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1 IntroductionAs one of the most successful applications of image analysis and understanding, facerecognition has recently received signi�cant attention, especially during the past fewyears. This is evidenced by the emergence of face recognition conferences such asAFGR [1] and AVBPA [2], and systematic empirical evaluations of face recognition tech-niques (FRT), including the FERET [3, 4, 5, 6] and XM2VTS [7] protocols. There areat least two reasons for this trend; the �rst is the wide range of commercial and lawenforcement applications and the second is the availability of feasible technologies after30 years of research.The strong need for user-friendly systems that can secure our assets and protect ourprivacy without losing our identity in a sea of numbers is obvious. At present, one needsa PIN to get cash from an ATM, a password for a computer, a dozen others to accessthe internet, and so on. Although extremely reliable methods of biometric personalidenti�cation exist, e.g., �ngerprint analysis and retinal or iris scans, these methods relyon the cooperation of the participants, whereas a personal identi�cation system based onanalysis of frontal or pro�le images of the face is often e�ective without the participant'scooperation or knowledge. The advantages/disadvantages of di�erent biometrics aredescribed in [8]. Table 1 lists some of the applications of face recognition.Areas Speci�c ApplicationsDrivers' Licenses, Entitlement ProgramsBiometrics Immigration, National ID, Passports, Voter RegistrationWelfare FraudDesktop Logon (Windows NT, Windows 95)Information Security Application Security, Database Security, File EncryptionIntranet Security, Internet Access, Medical RecordsSecure Trading TerminalsLaw Enforcement Advanced Video Surveillance, CCTV Controland Surveillance Portal Control, Post-Event AnalysisShoplifting and Suspect Tracking and InvestigationSmart Cards Stored Value Security, User AuthenticationAccess Control Facility Access, Vehicular AccessTable 1: Typical applications of face recognition.A general statement of the problem can be formulated as follows: Given still or videoimages of a scene, identify or verify one or more persons in the scene using a storeddatabase of faces. Available collateral information such as race, age, gender, facial ex-pression and speech may be used in narrowing the search (enhancing recognition). Thesolution to the problem involves segmentation of faces (face detection) from clutteredscenes, feature extraction from the face region, recognition or veri�cation. In identi�ca-tion problems, the input to the system is an unknown face, and the system reports backthe determined identity from a database of known individuals, whereas in veri�cationproblems, the system needs to con�rm or reject the claimed identity of the input face.1



Commercial and law enforcement applications of FRT range from static, controlledformat photographs to uncontrolled video images, posing a wide range of di�erent techni-cal challenges and requiring an equally wide range of techniques from image processing,analysis, understanding and pattern recognition. One can broadly classify the chal-lenges and techniques into two groups: static and dynamic/video matching. Withinthese groups, signi�cant di�erences exist, depending on the speci�c application. The dif-ferences are in terms of image quality, amount of background clutter (posing challengesto segmentation algorithms), availability of a well-de�ned matching criterion, and the na-ture, type and amount of input from a user. In some applications, such as computerizedaging, one is only concerned with de�ning a set of transformations so that the imagescreated by the system are similar to what humans expect based on their recollections.In 1995, a review paper by Chellappa et al. [9] gave a thorough survey of FRT atthat time. (An earlier survey [10] appeared in 1992.) At that time, video-based facerecognition was still in a nascent stage. During the past �ve years, face recognition hasreceived increased attention and has advanced technically. Many commercial systemsusing face recognition are now available. Signi�cant research e�orts have been focusedon video-based face modeling, processing and recognition. It is not an overstatement tosay that face recognition has become one of the most successful applications of patternrecognition, image analysis and understanding.In this paper we provide a critical review of the most recent developments in facerecognition. This paper is organized as follows: In Section 2 we briey review issuesthat are relevant from the psychophysical point of view. Section 3 provides a detailedreview of recent developments in face recognition techniques using grayscale, range andother images. In Section 4 face recognition techniques based on video are reviewed,including face tracking, modeling, and non-face/face based recognition. Data collectionand performance evaluation of face recognition algorithms are addressed in Section 5 withdetailed descriptions of two representative protocols: FERET and XM2VTS. Finally, inSection 6 we discuss two di�cult technical problems common to all the algorithms: lackof robustness to illumination and pose variations, and suggest possible ways to overcomethese limitations.2 Psychophysics/Neuroscience Issues Relevant to Face RecognitionIn general, the human face recognition system utilizes a broad spectrum of stimuli, ob-tained from many, if not all, of the senses (visual, auditory, olfactory, tactile, etc.). Thesestimuli are used either individually or collectively for storage and retrieval of face images.In many cases contextual knowledge is also used, i.e. the surroundings play an importantrole in recognizing faces in relation to where they are supposed to be located. It is futile(using existing technology) to even attempt to develop a system that can mimic all theseremarkable capabilities of humans. However, the human brain has its limitations in thetotal number of persons that it can accurately \remember". A key potential advantageof a computer system is its capacity to handle large datasets of face images. In most ap-plications the images are single or multiple views of 2-D intensity data, which forces theinputs to computer algorithms to be visual only. For this reason, the literature reviewedin this section is related to aspects of human visual perception.2



Many studies and �ndings in psychology and neuroscience have direct relevance toengineers interested in designing algorithms or systems for machine recognition of faces.On the other hand, better machine systems can provide better tools for conducting studiesin psychology and neuroscience [11]. For example, a possible engineering explanation ofthe lighting e�ect illustrated in [12] is as follows: for familiar faces a 3D model is usuallybuilt in memory; when the actual lighting direction is opposite to the usually assumeddirection, a shape-from-shading algorithm recovers incorrect structural information andhence makes recognition of faces harder.A complete review of relevant studies in psychophysics and neuroscience is beyondthe scope of this paper. We only summarize �ndings that are potentially relevant to thedesign of face recognition systems. For details the reader is referred to the papers citedbelow. The issues that are of potential interest to designers are:� Is face recognition a dedicated process? [13, 14]: Evidence for the existenceof a dedicated face processing system comes from three sources [13]. A) Facesare more easily remembered by humans than other objects when presented in anupright orientation. B) Prosopagnosia patients are unable to recognize previouslyfamiliar faces, but usually have no other profound agnosia. They recognize peo-ple by their voices, hair color, dress, etc. Although they can perceive eyes, nose,mouth, hair, etc., they are unable to put these features together for the purposeof identi�cation. It should be noted that prosopagnosia patients recognize whetherthe given object is a face or not, but then have di�culty in identifying the face.C) It is argued that infants come into the world prewired to be attracted by faces.Neonates seem to prefer to look at moving stimuli that have face-like patterns inpreference to those containing no patterns or jumbled facial features. Some recentstudies on this subject further con�rm that face recognition is a dedicated processwhich is di�erent from general object recognition [14]. Seven di�erences betweenface recognition and object recognition can be listed based on empirical results: 1)Con�gural e�ects (related to the choice of di�erent types of machine recognitionsystems), 2) expertise, 3) di�erences verbalizable, 4) sensitivity to contrast polarityand illumination direction (related to the illumination problem in machine recogni-tion systems), 5) metric variation, 6) rotation in depth (related to the pose variationproblem in machine recognition systems), and 7) rotation in plane/inverted face.� Is face perception the result of wholistic or feature analysis? [15] Bothwholistic and feature information are crucial for the perception and recognitionof faces. Studies suggest the possibility of global descriptions serving as a frontend for �ner, feature-based perception. If dominant features are present, wholisticdescriptions may not be used. For example, in face recall studies, humans quicklyfocus on odd features such as big ears, a crooked nose, a staring eye, etc. One of thestrongest pieces of evidence to support the view that face recognition involves morecon�gural/holistic processing than other object recognition tasks has been the faceinversion e�ect, where an inverted face is much harder to recognize than a normalface. An excellent example is given in [16] using the \Thatcher illusion" [17]. Inthis illusion, the eyes and mouth of a face are inverted. The result looks grotesque3



in an upright face; however, when shown inverted, the face looks fairly normal, andthe inversion of the features is not readily noticed.� Ranking of signi�cance of facial features: Hair, face outline, eyes and mouth(not necessarily in that order) have been determined to be important for perceiv-ing and remembering faces. Several studies have shown that the nose plays aninsigni�cant role. In face recognition using pro�les (which may be important inmugshot matching applications, where pro�les can be extracted from side views),several �ducial points (\features") are in or near the nose region. Another outcomeof some of the studies is that both external and internal features are important inthe recognition of previously presented but otherwise unfamiliar faces, and internalfeatures are more dominant in the recognition of familiar faces. It has also beenfound that the upper part of the face is more useful for face recognition than thelower part. The role of aesthetic attributes such as beauty, attractiveness and/orpleasantness has also been studied, with the conclusion that the more attractivethe faces are, the better is their recognition rate; the least attractive faces comenext, followed by the mid-range faces, in terms of ease of being recognized.� Caricatures [18]: Perkins [19] formally de�nes a caricature as \a symbol thatexaggerates measurements relative to any measure which varies from one person toanother". Thus the length of a nose is a measure that varies from person to person,and may be useful as a symbol in caricaturing someone, but not the number ofears. Caricatures do not contain as much information as photographs, but theymanage to capture the important characteristics of a face; experiments comparingthe usefulness of caricatures and line drawings decidedly favor the former.� Distinctiveness: Studies show that distinctive faces are better retained in memoryand are recognized better and faster than typical faces. However, if a decision hasto be made as to whether an object is a face or not, it takes longer to recognize anatypical face than a typical face. This may be explained by di�erent mechanismsbeing used for detection and identi�cation.� The role of spatial frequency analysis: Earlier studies [20, 21] concluded thatinformation in low spatial frequency bands plays a dominant role in face recog-nition. Later studies [22] showed that, depending on the recognition task, thelow-, bandpass and high-frequency components may play di�erent roles. For ex-ample the sex judgment task can be successfully accomplished using low-frequencycomponents only, while the identi�cation task requires the use of high-frequencycomponents. The low-frequency components contribute to the global description,while the high-frequency components contribute to the �ner details required in theidenti�cation task.� Viewpoint-invariant recognition?[23, 24]: Much work in visual object recogni-tion (e.g., [24]) has been cast within a theoretical framework introduced by Marr [25]in which di�erent views of objects are analyzed in a way which allows access to(largely) viewpoint-invariant descriptions. Recently, there has been some debate4



about whether object recognition is viewpoint-invariant. In face recognition itseems clear that memory is highly viewpoint-dependent. Hill et al. [26] show thatgeneralization even from one pro�le viewpoint to another is poor, though general-ization from one 3/4 view to the other is very good.� E�ect of lighting change[12, 15, 27]: It has long been informally observed thatphotographic negatives of faces are di�cult to recognize. However, relatively littlework has explored why it is so di�cult to recognize negative images of faces. In [12],experiments were conducted to explore whether di�culties with negative imagesof faces, and inverted images of faces, arise because each of these manipulationsreverses the apparent direction of lighting, rendering a top-lit image of a face asif lit from below. This work demonstrated that bottom lighting does indeed makeit harder to identity familiar faces. In [27], the importance of top lighting forface recognition, using the task of matching surface images of faces for identity, isdemonstrated.� Movement and face recognition[15, 28]: A recent intriguing study [28] showsthat famous faces are easier to recognize when shown in moving sequences thanin still photographs. This observation has been extended to show that movementhelps in the recognition of familiar faces under a range of di�erent types of degrada-tions | negated, inverted, or thresholded (shown as black-and-white images) [15].Even more interesting is that movement seems to provide a bene�t even if theinformation content is equated in dynamic and static conditions. On the otherhand, experiments with unfamiliar faces suggest no additional bene�t from viewinganimated rather than static sequences.� Facial expression[29]: Based on neurophysiological studies, it seems that analysisof facial expressions is accomplished in parallel to face recognition. Some prosopag-nosic patients, who have di�culties in identifying familiar faces, nevertheless seemto recognize facial expressions due to emotions. Patients who su�er from \organicbrain syndrome" do poorly at expression analysis but perform face recognition quitewell. Normal humans also exhibit parallel capabilities for facial expression analysisand face recognition. Similarly, separation of face recognition and \focused visualprocessing" tasks (look for someone with a thick mustache) has been claimed.3 Face Recognition from Single Intensity or Other ImagesIn this section we survey the state of the art in face recognition in the engineering litera-ture. Extraction of features such as the eyes and mouth, and face segmentation/detectionare reviewed in Section 3.1. Sections 3.2 and 3.3 are detailed reviews of recent work inface recognition, including statistical and neural approaches.5



3.1 Segmentation/detection and feature extraction3.1.1 Segmentation/detectionUp to the middle 90's, most of the work in this area was focused on single-face seg-mentation from a simple or complex background. The approaches included using a facetemplate, a deformable feature-based template, skin color, and a neural network. Duringthe past �ve years, more reliable face detection methods have been developed to copewith multiple face detection in a complex background, where the face images may bepartly occluded, rotated in plane, or rotated in depth. For technical details, please referto [30, 31, 32, 33, 34, 35, 36, 37, 38, 39]. Some of these methods were tested on relativelylarge databases, e.g. [30, 38]. A recent survey paper on face detection is [40]. Here we re-view two well-known approaches: The neural network approach of Kanade et al. [38, 39]and the example-based learning approach of Sung and Poggio [30]. A recent approachusing a Support Vector Machine (SVM) is also briey reviewed [37].In [30], an example-based learning approach to locating vertical frontal views of hu-man faces in complex scenes is presented. This technique models the distribution ofhuman face patterns by means of a few view-based \face" and \non-face" prototypeclusters. At each image location, a di�erence feature vector is computed between thelocal image pattern and the distribution-based model. This di�erence vector is then fedinto a trained classi�er to determine whether or not a human face is present at the cur-rent image location. The system detects faces of di�erent sizes by exhaustively scanningan image for face-like local image patterns at all possible scales. More speci�cally, thesystem performs the following steps:1. The input sub-images are all rescaled to size 19�19, and a mask is applied to elim-inate near-boundary pixels. Normalization in intensity is done by �rst subtractinga best-�t brightness plane from the un-masked widow pixels and then applyinghistogram equalization.2. A distribution-based model of canonical face- and non-face-patterns is constructedfrom samples. The model consists of 12 multi-dimensional Gaussian clusters; six ofthem represent face- and six represent non-face-pattern prototypes. The clusters areconstructed by an elliptical k-means clustering algorithm which uses an adaptivelyvarying normalized Mahalanobis distance metric.3. A vector of matching measurements is computed for each pattern. This is a vectorof distances between the test window pattern and the canonical face model's 12cluster centroids. Two metrics are used; one is a Mahalanobis-like distance de�nedon the subspace spanned by the 75 largest eigenvectors of the prototype cluster,and the other is Euclidean distance.4. A MLP classi�er is trained for face/non-face discrimination using the 24-dimensionalmatching measurement vectors. The training set consists of 47316 measurementvectors, 4150 of which are examples of face patterns.To detect faces in an image, preprocessing is done as in step 1, followed by matchingmeasurement computation (step 3), and �nally the MLP is used for detection. Results6



are reported on two large databases; the detection rate varied from 79.9% to 96.3% witha small number of false positives.In [38], face knowledge is incorporated into a retinally connected neural network.The neural network uses image windows of size 20 � 20, and has one hidden layer with26 units, where 4 units cover 10 � 10 non-overlapping subregions, 16 units cover 5 � 5subregions, and 6 units cover 20 � 5 overlapping horizontal stripes. The image windowsare preprocessed as described in step 1 above. To deal with overlapping detections, twoheuristics are used: 1) \thresholding", where the classi�cation of a face depends on thenumber of detections in a neighborhood, 2) \overlap elimination", where when a regionis classi�ed as a face, overlapping detections are rejected.To further improve system performance, multiple neural networks are trained andtheir outputs are combined using an arbitrary strategy including ANDing, ORing, voting,or a separate arbitration neural network. A detection rate on a dataset of 130 test imagesvarying from 77.9% to 90.3%, with an acceptable number of false positives, was reported.To handle faces at di�erent angles, in [39] the authors propose using a router neural netto detect the angles of the faces. After angle detection, the virtual face detection systemcan be applied. The router neural network is a fully connected MLP with one hiddenlayer and 36 output units (each unit represents 10�).In [37], a face detection scheme based on SVMs is proposed. SVM is a learningtechnique developed by Vapnik et al. at AT&T [41]. It can be viewed as a way totrain polynomial, neural network, or Radial Basis Function classi�ers. While most ofthe techniques used to train these classi�ers are based on the idea of minimizing thetraining error, the empirical risk, SVMs operate on another induction principle, calledstructural risk minimization, which minimizes the upper bound of the generalizationerror. From an implementation point of view, training an SVM is equivalent to solving alinearly constrained Quadratic Programming (QP) problem. The challenge in applyingSVMs to face detection is the complexity of solving a large scale QP problem. Theauthors propose using a decomposition algorithm to replace the original problem with asequence of smaller problems. Their system is very similar to that in [30] except that nomatching measurements are computed and the classi�er is a SVM. The authors reportedcomparable results on two databases.3.1.2 Feature ExtractionFeature extraction is the key to both face segmentation and recognition, as it is to anypattern classi�cation task. For a comprehensive review of this subject see [9]. Here wereview only a few representative techniques.There has been renewed interest in the use of the Karhunen-Loeve (KL) expansion forthe representation [42, 43] and recognition [44, 45] of faces. [42] considered the problemof KL representation of cropped face images. Noting that the number of images Musually available for computing the covariance matrix of the data is much less than therow or column dimensionality of the covariance matrix, leading to singularity of thematrix, a standard method from linear algebra [46] is used that calculates only the Meigenvectors that do not belong to the null space of the degenerate matrix. Once theeigenvectors (referred to as eigenpictures) are obtained, any image in the ensemble can7



be approximately reconstructed using a weighted combination of eigenpictures. By usingan increasing number of eigenpictures, one gets an improved approximation to the givenimage. Examples of approximating an arbitrary image (not included in the calculationof the eigenvectors) by the eigenpictures are also given.A generalized symmetry operator is used in [47] to �nd the eyes and mouth in a face.The motivation stems from the almost symmetric nature of the face about a verticalline through the nose. Subsequent symmetries lie within features such as the eyes, noseand mouth. The symmetry operator locates points in the image corresponding to highvalues of a symmetry measure discussed in detail in [47]. The procedure is claimed tobe superior to other correlation-based schemes such as that of [48] in the sense that it isindependent of scale or orientation. However, since no a priori knowledge of face locationis used, the search for symmetry points is computationally intensive. A success rate of95% is reported on a face image database, with the constraint that the faces occupybetween 15-60% of the image.A statistically motivated approach to detecting and recognizing the human eye inan intensity image with a frontal face is described in [49], which uses a template-basedapproach to detect the eyes in an image. The template has two regions of uniformintensity; the �rst is the iris region and the other is the white region of the eye. Theapproach constructs an \archetypal" eye and models various distributions as variationsof it. For the \ideal" eye a uniform intensity is chosen for both the iris and whites. In anactual eye discrepancies from this ideal are present; these discrepancies can be modeledas \noise" components added to the ideal image. An �-trimmed distribution is used forboth the iris and the white, and the amount of degradation, which determines the valueof �, is estimated. � is easily optimized since the percentage of trimming and the area ofthe trimmed template are in 1-1 correspondence. A \blob" detection system is developedto locate the intensity valley caused by the iris enclosed by the white. In the experimentsthree sets of data were used. One consisted of 25 images used as a testing set, anotherhad 107 positive eyes, and the third consisted of images with most probably erroneouslocations which could be chosen as candidate templates. For locating the valleys, asmany as 60 false alarms for the �rst data set, 30 for the second, and 110 for the thirdwere reported A tabular representation of results for three sets of values for the �'s ispresented. An increase in the hit rate is reported when using an �-trimmed distribution.The overall best hit rate reported was 80%.[50] proposes an edge-based approach to accurately detecting two-dimensional shapesincluding faces. The motivations for proposing such a shape detection scheme are thefollowing observations: 1) many two-dimensional shapes including faces can be well ap-proximated by straight lines and rectangles, and 2) in practice it is more di�cult to modelthe intensity values of an object and its background than to exploit the intensity di�er-ential along the object's boundary. Rather than looking for a shape from an edge map,edges are extracted directly from an image according to a given shape description. Thisapproach is said to o�er several advantages over previous methods of collecting edges intoglobal shape description such as grouping and �tting. For example, it provides a toolfor systematic analysis of edge-based shape detection. The computational complexity ofthis approach can be alleviated using multi-resolution processing.To demonstrate the e�ectiveness of the proposed approach, results of face and facial8



Figure 1: Face detection and facial feature detection in a group photofeature detection are presented. One of these results is shown in Fig. 1 where the algo-rithm was applied to a group photo. For the detection of facial features, a small set ofoperators was designed. To limit the search space, the face center region is estimatedusing an ellipse-shaped operator, and is marked by a white dotted ellipse having thematched ellipse size. The face region detection is biased because only simple ellipseswere �tted to the faces. Iris and eyelid detections are marked.[51] presents a method of extracting pertinent feature points from a face image. Itemploys Gabor wavelet decomposition and local scale interaction to extract features atcurvature maxima in the image. These feature points are then stored in a data base andsubsequent target face images are matched using a graph matching technique. The 2-DGabor function used and its Fourier transform areg(x; y : u0; v0) = exp(�[x2=2�2x + y2=2�2y ] + 2�i[u0x+ voy]) (1)G(u; v) = exp(�2�2(�2x(u� u0)2 + �2y(v � v0)2)) (2)where �x and �y represent the spatial widths of the Gaussian and (u0; v0) is the frequencyof the complex sinusoid.The Gabor functions form a complete, though non{orthogonal, basis set. As withFourier series, a function g(x; y) can easily be expanded using the Gabor functions:��(x; y; �) = exp [ (��2(x02 + y02)) + i�x0] (3)x0 = x cos � + y sin � (4)y0 = �x sin � + y cos � (5)where � is the preferred spatial orientation and � is the aspect ratio of the Gaussian.The feature detection process uses a simple mechanism to model end-inhibition. Ituses interscale interaction to group the responses of cells from di�erent frequency chan-nels. This results in the generation of the end-stop regions. The orientation parameter �9



determines the direction of the edges. Hypercomplex cells are sensitive to oriented linesand step edges of short lengths, and their response decreases if the lengths are increased.They can be modeled byIm;n(x; y) = max� g ( k Wm(x; y; �)� Wn(x; y; �) k ) (6)and Wj(x; y; �) = f 
 �(�jx; �jy; �); j = f0;�1;�2; � � �g (7)where f represents the input image, g is a sigmoid non-linearity,  is a normalizing factor,and n > m. The �nal step is to localize the features at the local maxima of the featureresponses.Recently, the issue of feature detection accuracy has been addressed. In many systems,good recognition results are dependent on accurate feature (eyes, mouth) registration,and performance degradation is observed if the feature locations are not determinedaccurately enough [52]. [53] describes a robust and accurate feature localization method.In this method, images are pairwise registered using a robust form of correlation. Theregistration process is treated as an optimization problem in a search space de�ned by theset of all possible geometric and photometric transformations. At each point of the searchspace, a score function is evaluated and the optimum of this function is localized usinga combined gradient-based and stochastic optimization technique. To meet real-timerequirements and ensure high registration accuracy, a multiresolution scheme in used inboth the image and parameter domains. After global registration, feature selection isbased on minimizing the intra-class variance and at the same time maximizing the inter-class variance. Good results were obtained in experiments on a database (the extendedM2VTS database [54]) containing 295 subjects.3.2 Recognition from intensity images3.2.1 Statistical ApproachesEigenpictures (also known as eigenfaces) are used in [44] for face detection and identi�-cation. Given the eigenfaces, every face in the database can be represented as a vectorof weights; the weights are obtained by projecting the image into eigenface componentsby a simple inner product operation. When a new test image whose identi�cation isrequired is given, the new image is also represented by its vector of weights. The iden-ti�cation of the test image is done by locating the image in the database whose weightsare the closest (in Euclidean distance) to the weights of the test image. By using theobservation that the projection of a face image and a non-face image are quite di�erent,a method of detecting the presence of a face in a given image is obtained. The methodis illustrated using a large database of 2500 face images of sixteen subjects, digitizedat all combinations of three head orientations, three head sizes and three lighting con-ditions. Several experiments were conducted to test the robustness of the approach tovariations in lighting, size, head orientation, and the di�erences between training andtest conditions. Impressive recognition rates were reported. It was also reported thatthe approach is fairly robust to changes in lighting conditions, but degrades quickly as10



the scale changes. One can explain this by the signi�cant correlation between imagesobtained under di�erent illumination conditions; the correlation between face images atdi�erent scales is rather low. Another way to interpret this is that the eigenfaces ap-proach works well as long as the test image is \similar" to the ensemble of images usedin the calculation of eigenfaces. The approach was also extended to real-time recognitionof a moving face image in a video sequence. A spatio-temporal �ltering step followedby a nonlinear operation is used to identify a moving person. The head portion is thenidenti�ed using a simple set of rules and handed over to the face recognition module.The capabilities of the system in [44] are extended in [45] in several directions. Ex-tensive tests are reported based on 7562 images of approximately 3000 people. Twentyeigenvectors were computed using a randomly selected subset of 128 images. In additionto eigenrepresentation, annotated information on sex, race, approximate age and facialexpression was included. Unlike mugshot applications, where only one front and one sideview of a person's face is kept, in this database some of the persons are represented bymany images with di�erent expressions, headwear, etc.More recently, practical face recognition systems have been developed based on eigen-face representations. In [33], the eigenface method based on simple subspace-restrictednorms is extended to use a probabilistic measure of similarity. The proposed similaritymeasure is based on a standard Bayesian analysis of image di�erences of two categories:1) intra-personal variations in the appearance of the same individual due to di�erentexpressions or lighting, and 2) extra-personal variations in appearance due to di�erencein identity. The high-dimensional probability density functions for each class are thenobtained from training data using an eigenspace density estimation technique and aresubsequently used to compute a similarity measure based on the a posteriori probabilityof membership in the intra-personal class. Performance improvement of this probabilisticmatching over the eigenface approach was demonstrated.Face recognition systems using Linear/Fisher Discriminant Analysis [55] as the clas-si�er have also been very successful [56, 57, 58, 59, 60, 61, 62, 63]. LDA training iscarried out via scatter matrix analysis [64]. For an M -class problem, the within- andbetween-class scatter matrices Sw, Sb are computed as follows:Sw = MXi=1 Pr(!i)Ci; (8)Sb = MXi=1Pr(!i)(mi �m0)(mi �m0)T (9)where Pr(!i) is the prior class probability and usually is replaced by 1=M in practice withthe assumption of equal priors. Here Sw is the within-class scatter matrix showing theaverage scatter Ci of the sample vectors x of di�erent classes !i around their respectivemeans mi: Ci = E[(x�mi)(x�mi)T j! = !i] (10)Similarly Sb is the between-class scatter matrix, representing the scatter of the con-ditional mean vectors mi around the overall mean vector m0. Various measures areavailable for quantifying the discriminatory power, a commonly used one being the ratio11



of the determinant of the between-class scatter matrix of the projected samples to thewithin-class scatter matrix of the projected samples:J (T ) = jT TSbT jjT TSwT j: (11)Let us denote the optimal projection matrix which maximizes J (T ) by W ; then Wcan be obtained by solving the generalized eigenvalue problem [65]SbW = SwW�W (12)In [56], a face image retrieval system is reported based on discriminant analysis of theeigenfeatures, and in [57], a framework based on LDA for general object recognition is de-scribed. A general learning/recognition framework called SHOSLIF (Self-Organizing Hi-erarchical Optimal Subspace Learning and Inference Framework) is employed. SHOSLIFuses the theory of linear optimal projection to generate a hierarchical tessellation of aspace de�ned by the training images. Using tree-structure learning, the eigenspace andLDA projections are recursively applied to smaller and smaller sets of samples. Suchrecursive partitioning is carried out for every node until the samples assigned to the nodebelong to a single class.A comparative performance analysis was carried out in [58]. Four methods are com-pared: 1) a correlation-based method, 2) a variant of the linear subspace method sug-gested in [66], 3) an eigenface method [43, 44], and 4) a Fisher-face method which usessubspace projection prior to LDA projection to avoid the possible singularity in Sw asin [56, 57]. Experiments were performed on a database of 500 images described in [67]and a database of 176 images created at Yale. The results show that the Fisher-facemethod performed signi�cantly better than the other three methods. However, no claimis made about the relative performance of these algorithms on much larger databases.To solve the generalization/over�tting problem when performing face recognition ona large face dataset but with very few training face images available per class, a holisticface recognition method based on subspace LDA was proposed [68](Fig. 2). Like existingmethods [56, 58], this method consists of two steps: �rst the face image is projected intoa face subspace via Principal Component Analysis (PCA), where the subspace dimensionis carefully chosen, and then the PCA projection vectors are projected into the LDA toconstruct a linear classi�er in the subspace. Unlike other methods, the dimension of theface subspace is �xed (for a given training set) regardless of the image size as long asthe image size surpasses the subspace dimensionality. The property of relative invarianceof the subspace dimension enables the system to work with smaller face images withoutsacri�cing performance. This claim was supported by experiments using normalized faceimages of di�erent sizes to obtain di�erent face subspaces [62]. The choice of such a �xedsubspace dimension is mainly based on the characteristics of the eigenvectors insteadof the eigenvalues [60]. Such a choice of the subspace dimension enables the systemto generate class-separable features via LDA from the full subspace representation, sothat the generalization/over�tting problem can be addressed. In addition, a weighteddistance metric guided by the LDA eigenvalues was employed to improve the performanceof the subspace LDA method. The improved performance of generalized recognition was12



demonstrated on FERET datasets [63] and the MPEG-7 content set [69] in a proposalto MPEG-7 on robust face descriptors [70, 71]. A sensitivity test of the subspace LDAsystem is also reported in which an original face image is electronically modi�ed bycreating occlusions, applying Gaussian blur, randomizing the pixel location, and addingan arti�cial background. Figure 3 shows electronically modi�ed face images which werecorrectly identi�ed.
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Figure 2: The subspace LDA face recognition systemOriginal imageFigure 3: Electronically modi�ed images that were correctly identi�ed.3.2.2 Neural Network ApproachesNeural networks (NN) have been used in face recognition to address several problems:gender classi�cation, face recognition, and classi�cation of facial expressions. One of theearliest demonstrations of NN for face recall applications used Kohonen's associative map[72]. Using a small set of face images, accurate recall was reported even when the inputimage was very noisy or when portions of the images were missing. This capability hasalso been demonstrated using optical hardware [73].13



[74] describes an NN approach to gender classi�cation using a vector of sixteen numer-ical attributes such as eyebrow thickness, widths of nose and mouth, six chin radii, etc.Two HyperBF networks [75] were trained, one for each gender. The input images werenormalized with respect to scale and rotation by using the positions of the eyes, whichwere detected automatically. The 16-dimensional feature vector was also automaticallyextracted. The outputs of the two HyperBF networks were compared, the gender labelfor the test image being determined by the network with greater output. In the actualclassi�cation experiments only a subset of the 16-dimensional feature vector was used.The database consisted of 21 males and 21 females. The leave-one-out strategy [64] wasemployed for classi�cation. When the feature vector from the training set was used as thetest vector, 92:5% correct recognition accuracy was reported; for faces not in the train-ing set, the accuracy dropped to 87.5%. Some validation of the automatic classi�cationresults has been reported using humans.By using an expanded 35-dimensional feature vector, and one HyperBF per person,the gender classi�cation approach has been extended to face recognition. The motivationfor the underlying structure is the concept of a grandmother neuron: a single neuron (theGaussian function in the HyperBF network) for each person. As there were relativelyfew training images per person, a synthetic data base was generated by perturbing theaverage of the feature vectors of available persons, and these persons were used as testingsamples. For di�erent sets of tuning parameters (coe�cients, centers and metrics of theHyperBF's), classi�cation results were obtained. Some corroboration of the caricaturalbehavior of the HyperBF networks, by psychophysical studies, was also presented.The systems presented in [76] and [77] were based on the Dynamic Link Architecture(DLA). DLAs attempt to solve some of the conceptual problems of conventional arti�cialneural networks, the most prominent problem being the expression of syntactical rela-tionships in neural networks. DLAs use synaptic plasticity and are able to instantly formsets of neurons grouped into structured graphs and maintain the advantages of neuralsystems. Both [76] and [77] used Gabor based wavelets for the features. A minimum oftwo levels, the image domain and the model domain, are needed for a DLA. The imagedomain corresponds to primary visual cortical areas and the model domain to the inter-temporal cortex in biological vision. The DLA machinery is based on a data format ableto encode information about attributes and links in the image domain and to transportthat information to the model domain without including the image domain position. Thestructure of the signal is determined by three factors: the input image, random sponta-neous excitation of the neurons, and interaction with the cells of the same or neighboringnodes in the image domain. Binding between neurons is encoded in the form of temporalcorrelations and is induced by the excitatory connections within the image. Four typesof bindings are relevant to object recognition and representation: binding together allthe nodes and cells that belong to the same object, expressing neighborhood relation-ships in the image of the object, bundling feature cells for features in di�erent locations,and binding corresponding points in the image graph and model graph to each other.The DLA's basic mechanism, in addition to the connection parameter between pairs ofneurons, is a dynamic variable (J) between pairs of neurons (i, j). J -variables play therole of synaptic weights for signal transmission. The connection parameters merely actto constrain the J -variables. The connection weights Jij are controlled by the signal cor-14



relations between neurons i and j. Negative signal correlations lead to a decrease, andpositive signal correlations to an increase, in Jij. In the absence of correlation, Jij slowlyreturns to a resting state. Each stored image is presented by appropriately positioning arectangular grid of points over the image and storing each grid point's locally determinedjet. New image recognition takes place by mapping the image into the grid of jets andmatching it to all the stored images. Conformation of the DLA is done by establishingand dynamically modifying links between the grid points.The DLA architecture has been recently extended to Elastic Bunch Graph Match-ing [78, 79]. This is similar to the method described above, but instead of attaching onlya single jet to each node, a set of jets is attached, each derived from a di�erent facialimage. To handle the pose variation problem in face recognition, the face pose is �rstdetermined using prior information [36] and the transformations of the sets under posevariation are learned [80]. Systems based on the EBGM approach have been appliedin face detection, feature �nding, pose estimation, gender classi�cation, sketch imagebased recognition, and general object recognition. It is claimed that the success of theDLA/EBGM system may be due to its resemblance to the human visual system [14].3.3 Other sensing modalities3.3.1 Range ImagesThe discussion so far has considered only face recognition methods and systems that usedata obtained from 2-D intensity images. Another topic being studied by researchersis face recognition from range image data. A range image contains the depth structureof the object in question. Although such data is not available in most applications itis important to determine the value of the added information present in range data interms of its e�ect on the accuracy of face recognition.[81] describes a template-based recognition system involving descriptors based oncurvature calculations made on range image data. The data are obtained from a ro-tating laser scanner system with resolution better than 0.4mm. Surfaces are classi�edinto planar, spherical, and surfaces of revolution. The data are stored in a cylindricalcoordinate system as f(�; y). At each point on the surface the magnitude and directionof the minimum and maximum normal curvatures are calculated. Since the calculationsinvolve second-order derivatives, smoothing is required to remove the e�ects of noise inthe image. This smoothing is done using a Gaussian �lter.Surface regions are classi�ed as convex, concave and saddle. Ridges and valley linesare determined by obtaining the maxima and minima of the curvatures. The strategyused for face recognition is as follows:� The nose is located.� Locating the nose facilitates the search for the eyes and mouth.� Other features such as forehead, neck, cheeks, etc. are determined by their surfacesmoothness (unlike hair and eye regions).15



� This information is then used for depth template comparison. Using the locations ofthe eyes, nose and mouth the faces are normalized into a standard position. Thisposition is re-interpolated to a regular cylindrical grid and the volume of spacebetween the two normalized surfaces is used as the mismatch measure.This system was tested on a dataset of 24 images of eight persons with three views ofeach. The data represented four male and four female faces. Adequate feature detectionwas achieved for 100% of these faces. 97% recognition accuracy was reported for theindividual features and 100% for the whole face. In related work [82], the process of�nding the features was formalized for recognition purposes.3.3.2 Sketches and Infra-Red ImagesIn [83, 84], face recognition based on sketches, which are quite common in law enforce-ment, is described. Humans have a remarkable ability to recognize faces from sketches.This ability provides a basis for forensic investigations: an artist draws a sketch basedon the witness's verbal description; then a witness looks through a large database ofreal images to determine possible matches. Usually, the database of real images is quitelarge, possibly containing thousands of real photos. Therefore, building a system capableof automatically recognizing faces from sketches has practical value. The �rst step in[83] is feature detection using deformable templates, applied to both the sketch imageand the real photograph images. Then comes the key step of the system, photometricstandardization. In this step, the pixels in the sketch image that have high intensity vari-ations around facial features are replaced by Gaussian blurred versions, yielding so-calledpseudo-images. Next, the pseudo-images and the real database images are geometricallystandardized using a mesh face model. Finally, the eigenface method is used for classi�-cation. Recognition results are reported using 7 sketches and 16 photographs.In [84], a system called PHANTOMAS (phantom automatic search) is described. Thissystem is based on [77], where faces are stored as exible graphs with characteristic visualfeatures (Gabor features) attached to the nodes of the graph. The system was testedusing a photo database of 103 persons (33 females and 70 males) and 13 sketches drawnby a professional forensic artist from the photo database. The results were comparedwith the judgments of �ve human subjects and were found to be comparable.[85] describes an initial study comparing the e�ectiveness of visible and infra-red (IR)imagery for detecting and recognizing faces. One of the motivations in this paper is thatchanges in illumination can cause signi�cant performance degradation for visible imagebased face recognition. Hence infra-red imagery, which is insensitive to illuminationvariation, can serve as an alternative source of information for detection and recognition.However, the inferior resolution of IR images is a drawback. Further, though IR imageryis insensitive to changes in illumination, it is sensitive to changes in temperature. Threeface recognition algorithms were applied to both visible and IR images. The recognitionresults on 101 subjects suggested that visible and IR imagery perform similarly acrossalgorithms, and that the fusion of IR and visible imagery is a viable means of enhancingperformance beyond that of either alone.So far we have not distinguished between two concepts: face identi�cation and faceveri�cation. Strictly speaking, recognition includes both identi�cation and veri�cation.16



In identi�cation tasks, the input to the system is an unknown face, and the system reportsits identity using a database of known individuals; whereas in veri�cation tasks, thesystem needs to con�rm or reject the claimed identity of the input face. To illustrate thedi�erence between these two tasks, we will give a real example, the FERET evaluation,in Section 5.3.4 SummarySigni�cant progress has been achieved in segmentation, feature extraction and recognitionof faces in intensity images. As long as range images or stereo pairs are not available incommercial/law enforcement applications, face recognition can be viewed as a 2-D imagematching and recognition problem with provisions for at most two or three views of eachperson's face.In a recent comprehensive FERET evaluation [3, 4, 5, 6], aimed at evaluating di�erentsystems using the same, large database containing thousands of images, the systemsdescribed in [33, 44, 56, 60, 79], as well as others were evaluated. The neural networkmethod based on Elastic Bunch Graph Matching [79], the statistical method based onsubspace LDA [60], and the probabilistic PCA method [33] were adjudged to be amongthe top three, with each method showing di�erent levels of performance on di�erentsubsets of sequestered images. More details on the FERET evaluations will be presentedin Section 5.4 Face Recognition from Image SequencesIn surveillance applications, face recognition and identi�cation from a video sequence isan important problem. After over twenty years of research on image sequence analysis[86, 87, 88, 89], only a little of that research had been applied to the face recognitionproblem [90, 91, 92, 93, 94, 95] up to the mid-nineties. During the last �ve years, re-search on human action/behavior recognition from video has been very active. Genericdescription of human behavior not particular to an individual is interesting and useful.For example, an interactive computer/smart room [96, 97] can recognize such behaviorand initiate appropriate action. Another example is the detection of a driver's tired-ness [98] by monitoring the driver's facial expressions and head movements. But thetask of recognizing individuals from a surveillance video is still di�cult for the followingreasons:1. The quality of the video is low. Usually videotaping occurs outdoors andthe subjects are not cooperative, hence there are possibly large illumination andpose variations in the face images. In addition, partial occlusions and disguiseare possible. One possible way to improve the quality of face images is to applysuper-resolution techniques [99, 100, 101, 102].2. The face images are small. Again, due to the acquisition conditions, the faceimage sizes are smaller (sometimes much smaller) than the assumed sizes in mostexisting still image based face recognition systems. For example, the valid face17



region could be as small as 20� 20 pixels, whereas the face image sizes used in stillimage-based systems are as large as 128�128. Small-size images not only make therecognition task di�cult, but also a�ect the accuracy of face segmentation, as wellas the accurate detection of the �ducial points/landmarks that are often needed inrecognition methods.3. The characteristics of face/human objects. One of the main reasons for thefeasibility of generic description of human behavior is that the intra-class variationof human objects, and in particular face objects, is much smaller than the objectsoutside of the class. For the same reason, recognition of individuals within theclass is di�cult. For example, detecting and localizing faces is much easier thanrecognizing a speci�c face.4.1 Basic techniques in video-based face processingIn [9], four computer vision areas were mentioned as being important for video-based facerecognition: segmentation of moving objects (humans) from a video sequence; structureestimation; 3-D models for faces; and non-rigid motion analysis. Recent developments inface tracking, modeling and recognition from video verify this prediction. For example,in [103] a face modeling system which estimates facial features and texture from a videostream is described. This system utilizes all four techniques: segmentation of the facebased on skin color to initiate tracking; 3D models for the face based on laser-scannedrange data to normalize the image (by facial feature alignment and texture mapping intoa frontal view) and construct an eigen-subspace for 3D heads; structure from motion ateach feature point to provide depth information; and non-rigid motion analysis of thefacial features based on simple 2D SSD tracking constrained by a global 3D model. Webriey review these four areas in the following paragraphs.1. Video-Based Object Segmentation Early attempts [44, 104] at segmentingmoving faces from an image sequence used simple pixel-based change detectionprocedures based on di�erence images. These techniques may run into di�cultieswhen multiple moving objects and occlusion are present. Flow �eld based methodsfor segmenting humans in motion are reported in [105]. There is a large body ofliterature analysis on segmenting/detecting moving objects in video obtained froma stationary or moving platform. Methods based on analysis of di�erence images,discontinuities in ow �elds using clustering, line processes or Markov random �eldmodels are available. Some of these techniques have been extended to situationsin which both the camera and the objects are moving. A good approach to facesegmentation from image sequences is to combine motion detection/clustering andface detection in the individual images. Skin color can also be utilized to enhancethe robustness of face detection algorithms.2. Structure from Motion The problem of structure from motion is to estimate the3-D depths of points from a sequence of images. Unless the camera can be movedalong a known baseline, techniques such as motion stereo are not applicable. Thestructure frommotion problem has been approached in two ways. In the di�erential18



approach, one computes some type of ow �eld (optical, image or normal) and usesit to estimate the depths of visible points. The di�culty in this approach is reliablecomputation of the ow �eld. In the discrete approach, a set of features such aspoints, edges, corners, lines or contours are tracked over a sequence of frames, andthe depths of these features are computed. The di�culty here is the correspondenceproblem| the task of matching the features over a sequence of frames. In both thedi�erential and discrete approaches, the parameters that characterize the motionof the camera appear jointly with the depth parameters. The motion parametersmay be useful in predicting where objects will appear in subsequent frames, mak-ing the segmentation of these frames somewhat easier. The depth information isuseful in building 3-D models for objects and possibly using these models for ob-ject recognition in the presence of occlusion. It should be pointed out that if onlya monocular image sequence is available, the depth information is available onlyup to a scale factor; whereas if a binocular (or multi-camera) image sequence isavailable, one can get absolute depth values using stereo triangulation. Given thatlaser range �nders may not be practical for surveillance applications, multi-cameraimage sequences may be the best way to get depth information. Another pointworth mentioning is that when a discrete approach is used, the depth values areavailable only at sparse points, requiring interpolation; when a ow-based methodis used, dense depth maps can be constructed. Over the last 25 years, hundreds ofpapers dealing with structure from motion have appeared. It is beyond the scopeof this paper to give even a brief summary of major techniques. We list here onlybooks [86, 87, 106, 107, 108, 109] and review papers [110, 111, 112].3. 3D Models for Faces 3D models of faces have been employed [113, 114, 115] in themodel-based image compression literature by several research groups. Such modelsare also useful in applications such as forensic face reconstruction from partialinformation, and computerized aging. They may also be useful for face recognitionin the presence of disguises. In [116], real-time 3D modeling and tracking of facesis described; a generic 3D head model is aligned to match frontal views of the facein a video sequence.4. Non-rigid Motion Analysis A �nal area of relevance to FRT is the motionanalysis of non-rigid objects [117, 118, 119, 120]. Some of the work [121, 122] ispotentially useful in face recognition. Another application of non-rigid motion tofaces to is the recognition of facial expressions from image sequences [123].4.2 Tracking, modeling and non-face-based recognitionDuring the past �ve years, tracking, modeling and recognition of hand gestures andhuman behaviors have been extensively studied. We briey review some of these topicshere. Research on human emotion recognition has been extended to a new area |a�ective computing [124], in which cues such as facial expressions and body movements,as well as psychological data, are used [125].19



4.2.1 Tracking and modeling face objectsAfter faces are located using one of the many methods reviewed earlier, they can betracked. Face tracking can be divided into three categories: 1) Head tracking, which in-volves tracking the motion of a rigid object that is performing rotations and translations,2) Facial feature tracking, which involves tracking non-rigid deformations that are lim-ited by the anatomy of the head, and 3) complete tracking, which involves tracking boththe head and the facial features. Early e�orts focussed on the �rst two problems: headtracking [126, 127] and facial feature tracking [121, 122]. In [127], an approach to headtracking using points with high Hessian values was proposed. Several such points on thehead are tracked and the 3D motion parameters of the head are recovered by solving anover-constrained set of motion equations. Facial feature tracking methods may make useof the feature boundary or the feature region. Feature boundary tracking attempts totrack and accurately delineate the shape of the facial feature, e.g., to track the contoursof the lips and mouth [117, 122]. Feature region tracking addresses the simpler problemof tracking a region such as a bounding box that surrounds the facial feature [128]. Facialfeatures are subject to general types of motions: rigid motion due to the head's rotationand translation, articulated motion due to speech or facial expressions, and deformablemotion due to muscle contractions and expansions.In [128], a tracking system based on local parameterized models is used for recognizingfacial expressions. The models include a planar model for the head, local a�ne modelsfor the eyes, and local a�ne models and curvature for the mouth and eyebrows. A facetracking system was used in [129] to estimate the pose of the face. This system used agraph representation with about 20-40 nodes/landmarks to model the face. Knowledgeabout faces is used to �nd the landmarks in the �rst frame. Two tracking systemsdescribed in [103, 116] model faces completely with texture and geometry. Both systemsuse 3D models and structure from motion to recover the face structure. [103] tracks �xedfeature points (eyes, nose tip), while[116] tracks only points with high Hessian values.Also, [103] tracks 2D features in 3D by deforming them, while [116] relies on directcomparison of a 3D model to the image. Methods are proposed in [130, 131] to solve thevarying appearance problem in tracking.An important application of tracking and modeling is to enhance face recognition byproviding additional information. After face pose is estimated as in [129], a virtual frontalface can be synthesized, so that the performance of face recognition can be improved.Another useful application of facial feature tracking is the recognition of gaze, based onboth head and eye tracking.4.2.2 Recognition of facial expressionsFacial expression recognition has received increased attention during the last �ve years.Previously, head tracking and facial feature tracking were treated as two separate prob-lems. By jointly addressing the two problems, the recognition of facial expressions hasbecome possible even when large head motion is present.The rationale for facial expression recognition based on motion can be derived fromstudies in psychology. Such studies have indicated that at least six emotions are uni-20



versally associated with distinct facial expressions [132]: happiness, sadness, surprise,fear, anger, and disgust. Most psychological studies of facial expressions have made useof mug-shot images that capture the subject's expression at its peak [133]. Only a fewstudies have investigated the inuence of the motion and deformation of the facial fea-tures on the interpretation of facial expressions. Bassili [134] suggested that motion inthe image of a face could allow emotions to be identi�ed even with minimal informationabout the spatial arrangement of the features.In the engineering literature, early e�orts [123, 135] were based on analysis of theoptical ow �eld of the image sequence, which provides clues to the spatial changes in thefacial features. [128] demonstrated successful facial expression recognition in extensivelaboratory experiments involving 40 subjects as well as in television and movie sequences.3D motion estimation has also been used to recognize facial expressions [136].In principle, facial expression recognition can be integrated into a face recognitionsystem so the system is robust to expression variations. In practice, however, it seems thatmoderate, non-dramatic expressions can be handled by many existing face recognitionsystems.4.2.3 Recognition of hand gesturesHand gestures are another important cue to understanding human behavior. They areusually recognized from the temporal characteristics of the hand movements and theposes of the hands during pauses. Hidden Markov Models (HMMs) [137] are the mostcommonly used tool for gesture recognition. [138] used HMMs to recognize gesturesin binary image sequences, using a rotation-invariant representation the images and aneural net. [139] incorporated multiple representations in an HMM framework, usingeigenimage weights as features. [140] used geometrical parameters (the image coordi-nates and orientations of the hands) as image features and employed an HMM �ve-statetopology for gesture classi�cation; good results were reported on classifying 40 AmericanSign Language gestures in real-time video. In [141], this approach was extended to use3D measurements obtained from a stereo system as features. Gesture recognition wasperformed on a set of 18 T'ai Chi gestures (an ancient Chinese martial art), and theperformance of ten di�erent feature vectors derived from 3D hand and head trackingdata was compared.Researchers have also done hand sign and pose recognition from still imagery. [142]described a general framework for learning-based hand sign recognition. Discriminantanalysis was used to automatically select the most discriminating features and goodrecognition results were obtained for 28 di�erent static hand signs. [143] applied anelastic graph matching based approach to gesture recognition.[144] describes the use of hand gesture analysis in combination with speech recogni-tion in a bi-modal interface for controlling a 3D display. For a review of hand gesturerecognition techniques, see [145]; for more detailed descriptions of various techniques, seethe Proceedings of the AFGR Conferences [1].21



4.2.4 Recognition of body movement and behaviorMuch work has been done on human body tracking. It is impossible to discuss all therelevant references; we only review a few papers briey here. In [146, 147] the body ismodeled by rigid segments that meet at joints. In [148] motion templates are used to trackpeople, in [149] color blobs are used, and in [119] nonrigid models are used. More recently,[150] presents a new visual motion estimation technique that is able to accurately recoverhigh-degree-of-freedom articulated human body con�gurations in video sequences. Thiswork used a model of the human body consisting of segments attached at joints, subjectto constraints involving twist and a product of exponential map.P�nder [149] is a real-time person tracking system which uses a multi-class statisticalmodel of color and shape to segment the person from the background. It �nds and tracksthe person's head and hands under a wide range of viewing conditions. In [151], manylevels of representation based on mixture models, EM, recursive Kalman and Markovestimation are used to learn and recognize human dynamics. In [152] a real-time system(the W 4 system) for detecting/tracking people and monitoring their activities in anoutdoor environment is described. This system operates on monocular gray-scale videoimagery or on video imagery from an infrared camera. It uses a combination of shapeanalysis and robust estimation to locate the people and their parts (head, hands, feet,torso) and to create models of the people's appearances. Building these appearancemodels enables the system to track the people through occlusions or interactions duringwhich tracking cannot be carried out. The system can also track multiple people throughocclusions. In [153] the W 4 system was extended to include a stereo matching module.The system is expected to be expanded in the near future to include more modules torecognize various types of actions, e.g. taking leaving, or exchanging objects. In [154],a vision system is described that monitors activities in a site over extended periods oftime. The system uses a distributed set of sensors to cover the site, and an adaptivetracker to detect multiple moving objects. The tracker data are used for self-calibration| determining the positions of all the cameras relative to each other; construction ofrough site models | determining the ground plane and marking occupied areas; robustdetection of objects in the site and classi�cation of the detected objects (e.g., vehiclesor pedestrians); and learning common activity patterns, and thereby detecting unusualevents in the site from extended observations.4.2.5 Speechreading: enhancing speech recognitionVisual facial cues have been found to be valuable for enhancing speech recognition systemperformance under noisy conditions [155]. A typical speechreading system consists of twosub-systems: a video sub-system and an audio sub-system. In the video sub-system, acamera captures images of the speaker, which are then digitized and processed to extractuseful features for speech recognition. Possible low-level features include the width andheight of the mouth, its shape and rounding, the location and velocity of the jaw, andthe position of the tongue. Higher-level features include rounding (protrusion of the lipsas in /OK/) and the f-tuck (touching of the upper teeth to the lower lip, as in /fa/ and/va/). Important issues in building a speechreading system are how to choose appropriate22



visual features and how to integrate the video and audio sub-systems. Many papers onthis subject have appeared over the past 15 years; examples are [156, 157, 158]. Forreviews of this subject see [155, 159].4.3 Video-based face recognitionAs mentioned earlier, face recognition in surveillance video is di�cult for several reasons.However, there are many situations in which video-based FRT is feasible. For example,in applications such as access control and ATM, the video is acquired in a relativelycontrolled environment and the face region is also relatively large. In such cases, video-based FRT o�ers several advantages over still-image-based FRT:1. Video provides abundant image data; we can select good frames on which to performclassi�cation.2. Video provides temporal continuity [90]; this allows reuse of classi�cation informa-tion obtained from high-quality frames in processing low-quality frames.3. Video allows tracking of face images; hence phenomena such as facial expressionsand pose changes can be compensated for, resulting in improved recognition.Most video-based FRT systems consist of three modules: a face detection module, aface tracking module, and a face recognition module. Nearly all systems apply still-image-based recognition to selected good frames. The face images are warped into frontal viewswhenever pose and depth information about the faces is available [95]. Some systems [95]use non-visual cues (speech, for example) to enhance their performance. A number ofcommercial systems are available | for example, Visionics' FaceIt [160]; however, due toproprietary concerns, their techniques are not open to the public, though their systemsmay have been initially based on published algorithms.[90] describes a system for video-based face recognition. This system uses an RBF(Radial Basis Function) network as the learning/recognition engine, and DoG (Di�erenceof Gaussian) �lters or Gabor wavelet analysis as the feature representation. The mainreasons for the use of a two-layer RBF are its fast learning rate and well-developedmathematical theory. Detection and segmentation of face images is based on motion;the details are not described in [90] and it is indicated that the segmentation resultscan be imperfect. To train and test the system, two sets of data were used, primarysequences and secondary sequences. Each primary set was a controlled set, including thetypes of variability the trained system should be tolerant to. Eight primary sequenceswere collected; each consisted of a person seen against a plain, mid-grey background andturning his head from one pro�le view to the other. Only one secondary sequence wascollected; in it, a person moves from side to side, stopping and starting against a cluttered,changing background. The lengths of the primary sequences were from 62 to 94 frames (atotal of 554 frames), while the length of the secondary sequence was 169 frames. Widelyvarying performance results were reported. For example, only 40% correct classi�cationwas obtained when training on 16 frames and testing on the remaining 538 frames from23



the primary sequences. On the other hand, 96% correct classi�cation was reported whentraining on 278 frames and testing on 276 frames, with a 12% rejection rate.An access control system based on person authentication is described in [91]. Thesystem combines two complementary visual cues: motion and facial appearance. In orderto reliably detect signi�cant motions, spatio-temporal zero crossings computed from sixconsecutive frames were used. These motions were grouped into moving objects using aclustering algorithm and Kalman �lters were employed to track the grouped objects. Anappearance-based face detection scheme using RBF networks (similar to [38]) was used tocon�rm that an object is a person. The face detection scheme was \bootstrapped" usingmotion and object detection to provide an approximate head region. Face tracking basedon the RBF network was used to provide feedback to the motion clustering processto help deal with occlusions. Good tracking results were demonstrated, but personauthentication results are referred to as future work.In [92], a fully automatic person authentication system is described which includesvideo break, face detection, and authentication modules. Video skimming was used toreduce the number of frames to be processed. The video break module, correspondingto key-frame detection based on object motion, consisted of two units. The �rst unitimplemented a simple optical ow method; it was used when the image SNR level is low.When the SNR level was high, simple pair-wise frame di�erencing was used to detectthe moving object. The face detection module consisted of three units: face localizationusing analysis of projections along the x- and y-axes; face region labeling using a decisiontree learned from positive and negative examples taken from 12 images each consistingof 2759 windows of size 8 � 8; and face normalization based on the numbers of faceregion labels. The normalized face images are then used for authentication, using anRBF network. This system was tested on three image sequences; the �rst was takenindoors with one subject present, the second was taken outdoors with two subjects, andthe third was taken outdoors with one subject in stormy conditions. Perfect results werereported on all three sequences, as veri�ed against a database of 20 still face images.In [161], a generic approach to simultaneous object tracking and veri�cation is pro-posed. The approach is based on posterior probability density estimation using sequentialMonte Carlo methods [162, 163]. Tracking, which is a temporal correspondence problem,is formulated as a probability density propagation problem, with the density �t(x) beingde�ned over a state space characterizing the object con�guration. Using sequential im-portance sampling, the density is approximated at time t by a set of samples and weights,fX(j)t ; w(j)t g. The tracked object is then speci�ed by evaluating the mean value asE�fXg � PjX(j)w(j)Pj w(j) (13)Using this approach and reparametrization, tracking applications involving di�erent rep-resentations such as edge maps, intensity templates, and feature point sets can be uni-formly processed by the same algorithm. In addition to tracking, the algoorithm alsoprovides veri�cation results. This is realized by hypothesis testing using the posteriorprobabilities, which are obtained by integrating (summing, in discrete cases) the esti-24



Figure 4: Left: Sample frames of a sequence. Middle: results when correct templates areoverlaid on the video; Right: results when the templates are incorrect.mated densities �t(x) = pi(xjZ)P (!ijZ) = ZA pi(xjZ)dx (14)where !i denotes class i, Z the observation, and pi(xjZ) the conditional posterior densityfor class i.Figure 4 shows sample frames (left column) of a sequence showing two persons movingaround; their face templates are used to track and verify them in the video. In the middleand right columns, the templates are overlaid on the video. For easy visualization, a blackblock is used for the template corresponding to the face of the man in the white shirt(denoted M1), and a white block for the template corresponding to the second man'sface (denoted M2). The middle column illustrates the situation where the algorithm iscorrectly initialized, meaning that the templates are put on the correct persons. The�gure shows that tracking is always maintained for M1, and is able to recover fromocclusion for M2. The right column shows a case in which the templates were put onthe wrong persons. It is seen that M2 eventually drops onto the background, while M1,after tracking the wrong person, is attracted to the right person after they meet. In bothcases, the posterior probabilities provide veri�cation results.The systems described above were tested only on small databases (if at all); theirmain purpose was to demonstrate the feasibility of video-based face recognition. Twoother systems [93, 95] are more practical in terms of accuracy and size of the database.Both of these systems use more than one cue; for example [95] uses both audio and video,and [93] uses stereo. (For more information about recognition based on video and audiosee the Proceedings of the AVBPA Conferences [2].)25



In [93], a system called PersonSpotter is described. This system is able to capture,track and recognize a person walking toward or passing a stereo CCD camera. It hasseveral modules, including a head tracker, preselector, landmark �nder, and identi�er.The head tracker determines the image regions that are changing due to object motionbased on simple image di�erences. A stereo algorithm then determines the stereo dis-parities of these moving pixels. These disparity values are used to compute histogramsfor image regions. Regions with in a certain disparity interval are selected and referredto as \silhouettes". Two types of detectors, skin color based and convex region based,are applied to these silhouette images. The outputs of these detectors are clustered toform regions of interest which usually correspond to heads. To track a head robustly,temporal continuity is exploited in the form of the thresholds used to initiate, track anddelete an object.To �nd the face region in an image, the preselector uses a generic sparse graph con-sisting of 16 nodes learned from 8 example face images. The landmark �nder uses a densegraph consisting of 48 nodes learned from 25 example images to �nd landmarks such asthe eyes and the nose tip. Finally, an elastic graph matching scheme is employed toidentify the face. For details about these modules, see [93]. A recognition rate of about90% was achieved (the size of the database is not known). The system was implementedusing ANSI C++ on a Unix platform (a four-processor 90-Mhz SGI) and was able toprocess 6-8 persons per minute. The size of the normalized face images should be aboutthe same as [77], i.e. about 128 � 128 pixels.A multimodal based person recognition system is described in [95]. This systemconsists of a face recognition module, a speaker identi�cation module, and a classi�erfusion module. It has the following characteristics:� The face recognition module can detect and compensate for pose variations; thespeaker identi�cation module can detect and compensate for changes in the auditorybackground.� The most reliable video frames and audio clips are selected for recognition.� 3D information about the head is used to detect the presence of an actual personas opposed to an image of that person.Recognition and veri�cation rates of 100% were achieved; for 26 registered clients.The face recognition module consists of three units:(a) Face Detection and Tracking The face is detected using skin color informationusing a learned model of a mixture of Gaussians. The facial features (eyes, mouth,nose) are then located using symmetry transforms and image intensity gradients.Correlation-based methods are used to track the feature points. The locations ofthese feature points are used to estimate the pose of the face. This pose estimateand a 3D head model are used to warp the detected face image into a frontal view.(b) Eigenspace Modeling For recognition, the feature locations are re�ned and theface is normalized with eyes and mouth in �xed locations. Images from the face26



tracker are used to train a frontal eigenspace, and the leading 35 eigenvectorsare retained. Since the face images have been warped into frontal views a singleeigenspace is enough. Face recognition is then performed using the eigenface ap-proach with additional temporal information added. The projection coe�cients ofall images of each person are modeled as a Gaussian distribution, and the face isclassi�ed based on the probability of match.(c) Depth Estimation For greater robustness, depth information at each featureposition is obtained using an SfM technique. This depth information can be usedto distinguish a real head from a head image; this makes it di�cult to fool thesystem with still face images.The speaker recognition module has four units:(a) Event Detection Coarse segmentation of the audio is used to identify segmentsthat are likely to contain speech. This segmentation is performed using a sim-ple event detector constructed by thresholding the total energy and incorporatingconstraints on event length and surrounding pauses.(b) Feature Extraction The (16kHz sampled) audio is then �ltered with a weak high-pass �lter to remove DC o�sets and boost higher frequencies. Mel-scaled frequencycoe�cients (MFCs) are then computed for audio frames 32 ms long and 16 msapart.(c) Modeling An HMM, estimated from speech samples, is used to model the spectralsignature of each person's speech. However, experiments showed that 1-state HMMmodels with 30 Gaussians performed best, suggesting that the use of HMMs isunnecessary.(d) Background Adaption It is well known that statistical models trained on cleanspeech perform poorly in noisy or altered environments. Two common types ofnoise are convolutional noise (due primarily to the use of di�erent microphonesand sound cards) and additive noise (due to the presence of other sound sources).Here only additive noise was considered, and HMMs were used to model the cleanspeech, the additive noise, and the combination of both.Finally, the face and speaker recognition modules are combined using a Bayes net.The system was tested in an ATM scenario. An ATM session begins when the subjectenters the camera's �eld of view and the system detects his/her face. The system thengreets the user and begins the banking transaction, which involves a series of questionsby the system and answers by the user. Data for 26 people were collected; the normalizedface images were 40 � 80 pixels and the audio was sampled at 16 kHz. The experimentsshowed that the combination of audio and video improved performance, and that per-fect (100%) recognition and veri�cation were achieved when the image/audio clips withhighest con�dence scores were used. 27



5 Evaluation of Face Recognition SystemsGiven the numerous theories and techniques that are applicable to face recognition, it isclear that evaluation and benchmarking of these algorithms is crucial. Previous work onthe evaluation of OCR and �ngerprint classi�cation systems [164, 165] provided insightsinto how the evaluation of algorithms and systems can be performed e�ciently. One ofthe most important facts learned in these evaluations is that large sets of test imagesare essential for adequate evaluation. It is also extremely important that the samplebe statistically as similar as possible to the images that arise in the application beingconsidered. Scoring should be done in a way that reects the costs of errors in recognition.Reject-error behavior should be studied, not just forced recognition.In planning an evaluation, it is important to keep in mind that the operation of apattern recognition system is statistical, with measurable distributions of success andfailure. These distributions are very application-dependent, and no theory seems to existthat can predict them for new applications. This strongly suggests that an evaluationshould be based as closely as possible on a speci�c application.During the past �ve years, several large, publicly available face databases have beencollected and corresponding testing protocols have been designed. The series of FERETevaluations [3, 4, 5, 6] attracted many institutions and companies to participate. Wedescribe here the two most important face databases and their associated evaluationmethods.5.1 The FERET protocolUntil recently, there did not exist a common FRT evaluation protocol that included largedatabases and standard evaluation methods. This made it di�cult to assess the sta-tus of FRT for real applications, even though many existing systems reported almostperfect performance on small databases. Measuring the performance of FRT in a frame-work that models real-world settings was one of the three primary goals of the FERETprogram [166, 167, 168, 5]. The other two goals were advancing FRT and collecting alarge database of facial images to support algorithm development and evaluation. Thedatabase was collected between August 1993 and July 1996, and consists of 14,126 imagesof 1199 individuals. The FERET database was divided into development and sequesteredportions. The development portion was made available to researchers for algorithm devel-opment, and the sequestered portion was retained for independent evaluation and testingof algorithms. In late 2000 the entire FERET database is being released along with theSep96 evaluation protocols, evaluation scoring code, and baseline PCA algorithms.The �rst FERET evaluation test (Aug94) was administered in August 1994 [168].This evaluation established a baseline for face recognition algorithms, and was designedto measure performance of algorithms that could automatically locate, normalize, andidentify faces. This evaluation consisted of three tests, each with a di�erent gallery andprobe set. (A gallery is a set of known individuals, while a probe is a set of unknown facespresented to a system for recognition.) The �rst test measured identi�cation performancefrom a gallery of 316 individuals with one image per person; the second was a false-alarmtest, and the third measured the e�ects of pose changes on performance. The second28



Figure 5: Images from the FERET dataset; these images are of size 384 � 256.FERET evaluation (Mar95) was administered in March 1995; it consisted of a singletest that measured identi�cation performance from a gallery of 817 individuals, andincluded 463 duplicates in the probe set [168]. (A duplicate is a probe for which thecorresponding gallery image was taken on a di�erent day; there were only 60 duplicatesin the Aug94 evaluation.) The third and last evaluation (Sep96) was administered inSeptember 1996 and March 1997. The design of this evaluation was more complex thanthe �rst two evaluation, and allowed for more detailed performance characterization offace recognition systems.5.1.1 DatabaseCurrently, the FERET database is the only large database that is generally availableto researchers without charge [167, 168]. The images in the database were initiallyacquired with a 35-mm camera, using color Kodak Ultra �lm. The �lm was processedby Kodak and stored on CD-ROM using Kodak's multiresolution technique for digitizingand storing imagery. The color images were retrieved from CD-ROM and convertedinto 8-bit gray scale images. Each image was assigned a �le name that encoded thesubject's identity, the date the image was taken, the nominal pose of the head, andspecial variations.The images were collected in 15 sessions between August 1993 and July 1996. Eachsession lasted one or two days, and the location and setup did not change during thesession. Sets of 5 to 11 images of each individual were acquired under relatively uncon-strained conditions; see Figure 5. They included two frontal views; in the �rst of these(fa) a neutral facial expression was requested and in the second (fb) a di�erent facialexpression was requested (these requests were not always honored). For 200 individuals,a third frontal view was taken using a di�erent camera and di�erent lighting; this isreferred to as the fc image. The remaining images were non-frontal and included rightand left pro�le, right and left quarter pro�le, and right and left half pro�le. The FERETdatabase consists of 1564 sets of images (1199 original sets and 365 duplicate sets) |a total of 14,126 images. A development set of 503 sets of images were released to re-searchers; the remaining images were sequestered by the Government for independentevaluation. 29



5.1.2 EvaluationFor details of the three FERET evaluations see [166, 167, 168, 5]. The results of theSep96 FERET evaluation, the most recent, will be briey reviewed here. This evaluationwas administered in September 1996 and March 1997. Each algorithm was given two setsof images, a target set and a query set; these are di�erent from the gallery and probe setsused to compute performance statistics. The target set contained 3323 images and thequery set contained 3816 images. An algorithm reported a similarity score for all pairsof images taken, respectively, from the target and query sets; this resulted in 12,680,568similarity scores. (A similarity score is an estimate of how similar two faces are.) Becauseof the design of the target and query sets, di�erent galleries were constructed from thetarget set, and di�erent probe sets were constructed from the query set. This allowed formore comprehensive reporting of performance statistics for a larger range of conditionsthan the �rst two evaluations. For the Sep96 evaluation, there was a primary galleryconsisting of one frontal image (FA) per person for 1196 individuals. This was the coregallery used to measure performance for the following four di�erent probe sets.� FB probes|Gallery and probe images of an individual taken on the same day withthe same lighting (1195 probes).� fc probes|Gallery and probe images of an individual taken on the same day withdi�erent lighting (194 probes).� Dup I probes|Gallery and probe images of an individual taken on di�erent days|duplicate images (722 probes).� Dup II probes|Gallery and probe images of an individual taken over a year apart(the gallery consisted of 894 images; 234 probes).Performance was measured using two basic methods. The �rst measured identi�cationperformance, where the primary performance statistic is the percentage of probes thatare correctly identi�ed by the algorithm. The second measured veri�cation performance,where the primary performance measure is the equal error rate between probability offalse alarm and probability of correct veri�cation. (A more complete method of reportingidenti�cation performance is a cumulative match characteristic; for veri�cation perfor-mance it is a receiver operating characteristic (ROC).)The Sep96 evaluation tested the following ten algorithms:� An algorithm from Excalibur Corporation (Carlsbad, CA)(Sept. 1996)� Two algorithms from MIT Media Laboratory (Sept. 1996) [44, 169]� Three Linear Discriminant Analysis based algorithms from Michigan State Univer-sity [56] (Sept. 1996) and the University of Maryland [59, 60] (Sept. 1996 andMarch 1997)� A gray-scale projection algorithm from Rutgers University [170] (Sept. 1996)30



� An Elastic Graph Matching algorithm from the University of Southern Califor-nia [79, 171] (March 1997)� A baseline PCA algorithm [44, 172, 173]� A baseline normalized correlation matching algorithm.The month the evaluation was administered is given in parentheses.Three of the algorithms performed very well: Probabilistic Eigenface from MIT [169],Subspace LDA from UMD [60, 63], and Elastic Graph Matching from USC [79]. To sep-arate recognition from localization, two versions of the evaluation were designed: A fullyautomatic version in which the facial features needed to located, and a semi-automaticversion in which the eye coordinates were given. All of the above algorithms took thesemi-automatic version, and one of the MIT algorithms and the USC algorithm took thefully automatic version. Noticeable (but not signi�cant, especially for the USC algorithm)performance degradation was observed.A number of lessons were learned from the FERET evaluations. The �rst is thatperformance depends on the probe category and there is a di�erence between best andaverage algorithm performance. This is shown in Figure 6, which plots the best andaverage performance of the partially automatic algorithms from the Sep96 evaluation.This is especially true for the fc probes (lighting change). The second is that the avail-ability of a large data set combined with periodic evaluations led to measurable increasesin performance. This is directly supported by the results for the MIT and UMD algo-rithms. In September 1996 two MIT algorithms were tested. One of them was the samealgorithm that was tested in March 1995, and the second was a new algorithm developedsince March 1995. For UMD, one algorithm was tested in September 1996, and a secondalgorithm was tested in March 1997. Results from the September 1996 evaluation wereused as input in designing the second algorithm. The identi�cation rates for the FB andDup I probe categories are shown in Figures 7 and 8. A third lesson is that the scenariohas an impact on performance. For identi�cation, on the FB and duplicate probes, theUSC scores were 94% and 59%, and the UMD scores were 96% and 47%. However, forveri�cation, the equal error rates were 2% and 14% for USC, and 1% and 12% for UMD.The veri�cation equal error rates for the FB and Dup I probe categories are shown inFigures 9 and 10.Detailed and robust testing can provide insight into the underlying properties ofalgorithms. During the period of the FERET evaluations there was a debate in theface recognition community about what was the best representation for faces; in fact,the debate is ongoing. A large number of the representations were projection-based.In this class of representations, an N �M image is interpreted as a point in N �M -dimensional Euclidean space, and the algorithm represents a face in a linear subspace ofmuch lower dimension. The mapping from the original image space to the subspace is alinear projection. Faces are identi�ed by a nearest neighbor classi�er. Two examples arePCA and LDA-based algorithms.The FERET evaluations compared a number of these competing representations;however, the evaluations did not systematically compare di�erent implementations ofthe same representation. Moon and Phillips [172, 173] systematically compared di�erent31
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implementations of a PCA-based face recognition algorithm. For each implementation,the Sep96 performance scores were computed. One class of variations examined was theuse of seven di�erent distance metrics in the nearest neighbor classi�er, which they foundwas the most critical element in their implementation. On the Dup I probes, the range ofperformance for the seven di�erent classi�ers is roughly the same for the projection-basedalgorithms evaluated in the Sep96 evaluation; see Figure 11. This raises the question ofwhat is a more important factor in algorithm performance, the representation or thespeci�cs of the implementation. It also shows the importance of an accepted evalua-tion methodology and a detailed scienti�c investigation into the di�erent aspects of animplementation.MPEG-7 Evaluation The subspace LDA algorithm has also been tested on an MPEG-7 content set. In [70], a proposal entitled Descriptor for Human Face Image Objects inMultimedia Databases was submitted to MPEG-7 using the subspace LDA method. Theperformance of this proposed descriptor in retrieving face image objects from a databasewas evaluated using MPEG-7 Test Content Set S4 [69]. This set contains a total of178 face images obtained from 14 di�erent persons (classes). Of the 178 images, 140are frontal views and the rest are non-frontal views (rotated out of the image plane).The querying procedure usually consisted of two steps: processing of the input image toobtain a representation; and ranking of the retrieved items with respect to a similaritymeasure.Subspace LDA projection coe�cients were proposed as descriptors of a face imageobject. The full representation for a face database is the PCA projection matrix �, theLDA projection matrix W , and the vector z for each face image. The PCA projection �(of dimension 2016 � 300) was computed from the 1038 FERET images, and the LDAprojection W was computed from the available MPEG-7 images, which consisted of 14classes, yielding a matrix W of size 300 � 13. Five images selected from each of the14 classes (one of them a non-frontal view) were used to compute the matrix W . Twoexperiments were performed:� Full querying All 70 images used in the LDA training stage were stored in thedatabase. Each of the 178 available images was used as a query image, and retrievalfrom the database was performed using subspace LDA. Using the criterion that thetop-ranked retrieved image must belong to the correct class, a correct retrievalrate of 86.5% was obtained. Using the criterion that one of the three top-rankedretrieved images must belong to the correct class, a correct retrieval rate of 90.4%was obtained.� Frontal-view querying All 70 training images were again stored in the database,and each of the 130 available frontal-view images was used as a query image. Correctretrieval rates of 93.1% and 95.4% were obtained using the top-ranked and three-top-ranked criteria, respectively.Some of the query images and the corresponding three top-ranked retrieved databaseimages are shown in Fig. 12. 35
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Query Example IQuery Example IIQuery Example IIIQuery Image Top choice Second choice Third choiceFigure 12: Query examples for the MPEG-7 image database.5.1.3 SummaryThe availability of the FERET database and evaluation technology has had a signi�cantimpact on progress in the development of face recognition algorithms. Because of its useof a large database and independent tests, the FERET program has made it possibleto objectively evaluate algorithms under close to real-world conditions. The series oftests has allowed advances in algorithm development be quanti�ed | for example, theperformance improvements in the MIT algorithms between March 1995 and September1996, and in the UMD algorithms between September 1996 and March 1997 (Fig. 13).Another important contribution of the FERET program is the identi�cation of areasfor future research. In particular, the August 1994 test suggested two directions for futureresearch: recognition from images collected months or years apart, and recognition underpose changes.The March 1995 test measured the performance of the algorithms on a larger databasethat contained more duplicates. Absolute performances on the 1994 and 1995 tests werecomparable, in spite of the increase in di�culty, indicating that steady advances werebeing made in face recognition capability.Based on the previous tests, an important goal of the September 1996 test was tostudy the ability of algorithms to recognize people from images taken days, months, oryears apart. In general the test results revealed two major problem areas: recognizingduplicates and recognizing people under illumination variations.The FERET evaluation protocol is the basis of the Face Recognition Vendor Test2000 and the HumanID database. 37
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5.2 The XM2VTS protocolMulti-modal methods are a very promising approach to user-friendly (hence acceptable),highly secure personal veri�cation. Recognition and veri�cation systems need training;the larger the training set, the better the performance achieved. The volume of datarequired for training a multi-modal system based on analysis of video and audio signalsis on the order of TBytes; technology that allows manipulation and e�ective use of suchvolumes of data has only recently become available in the form of digital video. TheXM2VTS multimodal database [7] contains four recordings of 295 subjects taken overa period of four months. Each recording contains a speaking head shot and a rotatinghead shot. Available data from this database include high-quality color images, 32 KHz16-bit sound �les, video sequences, and a 3D model.The XM2VTS database is an expansion of the earlier M2VTS database [174]. TheM2VTS project (Multi-Modal Veri�cation for Teleservices and Security Applications), aEuropean ACTS (Advanced Communications Technologies and Services) project, dealswith access control by multimodal identi�cation of human faces. The goal of the projectwas to improve recognition performance by combining the modalities of face and voice.The M2VTS database contained �ve shots of each of 37 subjects. During each shot,the subjects were asked to count from `0' to `9' in their native language (most of thesubjects were French speaking) and rotate their heads from 0� to �90�, back to 0�, andthen to +90�. They were then asked to rotate their heads again with their glasses o�,if they wore any. Three subsequences were extracted from these video sequences: voicesequences, motion sequences, and glasses-o� motion sequences. The voice sequences canbe used for speech veri�cation, frontal view face recognition, and speech/lips correlationanalysis. The other two sequences are intended for face recognition only.It was found that the subjects were relatively di�cult to recognize in the �fth shotbecause it varied signi�cantly in face/voice/camera setup from the other shots. Severalexperiments have been conducted using the �rst four shots [175, 176, 177, 178, 179, 180],with the goals of investigating� text-dependent speaker veri�cation from speech� text-independent speaker veri�cation from speech� facial feature extraction and tracking from moving images� veri�cation from an overall frontal view� veri�cation from lip shape� veri�cation from depth information (obtained using structured light)� veri�cation from a pro�le� synchronization of speech and lip movement39



5.2.1 DatabaseThe XM2VTS database di�ered from the M2VTS database primarily in the number ofsubjects (295 rather than 37). The M2VTS database contained �ve shots of each subjecttaken at sessions over a period of three months; the XM2VTS database contained eightshots of each subject taken at four sessions over a period of four months (so that eachsession contains two repetitions of the sequence).The XM2VTS database was acquired using a Sony VX1000E digital camcorder anda DHR1000UX digital VCR. This VCR captures video at a color sampling resolution of4:2:0 and audio at a frequency of 32kHz and a sampling rate of 16 bits. It was chosenbecause it can be interfaced to a computer via a �rewire port. At present only the PCarchitecture is supported, but SUN, SGI and DEC are all working on �rewire solutions.Software has been written that allows a user to move video and audio sequences andindividual frames to a PC's hard disk directly from the VCR.In the XM2VTS database, the �rst shot is a speaking head shot. Each subject, whowore a clip-on microphone, was asked to read three sentences that were written on aboard positioned just below the camera. The subjects were asked to read the threesentences twice at their normal pace and to pause briey at the end of each sentence.The three sentences, which were the same in all four recording sessions, were1. \0 1 2 3 4 5 6 7 8 9"2. \5 0 6 9 2 8 1 3 7 4"3. \Joe took father's green shoe bench out"The audio sentences were stored in 7080 �les which are available on four CDROMs asmono, 16BIT, 32 KHz, and PCM wave �les.The second shot is a rotating head sequence. Each subject was asked to rotate his/herhead to the left, to the right, up, and down, and �nally to return to the center. Thesubjects were told that a full pro�le was required and were asked to repeat the entiresequence twice. The same sequence was used in all four sessions. A set of pro�le imagesis available on four CDROMs. These consist of one left pro�le and one right pro�le ofeach person from each session | a total of 2,360 images. The images are stored in colorPPM format at a resolution of 720 � 576. A set of frontal images, one per subject persession (1,180 images in all), is also available on two CDROMs.An additional dataset containing a 3D model of each subject's head was acquiredduring each session using a high-precision stereo-based 3D camera developed by theTuring Institute1. This data set is available in the form of 295 VRML models andtexture images on a single CDROM.5.2.2 EvaluationA protocol was designed (see Tables 2 and 3) to evaluate the performance of vision- andspeech-based person authentication systems on the XM2VTS database. This protocol1Turing Institute Web Address: http://www.turing.gla.ac.uk/40



was de�ned for the task of veri�cation. The features of the observed person are com-pared with stored features corresponding to the claimed identity, and the system decideswhether the identity claim is true or false on the basis of a similarity score. The subjectswhose features are stored in the system's database are called clients, whereas personsclaiming false identity are called imposters.The database is divided into three parts: a training set, an evaluation set, and a testset. The training set is used to build client models. The evaluation set is used to computeclient and imposter scores. On the basis of these scores, a threshold is chosen thatdetermines whether a person is accepted or rejected. In multi-modal classi�cation, theevaluation set can also be used to optimally combine the outputs of several classi�ers. Thetest set is selected to simulate a real authentication scenario. 295 subjects were randomlydivided into 200 clients, 25 evaluation imposters and 70 test imposters. Two di�erentevaluation con�gurations were used (see Tables 2 and 3) with di�erent distributions ofclient training and client evaluation data.Session Shot Clients Imposters1 Training1 2 Evaluation1 Training2 2 Evaluation Evaluation Test1 Training3 2 Evaluation14 2 TestTable 2: Con�guration I of the evaluation protocolSession Shot Clients Imposters11 21 Training2 2 Evaluation Test13 2 Evaluation14 2 TestTable 3: Con�guration II of the evaluation protocol5.2.3 SummaryThe results of the M2VTS/XM2VTS projects can be used for a broad range of applica-tions. In the telecommunication �eld, the results should have a direct impact on network41



services where security of information and access will become increasingly important.(Telephone fraud in the U.S. has been estimated to cost several billion dollars a year.)6 Two Challenges: Illumination and Pose VariationThough many face recognition techniques have been proposed and have demonstratedsigni�cant promise, the task of robust face recognition is still di�cult [68]. The recentFERET test revealed that there are at least two major challenges: The illuminationvariation problem and the pose variation problem. Either of these problems may causeserious performance degradation for most existing systems. For example, change inillumination conditions can change the 2D appearance (face image) of a 3D face objectdramatically, and hence can seriously a�ect system performance. These two problemshave been documented in many evaluations of FRT systems [4, 181] and in the dividedopinions of the psychology community [24, 23, 15]. Unfortunately, they are unavoidablewhen face images are acquired in an uncontrolled environment as in surveillance videoclips. In this section, we examine the two problems and review some approaches tosolving them. We also point out the pros and cons of these approaches so an appropriateapproach can be applied to a speci�c task.6.1 The illumination problem in face recognitionThe illumination problem is illustrated in Fig. 14 where the same face appears di�erentdue to a change in lighting. The changes induced by illumination are often larger thanthe di�erences between individuals, causing systems based on comparing images to mis-classify input images. This was experimentally observed in [181] using a dataset of25 individuals, and was theoretically proved in [182] for systems based on eigenfaceprojection.
Figure 14: The same face appears di�erently under di�erent illuminations.The illumination problem is quite di�cult and has received consistent attention inthe image understanding literature. In the case of face recognition, many approaches tothis problem have been proposed that make use of domain knowledge, in particular of theknowledge that all faces belong to one face class. These approaches can be divided into42



four types [68]: 1) heuristic methods, e.g. discarding the leading principal components,2) image comparison methods in which appropriate image representations and distancemeasures are used, 3) class-based methods using multiple images of the same face ina �xed pose but under di�erent lighting conditions, and 4) model-based approaches inwhich 3D models are employed.6.1.1 Heuristic ApproachesWhen the face eigen-subspace domain is used, it has been suggested that by discardingthe three most signi�cant principal components, variations due to lighting can be reduced.It was experimentally veri�ed in [58] that discarding the �rst few principal componentsworks reasonably well for images obtained under di�erent lighting conditions. However, inorder to maintain system performance for normally illuminated images, while improvingperformance for images acquired under changes in illumination, it must be assumed thatthe �rst three principal components capture only variations due to lighting. In [52], aheuristic method based on face symmetry was proposed to enhance system performanceunder lighting changes.6.1.2 Image Comparison ApproachesIn [181], approaches based on image comparison using di�erent image representationsand distance measures were evaluated. The image representations used were edge maps,derivatives of the gray level, images �ltered with 2D Gabor-like functions, and a repre-sentation that combines a log function of the intensity with these representations. Thedistance measures used were pointwise distance, regional distance, a�ne-GL (gray level)distance, local a�ne-GL distance, and log pointwise distance. For more details aboutthese methods and about the evaluation database, see [181]. It was concluded that noneof these representations alone can overcome the image variations due to illumination. Arecently proposed image comparison method [183] used a new measure robust to illu-mination change. This method is based on the observation that the di�erence betweentwo images of the same object is smaller than the di�erence between images of di�erentobjects. However, the proposed measure is not strictly illumination-invariant.6.1.3 Class-Based ApproachesUnder the assumptions of Lambertian surfaces and no shadowing, a 3D linear illumina-tion subspace for a person was constructed in [66, 67, 184, 185] for a �xed viewpoint,using three aligned faces/images acquired under di�erent lighting conditions. Under idealassumptions, recognition based on this subspace is illumination-invariant. More recently,an illumination cone has been proposed as an e�ective method of handling illuminationvariations, including shadowing and multiple light sources [185, 186]. This method isan extension of the 3D linear subspace method [66, 67] and also requires three alignedtraining images acquired under di�erent lighting conditions. One drawback of using thismethod is that more than three aligned images per person are needed. More recently, amethod based on a quotient image was introduced [187]. An advantage of this approachover previous approaches is that it only uses a small set of sample images. This method43



assumes that faces of di�erent individuals have the same shape and di�erent textures.Better rendered results are obtained with this method than when using methods such asthe bi-linear model approach [188].6.1.4 Model-Based ApproachesIn [189], Principal Component Analysis (PCA) was suggested as a tool for solving theparametric shape-from-shading (SFS) problem. An eigen-head approximation of a 3Dhead was obtained after training on about 300 laser-scanned range images of real humanheads. The ill-posed SFS problem is thereby transformed into a parametric problem,but constant albedo is still assumed. This assumption does not hold for most real faceimages and it is one of the reasons why most SFS algorithms fail on real face images.To overcome the constant albedo issue, the authors of [68, 182] proposed using a varyingalbedo reectance model. They �rst proposed a new SFS scheme, symmetric SFS. Unlikeexisting SFS algorithms, Symmetric SFS theoretically allows pointwise 3D informationabout a symmetric object, represented by the shape gradients (p; q), to be uniquelyrecovered from a single 2D image. The Symmetric SFS algorithm represents albedoinformation in the form of a self-ratio image, de�ned asrI [x; y] = I�[x; y]I+[x; y] = p[x; y]Ps1 + q[x; y]Qs ; (15)where I is the image and is related to the light source (Ps; Qs) byI[x; y] = �[x; y] 1 + p[x; y]Ps + q[x; y]Qsq1 + p[x; y]2 + q[x; y]2:q1 + P 2s +Q2s (16)so that recovery of the albedo � is not necessary. However, in practical face recognitionapplications the implementation of this approach is not robust enough. A direct 2D-to-2D approach using a generic 3D model has therefore been proposed. Let the prototypeimage Ip with � = 0 be Ip[x; y] = � 1p1 + p2 + q2 : (17)Comparing (16) and (17), we obtainIp[x; y] = K2(1 + qQs)(I[x; y] + I[�x; y]); (18)where K = q1 + P 2s +Q2s. This simple equation directly relates the prototype imageIp to I[x; y] + I[x;�y] which is already available. This direct computation of Ip from Io�ers the following advantages over the traditional two-step procedure:� There is no need to recover the varying albedo �[x; y].� There is no need to recover the full shape gradients (p; q).44



Figure 15: Image rendering comparison. The original images are shown in the �rstcolumn. The second column shows prototype images rendered using the local SFS algo-rithm. Prototype images rendered using symmetric SFS are shown in the third column.Finally, the fourth column shows real images that are close to the prototype images.The rationale behind this method is the observation that all faces have a similar 3D shape;hence the required q can be obtained from a generic model. Using this approach very goodprototype images synthesized from front-view input images have been obtained using twopublicly available databases, the Yale and Weizmann databases. These databases contain15 and 24 persons, respectively; each person is represented by four images obtained underdi�erent illuminations.In order to achieve a fully automatic system, light source estimation is needed. Afterreviewing existing source-from-shading methods, the authors proposed a new model-based symmetric source-from-shading algorithm. Basically it can be formulated as aminimization problem: (��; � �) = arg�;� min(rIMF (�; � ))� rI)2: (19)where rI is the self-ratio image, and rIMF is the self-ratio image generated from the 3Dface model MF given the hypothesized light source direction represented by � and � .One advantage of using a 3D face model is that both attached-shadow and cast-shadowe�ects can be handled.Figure 15 shows some comparisons between rendered images obtained using thismethod and using a local SFS algorithm [190]. Signi�cant performance improvementshave been reported when the prototype images are used in a subspace LDA system inplace of the original input images (Fig. 16).6.2 The pose problem in face recognitionThe performance of face recognition systems also drops signi�cantly when pose variationsare present in the input images. This di�culty is clearly revealed in the most recentFERET test report, and solving the rotation-in-depth problem has been suggested asa major research issue [3]. When illumination variation is also present the task of facerecognition becomes even more di�cult (Fig. 17).Researchers have proposed various methods of handling the rotation problem. Theycan be divided into three types: 1) Methods in which multiple database images of each45
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(a) (b)Figure 16: Enhancing subspace LDA. The thin lines represent the cumulative scoresobtained by applying subspace LDA to the original images, while the thick lines representthe scores obtained by applying it to the prototype images. The curves in (a) are for theYale face database, and those in (b) are for the Weizmann database.

Figure 17: The same face appears di�erent under di�erent poses and illuminations.46



person are available [191, 192, 193, 194], 2) hybrid methods when multiple images areavailable during training but only one database image per person is available duringrecognition [80, 195, 196, 197], and 3) single image based methods when no training iscarried out. The second approach seems to be the most popular one; the third approachdoes not seem to have received much attention.6.2.1 Multi-Image Based ApproachesOne of the earliest examples of the �rst class of approaches is [193], where a template-based correlation matching scheme is proposed. In this work, pose estimation and facerecognition are coupled in an iterative loop. For each hypothesized pose, the input im-age is aligned to database images corresponding to that pose. The alignment is �rstcarried out via a 2D a�ne transformation based on three key feature points (eyes andnose), and then optical ow is used to re�ne the alignment of each template. Afterthis step, the correlation scores of all pairs of matching templates are used for recogni-tion. The main limitations on this method are 1) many di�erent views per person areneeded in the database, 2) no lighting variations or facial expressions are allowed, and3) the computational cost is high since iterative searching is involved. More recently,an illumination-based image synthesis method [194] has been proposed to handle bothpose and illumination problems. This method is based on the illumination cone ap-proach [185]. It can handle illumination variation quite well. To handle variations due torotation, it needs to completely resolve the GBR (generalized-bas-relief) ambiguity whenreconstructing the 3D shape.6.2.2 Hybrid ApproachesNumerous algorithms of the second type have been proposed. These methods, whichmake use of prior class information, are the most successful and practical methods upto now. We review three representative examples here; the �rst is a linear class basedmethod [196], the second is a graph matching based method [79], and the third is aview-based eigenface approach [45]. The image synthesis method in [196] is based on theassumption of linear 3D object classes and the extension of linearity to images that are2D projections of the 3D objects. It extends the linear shape model (which is very similarto the active shape model of [198]) from a representation based on feature points to fullimages of objects. To implement this method, a correspondence between images of theinput object and a reference object is established using optical ow. Correspondencesbetween the reference image and other example images having the same pose are alsocomputed. Finally, the correspondence �eld for the input image is linearly decomposedinto the correspondence �elds for the examples. Compared to the parallel deformationscheme in [195], this method reduces the need to compute correspondences between im-ages of di�erent poses. This method is extended in [197] to include an additive errorterm for better synthesis. In [79], a robust face recognition scheme based on EBGM isproposed. The authors assume a planar surface patch at each feature point (landmark),and learn the transformations of \jets" under face rotation. Their results demonstratesubstantial improvement in face recognition under rotation. Their method is also fully47



automatic, including face localization, landmark detection, and exible graph matching.The drawback of this method is its requirement for accurate landmark localization, whichis not an easy task, especially when illumination variations are present. The populareigenface approach [44] to face recognition has been extended to a view-based eigenfacemethod in order to achieve pose-invariant recognition [45]. This method explicitly codesthe pose information by constructing an individual eigenface for each pose. More re-cently, a uni�ed framework called the bilinear model was proposed in [188]. Despite theirpopularity, these methods have some common drawbacks: 1) they need many exampleimages to cover all possible views, and 2) the illumination problem is separated from thepose problem.6.2.3 Single Image Based ApproachesFinally, the third class of approaches includes low-level feature based methods, invariantfeature based methods, and 3D model based methods. In [51], a Gabor wavelet basedfeature extraction method is proposed for face recognition which is robust to small-angle rotations. There are many papers on invariant features in the computer visionliterature, but to our knowledge, serious application of this technology to face recog-nition has not yet been explored. However, it is worth pointing out that some recentwork on invariant methods based on images [199] may lead to progress in this direction.3D face models have been used for synthesizing face images under di�erent appear-ances/lightings/expressions in the computer graphics, computer vision, and model-basedcoding communities [81, 122, 200]. In these methods, face shape is usually represented byeither a polygonal model or a mesh model which simulates tissue. Due to its complexityand computational cost, no serious attempt to apply this technology to face recognitionhas been made except for [81]. In [201], a uni�ed approach was proposed to solving thepose and illumination problems. This method is a natural extension of the method pro-posed in [182] to handle the illumination problem. Using this method, input images canbe converted into prototype images and then input into existing systems. More speci�-cally, using a generic 3D model, we can approximately solve the correspondence problemrequired in a 3D rotation and arrive at a direct image-to-image computation:I�[x0; y0] = 1z;�Ip[x; y](cos � � p[x; y] sin �) 1p1+P 2s+Q2s�[tan(� + �0)Ps + q cos(�0)cos(�+�0)Qs + 1]; (20)where 1z;� is the indicator function indicating possible occlusion determined by the shapeand rotation angle, the single light source is (Ps; Qs; 1), and the image (rotated in the x-zplane about the y-axis) is I�[x0; y0]. As in the pure illumination case, we need to estimatethe light source. In addition, pose estimation of the 3D face is needed. To addressthe varying albedo issue, we again use the self-ratio image and propose the followingcombined estimation problem (including the pose �):(��; ��; � �) = arg�;�;� min[rIMF (�; � )� rIF (�; �; � )]2; (21)where rIF (�;�;�) is the self-ratio image for the virtual frontal view generated from theoriginal image IR via image warping and texture mapping. For further details, see [201].Image synthesis examples are shown in Fig. 18.48



Figure 18: Synthesis of a virtual frontal view from another view: The �rst column showsthe frontal view, the second column shows the rotated view, and the third column showsthe virtual frontal view. 49



7 Summary and ConclusionsIn this paper, we have presented an extensive survey of machine recognition of humanfaces. We have focused on segmentation, feature extraction and recognition aspects ofthe face recognition problem, using information drawn from intensity and range imagesof faces. In addition, face recognition from image sequences has been reviewed, includingbasic techniques used in video-based face processing, tracking, modeling, and non-face-based recognition. To emphasize the importance of system evaluation two protocols, theFERET and XM2VTS protocols, have been described in full detail. Finally, we haveidenti�ed two key problems for any face recognition system: the illumination problemand the pose problem, have categorized proposed methods of solving these two problems,and have discussed the pros and cons of these methods.We give below a concise summary, followed by conclusions, in the same order in whichthe topics appear in the paper.� Machine recognition of faces is emerging as an active research area spanning severaldisciplines such as image processing, pattern recognition, computer vision, andneural networks. There are numerous commercial applications of FRT such asface veri�cation based ATM and access control, while law enforcement applicationsinclude video surveillance. Due to its user-friendly nature, face recognition remainsattractive despite the existence of extremely reliable methods of biometric personalidenti�cation such as �ngerprint analysis and iris scans.� Over thirty-�ve years of research in psychophysics and neurosciences on humanrecognition of faces is documented in the literature. Although we do not feel thatmachine recognition of faces should strictly follow what is known about humanrecognition of faces, it is bene�cial for engineers who design face recognition systemsto be aware of the relevant �ndings, for example, lighting e�ects. On the other hand,better machine systems can provide better tools to conduct studies in psychologyand neuroscience.� Segmentation of a face region from a still image or a video is the �rst key stepin a fully automatic face recognition system. During the past �ve years, signi�-cant achievements have been made in this area. Two representative approaches areneural network based systems and example-based learning systems. Face segmen-tation also has potential application in human-computer interfaces and surveillancesystems.� Both global and local face descriptions are useful. The most signi�cant globaldescriptions are based on the KL expansion. Local descriptors are derived fromregions that contain the eyes, mouth, nose, etc. For better local feature detection,domain knowledge such as face shape should be used.� Face recognition methods based on sensor modalities such as range images, sketchesand infrared images are interesting, but are hard to apply in practice. Many meth-ods have been proposed for face recognition based on image intensities [9]. Basically50



they can be divided into holistic template matching based systems [33, 44, 56, 58,59, 60], geometrical local-feature-based schemes [51, 171], and hybrid methods [45].Even though all these types of systems have been successfully used for to facerecognition, they have advantages and disadvantages. Thus appropriate schemesshould be chosen based on the speci�c requirements of a given task. For example,the EBGM-based system [171] has very good performance in general. However, itrequires a large-size image, e.g., 128 � 128. This severely restricts its applicationto video-based surveillance, where the face image size is very small. On the otherhand, the subspace LDA system [63] works well with both large and small images,e.g., 96 � 84 or 24 � 21.� Recognition of faces in a video sequence (especially, in a surveillance video) is stillthe most challenging problem in face recognition, because the video is of low qualityand the images are small. Nevertheless, video-based systems using multiple cueshave demonstrated good results in relatively controlled environments� During the past �ve years, tracking, modeling and non-face-based recognition ofhand gestures and human behavior have been actively studied. One of the reason forthis is that generic description of human behavior, not particular to an individual,is both interesting and useful.� A crucial step in face recognition is the evaluation and benchmarking of numerousalgorithms. Two of the most important face databases and their associated eval-uation methods are reviewed: the FERET protocol and the XM2VTS protocol.The availability of these protocols has had a signi�cant impact on progress in thedevelopment of face recognition algorithms.� Though many face recognition techniques have been proposed and have demon-strated signi�cant promise, robust face recognition is still di�cult. There are atleast two major challenges: the illumination and pose problems. An extensive re-view of methods proposed for solving these problems has been presented and thepros and cons of these methods have also been pointed out. Some di�cult issuesstill remain to be addressed | for example, the problem of aging.� Methods of multi-modal recognition are needed, though some initial work in thisdirection has been done. Such methods include the fusion of face recognition withinformation about speech, iris patterns, �ngerprints, and gait.
51
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