
Journal of Machine Learning Research 10 (2009) 2639-2642 Submitted 5/09; Published 11/09

DL-Learner: Learning Concepts in Description Logics

Jens Lehmann LEHMANN @INFORMATIK .UNI-LEIPZIG.DE

Department of Computer Science
University of Leipzig
Johannisgasse 26, 04103 Leipzig, Germany

Editor: Soeren Sonnenburg

Abstract

In this paper, we introduce DL-Learner, a framework for learning in description logics and OWL.
OWL is the official W3C standard ontology language for the Semantic Web. Concepts in this
language can be learned for constructing and maintaining OWLontologies or for solving prob-
lems similar to those in Inductive Logic Programming. DL-Learner includes several learning al-
gorithms, support for different OWL formats, reasoner interfaces, and learning problems. It is a
cross-platform framework implemented in Java. The framework allows easy programmatic access
and provides a command line interface, a graphical interface as well as a WSDL-based web service.

Keywords: concept learning, description logics, OWL, classification,open-source

1. Introduction

TheSemantic Webgrows steadily1 and contains knowledge from diverse areas such as science, mu-
sic, literature, geography, social networks, as well as from upper and cross domainontologies2. The
underlying semantic technologies currently start to create substantial industrial impact in applica-
tion scenarios on and off the web, including knowledge management, expert systems, web services,
e-commerce, e-collaboration, etc. Since 2004, theWeb Ontology Language OWL, which is based
ondescription logics(Baader et al., 2007), has been the W3C-recommended standard for Semantic
Web ontologies and is a key to the growth of the Semantic Web.

Within this field, there is a need for well-structured ontologies with large amountsof instance
data, since engineering such ontologies constitutes a considerable investment of resources. Nowa-
days, knowledge bases often provide large amounts of instance data without sophisticated schemata.
Methods for automated schema acquisition and maintenance are therefore sought (see, e.g., Buite-
laar et al. 2007). In particular, concept learning methods have attractedmuch interest, see, for
example, Esposito et al. (2004), Lehmann (2007), Lehmann and Hitzler (2008) and Lisi and Es-
posito (2008). DL-Learner provides an open source framework forsuch methods as we will briefly
describe in the sequel. Several learning algorithms have been implemented within this framework.
Outside of DL-Learner, there exist only non open source implementations of algorithms (YinYang,
DL-FOIL) to the best of our knowledge.

1. To give a rough estimate, the semantic index Sindice (http://sindice.com/) lists more than 10 billion entities
from more than 100 million web pages.

2. See, for example,http://tomgruber.org/writing/ontology-definition-2007.htm for a definition of ontol-
ogy in computer science.

c©2009 Jens Lehmann.



LEHMANN

���������	
���
�	���������

��������

�	
��	���
	������������

��������	����	


��	
�����
�

��������	�������	���������

����	�	������	�
��	��

���������������

����
� �!	���
� �����������

����
� ���	�"�����	�	�

���������	
����
�	���������

�#$��	
������

������#��	
������

���������
�������	�	�

��������	���������	���������


��%���	�����	���	
��������&��

��
�	����$�	�
������������	�

����

�
�
�
�
�
�

�

�
�
�
�
�
��
	

��	������
��	���
��	������ �����

Figure 1: The architecture of DL-Learner is based on four componenttypes each of which can have
their own configuration options. A component manager can be used to create, combine,
and configure components.

2. Framework

DL-Learner consists of core functionality, which provides Machine Learning algorithms for solving
learning problems in OWL, support for different knowledge base formats, an OWL library, and
reasoner interfaces. There are several interfaces for accessingthis functionality, a couple of tools
which use the DL-Learner algorithms, and a set of convenience scripts.

To be flexible and easily extensible, DL-Learner uses a component-based model. There are
four types of components: knowledge source, reasoning service, learning problem, and learning
algorithm. For each type, there are several implemented components and each component can have
its own configuration options as illustrated in Figure 1. Configuration options can be used to change
parameters/settings of a component.

Knowledge Sources integrate background knowledge. Almost all standard OWL formats are
supported through the OWL API,3 for example, RDF/XML, Manchester OWL Syntax, or Tur-
tle. DL-Learner supports the inclusion of several knowledge sources, since knowledge can be
widespread in the Semantic Web. In addition, DL-Learner facilitates the extraction of knowledge
fragments from SPARQL4 endpoints. This feature allows DL-Learner to scale up to very large
knowledge bases containing millions of axioms (cf. Hellmann et al., 2009).

Reasoner Components provide connections to existing or own reasoners. Two components
are the DIG 1.15 and OWL API reasoner interfaces, which allow to connect to all standardOWL
reasoners via an HTTP and XML-based mechanism or a Java interface,respectively. Furthermore,

3. Information about the OWL API can be found athttp://owlapi.sourceforge.net.
4. The W3C SPARQL recommendation is available athttp://www.w3.org/TR/rdf-sparql-query/.
5. Information about DIG can be found athttp://dl.kr.org/dig/.

2640



DL-L EARNER

DL-Learner offers its own approximate reasoner, which uses Pellet6 for bootstrapping and loading
the inferred model in memory. Afterwards, instance checks are performed very efficiently by using
a local closed world assumption (see Badea and Nienhuys-Cheng 2000 on why this assumption is
useful in description logics).

Learning Problems specify the problem type, which is to be solved by an algorithm. Currently,
three problem components are implemented: 1.) learning from positive and negative examples 2.)
positive-only learning and 3.) class axiom learning. The latter type is split intolearning definitions
and super class axioms. Amongst other methods, the components provide efficient coverage checks
which can be used in the learning algorithms, for example, stochastic approaches for computing
coverage up to a desired accuracy with respect to a 95% confidence interval are available.

Learning Algorithm components provide methods to solve one or more specified learning
problem types. Apart from simple algorithms involving brute force or random guessing techniques,
DL-Learner comprises a number of sophisticated algorithms based on genetic programming with
a novel genetic operator (Lehmann, 2007), refinement operators forthe description logicALC
(Lehmann and Hitzler, 2008), an extended operator supporting many features of OWL including
datatype support, and an algorithm tailored for ontology engineering with a strong bias on short and
readable concepts. Some of those algorithms have shown to be superior to other description logic
learning systems and also superior to state-of-the-art ILP systems, for example, on the carcinogen-
esis problem.7

3. Implementation

The homepage of DL-Learner ishttp://dl-learner.org and contains up-to-date information
about documentation and development of the software. A manual,8 which complements the home-
page and describes how to run DL-Learner, is included in its release. For developers, the Javadoc
of DL-Learner is available online.9

The code base of DL-Learner consists of approximately 50,000 lines of code (excluding com-
ments) with its core, that is, the component framework itself, accounting for roughly 1,500 lines.
It is licensed under GPL 3. About 20 learning examples are included in the latest release (to be
precise: 132 if smaller variations of existing problems/configurations are counted). 27 unit tests
based on the JUnit framework are used to detect errors.

There are several interfaces available to access DL-Learner: To use components programmati-
cally, the core package, in particular the component manager, can be of service. Similar methods
are also available at the web service interface, which is based on WSDL. DL-Learner starts a web
service included in Java 6, that is, no further tools are necessary. Forend users, a command line in-
terface is available. Settings are stored inconf files, which can then be executed in a similar fashion
to other ILP tools. A prototypical graphical user interface is equally available, which can create,
load, and save conf files. It provides widgets for modifying components and configuration options.
An advantage of the component-based architecture is that all the interfaces mentioned need not to
be changed, when new components are added or existing ones modified. This makes DL-Learner
easily extensible. Another means to access DL-Learner, in particular forontology engineering, is

6. The Pellet homepage ishttp://clarkparsia.com/pellet/.
7. http://dl-learner.org/wiki/Carcinogenesis presents benchmark results.
8. The DL-Learner manual is available athttp://dl-learner.org/files/dl-learner-manual.pdf.
9. The DL-Learner Javadoc is available athttp://dl-learner.org/javadoc/.

2641



LEHMANN

through plugins for the ontology editors OntoWiki10 and Prot́eǵe.11 The OntoWiki plugin is under
construction, but can be used in its latest SVN version. The Protéǵe 4 plugin is included in the
official Prot́eǵe plugin repository, that is, it is easy to install within Protéǵe.

Acknowledgments

I wish to acknowledge support by the OntoWiki EU FP7 project. Special thanks goes to Francesca
Lisi for her comments, as well as the developers working on DL-Learnerand tools based on it.
Acknowledgements particularly to Sebastian Hellmann who worked on the SPARQL component,
to Christoph Haase for his work on an EL refinement operator, to ChristianKötteritzsch for his work
on the Prot́eǵe plugin, to Sebastian Bader who contributed a Prolog parser, and to thosepeople using
DL-Learner in their software.

References

F. Baader, D. Calvanese, D. L. McGuinness, D. Nardi, and P. F. Patel-Schneider, editors.The
Description Logic Handbook: Theory, Implementation, and Applications, 2007. Cambridge Uni-
versity Press. ISBN 0-521-78176-0.

L. Badea and S.-H. Nienhuys-Cheng. A refinement operator for description logics. InProc. of
the 10th Int. Conf. on Inductive Logic Programming, volume 1866 ofLecture Notes in Artificial
Intelligence, pages 40–59. Springer, 2000.

P. Buitelaar, P. Cimiano, and B. Magnini, editors.Ontology Learning from Text: Methods, Evalua-
tion and Applications, volume 123 ofFrontiers in Artificial Intelligence. IOS, 2007.

F. Esposito, N. Fanizzi, L. Iannone, I. Palmisano, and G. Semeraro. Knowledge-intensive induc-
tion of terminologies from metadata. InProc. of 3rd Int. Semantic Web Conf., pages 441–455.
Springer, 2004.

S. Hellmann, J. Lehmann, and S. Auer. Learning of OWL class descriptions on very large knowl-
edge bases.International Journal On Semantic Web and Information Systems, Special Issue on
Scalability and Performance of Semantic Web Systems, 5:25–48, 2009.

J. Lehmann. Hybrid learning of ontology classes. InProc. of 5th Int. Conf. on Machine Learning
and Data Mining in Pattern Recognition, volume 4571 ofLecture Notes in Computer Science,
pages 883–898. Springer, 2007.

J. Lehmann and P. Hitzler. A refinement operator based learning algorithmfor the ALC description
logic. InProc. of 17th Int. Conf. on Inductive Logic Programming, volume 4894 ofLecture Notes
in Computer Science, pages 147–160. Springer, 2008. Awarded.

F.A. Lisi and F. Esposito. Foundations of onto-relational learning. InProc. of 18th Int. Conf. on
Inductive Logic Programming, volume 5194 ofLecture Notes in Computer Science, pages 158–
175. Springer, 2008.

10. The OntoWiki homepage ishttp://ontowiki.net.
11. The Prot́eǵe homepage ishttp://protege.stanford.edu.

2642


