Journal of Machine Learning Research 10 (2009) 2639-2642 Submitted 5/09; Published 11/09

DL-Learner: Learning Conceptsin Description Logics

JensLehmann LEHMANN @INFORMATIK .UNI-LEIPZIG.DE
Department of Computer Science

University of Leipzig

Johannisgasse 26, 04103 Leipzig, Germany

Editor: Soeren Sonnenburg

Abstract

In this paper, we introduce DL-Learner, a framework for ihéag in description logics and OWL.
OWL is the official W3C standard ontology language for the SdimaWeb. Concepts in this
language can be learned for constructing and maintaining @wtblogies or for solving prob-
lems similar to those in Inductive Logic Programming. DLaleer includes several learning al-
gorithms, support for different OWL formats, reasoner ifstees, and learning problems. It is a
cross-platform framework implemented in Java. The fram&watiows easy programmatic access
and provides a command line interface, a graphical interdaovell as a WSDL-based web service.

Keywords: concept learning, description logics, OWL, classificatiomen-source

1. Introduction

The Semantic Wefrows steadily and contains knowledge from diverse areas such as science, mu-
sic, literature, geography, social networks, as well as from uppkcarss domaiontologies. The
underlying semantic technologies currently start to create substantiatratiirapact in applica-

tion scenarios on and off the web, including knowledge managementeygems, web services,
e-commerce, e-collaboration, etc. Since 2004 Wb Ontology Language OWivhich is based
ondescription logic§Baader et al., 2007), has been the W3C-recommended standardrfantse

Web ontologies and is a key to the growth of the Semantic Web.

Within this field, there is a need for well-structured ontologies with large amainistance
data, since engineering such ontologies constitutes a considerable inviesfmesources. Nowa-
days, knowledge bases often provide large amounts of instance datatgitiphisticated schemata.
Methods for automated schema acquisition and maintenance are therefght @®e, e.g., Buite-
laar et al. 2007). In particular, concept learning methods have attrauteti interest, see, for
example, Esposito et al. (2004), Lehmann (2007), Lehmann and Hitf/8B8)&and Lisi and Es-
posito (2008). DL-Learner provides an open source frameworkifoh methods as we will briefly
describe in the sequel. Several learning algorithms have been implementadthigHramework.
Outside of DL-Learner, there exist only non open source implementatfaigarithms (YinYang,
DL-FOIL) to the best of our knowledge.

1. To give a rough estimate, the semantic index Sinditep; / / si ndi ce. cont) lists more than 10 billion entities
from more than 100 million web pages.

2. See, for exampléat t p: // t ongr uber. or g/ writing/ ont ol ogy- definition-2007. ht mfor a definition of ontol-
ogy in computer science.

(©2009 Jens Lehmann.

LEHMANN

Knowledge Source Component Learning Problem Component
OWL file learning definitions/
internal knowledge base subclass axioms
SPARQL endpoint positive+negative examples/
Linked Data positive only learning
A A

5 | N <« £

- offer configuration options <. offer 3

Q| g b s

o . n
Reasoning Service Component Learning Algorithm Component
DIG interface top-down refinement approaches
OWL APl interface e extended Genetic Programming
approximate reasoning uses

Figure 1: The architecture of DL-Learner is based on four compdypas each of which can have
their own configuration options. A component manager can be used te cceabine,
and configure components.

2. Framewor k

DL-Learner consists of core functionality, which provides Machinerhigy algorithms for solving
learning problems in OWL, support for different knowledge base ftsman OWL library, and
reasoner interfaces. There are several interfaces for accébirfgnctionality, a couple of tools
which use the DL-Learner algorithms, and a set of convenience scripts.

To be flexible and easily extensible, DL-Learner uses a component-lbaséel. There are
four types of components: knowledge source, reasoning servigajriggroblem, and learning
algorithm. For each type, there are several implemented components antbegmonent can have
its own configuration options as illustrated in Figure 1. Configuration optiande used to change
parameters/settings of a component.

Knowledge Sources integrate background knowledge. Almost all standard OWL formats are
supported through the OWL ABIfor example, RDF/XML, Manchester OWL Syntax, or Tur-
tle. DL-Learner supports the inclusion of several knowledge sousiase knowledge can be
widespread in the Semantic Web. In addition, DL-Learner facilitates thectigtnaof knowledge
fragments from SPARQL endpoints. This feature allows DL-Learner to scale up to very large
knowledge bases containing millions of axioms (cf. Hellmann et al., 2009).

Reasoner Components provide connections to existing or own reasoners. Two components
are the DIG 1.1 and OWL API reasoner interfaces, which allow to connect to all stan@&ivél
reasoners via an HTTP and XML-based mechanism or a Java integpectively. Furthermore,

3. Information about the OWL API can be foundhat p: / / owl api . sour cef or ge. net .
4. The W3C SPARQL recommendation is availablétatp: / / www. w3. or g/ TR/ r df - spar gl - query/ .
5. Information about DIG can be foundtatt p: //dl . kr. org/ di g/ .

2640

DL-LEARNER

DL-Learner offers its own approximate reasoner, which uses Pédlebootstrapping and loading
the inferred model in memory. Afterwards, instance checks are perfovery efficiently by using

a local closed world assumption (see Badea and Nienhuys-Cheng B8@0yahis assumption is
useful in description logics).

L earning Problems specify the problem type, which is to be solved by an algorithm. Currently,
three problem components are implemented: 1.) learning from positive gativeeexamples 2.)
positive-only learning and 3.) class axiom learning. The latter type is splitearming definitions
and super class axioms. Amongst other methods, the components prdiciémetoverage checks
which can be used in the learning algorithms, for example, stochastic apeéor computing
coverage up to a desired accuracy with respect to a 95% confidenaalrtee available.

Learning Algorithm components provide methods to solve one or more specified learning
problem types. Apart from simple algorithms involving brute force or ramdaessing techniques,
DL-Learner comprises a number of sophisticated algorithms based oticgeregramming with
a novel genetic operator (Lehmann, 2007), refinement operatotthdotescription logic2LC
(Lehmann and Hitzler, 2008), an extended operator supporting matydeaf OWL including
datatype support, and an algorithm tailored for ontology engineering witbmgsbias on short and
readable concepts. Some of those algorithms have shown to be supetiogrta@scription logic
learning systems and also superior to state-of-the-art ILP systemsaimpée, on the carcinogen-
esis problen.

3. Implementation

The homepage of DL-Learner igtp://dl -1 earner.org and contains up-to-date information
about documentation and development of the software. A m&nwihich complements the home-
page and describes how to run DL-Learner, is included in its releasedevelopers, the Javadoc
of DL-Learner is available onlin.

The code base of DL-Learner consists of approximately 50,000 linesdaf &xcluding com-
ments) with its core, that is, the component framework itself, accountingptayy 1,500 lines.
It is licensed under GPL 3. About 20 learning examples are included in thst leelease (to be
precise: 132 if smaller variations of existing problems/configurations awated). 27 unit tests
based on the JUnit framework are used to detect errors.

There are several interfaces available to access DL-Learner:elcomsponents programmati-
cally, the core package, in particular the component manager, can kevafes Similar methods
are also available at the web service interface, which is based on WSDLe&rner starts a web
service included in Java 6, that is, no further tools are necessargnbarsers, a command line in-
terface is available. Settings are storedamf files which can then be executed in a similar fashion
to other ILP tools. A prototypical graphical user interface is equally avtlavhich can create,
load, and save conf files. It provides widgets for modifying componardscanfiguration options.
An advantage of the component-based architecture is that all the ingerfemmgioned need not to
be changed, when new components are added or existing ones modHiednakes DL-Learner
easily extensible. Another means to access DL-Learner, in particulanfology engineering, is

6. The Pellet homepagelist p: // cl arkparsi a. conl pel | et/
7.http://dl-1earner.org/wiki/Carcinogenesis presents benchmark results.

8. The DL-Learner manual is availabletat p: // dl - | earner. org/files/dl -1 earner-manual . pdf .
9. The DL-Learner Javadoc is availablehat p: // dl - | ear ner. or g/ j avadoc/

2641

LEHMANN

through plugins for the ontology editors OntoWikiand Proége ! The OntoWiki plugin is under
construction, but can be used in its latest SVN version. TheéBrat plugin is included in the
official Pro€ge plugin repository, that is, it is easy to install within Fgi.

Acknowledgments

| wish to acknowledge support by the OntoWiki EU FP7 project. Specialkihgoes to Francesca
Lisi for her comments, as well as the developers working on DL-Leaandrtools based on it.
Acknowledgements particularly to Sebastian Hellmann who worked on the @BRARBmMponent,
to Christoph Haase for his work on an EL refinement operator, to Christitteritzsch for his work
on the Pragége plugin, to Sebastian Bader who contributed a Prolog parser, and tqbagie using
DL-Learner in their software.

References

F. Baader, D. Calvanese, D. L. McGuinness, D. Nardi, and P. Fl-Balmeider, editors.The
Description Logic Handbook: Theory, Implementation, and Applicatig@87. Cambridge Uni-
versity Press. ISBN 0-521-78176-0.

L. Badea and S.-H. Nienhuys-Cheng. A refinement operator forigéiso logics. InProc. of
the 10th Int. Conf. on Inductive Logic Programmjnglume 1866 ol ecture Notes in Atrtificial
Intelligence pages 40-59. Springer, 2000.

P. Buitelaar, P. Cimiano, and B. Magnini, edito@ntology Learning from Text: Methods, Evalua-
tion and Applicationsvolume 123 ofFrontiers in Artificial Intelligence IOS, 2007.

F. Esposito, N. Fanizzi, L. lannone, |. Palmisano, and G. Semerarowlédge-intensive induc-
tion of terminologies from metadata. Froc. of 3rd Int. Semantic Web Caonpages 441-455.
Springer, 2004.

S. Hellmann, J. Lehmann, and S. Auer. Learning of OWL class descriptiovery large knowl-
edge baseslnternational Journal On Semantic Web and Information Systems, $esue on
Scalability and Performance of Semantic Web Systéri§—48, 2009.

J. Lehmann. Hybrid learning of ontology classes.Phoc. of 5th Int. Conf. on Machine Learning
and Data Mining in Pattern Recognitipwvolume 4571 of_ecture Notes in Computer Science
pages 883-898. Springer, 2007.

J. Lehmann and P. Hitzler. A refinement operator based learning algdotitite ALC description
logic. InProc. of 17th Int. Conf. on Inductive Logic Programminglume 4894 of ecture Notes
in Computer Scienggages 147-160. Springer, 2008. Awarded.

F.A. Lisi and F. Esposito. Foundations of onto-relational learningPrivc. of 18th Int. Conf. on
Inductive Logic Programmingvolume 5194 ol ecture Notes in Computer Sciengages 158—
175. Springer, 2008.

10. The OntoWiki homepage gt p: // ont ow ki . net .
11. The Protge homepage ikt t p: / / prot ege. st anf or d. edu.

2642

