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Summary

Empirical clinical studies on the human interactome and phenome not only illustrates
prevalent phenotypic overlap and genetic overlap between diseases, but also reveals a mod-
ular organization of the genetic landscape of human disease, provding new opportunities
to reduce the complexity in dissecting the phenotype-genotype association. We here intro-
duce a network-module based method towards phenotype-genotype association inference
and disease gene identification. This approach incorporates protein-protein interaction net-
work, phenotype similarity network and known phenotype-genotype associations into an
assembled network. We then decomposes the resulted network into modules (or commu-
nities) wherein we identified and prioritized the disease genes from the candidates within
the loci associated with the query disease using a linear regression model and concordance
score. For the known phenotype-gene associations in the OMIM database, we used the
leave-one-out validation to evaluate the feasibility of our method, and successfully ranked
known disease genes at top 1 in 887 out of 1807 cases. Moreover, applying this approach on
850 OMIM loci characterized by an unknown molecular basis, we propose high-probability
candidates for 81 genetic diseases.

1 Introduction

Deciphering genotypes underlying specific phenotype, especially human disease, is one of the
principal goals for genetics research and is of vital importance of biomedicine. While many
human genetic diseases are caused by multiple genes, it has been increasingly recognized that,
because the mutations of these genes lead to disease with overlapping clinical phenotypes,
these genes are likely to be functionally related[3, 14, 32], and such functional relatedness
canbe exploited to identify novel disease genes[21, 11]. This discovery spurs the transition
from traditional genetic mapping, typically, positional cloning and linkage analysis, to a new
guilt-by-associationparadigm [11] for disease gene identification.

Indeed, this concept has been applied to search for or prioritize disease genes by various com-
putational methods, including, for example, functional relatedness based on Gene Ontology
annotations (GO)[8, 29], gene expression profiles[18, 26] and protein-protein interaction net-
works (PPIs)[32, 21]. In particular, PPIs are a strong manifestion of such functional related-
ness among these genes. In fact, several genetically heterogeneous hereditary diseases, such as
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Hermansky-Pudlak syndrome and Fanconi anemia, are caused by mutations of the genes whose
protein products interact to each other[6, 16]; in breast cancer, more than a half of proteins from
about 100 mutated cancer genes formed a tight cluster in a PPI network [15]. The premise of
thePPI-based method is the assumption that a PPI network-neighbor of a disease-causing gene
is more likely (than randomly chosen gene) to be related to the disease [21, 11]. Therefore,
for prioritizing or predicting disease-causing genes, the goal is that, given one or more small
genomic regions (e.g. locus predicted by a linkage analysis), or some disease-causing genes,
how to rank a small number of candidate genes based on their likelihood to be disease-causing
derived from a PPI network. This requires new systematical network-based methods to quanti-
fying the association between a gene and a disease.

An recent endeavor[32] in the genome-wide inference of disease genes have shown thatasim-
ple linear regression model efficiently capture the underlying architecture of the human inter-
actome and phenome networks and suggests a global concordance of the topology between the
phenotype network and the gene network. Although it achieves remarkable success, it is not
available to rank candidates and select plausible susceptibility genes for a query disease in a
short time due to the huge computational time for a network with large size. As suggested
in a recent investigation[22], fortunately, human disease shows a modular organization on the
genetic landscape. Hence, an intuitive idea towards the above-mentioned method is cluster-
ing disease based on their phenotypic similarities and making predictions for query disease
within the same phenotype cluster. Inspired by this idea, we introduce a network module-based
method that integrates PPI network, phenotype similarity network and known phenotype-gene
associations, and then decomposes the resulted assembled network into modules ( or commu-
nities) wherein we identified or prioritized the disease genes from the candidates within the
loci associated with the query disease using the linear regression model and concordance score
proposed in [32].

We first verify the hypothesis of our method that human disease shows a modular organization
on the genetic landscape and the modularity is significantly correlated with disease classifica-
tion. In addition, to evaluate the feasibility of our method, we used theleave-one-outvalidation
on the known phenotype-genotype associations in OMIM database—Online Mendelian Inheri-
tance in Man database [23], and successfully ranked known disease genes at top 1 in 887 out of
1807 cases. Moreover, applying this approach on 850 OMIM loci characterized by an unknown
molecular basis, we propose high-probability candidates for 81 genetic diseases.

2 Materials and methods

Fig. 1 schematically illustrates our method.

2.1 Phenotype similarity network

A phenotype network consisting of disease phenotypes as nodes and phenotypic similarity as
edges was constructed by van Driel et al. [30] using the OMIM database[23]. Considering some
OMIM records have since been moved to other records, we removed them from the network to
avoid technical error. We obtained a network with 4146 phenotypes and 29489 edges using a
similarity of 0.5 as the threshold. However, selection of the threshold had no significant effect
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Figure 1: Sketch map of network module-based method for phenotype-gene association.

on the modularity of the disease network (Table1). In order to link phenotypes in the network
to known disease genes, OMIM genotype-phenotype associations for 1807 genes and 2265
disease phenotypes were downloaded on December 2 2008 from Ensembl [10] using the data
mining tool BioMART[13].

We used the classification of disease phenotypes which was manually established in [9] to eval-
uate the significance of modularity in the phenotype network. 2929 phenotypes were classified
into 22 primary disorder classes based on the physiological system affected. We did not merge
several phenotypes into a single disorder as Goh et al. did[9], and we obtained 1184 phenotypes
within 21 disease classes in our phenotype network.

2.2 PPI network

We obtain 34364 manually curated PPIs between 8919 human proteins from the HRPD database
[27] and call this resulted PPI network ”GeneNet1”. In order to avoid biased towards better-
studied proteins, we also obtain 33049 predicted human PPIs between 7185 (4116 are ab-
sent from HPRD) proteins from the OPHID database[4], which is built by mapping PPIs from
high-throughput screen of model organisms to human. The extended protein network, called
”GeneNet2”, combines HPRD, OPHID and two other curated PPI databases: BIND[1] and
MINT[5], yielding a network of 72431 unique pairwise binary interactions between 14433 hu-
man proteins.
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Table 1: The threshold of disease phenotype similarity has no significant influence on the modu-
larity

Threshold Nodes Edges Modularity

0.45 4,681 56,752 0.717

0.475 4,425 40,482 0.748

0.5 4,146 29,489 0.783

0.525 3,783 21,778 0.807

0.55 3,381 16,349 0.824

0.575 3,008 12,520 0.833

0.6 2,575 9,592 0.833

0.625 2,202 7,479 0.831

0.65 1,888 5,890 0.833

2.3 Computation of dyadicity D and heterophilicity H

Dyadicity (D) and heterophilicity (H) are two network properties of nodes which were recently
proposed [25] for quantifying whether nodes with similar characteristics have a tendency to
link to each other. We used these parameters to investigate whether phenotypes in a specific
physiological class tend to cluster together in our phenotype network. The value of a phenotype
depends on whether it belongs (1) or does not belong (0) to a disease class. Thus three types of
links between phenotypes exists: 1-1, 1-0, and 0-0; the number of these links are termedm11,
m10 andm00, respectively. The two parameters dyadicityD and heterophilicityH are defined
as:

D :=
m11

m̄11

H =
m10

m̄10

If D ≫ 1 andH ≪ 1, phenotypes in the specific disease class must have a clear clustering
tendency within the network.

The expected value of̄m11 andm̄10 is computed next. If we take cancer as an example, we can
call n1 the number of phenotypes belonging to cancer andn0 the number of other phenotypes.
N = n1+n0 is the total number of phenotypes and is the total number of edges in the network.
Let p := 2M

N(N−1)
represent the connectance that indicates the average probability that two phe-

notypes are connected in the network. The value of a phenotype depends on whether it belongs
to a cancer class (1), or does not (0). The three varieties of link styles between phenotypes are
1-1, 1-0, and 0-0, and the number of these links can be labeled asm11, m10 and respectively. If
any phenotype in the network has an equal chance of being cancer, the expected values ofm11

andm10 arem̄11 andm̄10 respectively[25]

m̄11 =

(

n1

2

)

× p =
n1(n1 − 1)

2
p

m̄10 =

(

n1

1

)(

n0

1

)

× p = n1(N − n2)p

Journal of Integrative Bioinformatics, 7(2):149, 2010 http://journal.imbio.de

doi:10.2390/biecoll-jib-2010-149 4



Statistically significant deviations ofm11 andm10 from their expected values of̄m11 andm̄10

imply that cancer phenotypes are not distributed randomly in the phenotype network.

Dyadicity D > 1 (D < 1) indicates that phenotypes in the disease class tend to connect
more (less) densely among themselves than expected for a random configuration. Similarly,
heterophilicityH > 1 (H < 1) means that phenotypes in the disease class have more (fewer)
connections to phenotypes in other classes than expected randomly. IfD ≫ 1 andH ≪

1, phenotypes in the specific disease class must have a clear clustering tendency within the
network.

2.4 Extracting the modules of the phenotype network

We detected modules in the phenotype network using the spectral algorithm based on modular-
ity Q defined as (more details, see [20] and reference therein)

Q :=
m
∑

i=1



eii − (
∑

j

eij)
2





wherem is the number of modules,eii are the fraction of the edges that connect two nodes
inside a modulei, andeij are the fraction of the edges connecting nodes of modulei andj.
The modularityQ of a partition is high when the number of intra-module edges is much larger
than expected for a random partition. We identified modules by maximizing the modularity
Q so that there were many intra-module edges and few between-module edges. However the
method could not identify the hierarchical structure of the modules. Therefore, we decomposed
all modules which had more than 100 phenotypes into sub-modules.

The number of final modules which are based in the secondary level of modularity may affect
the results. We managed to reduce the effect by visually inspecting each sub-network with more
than 100 phenotypes in the first level modules while automatically decomposing the phenotype
network using our previous algorithm[12].

2.5 Computing p-value for the disease class enrichment of modules in the phe-
notype networks

We then used the disease classification dataset to see if the disease phenotypes within a single
module tended to fall within the same disease class. We utilized the method introduced in [31]
that computes ap-value for the functional enrichment of modules in PPI networks. Take cancer
as an example. For a given module M we randomly selected a set of phenotypes which had the
same number of members as M, and counted how many of them are cancer. The p-value was
calculated as the probability that the number of cancer phenotypes in a random group would
be equal to or greater than what we observed in M. We used 100,000 simulations to obtain the
p-values.

2.6 Regression model and the concordance score

In each module, we used the regression model proposed in [32]. They assumes that additivity
of the contribution to phenotype similarity from different disease genes and is defined as
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Spp′ = Cp +
∑

g∈G(p)

∑

g′∈G(p′)

βpge
−d2

gg′ (1)

whereSpp′ is the similarity score between a query phenotypep and another phenotypep′, and
dgg′ is the topological distance between geneg andg′ on the PPI network.G(p) denotes all

disease genes belonging to the phenotypep. The Gaussian kernele−d2
gg′ is used to transfer

gene-gene distance to gene-gene closeness.Cpi s a constant, andβpg is the coefficient of this
regression model, respectively.Cp could be explained as the basal similarity betweenp and
other phenotypes whose causative genes are not connected to those ofp in the protein network,
andβpg represents the level of the geneg contributing to the similarity of the phenotypep to
any other phenotypep′. We consider the topological distancedgg′ as the graph theory SP length
between genesg andg′ in the protein network.

To quantify the association between a phenotype and a gene, we define the closeness of gene
g to phenotypep′ as the summation of gene-gene closeness from geneg to all disease genes of
phenotypep′, as

Φgp′ =
∑

g′∈G(p′)

e
−d2

gg′

Hence, equation (1) can be written as

Sp = Cp +
∑

g∈G(p)

βpgΦg (2)

where the vectorsSp = (Spp1, . . . , Sppn) andΦg = (Φgp1 , . . . ,Φgpn) are described the similari-
ties between the query phenotypep and alln phenotype in the same module and the closeness
between geneg and all thesen phenotypes respectively. Thus, in this linear regression model,
we define the Pearson correlation coefficient as the concordance score

CSpg =
cov(Sp,Φg)

σ(Sp)σ(Φg)
(3)

where cov andσ mean covariance and standard deviation, respectively. This concordance score
measures the consistency between the position of geneg in the protein network and the varia-
tions of phenotype similarity for phenotypep in the whole phenotype network. It is then used
to rank all the candidate genes for a specific phenotype.

2.7 Benchmark tests

A leave-one-out cross-validation procedure is used to assess the performance of our method. In
this procedure, we remove the direct link between true disease geneg and phenotypep, and see
if the method can recover this link (rank geneg at the top of theN test genes). This is carried
out by taking known disease geneg as unknown when calculatingΦgip, the closeness from test
genegi to query phenotypep. For phenotypes with more than one known causative genes, we
modified the definition of a successful prediction: for a test case(p, g) in whichp hask known
disease genes, if geneg is among the topk-ranked genes, we consider it a successful prediction.
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Figure 2: Phenotype network with 21 disease classes. Different colors indicate different disease
classes and unclassified phenotypes are not shown.

3 Results

3.1 Modularity of human phenotype network

Visualization of the human phenotype network using 21 disease classes indicated that pheno-
types within the same disease class are clustered into densely connected groups (Fig.2). Most of
thedisease classes are dyadic (D ≫ 1) and heterophobic (H ≪ 1), revealing a highly modular
structure (Fig.3(a)). However, a few disease classes are heterophilic, suggestingthat they tend
to have phenotypes that overlap among different categories of diseases. These diseases include
developmental, skeletal and ’ear, nose, throat’. For instance, developmental diseases, in which
a delay occurs in physical or mental development, tend to overlap with other diseases. This is
logical because most developmental disorders would be expected to affect multiple tissues. An
interesting observation is that although phenotypes in the ’ear, nose, throat’ class have strong
heterophilicity with other disease classes, the dyadicity of this class is very large (∼180). This
suggests that the ’ear, nose, throat’ class may be a densely connected part of the network even
though it has many connections to phenotypes in other classes.

We used the spectral algorithm to decompose the phenotype network into modules based on
modularityQ. The maximal modularityQ equals 0.78, which indicates a distinctly modular
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(a) Log-log plot of dyadicity and heterophilicity of
21 disease classes. Most of the disease classes are in
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revealing a highly modular structure.

(b) p-value profile for 21 disease classes in mod-
ules. Each small square in the grid shows the sta-
tistical significance of the enrichment of a specific
function in a module. Significance levels are indi-
cated by different grey scales.

Figure 3: Phenotype network shows a modular organization on the genetic landscape and the
modularity is significantly correlated to disease classes.

structure rather than a random network. The network was partitioned into 28 modules in the
first partition. In order to identify the hierarchical structure of the modules, we decomposed
all modules which had more than 100 phenotypes into sub-modules. If the sub-network of
phenotypes in a module had a clear secondary modular structure (Q ≥ 0.5), we used the sub-
modules instead of the first level one. This yields 231 modules, 214 of which were based on
the secondary level of modularity (see Supplementary File 1 for more details).

3.2 Modularity is significantly correlated with disease classification

The p-value profile for 21 disease classes in each module with more than five phenotypes is
demonstrated in Fig.3(b). Almost all modules were significantly enriched with one or two
(three of few modules) disease classes when we used10−3 or 10−4 as the cutoff for statistical
significance of each class.

van Driel et al. [30] constructed a set of phenotype similarities by text-mining all records that
describe genetics disorders in the OMIM database using medical subject headings (MeSH). The
nature of the similarity measure ensures that two phenotypes will be connected in the network if
they have similar clinical traits. As expected, phenotypes in a disease class tend to group in the
network. However, they can be divided into many different modules. For example, phenotypes
in the neurological disease class are distributed into about ten modules; of them, one module
contains primarily ataxia phenotypes, such as spinocerebellar ataxia and cerebellar ataxia; and
one module contains mostly Charcot-Marie-Tooth disease phenotypes. Thus modules generally
are subclasses of the primary disease classes. In addition, in several cases, some phenotypes
in different disease classes may be grouped together because they have similar clinical traits.
These results indicate that the network method can not only provide a computational validation
of the disease classification which was determined manually by Goh et al. [9], but also provide
a more specific classification of disease phenotypes.
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Figure 4: Performance of the leave one-out cross validation.

3.3 Benchmark test:leave-one-out validation

To examine how well our method reflects the biological truth, we took each of the 1807 known
gene-phenotype association as one test case, and for each case we generate an artificial loci[14,
26].

Foreach gene-disease link, we simulate a linkage locus around the true disease gene by includ-
ing 181 neighboring genes as negative controls to simulate the median size of linkage intervals
for OMIM phenotype loci with unknown molecular basis [14](see Supplementary Figure S3
for the distribution of gene numbers in all the disease loci). This strategy for resembling known
disease loci in the OMIM database has been widely used in previous studies[14, 32]. The 181
test genes are then treated equally by assuming links to the disease under study and go through
the network prediction procedure. We then calculate the concordance score for each test gene,
and rank the test genes according to the score. If the known disease gene is ranked as top 1,
we consider it asuccessful prediction, and we define theprecisionas the proportion of suc-
cessful predictions among all predictions. We set a threshold and only make prediction when
the highest score of all test genes in a case is no less than it, and definerecall as the fraction
of true disease genes predicted among all disease genes[14]. A leave-one-out cross-validation
(see Materials and Methods) shows our method can at least rank known disease genes at top
1 in 887 out of 1807 test cases, achieving a precision of 0.49 and a recall of 0.49. With the
increasing of the threshold, the precision becomes larger while the recall becomes smaller. For
high-scoring candidates, the precision can approach0.73 while maintaining a high recall of
0.31 (Fig.4). Compared with GeneNet1, the precision using GeneNet2 is smaller, varying from
0.49 to 0.65. The reason is that there are many genes in network GeneNet2 have been not
well-studied and their association with disease have been not identified.

3.4 Prioritization candidates in disease loci

The above results indicate that our method can efficiently predict the human disease genes
from genetic loci. Therefore, we applied our procedure to 850 OMIM phenotype entries with
at least one mapped disease locus but unknown molecular basis. We obtained predictions for
81 loci, only top 20 of which are summarized in Table2. All the predictions are available in

Journal of Integrative Bioinformatics, 7(2):149, 2010 http://journal.imbio.de

doi:10.2390/biecoll-jib-2010-149 9



Table 2: Candidate genes found for top 20 of 81 OMIM loci with unknown molecular basis.

OMIM ID locus locus size HUGO Ensembl ID

119540 2q32 75 COL3A1 ENSG00000168542

COL5A2 ENSG00000204262

121210 8q13-21 188 C8orf46 ENSG00000169085

EFCBP1 ENSG00000123119

RALYL ENSG00000184672

STMN2 ENSG00000104435

GDAP1 ENSG00000104381

C8orf34 ENSG00000165084

STAU2 ENSG00000040341

130080 12p13 277 A2M ENSG00000175899

VWF ENSG00000110799

C1S ENSG00000182326

MFAP5 ENSG00000197614

EMP1 ENSG00000134531

CD163 ENSG00000177575

TNFRSF1A ENSG00000067182

TSPAN9 ENSG00000011105

CSDA ENSG00000060138

LTBR ENSG00000111321

CD9 ENSG00000010278

Supplementary Table S2. We obtained predictions for 81 loci, 67 of which where only from the
GeneNet1, 5 only from the GeneNet2 and 9 from both. Interestingly, in 4 of the latter cases,
the list of candidates from the two networks contained at least one common gene.

Notably, for three OMIM phenotypes (163000, familial multiple nevi flammei; 268700, saccha-
ropinuria; 300195; AMMECR1) our predictions include the actual disease genes that, although
not yet correctly annotated in OMIM, have been found to be mutated in patients.

For 22 loci, at least one of the candidates obtained from either network was already known to
be involved in phenotypes similar to those described for the locus. These genes represent the
most obvious candidates and our results should be considered as further, independent evidence
for their possible involvement in the disease. However, it must be noted that some of them were
previously excluded, either by the direct identification of crossovers or by the negative results
of mutation screenings. Nevertheless, since mutations have most likely been searched only
within the annotated exons, we think that the decision to definitively rule out the involvement of
such candidates should be taken cautiously. Moreover, even silent exonic mutations, although
often considered innocuous polymorphisms, can have severe effects on proteins by disrupting
splicing patterns[24, 7].
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Table 3: Comparison of the fold enrichment of several methods, where PPI: protein-protein inter-
action network, FA: gene functional annotation, GE: gene expression microarray data..

Methods Data Source Fold enrichment

Lage et al [14] PPI 23.1

Perez-Inrateeta et al [26] FA 19.4

Fredudenberg and Propping[8] FA 13.3

Oti et al [21] PPI 10.0

Turner et al [29] FA 5.2

Wu et al [32] PPI 53.5

Our method PPI 37.2

In most cases only few candidates are given for a locus, thus providing extremely focused
working hypotheses for the identification of the actual disease genes, which in many cases are
made even stronger by the available sequence or functional information. For instance, one
of the two candidates provided for the OMIM phenotype entry 607221 (partial epilepsy with
pericentral spikes, located on 4p15) corresponds to KCNIP4[19]. This protein has been show
to specifically modulate the activity of Kv4 A-type potassium channels, which are well known
regulators of membrane excitability[2] and have been recently involved in epilepsy[28].

Even when the number of candidates for a particular locus is substantially higher, our results
may provide a strong restriction of the experimental search field, which can be further narrowed
by additional evidences. For instance, the phenotype with OMIM ID 130080 (Ehlers-Danlos
syndrome, type VIII), is mapped to 12p13, containing 277 genes. In this case, the GeneNet1
and GeneNet2 networks provide 8 and 4 candidates, respectively. Interestingly, the candidate
with the lowest associated score is the Alpha-2-macroglobulin precursor (A2M), whose absence
was previously reported in a patient with Ehlers-Danlos syndrome[17].

3.5 Fold enrichment: comparison with other methods

Various methods [14, 26, 21, 8, 29, 32] have been proposed for prioritizing candidate genes,
but few of them have reported the precision within their publications. Traditionally, the power
of these methods is measured by their ability to enrich known disease genes over random se-
lection, say, fold enrichment [14]: If a method successfully ranks known disease genes in the
topm% of all candidate genes inn% of the linkage intervals, there is an/m-fold enrichment
on average. We compared these methods by computing their fold enrichment (listed in Table
3) that illustrate our method’s potential.

4 Discussions and Conclusions

The success of our method can be attributed to utilizing the modular nature of human genetic
disease that paved a new way for phenotype-gene association studies from several aspects.
First, there is now good evidence from bioinformatic analysis that human genetic diseases can
be clustered on the basis of their phenotypic similarities and that such a clustering represents
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true biological relationships of the genes involved. Second, one may use such phenotypic
similarity to predict and then test for the contribution of apparently unrelated genes to the same
functional module. Third, one can use bioinformatics to make predictions about new genes for
diseases that form part of the same phenotype cluster. This is done by starting from the known
disease genes and then searching for genes that share one or more functional attributes such
as gene expression pattern, co-evolution, or gene ontology. Ultimately, one may expect that a
modular view of disease genes should help the rapid identification of additional disease genes
for multifactorial diseases once the first few contributing genes (or environmental factors) have
been reliably identified.

Certainly, our approach can be improved in the following directions. First, our method is lim-
ited to genes with known protein interactions (about one-third of the entire human genome).
Further expanding the protein network to embrace less reliable protein interactions (such as
the OPHID network) or non-physical functional associations may increase the power to detect
less-studied disease genes in practice. Second, our method suffers from the imprecision and
subjectiveness in quantifying phenotype similarity. The continuing endeavor for standardizing
and quantifying phenotypic description would further enhance our method. Third, like other
methods for disease gene finding, our method cannot tell where the causative genetic variants
are in high-rank genes. With the recent progress in the prioritization of candidate genetic vari-
ants for human diseases, it is expected that by prioritizing candidate genes and genetic variants
at the same time, the two may benefit each other and facilitate the discovery of disease genes
and causative genetic variants therein.

Our method also illustrates well the power of the integration of different types of networks. We
suggest that the ongoing large-scale mapping of human interaction networks and systematic
collection of human phenotypic data are valuable for biomedical research, and the increasing
coverage and quality of human interaction network, as well as more standardized and objective
phenotype descriptions will facilitate the discovery of new disease genes.
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1 Detect the modules/submodules of the phenotype network

From a combinatorial point of view, a network is a simple graph, i.e., a pairG = (V,E)
consisting of a setV , called its vertex set and a subsetE of the set

(

V

2

)

:= {e ∈ V : |e| = 2}

called its edge set, associated with a symmetric weight matrixW = (w)uv∈V ∈ ℜ
V×V
≥0 . Further,

given a networkG, a community structure is a partitionΠ of V into a disjoint union of non-
empty subsetsV1, . . . , Vm whose vertices are, intuitively speaking, ”more densely connected”
to one another than to the other vertices ofG.

Module ID Size Modularity Module ID Size Modularity
Modu 1 246 0.128 Modu 12 192 0.698
Modu 2 289 0.659 Modu 13 130 0.766
Modu 3 471 0.423 Modu 15 147 0.501
Modu 4 256 0.336 Modu 17 100 0.697
Modu 6 221 0.557 Modu 18 114 0.575
Modu 7 234 0.412 Modu 19 169 0.534
Modu 8 111 0.301 Modu 24 120 0.661
Modu 11 269 0.683 Modu 28 191 0.725

Table 1: Decomposition of large modules into secondary level modules.

A famous quantitative measure for evaluating the ”goodness of fit” of a partitionΠ to G, the
modularity functionQ = Q(Π), was proposed by M.E.J. Newman and M. Girwan in [3] and is
represented as

Q(Π) :=
m
∑

j=1

[

F(Vi, Vi)

F(V, V )
−

(

F(Vi, V )

F(V, V )

)2
]

(1)

whereF(V ′, V ”) is defined, for any two subsetsV ′, V ” of V , byF(V ′, V ”) :=
∑

u∈V ′,v∈V ” wuv.

It was illustrated [4, 1, 2] that a highQ-value indicates that the partitionΠ represents a ”good”
community structure forG and, so, much work has been devoted in recent years to designing

* To whom correspondence should be addressed. E-mail:qiangjiang2006@gmail.com
†Present address: Department of Computer Science, City University of Hong Kong
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methods proposed towards this end for iteratively improving theQ-measure. The method, how-
ever, could not identify the hierarchical structure of the modules and thus we here decomposed
all modules which had more than 100 phenotypes into sub-modules. Obviously, the number of
final modules depends on the secondary level of modularity that we identified. To reduce the
effect, we visually inspect each sub-network with more than 100 phenotypes in the first level
modules while automatically decompose the phenotype network using our previous algorithm
[2].

The network was partitioned into 28 modules in the first level. We found 16 modules with
at least 100 phenotypes, of which 11 modules had a significant secondary level of modularity
usingQ-measure (Table S1). We scrutinized each sub-network of phenotypes in the modules
using the spring-embedded layout in Cytoscap software to check if each sub-network has a
clear modular structure. In the resulting spring-embedded layout, nodes with edges between
them tend to be situated near each other, whereas nodes without edges between them tend to
be spread apart. Finally, we found that the modularity0.5 is an appropriate threshold value for
extracting secondary level modules. Following this way, we identified 231 modules in the end,
most of which (214 of 231) are based on the secondary level of modularity. Thus, we believed
that this decomposition method will reveal the actual modularity of the phenotype network.

2 Candidate genes for OMIM loci with unknown molecular basis

We give the predicted candidate genes for 81 OMIM loci with unknown molecular basis in the
following table.

OMIM ID locus locus size Ensembl ID

119540 2q32 75
ENSG00000168542
ENSG00000204262

121210 8q13-21 188

ENSG00000169085
ENSG00000123119
ENSG00000184672
ENSG00000104435
ENSG00000104381
ENSG00000165084
ENSG00000040341

130080 12p13 277

ENSG00000175899
ENSG00000110799
ENSG00000182326
ENSG00000197614
ENSG00000134531
ENSG00000177575
ENSG00000067182
ENSG00000011105
ENSG00000060138

continued on next page
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continued from previous page
OMIM ID locus locus size Ensembl ID

ENSG00000111321
ENSG00000010278

142700 13q22 36 ENSG00000102554

145410 22q11.2 271
ENSG00000185214
ENSG00000100030
ENSG00000099972

154275 17q11.2-q24 881
ENSG00000067191
ENSG00000108878

156232 2q24-q32 296

ENSG00000128710
ENSG00000175879
ENSG00000115290
ENSG00000128713

156600 13q31-q32 99
ENSG00000080166
ENSG00000184564

162820 7q22-qter 712
ENSG00000106123
ENSG00000146904

163000 5q13-q22 327
ENSG00000164252
ENSG00000145715

164210 14q32 414

ENSG00000011114
ENSG00000100697
ENSG00000100664
ENSG00000184916

177720 16q23-q24 170 ENSG00000174990

180020 6q25-q26 133
ENSG00000120278
ENSG00000164674

181430 12q15-q23.1 215
ENSG00000111046
ENSG00000139289

183600 2q31 126
ENSG00000128710
ENSG00000128713
ENSG00000128652

185000 9q34.1 135 ENSG00000148346

203650 3q26.3-q27.3 150
ENSG00000114770
ENSG00000163898

213200 9q34-qter 290
ENSG00000148408
ENSG00000176884

213600 14q 1215 ENSG00000171723
214900 15q 1074 ENSG00000140505
218400 6q21-q22 215 ENSG00000152661

225000 11q23-q24 314
ENSG00000186318
ENSG00000109846
ENSG00000149591

255160 3p22.2-p21.32 84
ENSG00000168334

continued on next page
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continued from previous page
OMIM ID locus locus size Ensembl ID

ENSG00000010282
ENSG00000183873

259450 17p12 37
ENSG00000141052
ENSG00000109099

268700 7q31.3 39 ENSG00000008311

300046 Xq23-q24 116
ENSG00000068366
ENSG00000131725

300148 Xp22.13-p21.1 117 ENSG00000131828
300195 Xq22.3 40 ENSG00000188153
300324 Xq22.2-q26 327 ENSG00000068366

300489 Xq13.1-q21 182
ENSG00000147166
ENSG00000131171

309610 Xp11-q21 481

ENSG00000085224
ENSG00000086758
ENSG00000147162
ENSG00000124486
ENSG00000179222
ENSG00000102316
ENSG00000147202
ENSG00000180182
ENSG00000131263

310440 Xq28 151

ENSG00000130821
ENSG00000184343
ENSG00000124334
ENSG00000013563
ENSG00000013563

311510 Xq28 151
ENSG00000185825
ENSG00000184216
ENSG00000180879

314580 Xq13-q21 182
ENSG00000147166
ENSG00000067177

600131 8q24 247
ENSG00000167632
ENSG00000180155

600175 12q23-q24
445

ENSG00000152137
ENSG00000196091
ENSG00000111245

600593 4p16 160 ENSG00000163132

600624 18q21.1-q21.3 148
ENSG00000197632
ENSG00000057149
ENSG00000206075

600792 14q12 43
ENSG00000100473
ENSG00000176165

continued on next page
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continued from previous page
OMIM ID locus locus size Ensembl ID
600964 10pter-p11.2 312 ENSG00000107537

600977 17p13-p12 319
ENSG00000109047
ENSG00000091622

601202 17p13 282 ENSG00000109047
601251 17p 494 ENSG00000109047
601362 10p14-p13 71 ENSG00000107485

601676 1p31 156
ENSG00000132855
ENSG00000116761
ENSG00000116791

601764

19q 1002
ENSG00000105409
ENSG00000142290
ENSG00000105711
ENSG00000105290
ENSG00000063180
ENSG00000167614
ENSG00000131409
ENSG00000105695
ENSG00000167619
ENSG00000198597
ENSG00000083842
ENSG00000169169
ENSG00000105767
ENSG00000104863
ENSG00000105223
ENSG00000160460
ENSG00000105737

601846 19p13.3 238

ENSG00000077009
ENSG00000171119
ENSG00000176533
ENSG00000196415
ENSG00000099875
ENSG00000125733

602067 6q23 74

ENSG00000135541
ENSG00000112319
ENSG00000118526
ENSG00000051620

603165 1q21 334

ENSG00000143412
ENSG00000143369
ENSG00000143631
ENSG00000203782
ENSG00000189334
ENSG00000169469

continued on next page
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continued from previous page
OMIM ID locus locus size Ensembl ID

603204 15q24 97
ENSG00000169783
ENSG00000198794

603511

h

7q 1069

ENSG00000146926
ENSG00000146809
ENSG00000128591
ENSG00000154415
ENSG00000004799
ENSG00000106436
ENSG00000135218
ENSG00000131558
ENSG00000146904
ENSG00000128573

603786 4p 361 ENSG00000163697

604288 2q14-q22 278
ENSG00000121989
ENSG00000150540

604364 22q11-q12 474

ENSG00000166862
ENSG00000100095
ENSG00000182902
ENSG00000128266
ENSG00000183597

604454 2p13 111
ENSG00000159399
ENSG00000169604

604499 11p 637
ENSG00000180210
ENSG00000110169
ENSG00000148965

604781 19p13.2-p13.1 434
ENSG00000105131
ENSG00000105141
ENSG00000171954

604801 1q42 194

ENSG00000143632
ENSG00000163050
ENSG00000116962
ENSG00000119280
ENSG00000135776

605021 16p13 366
ENSG00000078328
ENSG00000167971
ENSG00000138834

605285 10q23.2 26 ENSG00000173267

605480 4p16-p15.2 239

ENSG00000072832
ENSG00000185774
ENSG00000153012
ENSG00000168824
ENSG00000074211

continued on next page
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continued from previous page
OMIM ID locus locus size Ensembl ID

605582 6q12-q16 209
ENSG00000065833
ENSG00000146242

605642 1q21 334 ENSG00000143436
605711 2p14-p13 142 ENSG00000124370

605751 16p12-q12 407

ENSG00000087258
ENSG00000087250
ENSG00000174938
ENSG00000129636
ENSG00000103404
ENSG00000103540
ENSG00000166501

605809 17p13 282
ENSG00000188265
ENSG00000170175
ENSG00000108515

606070 5q 1116

ENSG00000120729
ENSG00000113296
ENSG00000113758
ENSG00000113083
ENSG00000164294
ENSG00000184347
ENSG00000113140
ENSG00000169271
ENSG00000081189
ENSG00000157510
ENSG00000164176
ENSG00000113578
ENSG00000113327
ENSG00000085365
ENSG00000044115
ENSG00000120738
ENSG00000134352
ENSG00000175745
ENSG00000081853
ENSG00000168938
ENSG00000038427
ENSG00000094755
ENSG00000133710
ENSG00000171992
ENSG00000184349
ENSG00000113721
ENSG00000145730
ENSG00000129625

continued on next page
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continued from previous page
OMIM ID locus locus size Ensembl ID

ENSG00000172901
ENSG00000131711
ENSG00000072682
ENSG00000113657
ENSG00000113580
ENSG00000164347
ENSG00000048162
ENSG00000131730

606257 12p11.2-q14 548

ENSG00000167768
ENSG00000172867
ENSG00000139648
ENSG00000170421
ENSG00000111405

606483 10q24.1-q25.1 179 ENSG00000120057

606545 17p13.2-p13.1 210

ENSG00000179477
ENSG00000179148
ENSG00000167741
ENSG00000108515
ENSG00000129194
ENSG00000125414
ENSG00000181885

606708 2q31 126

ENSG00000128710
ENSG00000175879
ENSG00000128713
ENSG00000128652

606744 18p11.31-q11.2 169 ENSG00000101558
607086 11q23.3-q24 250 ENSG00000149591

607088 11q13 354

ENSG00000204633
ENSG00000068976
ENSG00000173442
ENSG00000133315
ENSG00000175591
ENSG00000110092
ENSG00000149257
ENSG00000149782
ENSG00000186642
ENSG00000165457
ENSG00000175564
ENSG00000085733
ENSG00000174807
ENSG00000062282

607221 4p15 86 ENSG00000185774
continued on next page
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continued from previous page
OMIM ID locus locus size Ensembl ID

607936 12q13 355

ENSG00000167768
ENSG00000172867
ENSG00000170421
ENSG00000161849
ENSG00000170426
ENSG00000139648
ENSG00000111405
ENSG00000111424
ENSG00000170477
ENSG00000185069
ENSG00000172819
ENSG00000135423
ENSG00000139209
ENSG00000123364
ENSG00000161850

608096 12q22-q23.3 163 ENSG00000185046

608224 12q24.32-qter 71
ENSG00000177084
ENSG00000177169

608318 14q32 414 ENSG00000140093

608423 7q32.1-q32.2 71
ENSG00000128578
ENSG00000128591
ENSG00000174697

608762 9q32-q33 161 ENSG00000136935
608816 6p21 395 ENSG00000124507

Table 4: Candidate genes for OMIM loci with unknown molecular basis.

3 The distribution of gene numbers in all the disease loci

We count the numbers of disease genes in all the known loci in OMIM database and give its
distributions in Fig.S1.
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Figure 1: The distribution of gene numbers in all the disease loci.
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