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Abstract

This paper presents a generative model for textures that uses a local sparse description of
the image content. This model enforces the sparsity of the expansion of local texture patches
on adapted atomic elements. The analysis of a given texture within this framework performs
the sparse coding of all the patches of the texture into the dictionary of atoms. Conversely,
the synthesis of a new texture is performed by solving an optimization problem that seeks for
a texture whose patches are sparse in the dictionary. This paper explores several strategies to
choose this dictionary. A set of hand crafted dictionaries composed of edges, oscillations, lines
or crossings elements allows to synthesize synthetic images with geometric features. Another
option is to define the dictionary as the set of all the patches of an input exemplar. This
leads to computer graphics methods for synthesis and shares some similarities with non-local
means filtering. The last method we explore learns the dictionary by an optimization process
that maximizes the sparsity of a set of exemplar patches. Applications of all these methods
to texture synthesis, inpainting and classification shows the efficiency of the proposed texture
model.

1 Introduction

The analysis and synthesis of textures is a central topic in computer vision and graphics.
Various methods have been proposed to model textures and to sample new textures from the
corresponding set of constraints. This paper proposes a framework for texture modeling based
on a linear generative model for the set of patches extracted from the texture. Such a model is
constrained by imposing sparsity in the decomposition of patches. The overlap of these patches
turns the synthesis of a new texture into an optimization that is solved iteratively. Depending on
the precise way to compute the sparse expansion of patches, one retrieves some previously proposed
models that now fit into a common framework.

1.1 Sparse Models for Images and Textures

Spatial domain modeling. The works of Efros and Leung [19] and Wei and Levoy [55] pioneered
a whole area of greedy approaches to texture synthesis. These methods copy pixels one by one,
enforcing locally the consistency of the synthesized image with the exemplar. Later enhancements
on this idea led to patch-wise copying, see for example the work of Efros and Freeman [20], Kwatra
et al. [29] and Ashikhmin [3]. Recent approaches such as the methods of Lefebvre and Hoppe [31]
and Kwatra et al. [28] are fast and use a multiscale strategy.

Section 3 presents a non-local computation of the sparse expansion of patches. These non-local
weights generalize the idea of pixel recopy to perform average of pixels belonging to similar patches.
The resulting iterative synthesis algorithm is similar to the texture optimization process of Kwatra
et al. [28]. Section 3.3shows how these ideas relate to non-local means filtering as proposed by
Buades et al. [11]. Brox and Cremers [10] have introduced an iterated non-local means algorithm
that is used to perform denoising and differs from the non-local synthesis described in Section 3.3.
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Transformed domain modeling. Julesz [26] stated simple axioms about the probabilistic char-
acterization of textures. A texture is described as a realization of a random process characterized
by the marginals of responses to a set of linear filters. Zhu, Wu and Mumford [58] setup a Gibbs
energy to learn both the filters and the marginals. They use a Gibbs sampler to draw textures
from this model.

A fast synthesis can be obtained by fixing the analyzing filters to be steerable wavelets as
done by Heeger and Bergen [24] and by wavelet noise [15]. The resulting textures are similar to
those obtained by Perlin [42]. They exhibit isotropic cloud-like structures and fail to reproduce
long range anisotropic features. This is because wavelets decompositions represent sparsely point
wise singularities but do not compress enough long edge features. Higher order statistics such as
multiscale correlations [8] and local correlations [45] are used to synthesize high quality textures.

Dictionary learning. Wavelets and more recent tools from harmonic analysis [37] have proven
to be efficient for image compression and denoising. It is however difficult to design efficient
dictionaries for complex textures, as explained in the review paper of Simoncelli and Olshausen
[47] on wavelet-based models for textures.

Olshausen and Field [40] proposed to learn a dictionary adapted to the processing of patches
extracted from natural images. They have applied this learning to patches pi extracted from
natural images. The major conclusion of this line of research is that learning over a large set of
disparate natural images leads to localized oriented edge filters. Other approaches to sparse coding
have been applied with success using independent components analysis [6] and different sparsity
priors on the coefficients [33, 27, 21, 2].

Specific properties of images are captured using constrained non-linear models, such as a de-
composition using positive atoms and positive coefficients, see [30]. This non-negative generative
process is used for texture modeling, synthesis and inpainting by Peyré [43]. Independent com-
ponent analysis and sparse dictionaries have been applied in texture modeling mainly for features
extraction in classification [56, 48]. An ICA decomposition is used as a post-processing step by
Manduchi and Portilla [38] to enhance the synthesis results of Heeger and Bergen multiscale ap-
proach [24].

Section 4 presents a texture model based on a sparse expansion of patches in a learned dictionary.
In contrast to Zhu et al. [57] that select the dictionary from a library of fixed atoms, a non-
parametric approach is used and the atoms are optimized to enhance the synthesis result. The
iterative synthesis process is similar to the iterative projection on constraints used by Portilla and
Simoncelli [45]. Dictionary learning has been used by Mairal et al. [35] to perform color image
denoising and inpainting. Our sparse texture model allows to use this dictionary learning scheme
for texture synthesis.

Manifold models for textures. The set of patches extracted from a texture can have a complex
geometric structure that reflects the interactions between the patterns of the image. A simple model
for such a set is a low dimensional manifold embedded in a high dimensional space. The dimension
of this manifold measures the number of intrinsic parameters that govern the patches formation
and layout in the image. Peyré [44] studies this manifold structure for simple image models such as
locally parallel textures and periodic tillings of patterns. Recent approaches to image synthesis in
computer graphics use manifold modeling of textures. Matusik et al. define a manifold from a set
of textures [39]. Lefebvre and Hoppe introduce a mapping of an image into a higher dimensional
appearance space [32]. This embedding allows a synthesis with high fidelity and spatial variations.

This paper proposes a sparse model for texture patches. This model assumes that the set of
patches extracted from an image lives in the union of low dimensional vector spaces. This model
can be used to perform perform texture processing.

1.2 Texture Processing

Texture synthesis is achieved by sampling at random a texture model. More elaborated texture
processing can be devised to perform texture restoration, mixing and segmentation.
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Texture inpainting. The inpainting problem consists in filling a set of missing pixels of a
damaged image. Non-textured inpainting is solved using evolution equations derived from fluid
dynamics by Bertalmio et al. [7] and Ballester et al. [4]. Anisotropic diffusion along a tensor field
is used by Tschumperlé and Deriche [52].

Texture inpainting is closely related to texture synthesis with the additional constraint that the
synthesis should be coherent with the available set of pixels. Starck et al. [49]and Fadili et al. [22]
inpaint both edges and oscillatory textures using sparsity in a set of fixed bases such as curvelets
and local DCT. Criminisi et al. [16] inpaint regions with complex textures using pixel recopy and
patch comparisons. Section 3.4 describes an iterative scheme that brings together both sparsity
and patch-based methods using our sparse texture model.

Texture mixing The problem of texture mixing consists in synthesizing a texture that blends
seamlessly the geometric structures of two input exemplars. Bar-Joseph et al. [5] and Portilla
and Simoncelli [45] have proposed architectures for texture mixing that use a multiscale wavelet
decomposition. Section 4.3 extends these approaches by using a dictionary learned from the two
input textures.

Texture classification Texture segmentation has been studied extensively in computer vision.
The unsupervised segmentation problem is usually solved by computing local texture descriptors
for each pixel and then applying a standard clustering algorithm. For instance, early works on
texture analysis use outputs from a set of Gabor filters [25, 9, 34, 13] and local moments of pixel
values have been used by Tuceryan [54]. In contrast, supervised texture segmentation uses a set
of exemplars to build some statistical model for each texture class. Active contours methods have
been extended to textures using statistical multiscale descriptors by Paragios and Deriche [41].
Section 4.4uses our sparse texture model to perform texture classification, and is similar to the
approach proposed by Skretting et al. [48].

2 Sparse Decompositions of Texture Patches

This section introduces a new model for textures which is based on a sparse expansion of image
patches in a local dictionary. This model is sampled for texture synthesis purpose with a iterative
algorithm that optimizes a sparsity-promoting energy.

2.1 Patch Domain Modeling

This article focusses on the local geometry of textures through the extraction of local patches.
An image f ∈ RN of N pixels is processed by extracting patches px(f) of size τ × τ around each
pixel position x ∈ {0, . . . ,

√
N − 1}2

∀ t ∈ {−τ/2 + 1, . . . , τ/2}2, px(f)(t) = f(x + t). (1)

A patch px(f) is handled as a vector of size n = τ2. In the following we also consider color images
f of N pixels that can be handled as vectors of dimension 3N . This article uses periodic boundary
conditions to ease notations, but symmetric conditions with reflecting boundaries can be used with
slight modifications.

In the following, Φ : f 7→ {px(f)}x is the linear operator that extracts all the patches from
an image. This patch extraction is a mapping Φ : RN → Rn×N where n is the dimension of each
patch and N is the number of patches in an image of N pixels. The matrix whose columns are all
the patches pi = pxi

(f) is denoted as Φ(f) = P = (p0, . . . , pN−1) ∈ Rn×N where xi indexes the N
pixels of f .

An image f̃ is recovered from a given set of patches P = {pi}i using the pseudo-inverse Φ+

defined as

Φ+(P ) = f̃ where f̃ = argmin
g∈Rn

N−1∑
i=0

||pxi
(g)− pi||2. (2)
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This pseudo-inverse reconstruction corresponds to an averaging of overlapping patches

∀x ∈ {0, . . . ,
√

N − 1}2, f̃(x) =
1
n

∑
|xi−x|6τ/2

pi(x− xi). (3)

2.2 Sparse Expansion of Patches

Linear forward generative model. A linear generative model assumes that a patch p ∈ Rn of
n = τ × τ pixels is approximated as a linear superposition

p ≈
m−1∑
k=0

w(k) dk = D w. (4)

Each w(k) ∈ R is a coefficient associated to the atom dk ∈ Rn, and these atoms are stored in a
dictionary D = {dk}k which is a matrix D ∈ Rn×m.

The collection of patches P = {pi}i = Φ(f) extracted from an image f ∈ RN is decomposed
with this linear generative model as

Φ(f) = P = DW where W = {wi}i ∈ Rm×N and pi = Dwi. (5)

This dictionary D is the main feature of our texture model and its atoms dk should be carefully
chosen to represent efficiently geometric patterns of the textures to analyze and synthesize. Sections
2.4, 3 and 4 explore different ways to handle this dictionary learning problem.

Sparse decomposition. Equation (4) describes a forward process that generates a patch given
a set of coefficients. The problem of analyzing a given image f using the local dictionary D is
more complex and involves a modeling stage that enforces constraints on the set of coefficients. In
particular, since both the mapping Φ and the dictionary D are highly redundant, there is many
ways to perform this analysis.

The patches are modeled by requiring that they are well approximated by a sparse expansion
using the dictionary D. This means that for a given patch p ≈ Dw, only a few atoms dk are active
to describe p. This requires that the `0 pseudo-norm of w is small, where ||w||`0 counts the number
of non-zero coefficients of w

||w||`0 = # {k \ w(k) 6= 0} . (6)

Such a sparse set of coefficients w approximating a given patch p is obtained by solving

w = argmin
c∈Rm

||p−Dc||`2 subject to ||c||`0 6 s, (7)

where s is the sparsity constant of our model.
The optimization problem (7) is combinatorial and thus intractable. In practice, several ap-

proximation algorithms allows one to compute sparse coefficients w:
Convexification of the objective: relaxing the problem (7) replaces the `0 pseudo-norm by the `1

norm ||w||`1 =
∑

k |w(k)|. This leads to the following convex program

w = argmin
c∈Rm

||p−Dc||2`2 + λ||c||`1 , (8)

where λ is a parameter that controls the sparsity of w, and should be tuned so that ||w||`0 6 s.
This convex optimization (8) is the basis pursuit denoising problem introduced by Chen et al.
[12]. It can be solved using interior point algorithms [12] or iterative thresholdings, see for
instance [17]. Under restrictive conditions on both D and p, this relaxed optimization actually
solves (7), see [51] for instance.
Greedy approximation: approximate algorithms such as matching pursuit or orthogonal matching
pursuit compute in a greedy manner the coefficients of w, see [37]. Such greedy approximations
are usually less accurate than the `1 relaxation (8) but offers a faster way to compute w. Under
restrictive conditions, these greedy methods can be proved do solve the original problem (7), see
for instance [50].
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The numerical experiments use the matching pursuit algorithm, which is faster than both orthog-
onal matching pursuit and basis pursuit, and works well for low values of the sparsity parameter
s. Table 1 gives the details of this algorithm.

Table 1 Matching pursuit algorithm for solving approximately (7).
1. Initialization: w ← 0, set i = 0.

2. Best correlation: compute the best matching atom

k? = argmax
k

1
||dk||
〈r, dk〉.

3. Update: modify the residual and the coefficients:

r ← r − 1
||dk? ||2

〈r, dk?〉dk? and w(k?)← w(k?) +
1

||dk? ||2
〈r, dk?〉.

4. Stop: if i < s, go back to 2.

2.3 Sparse Texture Synthesis

Given a fixed dictionary D for patches of size w×w, the texture synthesis processes by searching
for an image whose patches are sparse in D. This amounts to solve the following optimization
problem

min
f∈RN

ED(f) subject to f ∈ C (9)

where the energy is defined as

ED(f) = min
W∈RN×m

||Φ(f)−DW ||`2 subject to ∀ i, ||wi||`0 6 s. (10)

Each wi corresponds to the coefficients of the patch pxi
(f) which has to be sparse in D. The

additional constraint f ∈ C forces the synthesized f to move away from the trivial solution f = 0
and is detailed in the next paragraph.

Although the energy ||Φf −DW ||`2 in (10) is convex as a function of f and W , the additional
`0 and C constraints make this minimization non-convex. In our framework, a valid synthesized
texture is defined as a stationary point of this energy. The energy ED has typically many local
stationary points. To sample quite uniformly this set of local minima, ED is optimized using a
descent algorithm that starts from a random initial texture.

Histogram constraints. Arbitrary meaningful constraints f ∈ C can be imposed in the synthesis
optimization (9). This article considers a constraint on the histogram of the set of pixels

C =
{

f ∈ RN \ H(f) = H(f̃)
}

(11)

where f̃ is a given input exemplar, and where H(f) is the discrete histogram of the values of f .
The goal of this constraint is to enforce f to have the same gray-level repartition as f .

Histogram-matching computes the orthogonal projection f0 = PC(f) of f on C. If both f and f̃
have N pixels, this projection is computed by first sorting the values of f and f̃ , which corresponds
to the computation of indexes α(i) and α̃(i) such that

∀ i = 1, . . . , N − 1,

{
f(α(i− 1)) 6 f(α(i)),
f̃(α̃(i− 1)) 6 f̃(α̃(i)),

(12)

and then the copy of the sorted values from f̃ to f0

∀ i, f0(α(i)) = f̃(α̃(i)). (13)

In the case where f̃ and f do not have the same number of samples, this formula requires interpo-
lation.
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Texture synthesis algorithm. Energy (9) is minimized with an iterative texture synthesis
algorithm. It optimizes the energy sequentially on the image f and on the patch coefficients W .
Table 2 details this texture synthesis algorithm. Such a block-coordinates relaxation has been
proved to converge by Tseng [53] to a stationary point of ED if one replaces the `0 pseudo-norm
by the `1 norm. The texture obtained at convergence is a valid sample from the sparse texture
model.

The following sections apply this synthesis algorithm in various situations where the dictionary
D is either created in an had-oc manner (Section 2.4) or learned from some input data (Sections
3 and 4).

Table 2 Texture synthesis algorithm for minimizing (9).
1. Initialization: set f ← random.

2. Computing the patches: P = Φf .

3. Sparse coding: perform the matching pursuit, table 1, to compute

∀ i = 0, . . . , N − 1, wi = argmin
w∈Rm

||pi −Dw||`2 subject to ||w||`0 6 s

4. Texture reconstruction: reconstruct the patches pi = Dwi and f ← Φ+P , where the pseudo-
inverse is defined in equation (3).

5. Imposing histograms: Perform equalization f ← PC(f).

6. Stop: while not converged, go back to 2.

2.4 Examples with Synthetic Dictionaries

Before detailing in the next sections how to learn dictionaries from some given texture exem-
plar, this section explores the synthesis algorithm with hand-crafted synthetic dictionaries. The
dictionaries D we consider are parameterized by a small number of parameters as follow

D = {di}mi=0 where ∀ t ∈ {−τ/2 + 1, . . . , τ/2}2, di(t) = ϕλi(2t/τ), (14)

where each λi is drawn uniformly at random in some set of parameter λi ∈ Λ. In the remaining of
this section, we consider various kind functions ϕλ : [−1, 1]2 → R, for λ ∈ Λ. Similar ensembles of
low dimensional set of patches are described in details by Peyré [44].

Dictionary of edges. A simple model of geometric images is the cartoon model introduced
by Donoho [18]. A cartoon function is regular outside a set of edge curves which are themselves
regular. A typical patch extracted from such a geometric cartoon image is well approximated by
a binary straight edge. A dictionary composed of binary edges is generated from the following set
of functions

ϕλ(t) = P
(
Rθ(x− (δ, 0))

)
, where λ = (θ, δ) ∈ [0, 2π)× R+, (15)

where Rθ is the planar rotation of angle θ and the step is P = h ∗ P̃ where P̃ (t) = 0 if t1 < 0 and
P̃ (t) = 1 otherwise. In this edge model, the local geometry of the image is described by θ which
parameterizes the orientation of the closest edge and δ which is the distance to that edge. Figure
1 shows an example of these edge patches.

Figure 2 shows the iterations of the synthesis algorithm of table 2 for this dictionary of edges.
The resulting synthesized image is a cartoon image with smooth edges.

Dictionary of local oscillations. The following set of functions

ϕλ(t) = sin
(
Rθ(t− (δ, 0))/ν

)
, and λ = (θ, δ) ∈ [0, 2π)× R+ (16)

is used to synthesized oscillating textures. The local frequency ν controls globally the width of the
oscillations whereas θ is the local orientation of these oscillations.
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δ
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0
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θ

θ

Figure 1: Parameterization of the dictionary of edge patches and some examples.

Figure 2: Iterations of the synthesis algorithm with the dictionary of edges (sparsity s = 2).

Dictionaries of lines. Similarly to the edge dictionary (15), a dictionary of lines is obtained by
rotating and translating a straight line

ϕλ(t) = `θ,δ,σ(t) = exp
(

1
2σ2
||Rθ(t− (δ, 0))||2

)
, (17)

where λ = (θ, δ) ∈ [0, 2π)× R+ and where σ control the width of the line pattern.

Dictionaries of crossings. A dictionary of crossings is obtained by considering atoms which
contain two overlapping lines

ϕλ(t) = max (`θ1,δ1,σ(t), `θ2,δ2,σ(t)) where λ = (θ1, δ1, θ2, δ2). (18)

Figure 3 shows examples of synthesis for the four dictionaries generated by the set of functions
(15), (16), (17) and (18).

3 Strict Sparsity and Non-local Expansions

Most approaches for texture synthesis in computer graphics [19, 55, 20, 29, 3, 31, 28] perform a
recopy of patches from an original input texture f to create a new texture f̃ with similar structures.
These processings can be re-casted into the sparse texture model. This section considers our texture
model in a restricted case where one seeks a strict sparsity with s = 1 in a highly redundant
dictionary.

3.1 Strict Sparsity Model

Considering the special case s = 1 means that each patch of the synthesized image f should
be close to a patch in the original exemplar texture f̃ . Within this assumption, it makes sense to
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Figure 3: Examples of synthesis for two sparsity levels s for the four kinds of dictionaries consid-
ered.

define the dictionary D as the set of all the patches extracted from f̃

D = {pxi
(f̃)}N−1

i=0 = Φ(f̃). (19)

This dictionary is highly redundant and the synthesis algorithm looks for a matching between
patches of f and f̃

∀ i, pxi
(f) = λi pγ(xi)(f̃), where λi ∈ R, (20)

where γ : {0, . . . ,
√

N − 1}2 → {0, . . . ,
√

N − 1}2 maps the pixel locations of the synthesized f to
the pixel locations of f̃ .

A further simplifying assumption done frequently in computer graphics assumes that λi = 1,
which leads to the following definition of the mapping γ

∀x, γ(x) = argmin
y
||px(f)− py(f̃)||. (21)

In this setting, the algorithm described in table 2 iterates between the best-fit computation (21)
(step 3) and the averaging of the patches (step 4). This is similar to the optimization procedure
of Kwartra et al. [28].

The iterative algorithm described in table 2 is used to draw a random texture that minimizes
ED. Figure 4 shows the iterations of texture synthesis using the highly redundant dictionary (19).
For these examples, the size of the patches is set to τ = 6 pixels. Figure 5 shows other examples of
synthesis and compares the results with texture quilting [20]. Methods based on pixels and regions
copy like [20] tend to synthesize images very close to the original. Large parts of the input are
often copied verbatim in the output, with sometime periodic repetitions. In contrast, and similarly
to [28], our method treats all the pixels equally and often leads to a better layout of the structures,
with less global fidelity to the original.
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Exemplar f̃ Iter. #1 Iter. #3 Iter. #20

Figure 4: Iterations of nearest-neighbors matching for texure synthesis.

3.2 Multiscale synthesis

The choice of the size parameter τ is non-trivial and requires some prior knowledge of the typical
width of the structures one would like to maintain during the synthesis process. A multiscale
synthesis strategy is used to cope with the fixed scale τ . A fixed number of pixels τ0 is used
but textures are synthesized with an increasing resolution. This process captures first elongated
structures and then fine scale geometric details. An interpolation is used to switch between the
various resolutions. At each scale, the synthesis algorithm manipulates only small patches of size
τ0 × τ0. This leads to the algorithm described in table 3 that handles J scales.

Figure 5 shows examples of multiscale synthesis using three scales τ ∈ {4, 8, 16}. It shows in
particular a comparison between the single scale algorithm and the multiscale extension, which is
able to better recover elongated structures. Another advantage of this approach is that it speeds
up the computation since the synthesis algorithm converges faster than with a single patch size.

Table 3 Multiscale synthesis algorithm.
1. Initialization: Set j = J to be the coarser scale. Initialize the synthesis with a random noise

fJ of N/2J ×N/2J pixels.

2. Compute the dictionary: Set τ = 2jτ0. Smooth the exemplar f̃j = f̃ ∗ hj where hj is a
gaussian kernel of width 2j pixels. The current dictionary Dj is composed of the patches
extracted from f̃j and subsampled by a factor 2j . The elements of Dj have thus τ0 × τ0

pixels.

3. Synthesis: perform the synthesis by minimizing EDj
using algorithm described in table 2. The

algorithm is initialized with the current fj and this estimate is updated by the optimization

fj = argmin
g∈RN/2j

EDj
(g) subj. to g ∈ C.

4. Up-sample: if j = 0, then stop the algorithm and return f = f0. Otherwise, upsample the
current synthesized texture fj to obtain fj−1 using linear interpolation from N/2j × N/2j

pixels to 2N/2j × 2N/2j pixels.

5. Stop: while j > 0, set j → j − 1 and go back to step 2.
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Figure 5: Examples of synthesis using [20] and with our method with a single-scale τ = 6 and a
multiscale τ ∈ {4, 8, 16} (algorithm of table 3).

3.3 Connexions with Non-local Means Filtering

Instead of performing the exact recopy of one best fitting patch pγ(xi)(f̃), as defined in equation
(21), one can select several patches and use them to do the reconstruction. This shares some
similarities to the non-local means algorithm introduced by Buades et al. [11] that performs image
denoising using a spatially varying filter.

Using some input exemplar image f̃ , an image f is filtered using

Nf̃ (f)(x) =
∑

y

ξ(x, y)f̃(y) where ξ(x, y) =
1

Zx
Gσ(px(f)− py(f̃)) (22)

where the weights depends on the distance between patches in the image

Gσ(a) = exp
(
−||a||

2

2σ2

)
and Zx =

∑
y

Gσ(px(f)− py(f̃)). (23)

The original non-local means algorithm [11] corresponds to the filtering of f itself and produces an
estimation Nf (f).
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This non-local filtering suggests to replace the sparse coding (step 3 of table 2) by an averaging
based on the weights w(x, y) of equation (22). Each patch pi = pxi(f) is sparsely approximated as

pi = Dwi where wi(j) = ξ(xi, xj). (24)

The width σ controls the sparsity of the expansion in a manner similar to s in the sparse optimiza-
tion (7). The computation of the expansion (24) can be interpreted as a crude 1-step matching
pursuit that compute at once all the weights to approximate pi. When the parameter σ tends to
0, the non-local sparse coding is equivalent to the best match (21), because for σ = 0+,

wi(j) =
{

1 if xj = γ(xi),
0 otherwise. (25)

Figure 6, left and center, shows the comparison of the texture synthesis with σ = 0 and σ > 0.
Another option to perform texture synthesis is to replace the reconstruction step 4 of table 2 by
the non-local mean weighted average 22. This alternate synthesis algorithm corresponds to the
iteration of the non-local means filtering f ← Nf̃ (f) starting from a random noise. The resulting
synthesis shown on Figure 6, right, is noisier than the synthesis with the sparse texture model.
This is because the denoising effect of the non-local means reconstruction is only achieved by using
a larger value of σ > 0

Brox and Cremers [10] propose an iterated version of non-local means process to solve the
related fixed point equation f = Nf (f̃). This iterated process is relevant for denoising problems
since it enforces the denoised image to use its own patches to do the averaging. This is however
different from our synthesis iterations.

σ = 0 σ = 0.15 NL-means, σ = 0

Figure 6: Left: synthesis using σ = 0 (perfect recopy, sparse coding using (21)). Center: synthesis
using a larger value for σ > 0 (averaged recopy, sparse coding using (24)). Right: synthesis using
iterations of the non-local means filter f ← Nf̃ (f).

3.4 Application to Texture Inpainting

The inpainting problem consists in filling a set Ω of missing pixels of a given image f̃ . The
region Ω ⊂ {0, . . . ,

√
N − 1}2 might represent damaged pixels of an old photograph or some object

to erase to achieve a special effect. The sparse texture model is used to perform inpainting by
modifying the algorithm of table 2. At each iteration, the reconstruction only modifies the missing
pixels in Ω, leaving the known pixels unchanged. The resulting algorithm is detailed in table 4.
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Table 4 Image inpainting algorithm.

1. Initialization: Set as initial inpainted image f the original f̃ with values at random inside Ω.

2. Update the dictionary: The dictionary is computed from the patches of f : D ← Φ(f).

3. Analysis: For each x ∈ Ω, compute the best fitting patch γ(x) using equation (21).

4. Synthesis: The value of each pixel is replaced using the pseudo-inverse (3) restricted to
un-known pixels in Ω:

∀x ∈ Ω, f(x) =
∑

|x−y|6τ,x+γ(y)−y/∈Ω

pγ(y)(x− y)

5. Stop: While not converged, go back to step 2.

Figure 7 shows some steps of this inpainting process and figure 8 shows additional results and
a comparison with [16]. The approach of Criminisi et al. [16] explicitly favors the recopy of salient
structures by progressively filling-in the missing pixels. In contrast, our method does not enforce
any priority and process all the pixels in parallel. It seems to give similar or better results over
homogeneous textured areas, but tends to give poor results if Ω intersects a broad range of different
structures.

Figure 7: Evolution of the inpainting process.

4 Dictionary Learning for Synthesis

In the previous section, the dictionary D was obtained by selecting all the patches px(f̃) from
some given exemplar f̃ . This approach is related to computer graphics methods and does not leads
to a compact model for textures, which could be useful beyond the problem of strict recopy of
texture. For example, texture classification, texture mixing and modification require an efficient
texture model to reach good performances. The underlying problem is the learning of this sparse
representation to achieve both good approximation of the original texture and good generalization
to capture patterns slightly different from the input exemplar.

4.1 Learning the Dictionary

Image compression, denoising and even synthesis is most often performed using a fixed dic-
tionary D such as for instance wavelets or Gabor atoms. Such processing can be enhanced by
learning a dictionary D to sparsify a set P = {pi}i of typical texture patches. This set of patches
is extracted from some input exemplar f̃ so that pi = pxi

(f̃), where {xi}N−1
i=0 is the set of pixel

locations. This set of input patches is conveniently stored in a matrix P = Φ(f̃) ∈ Rn×N as
detailed in section 2.1.
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Figure 8: Examples of inpainting using [16] and using the proposed method.

Table 5 Dictionary learning for minimizing (29).
1. Initialization: set D as a random matrix with unit norm columns.

2. Sparse coding: for each exemplar pi, solve for the coefficients wi by optimizing

wi ← argmin
w∈Rm

||pi −Dw||`2 subject to ||w||`0 6 s. (26)

This optimization can be solved approximately using the matching pursuit algorithm, table
1.

3. Dictionary update: the dictionary D is updated using either a MOD update [21] or a K-SVD
update [2].
MOD update: D is computed as a linear over-determined best fit

D ← PW+ where W+ = (WTW )−1WT (27)

K-SVD update: each atom dk is updated once at a time. Let Ik = {i \ wi(k) 6= 0} the
signals using atom dk. The atom dk and its coefficients w·(k) = {wi(k)}i are updated
according to

(dk, w·(k)) = argmin
g,a

∑
j∈Ik

||p̃j − ajg||`2 where p̃j = pj −
∑
` 6=k

w`(j)d`. (28)

This minization is equivalent to a rank-1 approximation of the matrix containing the signals
p̃j , which can be solved with an SVD.

4. Normalization: set for all k, dk ← dk/||dk||`2 .

5. Stop: while not converged, go back to 2.
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An optimal D is selected by requiring that the synthesis algorithm works optimally when
initialized with the exemplar f̃ . It means that D should minimize the synthesis energy ED(f̃)
introduced in equation (9). This leads to a search for the dictionary D that solves the following
optimization problem

min
D∈Rn×m,W∈Rm×N

||P −DW ||`2 subject to
{
∀ i, ||wi||`0 6 s,
∀ k, ||dk||`2 = 1,

(29)

where P = Φ(f̃) = {pi}i is the set of patch exemplars. In this optimization problem, each wi is
a column of W that store the coefficients of an exemplar patch pi and each column vector dk is a
unit norm atom of D. The energy minimized in (29) is the same as the one in (9), but this time
the image f̃ is fixed and the optimization is performed on (D,W ).

The optimization problem (29) is both non-smooth and non-convex in (D,W ) and one can
compute a stationary point of this energy using either the MOD algorithm [21] or K-SVD [2].
Table 5 details both algorithms. In practice, both K-SVD and MOD iterations give similar results
for synthesis. The iterations of K-SVD are usually faster to converge due to the sequential update
of the atoms.

Figure 9 (right) shows an example of dictionary learned with this iterative algorithm. When
one applies the learning stage to patches from a single homogenous texture, patterns from the
original texture emerge in the trained dictionary.

Figure 9: Left: an input texture f̃ , right: the dictionary D learned from this texture.

4.2 Sparse Texture Synthesis

Starting from some input texture f̃ , the algorithm of table 5 is used to learn a dictionary
optimized to approximate the patches Φ(f̃). The algorithm of table 2 is then used to perform the
synthesis of a new texture f whose patches are sparse in D. Figure 10 shows some iterations of
the synthesis algorithm using a fixed sparsity.

This texture synthesis algorithm depends on two parameters
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Iter. #1 Iter. #2 Iter. #4 Iter. #20

Figure 10: Iteration of the synthesis process for s = 2.

The redundancy r = m/n of the dictionary. More redundancy provides more geometric fidelity
during the synthesis since patches of the original texture f̃ is better approximated in D. In
contrast, using a small m leads to a compact texture model that compresses the geometric
patterns of the original texture with a few atoms. Such a model allows good generalization
performance for task such as texture discrimination or classification when the data to process is
unknown but close to f .
The sparsity s > 1 of the patch expansion. Increasing the sparsity s is a way to overcome the
limitations inherent to a compact dictionary (low redundancy m/n) by providing more complex
linear combination. In contrast, for very redundant dictionaries (such as the non-local expansion
presented in section 3) one can even impose that s = 1. Increasing the sparsity also allows to have
blending of features and linear variations in intensity that leads to slow illumination gradients
not present in the original texture.

Figure 11 shows the influence of both parameters.
Features of various sizes can be captured using the multiscale synthesis algorithm presented

in table 3. Note that this synthesis algorithm implicitly considers a set Dj of highly redundant
dictionaries at various resolution. Other approaches have been proposed to learn a multiscale
dictionary, see for instance [46, 36].

4.3 Application to Texture Mixing

Texture mixing consists in synthesizing a texture f that blends seamlessly the geometric struc-
tures of two input exemplars f1 and f2. A dictionary D is learned to sparsify the patches of both f1

and f2. The set of patches is defined as the concatenation of the two patch matrices P = (P1, P2)
where Pi = Φ(fi). Note that this is different from computing the union D̃ = (D1, D2) of two
dictionaries trained independently on each texture, which leads to poor results because no atoms
in D̃ is able to mix features of both textures.

The algorithm 12 uses D to perform a synthesis that mixes the features of both f1 and f2. The
set of constraints C is defined using the histogram from pixels of both f1 and f2. Using a sparsity
s > 1 helps to blend the features of the two textures together.

4.4 Application to Sparse Texture Classification

Our sparse texture model can be used to segment a given texture f into components corre-
sponding to patterns similar to exemplars {f1, . . . , fL}. A texture dictionary D` is learned for
each texture f ` using the algorithm of table 5 with patches Φ(f `). The texture f to analyze is
modified according to each dictionary D`. This corresponds to the synthesis of a projected texture
f` by applying the synthesis algorithm of table 2 with f as the initial texture (in step 1, the random
noise is replaced by f).

The goodness of fit of the texture model of class ` around a pixel x is measured by the projection
error

Ã`(x) = |f(x)− f`(x)|2. (30)

Since the boundary separating the textured regions are assumed to be smooth, the classification
error is reduced by considering a smoothed projection error

A` = Ã` ∗Gσ0 (31)
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Figure 11: Influence of the redundancy r = m/n and sparsity s.

where Gσ0 is a 2D Gaussian filter of width σ0. The parameter σ0 should be adapted to match the
smoothed of the boundary of the regions to reduce as much as possible the classification error.

The classification `(x) ∈ {1, . . . , L} of a pixel x is defined as

`(x) = argmin
`∈{1,...,L}

A`(x). (32)

Table 6 summarize the main step of the segmentation algorithm.
Figure 13 shows the result of classification on a set of L = 5 exemplar textures. The input image

f of 256× 256 pixels is a patchwork of L textures extracted from large images. The exemplars f `

are similar textures extracted from the same set of images but at other locations.

Table 6 Texture classification algorithm.
1. Learning: the texture dictionary D` is learned for each class ` = 1, . . . , L.

2. Projection: compute f` by texture synthesis with dictionary D` applied to f .

3. Error: for each ` compute A` as defined using (31)..

4. Classification: compute the classifier `(x) using (32).

4.5 Texture Signature Model

The dictionary learning procedure detailed in section 4.1 allows one to parameterize the texture
model with a single dictionary D ∈ Rn×m learned from an input exemplar f̃ . This representation,
while being efficient, is not particularly compact since the original exemplar f̃ of N pixels is
replaced by a matrix of size n ×m which becomes large when the redundancy of the dictionary
m/n increases.
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Figure 12: Examples of texture mixing with sparsity s = 4.

This increase of dimensionality is reduced by taking into account the spatial relationship be-
tween the patches px(f̃) extracted from the input exemplar. This is achieved by assuming that
each atom di in the dictionary is a patch di = pxi

(F ) extracted from a image signature dictionary
F ∈ Rm of

√
m×

√
m pixels.

This image signature dictionary has been proposed by Aharon and Elad [1]. A similar procedure
has been introduced in computer graphics [23], but it is restricted to a strict sparsity s = 1. An
early approach to solve a similar problem of vector quantization is [14].

Using the patch extraction operator Φ defined in equation (2.1), a dictionary D = Φ(F ) ∈ Rn×m

is optimized by minimizing (29)

min
F∈Rm,W∈Rm×N

1
2
||P − Φ(F )W ||`2 subject to

{
∀ i, ||wi||`0 6 s,
∀ k, ||dk||`2 = 1.

(33)

where P stores the set of exemplar patches. If the size m of the signature F is smaller than N ,
the resulting texture ensemble is parameterized with a reduced set of parameters. The procedure
introduced by Aharon and Elad [1] minimizes iteratively (33) using a block coordinate descent, see
table 7.
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(a) (b) (c) (d)

(g)(f)(e)
ℓ = 1 ℓ = 2

ℓ = 4ℓ = 3

ℓ = 5

Figure 13: (a) Original texture f . (b) Projected texture f1 of f . Note how the upper left corner is
well preserved. (c) Projected texture f2. (d) Projected texture f3. (e) Ground trust classification.
(f) Classification `(x) computed with σ0 = 3 pixels. (g) Classification computed with σ0 = 6 pixels.

Table 7 Image signature learning algorithm.
1. Initialization: set F ← random.

2. Dictionary extraction: define D = ΦF .

3. Sparse coding: compute W by optimizing

wi ← argmin
w∈Rm

||pi −Dw||`2 subject to ||w||`0 6 s. (34)

which can be solved approximately with matching pursuit [37].

4. Dictionary update: update the dictionary D using either the MOD update or the K-SVD
update (see step 3 of table 5).

5. Signature update: Compute F ← Φ+D = 1
nΦTD.

6. While not converged, go back to 2.

Once a compact image signature F has been learned with this algorithm, the dictionary D =
Φ(F ) is used to perform texture synthesis with the iterative method exposed in section 2.3. Figure
(14) shows examples of synthesis using image signature dictionaries.

Conclusion

This paper describes a model to capture the geometric structures of homogeneous textures. This
model is based on a sparse expansion of the patches of the texture into a redundant dictionary.
Classical texture synthesis methods are equivalent to a strict sparsity of s = 1 into the highly
redundant dictionary of all the patches from some input exemplar. More refined models are learned
by optimizing a dictionary that sparsify a set of input patches. Such a compressed representation
can be tuned to achieve an increasing fidelity to the exemplar and is useful to perform texture
mixing and texture classification.
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Original f̃ Synthesized f Signature F

Figure 14: Examples of texture synthesis using an image signature dictionary.
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[43] G. Peyré. Non-negative sparse modeling of textures. Proc. of SSVM’07, pages 628–639, 2007.
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[52] D. Tschumperlé and R. Deriche. Vector-valued image regularization with PDEs: A common
framework for different applications. IEEE Trans. Pattern Analysis and Machine Intelligence,
27(4):506–517, April 2005.

[53] P. Tseng. Convergence of a block coordinate descent method for nondifferentiable minimiza-
tion. Journal of Optimization Theory and Applications, 109(3):475–494, 2001.

[54] M. Tuceryan. Moment-based texture segmentation. Pattern Recognition Letters, 15(7):659–
668, July 1994.

[55] L-Y. Wei and M. Levoy. Fast texture synthesis using tree-structured vector quantization.
In SIGGRAPH ’00: Proceedings of the 27th annual conference on Computer graphics and
interactive techniques, pages 479–488. ACM Press/Addison-Wesley Publishing Co., 2000.

[56] X-Y. Zeng, Y-W. Chen, D. van Alphen, and Z. Nakao. Selection of ICA features for texture
classification. In ISNN (2), pages 262–267, 2005.

[57] S. C. Zhu, X. W. Liu, and Y. N. Wu. Exploring texture ensembles by efficient markov chain
monte carlo-toward a ’trichromacy’ theory of texture. IEEE Trans. Pattern Analysis and
Machine Intelligence, 22(6):554–569, June 2000.

[58] S. C. Zhu, Y. Wu, and D. Mumford. Filters, random fields and maximum entropy (FRAME):
Towards a unified theory for texture modeling. Int. J. Comput. Vision, 27(2):107–126, 1998.

22

ha
l-0

03
59

74
7,

 v
er

si
on

 1
 - 

9 
Fe

b 
20

09


