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Abstract 

 The convergence of cellular phones, the Internet, and laptop computers into a 
single small, lightweight, wireless information appliance drives a need for a high data 
rate, low-power digital wireless communication link to enable the creation of such a de-
vice.  A simulation environment supporting rapid prototyping is developed, and used to 
evaluate the real-time data-rate performance of these receivers implemented on a multi-
processor DSP board.  Simulations of a multiprocessor implementation of joint multiuser 
channel estimation and detection algorithms is projected to achieve combined perform-
ance of 15.6 Kb/user/sec for 10 users.  Performance gains over a single-processor im-
plementation range from 5% for the three-user case to 69% for a 15 user case. 

1 Introduction 

 In the past decade, the usage of cellular phone services have grown dramatically.  
Convergence between the traditional cellular phone, the Internet,  and the laptop com-
puter have driven a desire for a wireless device with e-mail, web browsing, live video 
capabilities [1].  The availability of compact digital replacements for their larger analog 
counterparts – such as digital cameras, camcorders, and MP3 players – give rise to the 
concept of combining all these devices into a wireless pocket-sized information appli-
ance.  At the same time, dissatisfaction with the talk time on today’s cell phones drives a 
desire for longer battery life in these new devices. 

 Meeting these demands poses formidable challenges for today’s wireless designer.  
To provide new forms of content, higher data rate communications systems must be de-
veloped.  Proposals for the next generation of cell phones – such as the 3GPP group – 
propose data rates of 128 Kb/sec [2], compared to data rates of 19.2 Kb/sec specified by 
today’s IS-95 standard [3].  To keep pace with an order of magnitude increase in data 
rate, the computational power of base stations must also increase by an similar amount.  
In section 3, the characteristics of a CDMA-based wireless system are discussed, and ad-
vanced base-station algorithms to distinguish these lower-power signals from background 
noise are presented. 

 As wireless systems grow more and more complex, a robust simulation environ-
ment in which the effects of algorithms and hardware can be modeled and comprehended 
has become a necessity.  In order to deliver this new technology to an extremely competi-
tive market, the design and simulation tools used must enable a rapid flow from algo-
rithm prototyping to software and hardware implementation.  In section 4, the develop-
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ment of a simulation environment, and its integration with a DSP-based multiprocessor 
board is discussed.  Finally, section 5 presents results from experiments performed with 
this architecture. 

2 Related work 

 The field of multiuser wireless communications is replete with many algorithms 
and implementations.  A DSP-based system employing partial parallel interference can-
cellation is discussed in [4], a less complex form of the parallel interference cancellation 
studied in this paper.  Improvements in bit error rate performance over a single-user 
matched-filter detector are demonstrated using multiuser detection.  A software radio ar-
chitecture employing linear multiuser detection is presented in [15].  A Simulink alterna-
tive, SPW, is used to simulate the system and then implement it on a TI 
TMS320C4x/Xilinx FPGA hardware platform.  However, the resulting hard-
ware/software system is not integrated into the simulation environment, making debug-
ging and real-time performance monitoring more difficult.  The computational time spent 
performing a channel estimation is often overlooked when reporting real-time perform-
ance.  The joint channel estimation and detection scheme presented in this paper ad-
dresses these oversights by reporting an overall channel estimation and detection per-
formance. 

3 System description 

 To enable the information appliance envisioned in the paper, a base station receiv-
ing signals from multiple users of the appliance must incorporate advanced channel esti-
mation and detection algorithms.  However, to meet high data-rate requirements, these 
algorithms must have limited computational demands, and efficiently map to hardware.  
To satisfy these requirements, a newly-developed joint channel estimation and detection 
scheme is selected.  This scheme consists of an iterative maximum-likelihood based 
channel estimator [5]; by solving for the channel estimate iteratively, an expensive matrix 
inversion step is avoided when updating the channel estimate.  For detection in the joint 
scheme, a pipelined version of the multistage parallel-interference cancellation detector 
[6], [7] is selected; it offers better performance than previous windowing detectors.  A 
brief description of these algorithms follows. 

 Input from the antenna, after being demodulated into a baseband signal, is then 
passed through a chip-matched filter.  This filter integrates the received signal for the pe-
riod of one chip, outputs the resulting integration, and then resets its output to zero 
(dumps) in preparation for the next chip period.  This is typically implemented digitally, 
by oversampling the incoming signal with an A/D converter, then summing the samples 
taken during each chip period.  Both the channel estimator and detector use the output of 
the chip-matched filter. 
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 Channel estimation occurs in two phases: a pilot, or preamble phase, in which all 
users transmit a known sequence of bits to allow the receiver to form a channel estimate 
by correlating it with the chip-matched filter output; and a tracking phase, during which 
unknown (data) bits are transmitted by all users.  To track the channel during this phase, 
bits output by the detector are fed back to the channel estimator, along with correspond-
ing chip-matched filter outputs.  These detected bits are used in the same way the known 
pilot bits are used to update the channel estimate.  Algorithmically, the same computa-
tions are carried out during both the pilot phase and tracking phase; only the source of the 
data bits input to the channel estimator varies.  Figure 1 gives the main computational 
blocks in the receiver.  This paper concentrates on the processing that occurs in the multi-
user channel estimation and multiuser detection blocks. 

 The estimation is carried out by first forming two matrices: an auto-correlation 
matrix bbR , and a cross-correlation matrix brR .  The auto-correlation matrix, size 

KK 22 × , captures the effects of each of the K users’ bits on that user’s signal as it moves 
through the channel; the cross-correlation matrix, size KN 2× , captures the effects that 
each chip in one user’s transmitted bit, where N specifies the number of chips in a bit, has 
on another user’s bits.  Next, the channel estimate, A, is formed by multiplying bbR  by 

1−
brR .  To reduce computational complexity, the matrix inversion of brR  is approximated 

using an iterative algorithm employing the method of steepest descent.  A windowing 
method is used to subtract past bits and chips from the two matrices, and then add in new 
bits and chips as they arrive.  The equations describing the iterative estimator are given 
below.   
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Figure 1: Base-station receiver 
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 The detection is accomplished using a multi-user parallel-interference cancella-
tion (PIC) algorithm.  First, the transpose of the channel estimate is multiplied by the in-
coming chips from the chip-matched filter.  This process, code-matched filtering, pro-
duces an initial estimate of the bit transmitted by each user in the system.  This initial es-
timate is used as a starting point for parallel interference cancellation, an iterative process 
that removes multiple-access interference (MAI) generated by other users from the re-
ceived signal, then makes a more accurate estimate of each user’s transmitted bit.  The 
output from one iteration of the PIC is fed into the next iteration, until the resulting out-
puts have converged.  The equations below describe code-matched filtering and PIC. 

 

4 Implementation 

 Two aspects of the implementation of the algorithms discussed in the previous 
section are covered.  First, the a wireless simulation environment is presented.  A meth-
odology for interfacing this system with algorithms executing on a multi-DSP system is 
developed, and used to collect real-time performance data from the system.  Second, the 
multi-processor board is introduced, and a methodology for implementing real-time 
measurements of execution time is detailed. 

4.1 Wireless simulation environment and interface 

 Testing and development of the algorithms are carried out in a wireless simulation 
environment.  Such an environment should produce two significant measures.  First, the 
environment should provide an indication of the receiver’s accuracy in the presence of 
transmissions from multiple users.  Second, it should measure of the data rate the algo-
rithm can sustain in a real-world environment.  To provide a complete simulation envi-
ronment, it must simulate the effects of multiple users as they transmit through a mul-
tipath fading channel.  Finally, the environment should facilitate easy testing of the algo-
rithms over a variety of conditions.  Simulink, a graphical data-flow time-domain simula-
tor based on the Matlab engine, allows the creation of such an environment.  A block dia-
gram, incorporating all elements of the communications system, such as multiple trans-
mitters, the channel, and the receiver, is developed in Simulink (Figure 3).  The block 

 

Figure 2: RealSync blocks 
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diagram also contains an error counter, to measure the BER of the receiver.  A dialog box 
and corresponding configuration script allows the user to easily vary system parameters, 
and test a variety of receivers.  The system supports three detectors: a code-matched fil-
ter, a decorrelator, and a PIC detector.  It provides one channel estimator, the maximum 
likelihood multiuser estimator discussed earlier. 

 However, the environment lacks a means to evaluate the real-time performance of 
the receiver algorithms on a DSP.  To provide this ability, the Rice RealSync program is 
developed, providing a means to execute algorithms written for the Sundance multiproc-
essor board in real time, while also transparently interfacing to the Simulink graphical 
environment.  RealSync incorporates both a standardized Simulink interface to C++ (an 
S-function [8]), and a set of C/C++ routines that allow the DSP to exchange data with a 
Windows host (the 3L WinServer [11]).  Figure 2 shows two RealSync Simulink blocks; 
by simply connecting their inputs and outputs in a Simulink block diagram, RealSync 
automatically loads the DSPs with the appropriate code, then executes the algorithms 
running on the DSPs.  Data provided to the input ports of the RealSync Simulink block, 
and results of the DSPs’ execution, are exchanged with Simulink via the ports of the Re-
alSync Simulink block, as shown in Figure 2. 

 One of the challenges involved in developing RealSync is in overcoming the mas-
ter/slave paradigm inherent in both the S-function and WinServer interfaces.  Both the S-
function interface and the WinServer interface operate as the master in a master/slave 
system: as the master in the system, Simulink and the DSP send a message to the slave 
interface (S-function or WinServer) providing input data, and then expect output data to 
be received in return from the slave.  In order to interface these two masters, a multi-
threaded approach is taken: two threads are created, one for each of the two masters.  
Semaphores are then used to synchronize data exchange between the two interfaces, as 
specified below: 
 

1. Thread A receives data from its master. 

 
Figure 3: Simulink block diagram of CDMA system 
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2. Thread A signals thread B’s “data available” semaphore. 
3. Thread A waits for thread B to signal its “data available” semaphore. 
4. Thread A returns the data now available from thread B to its master. 

 For example, Simulink passes data to RealSync’s input port via the S-function 
interface.  RealSync’s Simulink thread then signals the DSP thread that input data is 
available.  The DSP thread then transfers this data to the DSPs via WinServer interface.  
When the DSPs finish processing this data, they return it to the DSP thread, again via the 
WinServer.  Having received the data, the DSP thread then signals the Simulink thread.  
Via the S-function interface, the Simulink thread then returns output data to Simulink.  
Simulation then continues within other blocks in the Simulink block diagram. 

4.2 Multiprocessor implementation 

 In order to better achieve the high data rates required by an information appliance, 
channel estimation and detection must be carried out rapidly.  To accomplish this, the 
channel estimation and detection tasks are partitioned among the two available DSPs, and 
an efficient interprocessor communications link is utilized.  A brief description of the 
multiprocessor hardware/software environment is given, followed by a description of the 
channel estimation and detection algorithms.  Finally, the multiprocessor implementation 
of the channel estimator and detector is described. 

 The Sundance, Inc. multiprocessing system [9] provides a modular approach to 
DSP-oriented processing.  In our system, a SMT320 32-bit PCI carrier board provides for 
the connection of 4 TMS 320C4x-style TI modules (TIMs).  Sundance offers a wide vari-
ety of TIMs; for our system, two SMT372 TIMs were chosen.  Each module contains one 
TMS320C6701 DSP running at 167 MHz, 512 KB of SBSRAM, and 16 MB of SDRAM.  
For interprocessor communication, the SMT372 contains FPGAs that provide C4x-style 
comm-ports, accessible through the C67’s external memory interface (EMIF).  Two Sun-
dance Digital Bus (SDB) ports, a proprietary high-speed point-to-point interconnect, are 
also interfaced to the C67’s EMIF.  Two additional TIMs, each containing a Xilinx Virtex 
300 K gate FPGA, were also chosen.  Figure 4 gives a block diagram of the multiproces-
sor system.  The 3L Diamond real-time operating system (RTOS) [10], which provides 
multitasking, multiprocessor, and a host/processor interface, is used to speed develop-
ment of the system.  Additional drivers from Sundance and 3L enable the use of TI’s 
Code Composer Studio for debugging.  The 3L WinServer [11], a host-side interface to 
Microsoft Windows, is used to integrate the system into a wireless simulation environ-
ment executing on the host (see section 4.1).  TI’s C++ compiler and linker, combined 
with 3L’s multiprocessor configurer, is used to generate multiprocessor-ready object 
code.  

 To maximize the efficiency of the implementation of the channel estimation and 
detection routines, the routines are hand-coded in C++ and optimized based on feedback 
from TI’s assembly optimizer.  A C6000 on-board timer is used to measure execution 
time of the algorithms, and provide immediate feedback after running the program.  Be-
cause the timers only require CPU cycles to start and stop the timer, they add minimal 
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overhead to the actual execution time.  The number of iterations for all loops in the code 
is known at compile time, allowing the optimizer to produce more efficient code. 

5 Experimental results 

 The RealSync program allows both the development and verification of algo-
rithms in Simulink and enables their real-time execution on the Sundance multiprocessor 
DSP platform.  Execution speeds of each matrix multiply are measured using the C67’s 
on-chip timer, and results reported back to the Matlab/Simulink environment via Real-
Sync.  In the same way, interprocessor communication speed is measured and recorded.  
Simulation parameters calculated in the Matlab/Simulink environment, such as the bit 
error rate, are also available for analysis.  Bit error rate simulations of the joint channel 
estimation and detection scheme are presented in [5], [7] and are not repeated here. 

 

 

Figure 4: Sundance multiprocessor board block diagram 
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 A set of Matlab m-files are developed to vary simulation parameters (number of 
users, detector type, single/multi-processor configuration) and then to capture the result-
ing simulation results.  All simulations are carried out using a static AWGN channel, with 
SNR=6dB, and a preamble sequence of 150 bits followed by 1000 bits of random data.  
Gold codes are used to spread the incoming data to N=31 chips/bit.  The channel estima-
tor runs only during the preamble period; the detector runs only during the data phase.  
The parallel-interference cancellation (PIC) detector is implemented using 4 stages of 
interference cancellation. 

 Single-processor simulations (Figure 5) show execution times for two channel 
estimators and two detectors.  The two estimators profiled are the iterative multiuser 
channel estimator discussed earlier, and the sliding correlator.  The execution time for the 
sliding correlator estimator is measured as the time taken to compute brR while calculat-
ing the multiuser channel estimate.  Two detectors are presented, the code-matched filter-
ing (CMF) detector, and the parallel interference cancellation detector.  The PIC detector 
depends on output from the code-matched filter; however, note that its overall execution 
time (labeled PIC plus CMF on the graph) is dominated by the PIC operation. Note that 
the channel estimator is almost an order of magnitude slower (~0.1 ms/bit, or 10 Kbit/sec, 
for 2 users) than the PIC detector.   

 These results suggest an intuitive multiprocessor task partitioning: execute the 
estimator on one processor, and the detector on the second processor.  This task partition-
ing is carried out, using comm-ports exchange data between processors.  Execution times, 
and interprocessor overhead, are measured.  Figure 6 shows the outcome of this partition-
ing.  Incoming data from the channel arrives after chip-matched filtering at the first proc-
essor.  The first processor sends this chip-matched filter output to the second processor, 
where detection takes place.  The detector then sends its detected bits back to the first 
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processor.  The channel estimator can then use these detected bits for tracking.  In addi-
tion, the first processor owns the only communications channel with the host, and must 
relay detected bits back to the host on behalf of the detector running on the second proc-
essor for BER analysis.  Finally, the first processor carries out its iterative channel esti-
mation update. 

 Communication overhead, currently implemented by blocking both processors 
until all data is transferred, proves to be a large overhead for the code-matched filtering 
operation.  It is less significant for the PIC detector, particularly as the number of users 
increases.  These results suggest means to improve the system performance, particularly 
when a fading channel is present, forcing the channel estimator during the data phase in 
addition to the preamble phase.  Because of the high cost of multiuser channel estimation, 
we propose reducing the frequency of iterative channel estimate updates.  In a multiproc-
essor system, the maximum rate achievable is max{execution time over all processors} + 
communication overhead.  Choosing the detector to limit system performance, the esti-
mator updates can be run every Mth bit, where M is chosen based on estimator/detector 
execution times. 

 Based on measured interprocessor communication speeds of 5.0 MB/sec and 
measured channel estimation and detection speeds, the following values of M are chosen 
to maximize processor utilization; ideally, both the estimator and detector processors 
need not wait on their partner to finish a computation.  The interprocessor (IP) 
communication required, in bytes transferred between the two DSPs, is also given. 
 

# users M IP overhead (bytes)
2 8 178 
3 10 197 
5 17 196 
10 30 205 
15 35 228 
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 A graph is created by extrapolating measured values from the system.  The pro-
posed system runs the channel estimator on one processor, and the detector on the second 
processor.  A conservative interprocessor communication speedup of 4 (20 MB/sec) is 
assumed, which can be implemented using a DMA engine to enable rapid non-blocking 
transfers between processors.  Figure 7 demonstrates a significant speedup possible under 
the proposed tracking scheme.  The speedups illustrated in the figure above range from 
5% for the three-user case to 69% for the 15-user case, with a 59% speedup for the 10 
user case.   

6 Conclusions and future work 

 RealSync, a methodology for merging the flexibility and data analysis capabilities 
of a Simulink-based wireless simulation environment with real-time DSP execution is 
presented.  This methodology is used to evaluate performance of channel estimation and 
detection algorithms in both a single and multi-processor environment.  An analysis of 
simulation results demonstrates a projected performance improvement of 59%  in the 
multi-processor system. 

 In the future, the integration of portions of the algorithm into FPGAs can provide 
additional performance gains [12].  Additional work in implementing the proposed track-
ing scheme will demonstrate the feasibility of the multi-processing system [13], [14].  A 
fixed-point implementation, as in [15], will increase system performance.  Converting the 
present system to fixed-point would significantly reduce communication overhead, and 
allow the use of the faster C64 DSP. 
                                                 
References: 
 
[1] David J. Goodman, “The Wireless Internet: Promises and Challenges,” IEEE Com-
puter, vol. 33, no. 7, pp. 36-41, July 2000. 
[2] E. SMG2.  The ETSI UMTS Terrestrial Radio Access (UTRA) ITU-R RTT Candidate 
Submission.  Technical report, European Telecommunication Standard Institution (ETSI), 
May 1998. 
[3] J. Lee and L. Miller.  CDMA Systems Engineering Handbook, Artech House, Boston, 
pg. 341. 
[4] N. S. Correal, R. M. Buehrer, and B. D. Woerner, “A DSP-Based DS-CDMA Multi-
user Receiver Employing Partial Parallel Interference Cancellation,” IEEE Journal on 
Selected Areas in Communications, vol. 17, no. 4, pp. 613-630, April 1999. 
[5] C. Sengupta, S. Das, J. Cavallaro, and B. Aazhang.  Efficient Multiuser Receivers for 
CDMA Systems.  In IEEE Wireless Communications and Networking Conference, New 
Orleans, LA, pages 1461 – 1465, 1999. 
[6] M. K. Varanasi and B. Aazhang, “Multistage detection in asynchronous Code-
Division Multiple-Access communications,” IEEE Transactions on Communications, vol. 
38, no. 4, pp. 509-519, Apr. 1990. 
[7] S. Rajagopal, S. Bhashyam, J. Cavallaro, and B. Aazhang, “Efficient Algorithms and 
Architectures for Multiuser Channel Estimation and Detection in Wireless Base-Station 
Receivers”, to be submitted to IEEE Journal on Selected Areas in Communications,  
www.ece.rice.edu/~sridhar/research/asap.pdf. 



11 

                                                                                                                                                 
[8] Mathworks, Inc.  Writing S-Functions, version 3. http://www.mathworks.com/access/ 
helpdesk/help/pdf_doc/simulink/sfunctions.pdf. 
[9] Sundance Inc, http://www.sundance.com.  
[10] 3L, Inc.  Diamond, C6x Edition Version 1.3 User Guide, http://www.3l.com/c6x/  
index.htm.  
[11] 3L, Inc.  32-Bit Windows Server, Version 2.0, http://www.3l.com/winser/index.htm. 
[12] A. Gatherer, T. Stetzler, M. McMahan, and E. Auslander, “DSP-Based Architectures 
for Mobile Communication: Past, Present and Future,” IEEE Communications Magazine, 
vol. 38, no. 1, pp 84-90, January 2000. 
[13] P. D. Hoang and J. M. Rabaey, “Scheduling of DSP Programs onto Multiprocessors 
for Maximum Throughput,” IEEE Transactions on Signal Processing, vol. 41, no. 6, pp 
2225-2234, June 1993. 
[14] C. Sengupta, K. Kota, and J. Cavallaro, “Parallel algorithms and architectures for 
subspace based channel estimation for CDMA communication systems,” Proceedings of 
SPIE Conference on Advanced Signal Processing Algorithms, Architectures, and Imple-
mentations VI, vol. 2846, pp 412-423, August 1996. 
[15] I. P. Seskar and N.B. Mandayam, “A software radio architecture for linear multiuser 
detection,” IEEE Journal on Selected Areas in Communications, vol. 17, issue 5, pp 814-
823, May 1999. 


	Introduction
	Related work
	System description
	Implementation
	Wireless simulation environment and interface
	Multiprocessor implementation

	Experimental results
	Conclusions and future work

