
INTEGRAL ESTIMATES FOR TRANSPORT DENSITIES

L. DE PASCALE, L. C. EVANS, AND A. PRATELLI

Abstract. We introduce some integration-by-parts methods that improve upon the Lp esti-
mates on transport densitites from the recent paper by De Pascale–Pratelli [DP-P].

1. Introduction

This paper provides some PDE methods that improve upon the Lp estimates on the “transport
densities” in certain Monge–Kantorovich mass transfer problems, as derived in the earlier paper
[DP-P] by the first and third authors. Our main estimate provides the bound

‖σk‖Lq ≤ C (‖f‖Lq + 1) (1)

for each 2 ≤ q <∞, when u solves the quasilinear elliptic equation

−div (σkDuk) = f (2)

for

σk := e
k
2 (|Duk|2−1) (3)

and k sufficiently large. The constant C in (1) depends on q, but not on the parameter k.

This problem arises as an approximation of the fundamental transport (or continuity) equation
for the Monge–Kantorovich mass transfer problem, as explained for instance in [E2]. In this
interpretation, we seek an optimal rearrangement of the measure µ+ := f+dx into µ− := f−dy.
In the limit k →∞, we have uk → u, σk → a and the potential u solves


− div (aDu) = f,

|Du| ≤ 1,

|Du| = 1 where a > 0.

(4)

We call a the transport density. It turns out that an optimal mass reallocation plan can be
constructed using u and a.

The paper [DP-P] by De Pascale and Pratelli studied how the integrability properties of
f = f+ − f− affect those of the transport density. They showed that

(i) a ∈ L∞ if f ∈ L∞, and
(ii) a ∈ Lq−ε if f ∈ Lq, for 1 ≤ q <∞ and each ε > 0.
We introduce in this paper some PDE integration–by–parts methods to improve assertion (ii),

by demonstrating

a ∈ Lq if f ∈ Lq, for 2 ≤ q <∞.

We have tried, and failed, to extend our methods to include q =∞.

LCE’s research is supported in part by NSF Grant DMS-0070480 and by the Miller Institute for Basic Research
in Science, UC Berkeley.
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A PDE like (4) comes up also in the general formulation of Bouchitté and Buttazzo [B-B] for
finding a distribution of a given amount of conductor to best dissipate heat. Then f represents
a heat source and u the temperature of the system. The survey [E2] describes several more
applications.

2. Approximation

We will for simplicity take U = B0(0, R), the open ball with center 0 and radius R > 0.
Hereafter we always suppose that f ∈ L1(U), with

∫
U

f dx = 0. Denote by uk the solution of
the nonlinear boundary–value problem{

−div (σkDuk) = f in U
uk = 0 on ∂U,

(5)

where we write

σk := e
k
2 (|Duk|2−1). (6)

Observe that uk is the unique minimizer of the functional

Fk[v] :=
∫

U

1
k

e
k
2 (|Dv|2−1) − fv dx

in W 1,k
0 . This approximation is suggested by the recent paper [E1]. Regularity theory (Cf.

Marcellini [M]) implies that uk is smooth, provided f is.

We want to study the limits of uk and σk as k →∞, and begin with some uniform bounds.

Lemma 2.1. Suppose that f ∈ L1(U). Then the sequence {uk}∞k=1 is bounded in W 1,q
0 (U), for

each 1 ≤ q <∞.

Proof. Observe first that x ≤ e
x2−1

2 for x ≥ 0, and therefore that |Duk| ≤ σ
1
k

k . Recalling then
(5), (6), we deduce for k > n that∫

U

|Duk|k+2 dx ≤
∫

U

|Duk|2σk dx =
∫

U

fuk dx ≤ C‖uk‖L∞ ≤ C‖Duk‖Lk .

Note that ‖Duk‖kLk ≤ ‖Duk‖k+2
Lk+2 +C. Hence ‖Duk‖kLk ≤ C +C‖Duk‖Lk , and so ‖Duk‖Lk ≤ C.

We deduce for each k > q that

‖Duk‖Lq ≤ ‖Duk‖Lk ‖1‖
L

kq
k−q
≤ C.

We next indentify the Γ–limit of problem (5), (6) as k →∞. For this, define

F [v] :=

{
−

∫
U

fv dx if v ∈ C0,1
0 (U), |Dv| ≤ 1 a.e.

+∞ otherwise.
(7)

Theorem 2.2. As k goes to infinity, we have

Fk
Γ−→F.

with respect to the uniform convergence of functions.
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Proof. 1. Since the mapping u �→ 〈f, u〉 =
∫

U
fu dx is linear, it is enough to prove

Ek[v] :=
1
k

∫
U

e
k
2 (|Dv|2−1)dx

Γ−→E[v], (8)

for

E[v] :=

{
0 if v ∈ C0,1

0 (U), |Dv| ≤ 1 a.e.

+∞ otherwise.
(9)

2. If E[v] <∞, we clearly have

E[v] = 0 = lim
k→∞

Ek[v].

Suppose now that vk → v uniformly, and lim supk→∞Ek[vk] ≤ C < ∞. Fix an integer m and

let k > m. Since e
x2−1

2 ≥ x, we have for each open set V ⊆ U that(∫
V

|Dvk|m dx

)1/m

≤ |V |1/m−1/k

(∫
V

|Dvk|kdx

)1/k

≤ |V |1/m−1/k k1/k Ek(vk)1/k ≤ |V |1/m−1/k k1/k C1/k.

Passing to limits in k and recalling the lower semicontinuity of the Lm norm of the gradient,
we discover (∫

V

|Dv|mdx

)1/m

≤ |V |1/m.

This inequality, valid for all V as above, implies that Dv is in L∞, with |Dv| ≤ 1 almost
everywhere. Consequently,

E[v] = 0 ≤ lim inf
k→∞

Ek[vk].

Introduce next the vector fields

Gk := σkDuk (k = 1, . . . ).

Theorem 2.3. Suppose that for some 1 < q <∞ we have the uniform bounds

sup
k
‖Gk‖Lq(U ;Rn) <∞.

Define

fk := −div (Gk),

and assume 


fk f weakly in Lq(U)
Gk G weakly in Lq(U ;Rn),
uk → u uniformly.

Then there exists a positive function a ∈ Lq such that


G = aDu,

|Du| = 1 a.e. on {a > 0}, and
σk a weakly in Lq(U).

In particular, a = |G|.
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Proof. 1. First of all, note that −div G = f ; that is,∫
U

G ·Dψ dx =
∫

U

fψ dx

for all ψ ∈ C1, ψ = 0 on ∂U .

Let us now fix 0 < λ < 1 and calculate:∫
U

|G| dx ≤ lim inf
k→∞

∫
U

|Gk| dx = lim inf
k→∞

(∫
{|Duk|2>1−λ}

|Gk| dx +
∫
{|Duk|2≤1−λ}

|Gk| dx

)

≤ lim inf
k→∞

(
1√

1− λ

∫
U

|Gk||Duk| dx +
∫

U

e−
k
2 λ
√

1− λ dx

)
.

When k goes to infinity, the last integral goes to 0. Notice also that∫
U

|Gk||Duk| dx =
∫

U

σk|Duk|2 dx =
∫

U

fkuk dx.

Therefore
√

1− λ

∫
U

|G| dx ≤ lim inf
k→∞

∫
U

fkuk dx =
∫

U

fu dx =
∫

U

G ·Du dx

for each 0 < λ < 1, and consequently∫
U

|G| dx ≤
∫

U

G ·Du dx. (10)

2. Reasoning now as in the proof of Theorem 2.2, we fix an integer m and let k > m. Then
for each open set V ⊆ U(∫

V

|Dvk|m dx

)1/m

≤ |V |1/m−1/k+1

(∫
V

|Dvk|k+1dx

)1/k+1

≤ |V |1/m−1/k+1||Gk||1/k+1
L1 ≤ |V |1/m−1/k+1C1/k+1.

Pass to limits in k to find (∫
V

|Dv|mdx

)1/m

≤ |V |1/m,

and therefore |Du| ≤ 1 almost everywhere. The first two assertions of the Theorem now follow
from (10).

3. To show also that σk a, let us fix ψ ∈ C∞0 and prove∫
U

σkψ dx→
∫

U

aψ dx.

We write ∫
U

σkψ dx =
∫

U

σk|Duk|2ψ dx +
∫

U

σk(1− |Duk|2)ψ dx =: A1 + A2.

Notice now that

A1 =
∫

U

ψ Gk ·Duk dx =
∫

U

Gk ·D(ukψ) dx−
∫

U

uk Gk ·Dψ dx

=
∫

U

fkukψ dx−
∫

U

ukGk ·Dψ dx.
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This expression converges as k →∞ to∫
U

fuψ dx−
∫

U

uG ·Dψ dx =
∫

U

G ·D(uψ) dx−
∫

U

uG ·Dψ dx

=
∫

U

ψ G ·Du dx =
∫

U

ψa|Du|2 dx =
∫

U

aψ dx.

4. It remains to show that A2 → 0. If we write ϕk := |Duk|2 − 1, then

|A2| ≤ ‖ψ‖L∞
∫

U

e
k
2 ϕk |ϕk| dx.

Since xe−
x
2 ≤ 1 for each x > 0, we have∫

{ϕk<0}
e

k
2 ϕk |ϕk| dx =

1
k

∫
U

k|ϕk|e−
k|ϕk|

2 dx ≤ |U |
k
→ 0.

Finally, since q > 1 there exists a constant cq > 0 such that

ex(q−1)

x
≥ cq > 0

for all x > 0. Consequently,∫
{ϕk>0}

e
k
2 ϕk |ϕk| dx =

2
k

∫
{ϕk>0}

e
k
2 ϕk

k

2
ϕk dx

≤ 2
cqk

∫
{ϕk>0}

e
qk
2 ϕk dx =

2
cqk

∫
U

σq
k dx ≤ 2Cq

cqk
→ 0.

This completes the proof that A2 → 0.

3. Estimates I

The full calculations for our main estimate in §4 are fairly involved, and so for the reader’s
convenience we provide in this section a simpler computation illustrating the main ideas. Suppose
2 ≤ q <∞.

Theorem 3.1. There exists a constant C, depending on q, but independent of k, such that∫
U

σq
k dx ≤ C

(∫
U

|f |q dx + 1
)

. (11)

Proof. 1. To simplify notation, we hereafter in the proof do not write the subscripts k. Observe
that since Du is bounded in each space Lq and u = 0 on ∂U , we have the bound

|u| ≤ C

for some constant C.

2. Multiply (5) by σq−1u and integrate by parts:∫
U

σq|Du|2 + (q − 1)σq−1Du ·Dσ u dx =
∫

U

σui(σq−1u)i dx =
∫

U

fσq−1u dx

≤ C

(∫
U

|f |q dx

) 1
q

(∫
U

σq dx

)1− 1
q

.

(12)

Here and afterwards we write the subscript i to denote the partial derivative with respect to the
variable xi.
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Notice that |Du|2 ≥ 1 if σ ≥ 1. Therefore∫
U

σq dx ≤ C

(∫
U

|f |q dx +
∫

U

σq−1|Du ·Dσ| dx + 1
)

. (13)

3. Next, multiply (5) by −(σq−1uj)j :∫
U

(σui)i(σq−1uj)j dx = −
∫

U

f(σq−1uj)j dx

=
∫

U

fσq−2(−(σuj)j) dx−
∫

U

f(q − 2)σq−2σjuj dx

≤ C

∫
U

f2σq−2 + |f |σq−2|Du ·Dσ| dx.

(14)

The term on the left is

A : = −
∫

U

σui(σq−1uj)ij dx +
∫

∂U

σuiν
i(σq−1uj)j dHn−1

=
∫

U

(σui)j(σq−1uj)i dx +
∫

∂U

σuiν
i(σq−1uj)j − σuiν

j(σq−1uj)i dHn−1,

(15)

where ν = (ν1, . . . , νn) is the unit outer normal to ∂U . The boundary integral is

B :=
∫

∂U

σq(uiν
iujj − uiν

juij) dHn−1

+
∫

∂U

(q − 1)σq−1(uiν
iujσj − uiν

jσiuj) dHn−1.

(16)

The integrand of the last term equals 0, since σ = e
k
2 (|Du|2−1) and so σj = kululjσ.

Consider a point x0 ∈ ∂U ; without loss, we can take x0 = (0, . . . , R). Then ν = (0, . . . , 1)
and Du = (0, . . . , un), since u = 0 on ∂U . The integrand of the first term on the right hand side
of (16) at x0 therefore equals

σq(∆u− unn)un. (17)

Lastly, write x′ = (x1, . . . , xn−1) and observe that u(x′,
√

R2 − |x′|2) ≡ 0 for small x′. We
differentiate this identity twice and set x′ = 0, to compute ∆u− unn = n−1

R un at x0. Hence

B =
n− 1

R

∫
∂U

σq|Du|2 dHn−1 ≥ 0.

4. Therefore

A =
∫

U

(σui)i

(
σq−1uj

)
j

dx ≥
∫

U

(σui)j(σq−1uj)i dx

=
∫

U

(σuij + σjui)(σq−1uij + (q − 1)σq−2σiuj) dx

=
∫

U

σq|D2u|2 + (q − 1)σq−2|Du ·Dσ|2 + qσq−1σjuiuij dx.

(18)
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Recall that σj = kululjσ. Hence (14) and (18) imply∫
U

σq|D2u|2 + (q − 1)σq−2|Du ·Dσ|2 +
q

k
σq−2|Dσ|2dx

≤ C

∫
U

f2σq−2 + |f |σq−2|Du ·Dσ| dx

≤ q − 1
2

∫
U

σq−2|Du ·Dσ|2 + C

∫
U

|f |2σq−2 dx;

(19)

and consequently ∫
U

σq−2|Du ·Dσ|2 dx ≤ C

∫
U

|f |2σq−2 dx. (20)

5. Combine (13),(20):∫
U

σq dx ≤ C

∫
U

|f |q dx + C

∫
U

σq−1|Du ·Dσ| dx + C

≤ C

∫
U

|f |q dx +
1
3

∫
U

σq dx + C

∫
U

σq−2|Du ·Dσ|2 dx + C

≤ C

∫
U

|f |q dx +
1
3

∫
U

σq dx + C

∫
U

|f |2σq−2 dx + C

≤ C

∫
U

|f |q dx +
2
3

∫
U

σq dx + C

(21)

This gives (11).

Remark. The boundary integral term B is in fact nonnegative for any convex, smooth
domain replacing U = B(0, R): see for instance the similar calculations in §1.5 of Ladyzhenskaja
[L].

4. Estimates II

In this section we derive our main integral estimate.

Theorem 4.1. Assume that 2 ≤ q < ∞ and that f ∈ C∞(Ū). Then there exist a constant C,
depending only on q, and a constant K, depending only on ‖f‖L∞ , such that∫

U

σq
k|Duk|q dx ≤ C

(∫
U

|f |q dx + 1
)

(22)

for all k ≥ K.

The proof is similar to that of Theorem 3.1, except that we must handle the additional term
|Duk|q on the left. This makes our multipliers and estimates more intricate.

Proof. 1. For notational simplicity we hereafter write σ and u in place of σk and uk.
Since f is smooth, the same is true for u and σ. Observe also the bound

|u| ≤ C.

We record for later reference these consequences of (6):

|Du|i =
σi

kσ|Du| , uiuij =
σj

kσ
. (23)
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2. We multiply the PDE (5) by σq−1|Du|q+1u and integrate by parts, to find∫
U

σDu ·D
(
σq−1|Du|q+1u

)
dx =

∫
U

σq−1|Du|q+1uf dx. (24)

The right hand term in (24) is less than or equal to

C

∫
U

σq−1|Du|q+1|f | dx ≤ 1
2

∫
{|f |≤σ|Du|

2C }

σq|Du|q+2 dx + 2q−1 Cq

∫
{|f |> σ|Du|

2C }

|Du|2|f |q dx.

But if σ|Du| < 2C|f |, then obviously σ|Du| ≤ 2C‖f‖L∞ . Recalling (6), we see that this implies
|Du| ≤ 2 provided k ≥ K, for some constant K depending only upon ‖f‖L∞ . Therefore∫

U

σq−1|Du|q+1uf dx ≤ 1
2

∫
U

σq|Du|q+2 dx + C

∫
U

|f |q dx. (25)

3. We use (23) to evaluate the left hand term in (24):∫
U

σDu ·D
(
σq−1|Du|q+1u

)
dx =

∫
U

σq|Du|q+3 dx

+(q − 1)
∫

U

σq−1|Du|q+1u Dσ ·Du dx + (q + 1)
∫

U

σqu|Du|qDu · (D|Du|) dx

=
∫

U

σq|Du|q+3 dx

+(q − 1)
∫

U

σq−1|Du|q+1u Dσ ·Du dx +
q + 1

k

∫
U

σq−1u|Du|q−1Du ·Dσ dx.

(26)

But σ ≥ 1 only if |Du| ≥ 1; and hence∫
U

σq|Du|q+2 dx ≤
∫

U

σq|Du|q+3 dx + C, (27)

since U is bounded.

Combining (27), (26), (24) and (25), we deduce the inequality∫
U

σq|Du|q+2 dx ≤ C +
1
2

∫
U

σq|Du|q+2 dx + C

∫
U

|f |q dx

+ C

∫
U

σq−1|Du|q+1|Dσ ·Du| dx +
C

k

∫
U

σq−1|Du|q−1|Dσ ·Du| dx.

Arguing as before (this means dividing the integrals in the set where |Dσ ·Du| ≤ ε σ|Du|/C and
in the rest of U), we see that therefore∫

U

σq|Du|q+2 dx ≤ C + C

∫
U

|f |q dx + ε

∫
U

σq|Du|q+2 dx +
ε

k

∫
U

σq|Du|q dx

+
C2

ε

∫
U

σq−2|Du|q|Dσ ·Du|2 dx +
C2

kε

∫
U

σq−2|Du|q−2|Dσ ·Du|2 dx

(28)

for any ε > 0. Since
∫

U
σq|Du|q dx ≤

∫
U

σq|Du|q+2 dx + C, this implies our first main estimate:∫
U

σq|Du|q+2 dx ≤ C + C

∫
U

|f |q dx + C

∫
U

σq−2|Du|q|Dσ ·Du|2 dx

+
C

k

∫
U

σq−2|Du|q−2|Dσ ·Du|2 dx.

(29)
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4. The last two terms in (29) involving Dσ · Du are dangerous, since Dσ is of order k: we
need another estimate to control them.

Let us therefore continue by multiplying the PDE (5) by −div
(
σq−1|Du|qDu

)
and thereby

deriving the identity∫
U

div (σDu) div (σq−1|Du|qDu) dx = −
∫

U

f div (σq−1|Du|qDu) dx. (30)

The term on the right equals∫
U

f σq−2|Du|q (−div (σDu)) dx−
∫

U

fσDu ·D
(
σq−2|Du|q

)
dx =

∫
U

|f |2σq−2|Du|q dx

− (q − 2)
∫

U

fσq−2|Du|qDu ·Dσ dx− q

∫
U

fσq−1|Du|q−1Du · (D|Du|) dx.

We again recall (23) and deduce

−
∫

U

f div (σq−1|Du|qDu) dx ≤
∫

U

|f |2σq−2|Du|q dx

+ (q − 2)
∫

U

|f |σq−2|Du|q|Du ·Dσ| dx +
q

k

∫
U

|f |σq−2|Du|q−2|Du ·Dσ| dx.

(31)

The left hand term of (30) is

A : = −
∫

U

σui(σq−1|Du|quj)ij dx +
∫

∂U

σuiν
i(σq−1|Du|quj)j dHn−1

=
∫

U

(σui)j(σq−1|Du|quj)i dx

+
∫

∂U

σuiν
i(σq−1|Du|quj)j − σuiν

j(σq−1|Du|quj)i dHn−1.

(32)

Call the boundary term B. Then, almost exactly as in step 3 of the previous proof, we can show
that

B =
n− 1

R

∫
∂U

σq|Du|q+2 dHn−1 ≥ 0.

Consequently,

A =
∫

U

(σui)i

(
σq−1|Du|quj

)
j

dx ≥
∫

U

(σui)j

(
σq−1|Du|quj

)
i

dx

=
∫

U

(σuij + σjui)
(
σq−1|Du|quij + (q − 1)σq−2|Du|qσiuj +

q

k
σq−2|Du|q−2σiuj

)
dx

=
∫

U

σq|Du|q|D2u|2 +
q

k
σq−2|Du|q|Dσ|2 + (q − 1)σq−2|Du|q|Dσ ·Du|2 +

+
q

k2
σq−2|Du|q−2|Dσ|2 +

q

k
σq−2|Du|q−2|Dσ ·Du|2 dx.

The first, the second and the fourth terms in the last expression are positive, and so we deduce

(q − 1)
∫

U

σq−2|Du|q|Dσ ·Du|2 dx +
q

k

∫
U

σq−2|Du|q−2|Dσ ·Du|2 dx

≤
∫

U

div (σDu) div (σq−1|Du|qDu) dx.

(33)
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Collecting (33), (30) and (31), we find∫
U

σq−2|Du|q|Dσ ·Du|2 dx +
1
k

∫
U

σq−2|Du|q−2|Dσ ·Du|2 dx

≤ C

∫
U

|f |2σq−2|Du|q dx + C

∫
U

|f |σq−2|Du|q|Du ·Dσ| dx

+
C

k

∫
U

|f |σq−2|Du|q−2|Du ·Dσ| dx.

(34)

Take ε > 0 to be a small constant, which will be fixed later on. Then∫
U

f2σq−2|Du|q dx ≤ ε

∫
U

σq|Du|q+2 dx + C

∫
{|f |>σ|Du|√ε}

|f |q|Du|2 dx

≤ ε

∫
U

σq|Du|q+2 dx + C

∫
U

|f |q dx,

(35)

since |Du| ≤ 2 wherever |f | > σ|Du|√ε, provided k ≥ K and K is large.
Recalling (35), we can likewise estimate for each δ > 0 that∫

U

|f |σq−2|Du|q|Dσ ·Du| dx ≤ δ

∫
U

σq−2|Du|q|Dσ ·Du|2 dx + C

∫
U

f2σq−2|Du|q dx

≤ δ

∫
U

σq−2|Du|q|Dσ ·Du|2 dx + C

(
ε

∫
U

σq|Du|q+2 dx +
∫

U

|f |q dx

)
.

(36)

Similarly,∫
U

|f |σq−2|Du|q−2|Du ·Dσ|dx ≤ δ

∫
U

σq−2|Du|q−2|Dσ ·Du|2dx + C

∫
U

f2σq−2|Du|q−2dx

≤ δ

∫
U

σq−2|Du|q−2|Dσ ·Du|2 dx + C

(
ε

∫
U

σq|Du|q dx + C

∫
U

|f |q dx

)
.

(37)

Since σ ≥ 1 only if |Du| ≥ 1, we have∫
U

σq|Du|q dx ≤
∫

U

σq|Du|q+2 dx + C,

and therefore∫
U

|f |σq−2|Du|q−2|Du ·Dσ| dx ≤ δ

∫
U

σq−2|Du|q−2|Dσ ·Du|2 dx

+ C

(
ε

∫
U

σq|Du|q+2 dx +
∫

U

|f |q dx + 1
)

.

(38)

Taking δ > 0 small, we then derive from (34), (35), (36) and (38) our second main inequality∫
U

σq−2|Du|q|Dσ ·Du|2 dx +
1
k

∫
U

σq−2|Du|q−2|Dσ ·Du|2 dx

≤ ε

∫
U

σq|Du|q+2 dx + C

∫
U

|f |q + C.

(39)

5. Putting together inequalities (29) and (39) and fixing ε > 0 small, we finally discover∫
U

σq|Du|q+2 dx ≤ C + C

∫
U

|f |q dx.

As σ ≥ 1 only if |Du| ≥ 1, estimate (22) follows.
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Theorem 4.1 concerns only smooth functions f . However, since the bound for the Lq norm of
the transport density depends only upon the Lq norm of f , we can approximate:

Theorem 4.2. For each 2 ≤ q < ∞ and f ∈ Lq(U) the associated transport density a belongs
to Lq(U). Furthermore, there is a constant C, depending only upon n and U , such that

‖a‖Lq ≤ C (‖f‖Lq + 1) . (40)

Proof. 1. Let us first define

fj := f ∗ η1/j ,

the convolution of f with a standard mollifier. For each integer j, we then solve{
−div (σk,jDuk,j) = fj in U

uk,j = 0 on ∂U,
(41)

for

σk,j := e
k
2 (|Duk,j |2−1). (42)

2. According to (22), we have the estimate∫
U

σq
k,j |Duk,j |q dx ≤ C

(∫
U

|fj |q dx + 1
)
≤ C

(∫
U

|f |q dx + 1
)

(43)

for all k greater than or equal to some constant K = k(j), depending only on the L∞ norm of
fj . Now define

σj := σk(j),j , uj := uk(j),j , Gj := σjDuj .

Clearly fj → f in Lq. Furthermore, (43) implies that Gj is bounded in Lq. We may therefore
assume upon reindexing that

Gj G weakly in Lq(U ;Rn).

Finally we may pass as necessary to a further subsequence to ensure uj converges uniformly to
a limit u. Apply Theorem 2.3.
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