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ABSTRACT
This paper argues that a new class of geographically dis-
tributed network services is emerging, and that the most
effective way to design, evaluate, and deploy these services
is by using an overlay-based testbed. Unlike conventional
network testbeds, however, we advocate an approach that
supports both researchers that want to develop new ser-
vices, and clients that want to use them. This dual use, in
turn, suggests four design principles that are not widely sup-
ported in existing testbeds: services should be able to run
continuously and access a slice of the overlay’s resources,
control over resources should be distributed, overlay man-
agement services should be unbundled and run in their own
slices, and APIs should be designed to promote application
development. We believe a testbed that supports these de-
sign principles will facilitate the emergence of a new service-
oriented network architecture. Towards this end, the paper
also briefly describes PlanetLab, an overlay network being
designed with these four principles in mind.

1. INTRODUCTION
The Internet was founded on a simple model in which the
routers inside the network are responsible for forwarding
packets from source to destination, and application pro-
grams run on the hosts connected to the edges of the net-
work. However, the last few years have seen a blurring of the
distinction between packet forwarding and application pro-
cessing, as new widely-distributed applications are making
their own forwarding decisions. This emerging class of ap-
plications includes network-embedded storage [12], peer-to-
peer file sharing [16, 4], content distribution networks [20],
robust routing overlays [17, 2], scalable object location [3,
15, 18, 14], and scalable event propagation [5]. At the same
time, network elements such as layer-7 switches and trans-
parent caches are performing application-specific processing.

These emerging services are the result of a convergence of
two historically separate research communities. One is the
distributed systems community, which traditionally viewed
the network as merely providing bit-pipes between edge ma-
chines, but is increasingly embedding functionality at impor-
tant crossroads and access points throughout the network.
The other is the network community, which traditionally
worried about forwarding packets without regard to appli-
cation semantics, but is increasingly aware of the synergy

∗This paper appears in the First ACM Workshop on Hot
Topics in Networks (HotNets-I), October 2002.

that comes from unifying the computational and storage re-
sources within the network with the requirements of the ap-
plication.

We believe that the full integration of these two perspectives
will result in a new, service-oriented network architecture.
Unfortunately, this work is being done in an environment
in which the Internet is less and less influenced by research,
and increasingly shaped by commercial interests. In fact, a
recent report from the National Research Council points to
the ossification of the Internet [13]:

...successful and widely adopted technologies are
subject to ossification, which makes it hard to
introduce new capabilities or, if the current tech-
nology has run its course, to replace it with some-
thing better. Existing industry players are not
generally motivated to develop or deploy disrup-
tive technologies...

This paper offers a blueprint for introducing disruptive tech-
nologies into the Internet through the use of overlay net-
works. Overlays provide the right opportunity for innova-
tion because they can be rapidly programmed to provide an
innovative capability or feature, without having to compete
with the existing infrastructure in terms of performance, re-
liability, administrative tools, and so on. Over time, we
expect the “weight” such overlays place on the underlying
Internet will result in the emergence of a new architecture,
much in the same way the Internet (itself an overlay net-
work) influenced the telephony network on which it was
built. This paper concludes by speculating about what this
new architecture might look like.

2. FROM DESIGN TO DEPLOYMENT
The example applications mentioned above are currently be-
ing designed and studied using a combination of simulation,
network emulation, and small-scale testbeds. All of these
systems would greatly benefit from a testbed that supports
large-scale, real-world experiments. Overlays would play
two roles in such a testbed: applications using the testbed
will be structured as overlays, but the testbed itself is also an
overlay from the perspective of controlling, managing, and
deploying applications over it. We define such a testbed
along three main dimensions.

First, the physical dimensions of the overlay network should



be large—on the order of 1000 sites—to enable wide deploy-
ment of services and measurement tools. We envision the
majority of these sites running a single overlay node that
connects a large client population to the overlay. We can
think of these nodes as providing a thousand viewpoints
on the network. They should be selected to provide a rich
diversity of link behavior, and wide-spread geographic cov-
erage. We also envision the overlay including roughly a hun-
dred sites with more substantial computing resources (e.g.,
a cluster of machines) located at network crossroads (e.g.,
peering points and co-location centers).

Second, the overlay consists of two main software compo-
nents: (1) a virtual machine monitor (VMM) running on
each node; and (2) a management service used to control
the overlay. The VMM specifies the interface to which the
services distributed over the testbed are written. This is
a controlled interface to abstract resources (e.g., network
ports and logical disks), rather than an interface that pro-
vides direct access to hardware. The management service is
used to control the testbed; for example, to discover the set
of nodes in the overlay, monitor their health, and to keep
the software running on these nodes up-to-date.

The final dimension, which is the most distinguishing char-
acteristic of the approach we advocate, is the overlay’s mode
of operation. Rather than view the overlay strictly as a
testbed, we take the long-term view in which the overlay is
both a research testbed and a deployment platform. In other
words, the overlay should support the seamless migration of
an application from early prototype, through multiple design
iterations, to a popular service that continues to evolve.

Using an overlay as both a research testbed and a deploy-
ment platform is synergistic. As a testbed, the overlay’s
value is to give researchers access to (1) a large set of ge-
ographically distributed machines; (2) a realistic network
substrate that experiences congestion, failures, and diverse
link behaviors; and (3) the potential for a realistic client
workload. Its value as a deployment platform is to provide
(1) researchers with a direct technology transfer path for
popular new services, and (2) users with access to those new
services. We believe that supporting both roles is critical to
the success of the system.

An important consequence of dual use is that the testbed
must support the continuous operation of network services,
as opposed to providing mechanisms for starting and stop-
ping experiments. This leads to an obvious tension be-
tween the needs of “test & measure” researchers for re-
producible results, and those interested in the system as
a deployment platform. As an overlay, however, the band-
width/latency/loss that can be achieved through the net-
work is variable, and hence, unpredictable. The overlay’s
real value as a research platform is in providing realistic
network conditions.

The dual use paradigm also implies that many experimental
services will have to share nodes, since it is unreasonable
to dedicate on the order of 1000 distributed nodes to a sin-
gle experimental service for months at a time. This leads
to strong security and resource control requirements on the
virtual machine monitor.

Another way to understand the essential aspects of the ap-
proach we are proposing is to compare it to several current
testbed efforts.

• Internet2, which includes the Abilene backbone, is a
physical network that includes high-speed optical links
connecting major research universities [10]. The net-
work nodes are closed commercial routers, making it
impossible to introduce new functionality into the mid-
dle of the network. In contrast, the main virtue of an
overlay is that the nodes are fully programmable.

• Emulab is a network experimentation facility supported
by the University of Utah [22]. Researchers are able
to schedule a set of nodes for experiments, and dic-
tate how the nodes are configured to emulate differ-
ent network topologies. An overlay also has an ex-
perimental aspect, but its dual role as a deployment
platform means that experimental systems run contin-
uously, rather than for a limited period of time.

• The Grid is a collection of middleware, called Globus
[6], that allows researchers to distribute large scien-
tific applications across a distributed set of compu-
tational resources [9]. The main difference between
the Grid and the proposed overlay is one of emphasis:
the Grid is primarily interested in gluing together a
modest number of large computing assets with high-
bandwidth pipes, while the overlay is primarily con-
cerned with scaling less bandwidth-intensive applica-
tions across a wider collection of nodes.

• The ABONE is an overlay testbed that grew out of the
Active Networks initiative [1]. It allows service devel-
opers to dynamically load their applications onto the
overlay’s nodes. Although the high-level goals are sim-
ilar, one important difference is that Active Networks
is primarily focused on supporting extensibility of the
network forwarding function, whereas we take a more
inclusive view of the types of applications that will be
deployed throughout the network, including those that
involve a significant storage component.

• The XBONE is an overlay network with support for
IP-in-IP tunneling [19]. It also includes a GUI-based
toolset for establishing and monitoring specific overlay
configurations. The XBONE and the proposed over-
lay share the goal of supporting multiple independent
overlays on the same set of machines, but the XBONE
is limited to IP tunnels, whereas we also hope to sup-
port higher-level overlays, such as those implemented
by peer-to-peer systems.

An alternative to developing a new service on a traditional
testbed is to package it as an application that can run on any
desktop machine. If it proves to be a popular service, users
will install it. File sharing systems like Napster and KaZaA
have successfully adopted this approach, but it is not clear
that it extends to other styles of services. More importantly,
deploying services in the wild by viral dissemination has
several shortcomings.

First, it does not work unless the service is immediately and
widely popular. This makes it impossible, for example, to do



research studies into algorithms for managing overlay net-
works. Often, the technically superior solution will not be
used if its applications or content happen to be less popular.

Second, it is difficult to modify such a system once it is
deployed, making the process of learning from experience
very cumbersome. The next version of the algorithms—or
more generally, the next iteration of the design-evaluate-
refine cycle—often requires a new set of compelling applica-
tions.

Third, such systems are not secure. The recent problem
with KaZaA exposing all files on the local system is just one
example of the potential dangers. We prefer a system that
allows us to understand how to sandbox viral peer-to-peer
applications so that users need not trust their entire systems
to the coding standards of random peer-to-peer developers.

3. DESIGN PRINCIPLES
Our vision of an overlay that serves both service developers
and service users has several implications for the architec-
ture of the system. This section outlines the key design
principles that shape such an overlay.

3.1 Slice-ability
Because services are expected to run continuously, rather
than be globally scheduled to run one at a time, the overlay
must support distributed virtualization. That is, each appli-
cation acquires and runs in a slice of the overlay. Distributed
virtualization, in turn, requires each node to multiplex mul-
tiple competing services. Thus, a key responsibility of the
VMM running on each node is to allocate and schedule slices
of the node’s processor, link, and storage resources.

The node slicing mechanism must be secure in that it pro-
tects the node from faulty or malicious services. It must
also use a resource control mechanism such as proportional
share scheduling to enforce bounds on the resources con-
sumed by any given service. Finally, it must be scalable
in the sense that each node is able to efficiently multiplex
resources among a large number of services.

Note that while each node is able to enforce slices of its lo-
cal resources (including its outgoing link bandwidth), since
the system is an overlay network, it is not possible to en-
sure that a given application receives predictable network
performance, given that the Internet does not yet support
bandwidth reservations.

Finally, in addition to viewing a slice as the collection of
resources available on some set of nodes, a slice can also be
characterized at the global level in terms of how those nodes
(resources) are spread throughout the Internet. For exam-
ple, one slice might contain resources that are uniformily
distributed over as wide of area as possible, while another
might wish to ensure that its resources are clusterd in au-
tonomous systems with a high degree of connectivity.

3.2 Distributed Control of Resources
In its dual role as testbed and deployment platform, there
will be two types of users: (1) researchers that want to install

and evaluate new services, and (2) clients that want to access
these services. Initially, the researchers are likely to be the
only users (it is important that the researcher community
develop applications that they themselves want to use), but
in order to function as a deployment platform, the overlay
must also provide explicit support for people that are willing
to add nodes to the overlay for the sake of accessing its
services.

These two user populations have different views of the nodes.
Researchers want to dictate how their services are deployed.
It may be as simple as “on as many nodes as possible” but
they may also want to dictate certain node properties (e.g.,
at a crossroads site with sufficient storage capacity). Clients
want to decide what services run on their nodes. They
should be required to allocate slices of their machines to
experimentation—thereby postponing future ossification—
but they need to be able to set policy on how resources are
allocated to different services.

This shared control of resources implies a highly-decentralized
control structure. For example, a central authority may pro-
vide legitimate service developers with credentials that allow
them to request a slice of a node, but each node will inde-
pendently grant or deny such a request based on local policy.
In essence, the node owner decides how many of the node’s
resources may be consumed by different services.

From a security perspective, applications have to trust both
the central testbed authority and the physical security of
the nodes at individual sites. Ultimately, this means service
overlays need to be aware of where they cross administra-
tive domain boundaries, and protect themselves from rogue
elements.

3.3 Unbundled Management
Rather than view testbed management as a single, fixed
service, overlay management should be unbundled into a set
of largely independent sub-services, each running in their
own slice of the overlay. For example, overlay management
might be partitioned as follows:

• discover the set of nodes in the overlay and learn their
capabilities;

• monitor the health and instrument the behavior of
these nodes;

• establish a default topology among the nodes;

• manage user accounts and credentials;

• keep the software running on each node up-to-date;
and

• extract tracing and debugging information from a run-
ning node.

Some of these sub-services are part of the core system (e.g.,
managing user accounts), and so there must exist a single,
agreed-upon version. Others can be provided through a set
of alternative services. The system will need to provide a
default set of such services, more or less bundled, but we



expect them to be replaced by better alternatives over time.
In other words, the management structure should be engi-
neered for innovation and evolution.

To better appreciate the power of being able to run new
management services in a slice of the overlay, imagine if we
were able to go back to the days when IP was defined; we
could then put in the instrumentation hooks we need today
to measure Internet traffic. An overlay that ensures that
some fraction of each node can be programmed will give us
that ability.

The strategy of unbundling the management service requires
that appropriate interfaces be defined. First, the individual
services are likely to depend on hooks in the VMM that,
for example, make it possible to retrieve the status of each
node’s resources. Second, the various sub-services may de-
pend on each other; for example, the node monitoring ser-
vice might provide input to a realtime database that is later
queried by the resource discovery service. Allowing these
two services to evolve independently will require a common
representation for node attributes.

3.4 Application-Centric Interfaces
Perhaps the single greatest failure of testbeds, in general, is
that they do not promote application development. One rea-
son is that they are short-lived: experience teaches us that
no one builds applications for pure testbeds since their life-
time is, by definition, limited. Related to this point, there is
usually little motivation to integrate the testbed with desk-
top machines, making it nearly impossible for clients to ac-
cess applications that might be available. The hope is that
by designing the overlay to serve as both a research testbed
and a deployment platform we will lower the hurdle for ap-
plication development.

A more tangible problem is that it is difficult to simultane-
ously do the research needed to create an effective testbed,
and use the testbed as a platform for writing applications.
Users require a stable platform, which is at odds with the
need to do research on the platform. To make matters worse,
such research often results in new APIs, requiring that ap-
plications be written from scratch.

Thus, our final design principle is that the overlay must sup-
port an existing and widely adopted programming interface,
with platform-related research changing the underlying im-
plementation over time, while the API remains largely un-
changed. Should an alternative API emerge from this effort,
new applications can be written to it, but the original API
is likely to be maintained for legacy applications.

4. PLANETLAB
We are currently building an overlay testbed, called Plan-
etLab, that adheres to these design principles. We envi-
sion PlanetLab achieving the goals outlined in this paper in
three phases. Our strategy is to incrementally enhance the
capabilities of PlatnetLab in accordance with the next user
community we hope to attract.

Seed Phase: We have seeded PlanetLab with 100 machines
and provided just enough functionality to meet the

needs of a small, known set of researchers. These re-
searchers are implementing and experimenting with
many of the services mentioned in the introduction.
We do not expect to support a client community dur-
ing this phase, but instead PlanetLab will function as
a pure testbed.

Researchers as Clients: We are now opening PlanetLab
to the larger research community, which we expect to
drive the size towards 1000 sites. We recognize, how-
ever, that adding clusters at strategic Internet cross-
roads will require broader government and industrial
support. During this phase, the user community will
still be primarily researchers experimenting with their
services. We also expect these researchers will them-
selves begin to use primitive services provided by these
applications.

Attracting Real Clients: Our thesis is that the research
community is poised to develop innovative services,
and that a true client base will follow. Accessing a
service in this world is equivalent to joining an overlay
network, and so we expect a growing client commu-
nity to connect to PlanetLab. To the extent successful
services are developed, we also expect to spin-off phys-
ically distinct copies of PlanetLab.

The hardware is dedicated PlanetLab nodes, as opposed to
client-owned desktop machines. To minimize heterogeneity
headaches, we prescribe the permitted hardware configura-
tions. To ensure conformance with the common interfaces
and policies, only the central PlanetLab authority (as op-
posed to node owners) have root-access to the machines.
Moreover, while node owners will be able to establish policy
on how their nodes are sliced, PlanetLab will retain the right
to allocate some fraction of each node to experimental ser-
vices. Finally, to ensure stability, PlanetLab will maintain
a “core” of highly available nodes and sites.

The initial default management service is provided by a com-
bination of the Ganglia resource monitoring tool [8], a boot
and software update process based on Xenoboot [23], and an
account/project management interface patterned after Em-
ulab. We are currently evolving Ganglia into two separate
components: a resource monitor that reports the resources
available on a given node, and a resource broker that aggre-
gates this information from a set of nodes, and responds to
requests for slices.

Moreover, we are evolving account managment in a way that
moves PlanetLab away simply providing a set of Unix ac-
counts, towards a service-oriented architecture in which ser-
vices dynamically create the slices in which they run. This is
a three stage process: (1) a service manager first contacts a
resource broker to select (discover) a set of candidate nodes
that constitute a slice, (2) it then contacts the nodes in that
set to initialize a network of virtual machines (this involves
a per-node admission control decision), and (3) it launches
the service in the resulting slice.

In terms of the VMM, our strategy is to evolve the kernel
component of PlanetLab toward a strong notion of an iso-
lation kernel, while maintaining an operational system that



is usable by researchers for both experimentation and long-
term deployment. Towards this end, we are pursuing two
complementary development efforts.

The first builds on a traditional Unix-like operating system
that does not distinguish between the interface at which
resource allocation and protection is applied (the isolation
interface) and the system call interface used by program de-
velopers (the application interface). Speficically, we have
settled on Linux since it is a popular platform for imple-
menting network services. We then plan to augment Linux
with functionality to provide better security and resource
isolation between services running over it. The most attrac-
tive way of doing this includes virtualizing the kernel (rather
than the hardware) in the style of Vservers [11], replacing
privileged kernel functionality with safe alternatives (e.g.,
safe raw sockets), and adding support for slice-ability (e.g.,
resource containers plus proportional scheduling of the link
and CPU).

The second effort revolves around isolation kernels like De-
nali [21] and Xenoservers [7], which provide a low-level iso-
lation interface that closely resembles virtualization of the
hardware. Operating systems such as Linux, BSD, and Win-
dows XP can be ported to this virtual machine, an opera-
tion that is greatly simplified by the similarity between the
virtual machine architecture and the “real” hardware the
operating systems were originally developed for. The ex-
pectation is that it will be easier to assure the correctness
of a minimal isolation kernel, thereby improving the overall
security of the system.

5. CONCLUDING REMARKS
Just as the Internet was originally an experimental packet-
switched network that evolved into a ubiquitous communica-
tion substrate over time, we believe it is possible to design a
shared overlay infrastructure that can evolve from a modest
research testbed into a planetary-scale service deployment
platform. In fact, it is not an accident that our underlying
design philosophy is similar to that of the Internet: we de-
fine the minimally required interfaces, and through the use
of virtualization (slice-ability), the system is engineered to
evolve.

There is a second interesting comparison point between the
Internet and experimental testbeds like PlanetLab. The In-
ternet was originally an overlay network that viewed the un-
derlying telephony system as providing a collection of leased
lines, but as it grew, the “weight” of the Internet eventually
contributed to a complete re-design of the phone network.
Likewise, overlay networks like PlanetLab initially view the
Internet as providing a set of bit-pipes, but over time it
is likely that the Internet architecture will evolve to better
support service-level overlays. In other words, one of the
most interesting questions emerging from this effort is how
the interaction between the Internet and an overlay network
like PlanetLab eventually results in a new service-oriented
network architecture.

As an illustrative example of how this process might take
place, it is already the case that multiple overlay services
running on Planetlab independently probe the network as
part of their topology-selection process. This is inefficient,

and at the very least, there needs to be a shared “topol-
ogy probing” mechanism. An additional step beyond such a
mechanism would be to define an interface that allows over-
lays and the Internet to share topology information with
each other. Eventually, one could imagine a few well-designed
topology services evolving, with other services employing
one of them rather than inventing a new one of their own.
Whether a single “winner” emerges from this effort—and
perhaps is subsumed into a new Internet architecture—or
the very nature of a programmable overlay means that ser-
vices will continue to define their own routing machinery,
remains a subject of speculation.
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