prefer
the second solution because it exploits the reuse.

If fF�� F�� � � � Fng are the set of embedding functions

for a program, and D � D

�
is
id

�
� d � � is a depen-

dence class for this program, then the difference vector for
a pair �is� id� � D is �Fd�id�� Fs�is��. Clearly, we can
reduce the distance between the dependent iterations by re-
ducing each dimension of the difference vector. The reuse
is fully exploited if the difference vector is ��. The embed-
ding functions that are able to achieve this satisfy the plane
�Fd�id�� Fs�is�� � �� for all pairs �is� id� � D. If the inter-
section of this plane with the system of legal solutions (S)
is non-empty, then a solution belonging to the intersection
will exploit the reuse. We pick a solution that exploits as
many reuses as possible, as discussed in detail in a compan-
ion paper [1]. For the code fragment shown in Figure 6, this
heuristic will pick the second solution.

For our running example, our algorithm picks the follow-
ing embeddings :-
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3.4 Determining Tile Sizes

We determine tile sizes by estimating the data foot-print (the
amount of data touched by a tile), and requiring that it fit
into the cache in consideration. We tile the product space
separately for each level of the memory hierarchy (we do
not tile for a particular level only if the data touched by the
tile will not fit into the corresponding cache level).

Our procedure for determining tile sizes has the follow-
ing steps.

1. For each point in the product-space, find the data ac-
cessed by each statement instance mapped to it. Since
the mapping from a statement instance to the product-
space is one-to-one and affine, the inverse mapping can
easily be determined. Since data references are affine,
this enables us to calculate the data accessed by each
point in the product space.

In our running example, a point �x�� x�� x�� x�� x�� of
our transformed product space has the statement in-
stances S��x�� x�� x�� (whenever x� � x�� x� � x�)
and S��x�� x�� (whenever x� � x�� x� � x� � x�)
mapped to it. Hence the data accessed by this point
is B�x�� x��� L�x�� x��� B�x�� x�� from statement S�
and B�x�� x��� L�x�� x�� from statement S�.

2. Group all the data accessed by a product space point
into equivalence classes as follows.

(a) References to different arrays belong in different
equivalence classes.

(b) References to the same array are grouped in the
same equivalence class if they can access the same
data elements (that is, if the linear parts of the two
references are the same).

For our example, we have four equivalence classes
fS� � B�x�� x��� S� � B�x�� x��g, fS� � L�x�� x��g,
fS� � B�x�� x��g and fS� � L�x�� x��g.

3. From each reference class pick a random reference
which will serve as our representative reference.

In our example, our representative references are
B�x�� x��, L�x�� x��,B�x�� x�� and L�x�� x��.

4. Determine the data touched by each representative ref-
erence in a single tile of the transformed product space
parameterized by the tile size. We limit ourselves to
choosing the same tile size B for all dimensions of the



product space. Determining the number of elements
touched by a single reference is straightforward.

In our example, the first three references access B� el-
ements in one tile of the transformed product space,
while the last reference accesses B elements. The total
data foot-print of all the references is thus � � B� � B

elements. This must be multiplied by the size in bytes
of each element to give the actual memory touched.

5. The data foot-print of all the references must be less
than the cache size to avoid capacity misses. This gives
us an upper bound on the tile size for each cache level.
In order to generate code with fewer MIN’s and MAX’s,
we ensure that the tile size at each level is a multiple of
the tile size at the previous level.

The above formulation makes the following simplifica-
tions –

1. All tiles of the transformed product space have the same
data foot-print. This is a conservative assumption, since
it results in adding the footprints of all references from
all statements to obtain the data accessed at a single
product space point.

2. Boundary effects are ignored, which is justifiable for
large arrays and loop bounds.

3. Conflict misses are ignored. Various techniques have
been developed to find tile sizes that avoid some forms
of conflict misses [7, 10, 15], but we do not use them in
our current implementation.

4 Experimental Results

In this section, we present results from our implementation
for four important codes. All experiments were run on an
SGI Octane workstation based on a R12000 chip running at
300MHz with 32 KB first-level data cache and an unified
second-level cache of size 2 MB (both caches are two-way
set associative). Wherever possible, we present three sets of
performance numbers for a code.

1. Performance of code produced by the SGI MIPSPro
compiler (Version 7.2.1) with the “-O3” flag turned on.
At this level of optimization, the SGI compiler applies
the following set of transformations to the code [27]
– it converts imperfectly-nested loop nests to singly
nested loops (SNLs) by means of fission and fusion and
then applies transformations like permutation, tiling
and software pipelining inner loops.

2. Performance of code produced by an implementation of
the techniques described in this paper, and then com-
piled by the SGI MIPSPro compiler with the flags “-
O3 -LNO:blocking=off” to disable all locality enhance-
ment by the SGI compiler.
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Figure 7: Performance of Triangular Solve

3. Performance of hand-coded LAPACK library routine
running on top of hand-tuned BLAS.

Performance is reported in MFLOPS, counting each
multiply-add as 1 Flop. For some of the codes like tom-
catv, we did not have hand-coded versions as a comparison;
in these cases, we report running time.

4.1 Triangular Solve

For the running example of triangular solve with multiple
right-hand sides, our algorithm determines that the prod-
uct space can be made fully permutable without reversal or
skewing. It chooses the following embeddings:
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The fourth and fifth dimensions of the product space are
redundant, so they are eliminated and the remaining three
dimensions are tiled. Our algorithm picks a tile size of ��
for the L1 cache and 


 for the L2 cache.

Figure 7(a) shows performance results for a constant
number of right-hand sides (M in Figure 2 is 100). The per-
formance of code generated by our techniques is upto a fac-



tor of 10 better than the code produced by the SGI com-
piler, but it is still 20% slower than the hand-tuned code
in the BLAS library. The high-level structure of the code
we generate is similar to that of the code in the BLAS li-
brary; further improvements in the compiler-generated code
must come from fine tuning of register tiling and instruction
scheduling.

Figure 7(b) compares the performance of our code, tiled
for two levels of the memory hierarchy, with code tiled for
a single level with tile sizes ranging from �� to 
�� for an
array size of 
��� � 
��� and M � ���. As can be seen,
our two level scheme gives the best performance.

4.2 Cholesky Factorization

Cholesky factorization is used to solve symmetric positive-
definite linear systems. Figure 8(a) shows one version of
Cholesky factorization called the jki-Cholesky; there are
at least five other versions of Cholesky factorization corre-
sponding to the permutations of the three outer loops. Our
algorithm correctly determines that the code can be tiled in
all the six cases and produces the appropriate embeddings.

For the jki version shown here, the algorithm deduces
that all 6 dimensions of the product space can be made fully
permutable without reversal or skewing. It picks the follow-
ing embeddings for the three statements:
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For these embeddings, the last three dimensions are re-
dundant and are ignored. The remaining three dimensions
are tiled. Our tile size selection algorithm chooses �� for the
L1 cache and 


 for the L2 cache. Figure 8(b) shows the
result of tiling the three loops for varying matrix sizes. The
code produced by our approach is many times faster than
the code produced by the SGI compiler, and it is within 10%
of the hand-written LAPACK library code for large matri-
ces. The variation of performance with various tile sizes is
shown in Figure 8(c) for an array size of 
���� 
���.

4.3 Jacobi

The Jacobi kernel is typical of code required to solve pde’s
using explicit methods. These are called relaxation codes

for j = 1, n
for k = 1, j-1
for i = j+1, n

S1: A(i,j) = A(i,j) + A(i,k) * A(j,k)
S2: A(j,j) = sqrt(A(j,j))

for i = j+1, n
S3: A(i,j) = A(i,j) / A(j,j)

(a) Original Code
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Figure 8: Cholesky Factorization and its Performance

in the compiler literature. They contain an outer loop that
counts time-steps; in each time-step, a smoothing operation
(stencil computation) is performed on arrays that represent
approximations to the solution to the pde. Most of these
codes have imperfectly-nested loop nests. We show the re-
sults of applying our technique to the Jacobi kernel shown in
Figure 9(a) which uses relaxation to solve Laplace’s equa-
tion. It requires a non-trivial linear transformation of the
product space.

Our algorithm picks an embedding which corresponds
intuitively to shifting the iterations of the two statements
with respect to each other, and then fusing the resulting i
and j loops. This not only permits tiling the loops but also
exploits reuse between the two arrays in the two statements.



for t = 1,T
for j = 2,N-1
for i = 2,N-1

S1: L(i,j) = (A(i,j+1) + A(i,j-1)
+ A(i+1,j) + A(i-1,j)) / 4

for j = 2,N-1
for i = 2,N-1

S2: A(i,j) = L(i,j)

(a) Original Code
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Figure 9: Jacobi and its Performance
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The last three dimensions of the product space are redun-
dant. The resulting product space cannot be tiled directly,
so our implementation chooses to skew the second and the
third dimensions by 2*t. Our algorithm chooses a tile size
of 
� for the L1 cache and ��� for the L2 cache.

Figure 9(b) shows the execution times for the code pro-
duced by our technique and by the SGI compiler for a fixed
number of time-steps (���). Tiling the code improves per-
formance significantly. Comparison with tiling with other

tile sizes is shown in Figure 9(c).

4.4 Tomcatv

As a final example to demonstrate that our approach works
on large codes, we consider the kernel from the tomcatv
SPECfp benchmark suite.7 The code, which is too big to
be shown here, consists of an outer time loop ITER con-
taining a sequence of doubly- and singly-nested loops which
walk over both two-dimensional and one-dimensional ar-
rays. Treating every basic block as a single statement, our
algorithm produces an embedding which corresponds to in-
terchanging the I and J loops, and then fusing all the I
loops. The product space is transformed so that the I loop
is skewed by 2*ITER, and the ITER and skewed I loops
are tiled. It is not possible to tile the J loops in this code be-
cause one of the loops walks backwards through some of the
arrays. Our algorithm chooses to tile only for the L2 cache
with a tiles-ize of �
. The results of applying the transfor-
mation are shown in Figure 10(a) for a fixed array size (253
from a reference input), and a varying number of time-steps.
The line marked “Our Method” shows a performance im-
provement of around 18% over the original code. Additional
improvement (line marked “Our Method (plus data transfor-
mation)” ) can be obtained by doing a data transformation
that transposes all the arrays as suggested in [24]. Compari-
son with other tile sizes is shown in Figure 10(b).

4.5 Discussion

Our experiments show that tiling is important for the codes
considered here. Although the SGI compiler is unable to tile
these codes satisfactorily, our approach is able to produce
code whose performance approaches that of hand-written li-
braries.

5 Conclusions

We have presented an approach to tiling imperfectly-
nested loop nests, and demonstrated its utility on codes
that arise frequently in computational science applications.
Our approach generalizes techniques used currently to tile
perfectly-nested loop nests, and subsumes techniques used
in current compilers to convert imperfectly-nested loop nests
into perfectly-nested ones for tiling. Further, it allows us to
pick good solutions by reducing the distance between de-
pendent statement instances. It also does not require that
programs conform to a specific structure.

Other kinds of embeddings have been used in the lit-
erature. For example, Feautrier [9] has solved schedul-

7Tomcatv is not directly amenable to our technique because it contains
an exit test at the end of each time-step, so we consider the kernel with-
out the exit condition. The resulting kernel can be tiled speculatively as
demonstrated in [25].
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Figure 10: Performance of tomcatv

ing problems by embedding statement instances into a one-
dimensional space through piecewise affine functions, and
searching the space of legal embeddings for one with the
shortest length. Kelly and Pugh [12] perform locality op-
timization by searching a space of pseudo-affine mappings
for programs, using a cost model to choose the best one.
The range of these mappings is left undefined to make the
framework expressive, but this generality makes it difficult
to use. In their framework, they represent tiling by pseudo-
affine mappings (using mod and div) but do not show how
to obtain them. Lim and Lam [18] have used affine partitions
to maximize parallelism. They derive constraints similar to
our tiling constraints to parallelize programs with optimal
synchronization. Unlike the previous two approaches, our
approach prescribes a special space large enough to include
all affine transformations and uses it to pick good solutions
for tiling.

Finally, tiling some codes like QR factorization requires
exploiting domain-specific information such as the asso-
ciativity of matrix multiplication. Incorporating this kind
of knowledge into a restructuring compiler is critical for
achieving the next level of performance from automatic
tiling.
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