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PREFACE 
Our interest in variational inequalities grew from studies of non-convex optimization theory 

and pseudomonotone operators as a basis for both the qualitative and numerical analysis of 
non-linear problems in continuum mechanics. The theory of variational inequalities is rich and 
exciting; within it, one can find a wealth of powerful ideas which not only reveal fundamental 
facts on the qualitative behavior of solutions to important classes of non-linear boundary-value 
problems, but which also provide a natural framework for a host of relatively new numerical 
methods. Equally important, the theory also enables one to construct a rather elaborate 
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approximation theory which brings to light useful information on the behavior of numerical 
solutions-error estimates, convergence criteria, etc. Finally, at the heart of variational in- 
equalities is their intrinsic inclusion of free boundaries; thus, they provide a natural and elegant 
framework for the study of the classical problem of flow through porous media. All of the 
applications of variational inequalities considered here are focused on problems of this 
type-the so-called seepage problems of slow irrotational flow of an incompressible fluid 
through a porous media characterized by Darcy’s law. 

Our aim in this monograph is to present a rather detailed survey of the theory of variational 
inequalities, their approximation and numerical analysis, and to demonstrate applications of 
these theories to the analysis of difficult free boundary problems encountered in the study of 
flow through porous media. Much of what we discuss here we owe to the principal developers 
of the subject: Stampacchia, Lions, Biaocchi, Mosco et al., but several of the results we 
describe, particularly on the computational side, are new. Our account is by no means 
complete; among other things, we do not treat variational inequalities for evolution problems 
and we identify several open questions concerning quasi-variational inequalities. We hope that 
the introduction to these subjects presented here will provide a basis for those who wish to 
pursue these subjects in more detail. 

We gratefully acknowledge that the work reported here was completed by the authors 
during the course of a research project supported by the U.S. National Science Foundation. We 
also express our thanks to Mrs. Dorothy Baker who skillfully typed the entire manuscript. 

Austin 
Summer 
1979 

J. T. ODEN 
N. KIKUCHI 

Introductory comments 

INTRODUCTION 

It is a well-known result in convex analysis that the minimization of a functional F defined 
on a closed convex set K leads to an inequality involving the derivative DF of F rather than 
the classical equality DF(x) = 0 which is valid when F is defined, for example, on a linear 
space. This fact has been exploited in the study of convex optimization problems for many 
years. What was not widely appreciated, however, until a decade ago, was that these ideas had 
far-reaching implications in many areas of non-linear mechanics; that, in particular, many 
free-boundary problems could be elegantly formulated using extensions of these ideas, and that, 
concomitantly, a variety of mathematical methods, both analytical and computational, could be 
used to study free-boundary problems which were formulated this way. 

Modern work on the theory of variational inequalities began with the pioneering papers of 
Fichera[ 11, Stampacchia [2], Lions and Stampacchia[3] and Brezis [4], and was further 
developed by the French and Italian school of applied mathematicians during the last decade 
(e.g. Mosco[5], Glowinski, Lions and Tremolieres [6], Fichera[7], Duvaut and Lions[8]). 
Excellent surveys of these ideas have been contributed by Mosco[5,9], Stampachia[lO] and 
Lions [ 1 I]; applications to a wide variety of free-boundary problems are discussed in the book 
of Duvaut and Lions[8]. Numerical methods based on variational inequalities are discussed in 
the two-volume text of Glowinski, Lions and TrCmolieres[6] and in the monograph of 
Glowinski[ 121. The application of variational inequalities to free-boundary problems arising in 
the flow of fluids through porous media was studied by Baiocchi[l3] and Baiocchi et al.[14], 
and a numerical analysis of such problems was investigated by Baiocchi et al. [ IS]. Theorems on 
the convergence of finite element approximation of certain classes of variational inequalities 
were developed by Falk[l6], Brezzi, Hager and Raviart [17] et al. Additional references to 
literature on variational inequalities and their applications can be found in the works cited 
above. We will also cite other references relevant to our study later in this work. 

Our objective here is five-fold: 
1. To give a summary account of the general mathematical theory of variational inequalities 

set in the framework of non-linear operators defined on convex sets in real Banach spaces. We 
focus our attention on existence and uniqueness theorems for such abstract problems for, as 
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will be shown, these form the basis for the construction and analysis of numerical methods for 
such problems. 

2. To study the approximation of variational inequalities by finite element methods, and to 
study various numerical schemes that can be used to solve discrete models of variational 
inequalities. 

3. To describe the formulation of the seepage flow problem by variational inequalities using 
variants of the Baiocchi transformation, and to study the existence and regularity of solutions 
to such problems. 

4. To develop finite element methods for the approximate solution of seepage flow prob- 
lems. Here we are also concerned with the existence of solutions to the approximate problems, 
the convergence of finite element approximations, and the development of a priori error 
estimates. 

5. To solve numerically several representative seepage flow problems and to discuss and 
compare various numerical schemes. 

The theoretical foundations of variational inequalities are taken up in Chap. 1 following this 
introduction. There we give a rather complete account of the theory as it applies to monotone 
and pseudomonotone operators on reflexive Banach spaces. We also discuss the theory of 
quasi-variational inequalities, which we later show to be very important in the study of certain 
seepage problems. 

Finite element approximations and various numerical methods are discussed in Chap. 2. We 
review the theory of Falk[l6] for error estimation of certain classes of variational inequalities, 
and we describe algorithms for the solution of systems of inequalities; in particular, we examine 
fixed-point (contraction mapping) methods, S.O.R.-projection methods, Lagrange multiplier 
methods, and penalty methods. Some numerical experiments designed to test the validity of the 
theoretical estimates and to compare methods are also presented in this section. 

For completeness, we give proofs to all of the major theorems discussed in Chaps. 1 and 2. 
The formulation of seepage flow problems is discussed in Chap. 3. Here a rather general 

formulation is developed, using the notion of quasi-variational inequalities. We then consider a 
number of special cases, describe some numerical experiments, and compare results with those 
obtained by other methods. 

Chapter 4 is devoted to the analysis of seepage in non-homogeneous dams in 
which the permeability k at a point (x, y) is given as either a function of only x or only y. 
Numerical examples are described and the results are compared with those obtained by other 
numerical techniques. 

Selected special problems are treated in Chap. 5, including the effects of impermeable sheets 
as boundaries, and channel problems. 

Conclusions reached during our study and comments on possible directions for future 
research are collected in Chap. 6. 

Notation and conventions 
Notations and terms common in literature on functional analysis, partial differential equa- 

tions, and the mathematical theory of finite elements are used throughout this study. Intro- 
ductory accounts of analysis sufficient to provide a background for this work can be found in 
the text of Oden[l8]. For an introduction to the mathematical theory of finite elements, see, for 
example, the books of Oden and Reddy[19], Ciarlet1201, or Vol. 4 of the series by Becker, 
Carey and Oden[21]. The definitions of most symbols are given where they first appear in the 
text. The following conventions and definitions are used frequently in our study 

%, “Ir = real Banach spaces with norms I( * 11% and )( * (Iv, respectively. 
91’ = the (strong) topological dual of 91. 
(a;): 91’ x % + R = canonical duality pairing from 42’ X Q into R; thus, if f is a continuous 

linear functional on 91, we write 
f(u) = K 4 

A: K C 91+ B’ = an operator defined on a set K in % with its range in the dual of 62; A is 
monotone if 

(A(u)-A(u),u-u)zO Vu,uE% 
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A is hemicontinuous at u if ~0: [0, 11-R is continuous for all v, w E %, where p(t) = 
(A(u + tu), w); A is coercive on K if, for u E K, there is a u0 E K such that 

{u,} E K = a sequence drawn from a set K C 41; a sequence converges strongly to u E Q 
whenever 

Iim j/urn - uJl% = 0 
ftl- 

and {u,,,} converges weakly to u E Ou whenever 

lim (f, urn> = (f, 24) Vf f 91’ 
l?l- 

K = a subset of 91; K is convex if, Vu, v E K, the line segment 

8u+(l-6)v V~E[O,i) 

belongs to 1% K is bounded if a constant M < m exists such that ]lu]f% I M for a11 u in K. K is 
weakly sequentially closed if every weakly convergent sequence in K has its weak limit in K: 
K is closed if the limit of every strongly convergent sequence drawn from K is in K. 

F: K C 913 R = a real functional defined on a subset K of the Banach space %. 
DF: K + 4!i’ = the Gateaux derivative of F; i.e.. DF(u) is the linear functional in %’ 

satisfying, Vv E 021, 

,l5+ $ F(u t to) = @F(u), v) 

F:KCQ+Risconvexif 

F(Bu t (I- 6)v) 5 BF(u) + (1 - @F(u) 

for all u, v E K and 0 E [0, 11; F is concave if - F is convex. 
F: K C 0% + R is weakly lower semicontinuous if, for every sequence (urn} E K converging 

weakly to u E K, we have 

lim inf F(u,,,) 2 F(u) 
m-+= 

If the reversed inequality holds (0, for lim sup F(u,), F is weakfy upper semicontinuous. 

Wan = the Sobolev space of order Cl,;) for a bounded domain RC R”, m 20, I sp 5 
m, equipped with the norm 

where standard multi-index notations are used (see, e.g. Oden and Reddy[l9]). When, from the 
context, the domain Q is understood, we write I/+ /Jmzp rather than 11’ Jjm,p,n. 
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W?“(a) = the closure of the space C;(n) of infinitely differentiable functions with compact 
support in R with respect to the Sobolev norm (I*Jlm,p,o. 

Wmm*“‘(fl) = ( Wp"(sZ))', the topological dual of WEEP; here 

H”(a) = the Hilbert spaces Wm.*@); JIuIJ,,,,:! =/z&. 
H;(n) = W,mJ(fl). 

H-“(R) = (H;(R))‘. 
We will also frequently make use of the fact that every bounded sequence {u,} in a reflexive 

Banach space has a weakly convergent subsequence. The spaces Wmsp(fl) and Wo”*p(sZ) are 
reflexive whenever 1 < p < m; hence H”‘(fi) and H;;(R) are reflexive. 

I. VARIATIONAL INEQUALITIES 

The modern theory of variational inequalities has its roots in the classical problem of 
minimizing a convex differentiable function on a convex set. Consider, for example, the 
elementary problem of determining the real number x0 at which the quadratic function 

F(x)=;bx2-ax+c. b>O, xER (1.1) 

attains its minimum value. The minimizer is, of course, characterized by the condition 

F’(xo)= bxo-a =0 (1.2) 

so that F attains its minimum at x0 = a/b. The situation is, however, quite different if we add to 
the minimization problem a constraint on x, e.g. 

xOEK={xER:O~x~l}. (1.3) 

Then (1.2) may not properly characterize the solution. A minimizer x0 of F in K satisfies, by 
definition, the inequality 

F(x,) 5 F(x) x E K 

Since K is convex, x0 + 0(x - x0) = 0x + (1 - 0)x0 E K, 6 E [O, 11. Hence, for every x E K 

F(xo + 8(x - xo)) 2 F(xo) 

and 

;l+ ; [F(x, + 0(x - x,,)) - F(xo)] = F’(xo)(x -x,,) 2 0 

In other words, a minimizer x0 of F is now characterized by the inequality 

F’(x,)(x - x0) 2 0 Vx E K. (1.4) 

Examples are shown in Fig. 1.1. Notice that all of the minimizers indicated in Figs. l.l(a-c) 
satisfy (1.4); only the case in 1.1(c) in which the minimizer x0 falls on the interior of K is such 
that F’(xo) = 0. But this also covered by (1.4) because if x0 E int K, an E > 0 can be found such 
that x = x0 _+ l y and 2 8(x&y 2 0 for any y E K, which is possible only if F’(x,) = 0. Hence (1.4) 
includes the characterization (1.2) as a special case. 
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(b) 

I 

lc) 
0 

K I 
I x 

Fig. 1.1. Minimization of a convex function on a convex set. 

Another important and interesting aspect of variational inequalities is, that in many cases, 
they can be shown to characterize so-called free boundary-value problems. This feature was 
exploited by Lions[22] in 1974 and has contributed to its popularity in studying a variety of 
physical problems. To illustrate this property, consider the following example: 

Example l-l. 1. Consider the variational inequality: u E K 

I O’{u’(v-u)‘+(v-u)}dxrO, VVEK 

where K = {v E H'(0, 1): u(0) = l/4, o(l) = 0 and v 2 0 in (0, I)}, and u’ = duldx. 
Suppose that u E K is a solution of the variational inequality. Taking v = u + cp, cp E Cz(O, 1) 

with cp 10 in (0, 1) yields 

J 
I 

(u’p’ + cp) dx 2 0. 
0 

Since cp is an arbitrary positive function, the inequality implies that 

-u”+lrO 

in the sense of distributions. Further, suppose that the solution u is smooth enough, e.g. 
u E H2(0, 1). Then - u”+ 12 0 is satisfied, a.e. in (0,l). 
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By Sobolev’s imbedding theorems, H’(0, 1) C C[O, 11. Then there exists an interval (0, S), 
S < 1, such that 

u(x) 2 c in x E (0,s) 

for an arbitrary given number E > 0. For any function cp E Ct(O, S), there exists a constant P 
such that 

(U ? &)(x) 2 0 in (0,s). 

Extending cp to (0,l) by zero outside of (0,6), and substitution of u + &(p into the variational 
inequality leads to the conclusion that 

I 
6 

(u’cp’ + cp) dx = 0 
0 

i.e. 

-u”+l=Oin(O,S) 

in the sense of distributions. Let q8 be a c-function in (0, S) such that cps(0) = l/4, cps(S) = 0 
and U(X) 2 cps(x) 2 0. Taking o = cps in (0, 8) and u = 0 in (6, 1) implies 

u’& + I ‘( u’u’ + u) dx 5 0. 
6 

Taking u = 2u - cps in (0, S) and o = 2u in (8, 1) shows that 

u’& + I I( u’u’ + u) dx 2 0. 
6 

Thus, we have 

u'r& t I ‘( u'u' t u) dx = 0 
8 

i.e. 

(- u” t 1)u = 0 in (6, 1). 

Combining all results obtained above, the solution of the variational inequality satisfies 
the system 

, 

uro 
(-u”t 1)u =o 

’ in (0, 1) 
-u”t 1 ro 

u(O)= l/4 and u(l)=0 

provided that u is smooth enough; e.g. u E H*(O, 1). 
We next make an important observation: the above system defines a natural partition of the 

domain [0, I] into the subsets 

a’ = {x E [0, 11: u(x) > 0) and R” = {x E [O, 11: u(x) = 0). 
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The point P of intersection, P = @ n fro, defines a free boundary in the domain of the solution 
u and 

- u”+ 1 = 0 in [0, P) = 0’ 
u =0 in [P, l] = R”. 1 

In this case P = l/V’?. We can easily prove that there is only one free boundary P in (0,l). 
Suppose that pi and p2 are free boundaries in (0, 1) such that 

-u”+l=O in (pl,p2) 

@I) = 02) = 0. 3 

Then u(x) = (1/2)(x -p&x -p2) in (p,, p2). This clearly satisfies the condition u(x) ~0 in 
(p,, p2), i.e. u$Z K. Therefore, such p1 and p2 do not exist because of the constraint u(x) 2 0 in 
(0, 1). It is also worthwhile to note that if another boundary condition is imposed, the free 
boundary P may not occur. For example, if K’ = {u E H'(0, 1): o(0) = 1, u(l) = 0, v(x) 2 0 in 
(0, l)}, then the solution is 

32 1 
u(x)=; x-2 

( > 
-ii in (0, 1). 0 

The importance of the elementary ideas just described is that they can be easily extended to 
very abstract situations involving operators defined on closed convex subsets of linear topolo- 
gical spaces. Indeed, if A: K + 41’ is an operator defined on a non-empty closed convex set in a 
real linear topological space 91, the abstract problem of finding u E K such that, for given 

fE%‘, 

(A(u)-f,v-u)zO VUEK (1.5) 

is called a variational inequality for the operator A (here (e, *) denotes duality pairing on 
a’ x sl). The operator A need not be linear or even monotone and it need not be derivable from 
a potential functional F: K + R. 

Although inequalities of the type (1.5) arise naturally in problems of minimization of convex 
differentiable functionals on convex sets, we will show that similar inequalities characterize 
minima of non-differentiable functionals as well. Thus, the theory of variational inequalities 
combines many of the elements of monotone operator theory and convex analysis in a way that 
generalizes both and has many significant applications in theoretical mechanics. 

Our aim in this chapter is to give a brief account of the general theory of variational 
inequalities. Following this introduction, we describe a number of properties of variational 
inequalities on Hilbert and finite dimensional spaces. We then prove a general existence 
theorem for variational inequalities involving pseudomonotone operators defined on subsets of 
reflexive Banach spaces. 

1.2 Some preliminary results 
We will establish some very general results on abstract variational inequalities in the next 

section. However, in order to reinforce some of the geometrical concepts associated with 
certain types of variational inequalities and to record some preliminary results which are useful 
in studies of more general theorems, we will consider here several aspects of the theory which 
are clearer in a more restricted setting. 

Let us first point out that the elementary example of minimizing a real-valued function of a 
real variable subject to a convex constraint which we sketched briefly in Section 1.1 is 
immediately extendable to a rather broad class of variational problems involving functionals on 
convex sets in normed linear spaces. 

Theorem l-2.1. Let K be a non-empty, closed, convex subset of a normed linear space % 
and F: K + R a real Glteaux-differentiable functional defined on K. Then any u E K which is a 
minimizer of F is characterized as a solution of the variational inequality 

(DF(u), u - u) L 0 Vu E K. (2.1) 
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If, in addition, F is convex, then any solution of (2.1) is also a minimizer of F, i.e. 

1181 

F(u)!sF(u) VVEK. (2.2) 

Proof. Since K is convex, u + e(o - U) E K for any 0 E [0, I] and U, D E K. If u is a 
minimizer of K, F(u + 0( 0 - u)) 2 F(u). Hence Vu E K 

hl+ + [F(u + f?(u - u)) - F(u)] = (DF(u), z, - u) 2 0. 

If F is Gateaux differentiable and convex 

so that 

F(u)-F(u)+F(u+e(v-u))-F(u)]. 

Taking the limit as 19+0+ gives 

F(u)-F(u) Z(DF(U), v -U). 

Thus, if u satisfies (2.I), F(u) I F(u) for any v E R q 
The question of existence of solutions to (2.1) is more difficult. Since (2.1) and (2.2) are 

“equivalent” for convex F, we can, in this special case, write down sufficient conditions for 
existence by simply calling on the existence theorems for minimizers of differential functionals. 

First let us record the generalized Weierstrass minimization theorem: 
Theorem i-2.2. Let ‘3 be a reflexive Banach space and K a non-empty closed convex subset 

of 91. Let F: K+R be a functional defined on K which is 
If {urn} E K converges weakly to u E K, then 

lim inf F(u,) r F(u): 
IX- 

Then F is bounded below on K and attains its minimum 
following conditions hold: 

(i) K is bounded, or 
(ii) F is coerciue, i.e. 

weakfy lower semicon~i~~ous, i.e. 

value on K whenever either of the 

F(v)-++m as /ulla+~_ 

ProoK First suppose that K is bounded but, contrary to the assertion, F is not bounded 
below on K. Then we can choose {u,,,} E K so that u,- u weakly, but lim inf F(u,) 2 F(u), a 

contradiction. Hence, F is bounded below. Let ILO= inf {F(v): D E K} a;zet {uk} be such that 
1~g = Fz F(u~). Since K is bounded, {uk} contains a subsequence (uk.1 which converges weakly 

to an element u in K. Hence ,UO 5 F(u) and lim inf F(uk.) = ~0 z F(u), from which we conclude 
that p. = F(u). k’-w 

Next, suppose that K is unbounded but that F is coercive. Then for r a sufficiently large 
positive number, F(u) > F(uo), u. E K, for )I u LpL > r. The ball 11 B, = {u E K : [lulla 5 r} is 
closed, bounded, and convex. Hence F attains its minimum on K fl B,.. However, inf {F(u): 
u E K n B,] = inf {F(u): u E K), so that theorem is proved. Cl 

We remark that the conclusions of this theorem also hold if K is only weakly sequentially 
closed (i.e. any weakly convergent sequence in K has as its iimit an eIement of K), but every 
closed convex set in a reflexive Banach space is necessarily weakly sequentially closed. 
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Thus, for coercive F, we need only establish sufficient conditions for F to be weakly lower 
semicontinuous in order to guarantee the existence of minimizers on closed convex sets. There 
are several conditions we could impose which are sufficient to guarantee weak lower semicon- 
tinuity (see, e.g. Ekeland and Teman[23] or Vainberg[24]), but that which is used most 
frequently in convex analysis for differentiable F is that F be convex. To see this, we make use 
of the easily verified fact that the following are equivalent 

(i) F is convex on K. 
(ii) F(u) - F(u) 2 (DF(u), u - u) Vu, v E K. 
(iii) DF is monotone, i.e. 

(DF(u)-DF(u),u-v)rO Vu,uEK (2.3) 

where K is a non-empty, closed convex subset of a reflexive Banach space. Thus, if {u,} is a 
sequence drawn from K which converges weakly to u, lim inf (F(u,,,)- F(u))2 
lim inf {DF~~), urn - u) = 0. Hence lim inf Ffu,) 2 F(u). nr+a 
RZ- 

Combining the above observatiol;with Theorem l-2.2, we have: 
Theorem l-2.3. Let F be a Gateaux-differentiable, convex, coercive functional defined on a 

non-empty, closed, convex set K in a reflexive Banach space. Then there exists at least one 
minimizer u of F on K. Moreover, u is characterized as a solution of the variational inequality 
(2.1). 17 

femurs l-2.1. If F is GSiteaux differentiable and ~~~crfy convex on K (i.e. F(Bu + 
(1 - 8)~) < flF(u) +(1 - @F(Y), Vu, ZI E K, u# v, 8 E (0,l)) then the minimizer of F is unique. 
Also DF is strictly monotone. 0 

Remark l-2.1. If F is not convex but is Gateaux differentiable, weaker conditions can be 
imposed in order to guarantee weak lower semicontinuity. For example, it is shown in Oden and 
Kikuchi[25] that F is weakly.lower semicontinuous if 

(DF( u) - DF( u), u - v> 2 - H(,u, //u - u/‘c.) 

where H is a non-negative continuous function, l[t& 5 IL, ((uJJq I CL, “Ir is a space on which % is 
compactly embedded, and !I+ (ll@H(x, @y) = 0, X, y E R+. 0 

Remark l-2.3. Our results apply to functionals with values in R. However, extensions of 
most of these results to functionals taking values in the extended real line RU {t”) or 
R U {-m} U {+m} are straightforward. Then we speak of proper functionals whenever 
F(u)+ + CQ for all u and the effective domain of F, eff. dom F = {u E K: F(u) < + M}. Cl 

Since DF is, in general, a nonlinear operator, (2.1) represents a non-linear inequality in u. 
However, if F is convex and LW is hemicontinuous, a simple alternate formulation, equivalent 
to (2.1), that involves a linear inequality in u can be derived. Indeed, if F is convex and 
Gateaux differentiable, DF is necessarily monotone, so that 

(DF(u)-DF(u), u-v)LO. 

But this implies that 

(DF(o),v-u)r(DF(u),v-u)rO VuEK 

whenever u satisfies (2.1). Conversely, suppose 

{~F(~),~-u)~O VWEK. (2.4) 

Set w = u + e(u - u), 0 E (0, l), divide by 0 and take the limit as o-+0. This yields (2.1). Hence, 
we have proved: 

Theorem l-2.4. Let (2.3) hold and DF be hemicontinuous. Then problems (2.3) and (2.4) are 
equivalent. Cl 

Let us interpret Theorems l-2.1 and l-2.4 geometrically in the case that 021 is a finite 
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dimensional Euclidean space R”. In this case, IF(u) is the gradient of F at the point 
u = (u,, . . . , u,) and 

@F(u), w) = DF(u). w = 

is the derivative of F at u in the direction of w = (wi, . . . , w,,,). The vector DF(u) is oriented 
toward the direction of maximum increase of F at u and is normal to the surfaces F = constant. 

Since F is convex, its level sets 

LA={vEK:F(u)sA}, AER 

are convex. Then, all vectors w such that 

@F(u), w - u) 2 0 

define directions of increasing (or non-decreasing) F from the point u. This means that 

F(w) 2 F(u). 

Thus, if (2.1) holds, (2.2) must be valid. 
Conversely, let M(v) denote the set of all w E K from which v E 41 is seen in a direction of 

increasing F, i.e. 

M(v) = {w E K: (DF( w), v - w) r 0). 

If u E K is a minimizer of F on K 

i.e. 

@F(u), v - u) 2 0, Vu E K. 

Thus, we have interpreted Theorem 1-2.1. 
Similarly, let N(u) denote the set of all w E K from which v E 91 is seen in a direction of 

decreasing F, i.e. 

N(v) = {w E K: @F(w), v - w) 10). 

If u E K is a minimizer of F on K, N(u) is identified with the set K, i.e. 

(DF( w), u - w) 5 0, VW E K. 

Conversely, if (2.4) holds, u E K is seen in a direction of decreasing F from every point v E K. 
This means that u is a minimizer of F on K. 

1.3 Projections in Hilbert spaces 
Another geometrical interpretation of some importance arises in the case in which 0% is a 

real Hilbert space X with an inner product (e, *). Suppose that we wish to find the minimum 
distance between a given f E X and a closed convex set K C X, i.e. we wish to find u E K such 
that the (squared) distance function 

F(u) = Ilf - VII*, Ilull* = (v, 0) 
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is a minimum. Clearly, F is a lower semicontinuous functional defined on a closed convex set in 
a reflexive Banach space (any Hilbert space is reflexive). Hence, it attains its minimum on K. 
We define such a minimizer, denoted by PIJ, as the projection of f into K. Moreover, F is 
strictly convex on K so that the minimizer is unique and is characterized by 

o~(DF(u),u -u); @F(u), u-u)=2(u -f, o-u) 

i.e. 

(u-f,u-U)?O VUEK. (3.1) 

Geometrically, (3.1) indicates that the angle between the vector f - u and any vector v - u in K 
is obtuse, as illustrated in Fig. 1.2. 

The unique vector u satisfying (3.1) is thus the projection of f into K. 
Clearly, if f~ K, then PKf =f. Moreover, if K is a linear subspace of X’, then PK is 

still surjective and 

cf-PKf,u)=O VuEK 

i.e. the error f - PKf is, in this case, orthogonal to K. Note that if K is only a convex subset of 
X, PK need not be linear. However, it is continuous. Indeed, if f,,, +f strongly in X, then 

IlPKfm - w112 = ukfm - PKf, PKfm - PIJ) 

=(f-PKf,PKfnl -PK_f)-(P& -fm,PKf-P&) 

+(fm -f,Pdm -PI&. 

In view of (3.1), the first two terms on the right-hand side of this last equality are seen to be 
non-positive. Thus, use of Schwartz’s inequality reveals that 

IlWm - PKfll 5 ll.fm - A. (3.2) 

Hence PK is continuous. 
Example 1-3.1. Let 2 = R”, and let the inner product (e, *) be defined by 

(u, u) = UlUl t . . * -I- l&u,. 

Fig. 1.2. Minimization of the distance from an arbitrary point f to a convex set K. 
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Suppose that 

Then the projection PK can be explicitly represented by 

(P&i = max cfi, 0). (3.3) 

To show this, let us consider the (variational) inequality 

uEK:(u-f,v-u)zO, VVEK. (3.4) 

Taking D = (~1,. . . , Ui-1, Vi, Ui+l,. . . , u,), Vi 20, in (3.4) yields 

uiZO:(Ui-fi)(Vi-Uj)zOv VViro. (3.5) 

It is easy to show that Ui = max cfi, 0) satisfies the inequality (3.5). Indeed, if fi ~0, ui = 

max cfi, 0) = 0. Then 

If fi 2 0, ui = max (fi, 0) = fie Then 

(Ui - fi)(Vi - Ui) = 0, VVi ? 0. 

Thus Ui = max cfi, 0) is a solution of the inequality (3.5). Suppose that (3.5) has two solutions, 
say r& and & i.e. 

airO:(~iifi)(Vi-~i)5:0, VViZO 

Substituting vi = iii in the first inequality, ai = tii in the second inequality, and adding two 
inequalities, we have 

(/ji - Gi)(Zii - Gi) ro. 

This implies Isi = rii, i.e. the uniqueness of the solution of (3.5). Therefore 

Ui = (P&i = max cfi, 0). 

Applying the same arguments for 

M={vER”:v~TsO, i=l,...,m) 

we have 

(P&&i = min (fi, 0). 

Combining (3.3) and (3.7), for 

N={uER”:u~sv~s~~, i=l,...,m} 

(3.6) 

(3.7) 

(3.8) 

we have 

(pNf)i = min (max (Ui, fi), bi). 0 (3.9) 



1186 J. T. ODEN and N. KIKUCHI 

The properties of the projection PK suggest an alternative to the formulation that is of some 
importance in the approximation and numerical analysis of variational inequalities as well as in 
proving the existence of solutions in certain special cases. Suppose that u E K is the minimizer 
of a convex Gateaux-differentiable functional F: K + R on a non-empty closed convex set K of 
a real Hilbert space X Then, by Theorem 1-2.1, u satisfies 

(DF(u),u-u)zO VUEK 

where (s;) is the duality pairing on x’ x &p. By Riesz representation theorem, every continuous 
linear functional on X can be identified with the element of X, i.e. 

(f,v)=(7rf,u), VfEX and VEX 

where 7~ is the Riesz map form x’ into R Consequently 

(rDF(u), v - u) 2 0 

and, for any p > 0 

(u-u+prDF(u),v-u)rO, VVEK. 

Therefore, u E K satisfies the equation 

u = PK(u - prDF(u)) 

where PK is the projection map of X onto K. This means that a minimizer u E K of F on K is a 
fixed point of the operator T defined by 

T(.) = PK(I - pnDF)(.) (3.10) 

As an application of these ideas, consider an operator A: K C X+ X X being a real Hilbert 
space with an inner product (e, a), which satisfies the conditions 

(A(u) - A(v), u - v) 2 m//u - u[(* 

(A(u) - A(v), w) 5 Mb - dlllwll (3.11) 

Vu, v, w E K 

where m and M are positive constants and I/~/j2 = (-,a). We define a new map T: X+ K by 

T(w)=PK(I-PA)(W), p>O. (3.12) 

Then, from (3.1) 

(T(w)-(I-pA)(w),v-T(w))?0 VVEK. 

Furthermore, if T has a fixed point u, then this inequality reduces to 

(A(u),v-u)>O VVEK (3.13) 

i.e. a fixed point of T, if it exists, is a solution of the variational inequality (3.13). 
We will show that if the number p in (3.12) is chosen properly that T is, in fact, a 

contraction mapping, i.e. that there exists a k, 0 < k < 1, such that 

IL’-(u) - T(v)11 5 k/b - d. (3.14) 
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Indeed, using (3.11) and (3.12) 
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= (u -PA(U) - u + PA(U), u - pA(u) - u + PA(U)) 

= ((u - 01)~ - 2p(A(u) - A(u), u - u) + p*()A(u) - A(u) 

5 (1 - 2pm + p*M*)I(u - uJI*. 

Thus k in (3.14) satisfies 0 < k < 1 whenever 

k2=1-2pm+p*M* and O<p<$. (3.15) 

Since we can always choose p so as to satisfy (3.19, T of (3.12) can always be constructed so 
as to satisfy (3.14); hence, there exists a unique solution to the variational inequality (3.13). 
Moreover, the solution to (3.13) can be obtained as the strong limit of the sequence generated 
by the classical iterative process 

U “+’ = T(P) = PK(u” - pA(u”)) (3.16) 

whenever p satisfies (3.15). 
In summary, we have: 
Theorem 1-3.1. Let X be a real Hilbert space, K a non-empty closed convex subset of 2, 

and A: K-P X an operator satisfying (3.11). Then there exists a unique solution u E K of the 
variational inequality (3.13). Cl 

1.4 The Hartman-Stampacchia theorem 
In the previous section, we have proved constructively that the map T defined by (3.12) 

T(w) = &(I -PA)(W), P > 0 (4.1) 

has a unique fixed point for suitable p > 0 when the condition (3.15) holds. Here we will show 
that the map T has a fixed point for every p > 0 under the continuity condition of A, if the 
space % is finite dimensional. 

Let 91 be a finite dimensional space, and let K be a non-empty compact convex subset of %. 
We first recall the modified Brouwer fixed-point theorem: 

Proposition 1-4.1. Let K be a non-empty compact convex subset of a finite dimensional 
space %. Suppose that a map T: K + K is continuous. Then there exists at least one fixed point 
u E K such that 

u = T(u). 0 

Because of the projection PK, the map T defined by (4.1) satisfies the condition that 
T: K + K. Furthermore, continuity of A and PK implies the continuity of T. Therefore, by the 
Brouwer fixed-point theorem, there exists at least one fixed point u E K such that 

u = T(u) = P,du -PA(U)), p > 0. (4.2) 

By the characterization of the projection PK, (4.2) is equivalent to the inequality 

(u-(u-pA(u)),u-u)rO, VUEK 

i.e. 

(A(u), u - u) 2 0, Vu E K. 
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Therefore, we can conclude that: 
Theorem 1-4.1. Let K be a non-empty compact convex subset of a finite dimensional space 

91. Suppose that A is a continuous map of % into itself. Then there exists at least one solution 
I( E K to the variational inequality 

u~K:(A(u),v-u)zO, VVEK (4.3) 

where (e, a) is the inner product of %. 0 
The above theorem is due to Hartman and Stampacchia[26]. 
Remark l-4.1. We note that the Brouwer fixed-point theorem can be obtained from the 

Hartman-Stampacchia theorem. Let K be a non-empty compact convex subset of a finite 
dimensional space 41, and let T be a continuous map of K into itself. Then A = I - T is 
continuous on 91. By the Hartman-Stampacchia theorem, there exists at least one u E K such 
that 

(A(u), v - u) 2 0, Vu E K. 

Since T(u) E K, we have 

(u - T(u), T(u) - u) 2 0. 

This means that u = T(u). 
Thus, the Brouwer theorem precipitates as a corollary to the Hartman-Stampacchia 

theorem. Cl 

1.5 Variational inequalities of the second kind 
The variational inequalities described up to this point involve the search for elements u in a 

closed convex set K C % such that (A(u), v - u) 2 0 for all v E K, A being an operator from K 
into 91’. We will call such problems variational inequalities of the first kind. Here we take 
F: 91 +fi = R U {+ m}. (Recall Remark 1-1.3.). 

It is possible to reformulate such inequalities so that they are defined on the totality of the 
space 41 rather than K by introducing an indicator functional cbi< defined by 

(5.1) 

where K is a non-empty closed convex subset of 91. If A: 91 + W, it is clear that if u satisfies 

uEK:(A(u),v-u)rO, VvEK (5.2) 

then u also is a solution of 

(A(u),v-u)+$~(v)-&&)zO, VvE%. (5.3) 

Conversely, any solution u E K of (5.3) is also a solution of (5.2). 
The variational problem (5.3) is an example of a variational inequality of the second kind. 

Note that the indicator function 1,9~ is convex but not differentiable. We will now show that we 
can enlarge on the class of variational problems of this type by considering minimization 
problems involving general convex non-differentiable functionals. The typical setting for the 
class of variational inequalities of the second kind which we consider here is as follows: 

% is a reflexive Banach space. 
F: 91 +?i is a proper Gfiteaux-differentiable convex functional. 
4: % +(-m, m] (# + m) a convex functional not necessarily differentiable. 

We wish to find minima of the functional 

G=F+6 

(5.4) 

(5.5) 
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i.e. we wish to find II E % such that 
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G(u) I G(v) Vu E Q. (5.6) 

The characterization of such minima as solutions of a variational inequality is laid down in 
the following theorem: 

~~eo~e~ I-5.1. Let (5.4) hold. Then any minimizer II E % of the functional G of (5.5) 
satisfies 

(DF(U),U-u)+(a(v)-qb(u)rO VvE9L (5.7) 

Conversely, if u E ‘32 satisfies (5.7), then it minimizes G. Cl 
Proof. Suppose u is a minimizer of G and 8 E (0,l). Since F and #J are convex 

F(u) + cfifu) 5 F(u + 6(u - u)) t (6(u + etv - u)) 

5 F(u + f3(u - u)) t e&u) + (1 - @i$(u) vu E % 

Hence 

$F(u+B(u-u))-F(u)la$(u)-4(v) 

so that (5.7) is obtained in the limit as a-+0+. 
Next, suppose that II satisfies (5.7). Since F is convex 

(DF(u),u-U)lF(U)-F(u) VvE% 

Thus, for every u E %, F(v) - F(U) + 4(u) - #J(U) _Z 0, or G(u) zz G(v), Vu E %!. Cl 
Inequality (5.7) is an example of a variational inequality of the second kind. Such in- 

equalities need not involve gradients of differentiable functions. We will study v~iational 
inequalities of this type in more detail later. 

1.6 A general theorem on variational inequalities 
We will now consider a general existence theory for solutions of abstract variational 

inequalities on Banach spaces.? Let 

% be a separable+ reflexive real Banach space, 
KC 91 a non-empty closed convex subset of %. 
A: K + 42’ an operator defined from K into the (strong) 
topological dual 91’ of bu. 

(6.1) 

We will establish conditions under which solutions exist to the variational inequality: find u E K 
such that 

(A(u),u-u)zO, UEK. (6.2) 

~eorem l-6.1. Let conditions (6.1) hold and let the operator A: K + 91’ be 
(i) Bounded. 

(ii) Pseudomonotone: if {u,,,} is a sequence from K converging weakly to u E K and if 
lim sup (A(u,), u,,, - u) I 0, then 
WI- 

lim inf (A, u,,, - v) 2 (A(u), II - u) Vu E K. 
@l-pi 

tThese results can be further generalized to inequalities on linear topological spaces. See Brezis[4]. 
Yl%e assumption of separability is not essential and is introduced only for simplicity in certain arguments to follow. 
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Moreover, suppose that 

(iii) K is bounded. 

J. T. ODEN and N. KlKUCHl 

Then there exists at least one solution of the variational inequality (6.2). 
Proof. The proof follows standard compactness arguments common in pseudomonotone 

operator theory, except that now we must resolve the finite dimensional problem using the 
Hartman-Stampacchia Theorem l-4.2. 

Suppose that [wr, w2,. . .I is a countable everywhere dense set in % and [w,, w2,. . . , w,,,] is a 
basis for a finite dimensional subspace 41, of %. The family of such subspaces obtained as m 
takes on all positive integers is such that U %,,, is everywhere dense in %. Without loss of 

mrl 

generality, suppose 0 E K and consider the family of sets 

K,=Q,nK mzl 

- i 

(6.3) 

u K,,, = K. 
mrl 

Each set K,,, is a non-empty bounded closed convex subset of 91. Moreover, A: K, * %A is 
continuous since A is pseudomonotone and bounded. Thus, by Theorem 1-4.1, there exists a 
solution urn E K,,, of the finite dimensional variational inequality 

(A(um)v urn -u,)rO Vu, E K,,,. (6.4) 

Now we recall that any closed, bounded, convex set K in a reflexive Banach space is 
weakly sequentially compact. Hence, if {u,} is a sequence of solutions of the finite dimensional 
problems (6.4) obtained as m -+m, there exists a subsequence {u,,} which converges weakly to 
an element u E K. In view of (6.4), lim inf (A(u,), v - u,) 2 0, Vu E K, so that, putting u = v 
reveals that 

m- 

lim sup (A(u,,), u,, - u) 5 0. 
mk4 

(6.5) 

Hence, by (6.5) and the pseudomonotonicity of A, we have for any v E K 

0 2 lim inf (A(u,,), u,~ - v) _z (A(u), u - v) 
“lk-” 

which implies that (A(u), v - u) 2 0, Vu E K. q 
The more interesting cases involve sets K which are unbounded. The theory of pseudo- 

monotone operator equations suggests that what is needed to complete an existence theorem 
for (6.2) for unbounded K is that A be coercive. This, in fact, is quite true, but the structure of 
a variational inequality, as opposed to an equality, provides for some alternative weaker forms 
of coerciveness. We first establish a useful lemma: 

Lemma 1-6.1. Let (6.1) hold. Then a necessary and sufficient condition for a solution to 
exist to the variational inequality 

u~K:(A(u),v-u)rO VVEK (6.6) 

is that there exist a real number r>O such that at least one solution of the inequality 

satisfies 

u,~K,:(A(u,),v-u,)>O VvEK, (6.7) 

ll~rll~ < r (6.8) 

where K, = K n B,(O) and B,(O) is the closed ball of radius r centered at the origin (B,(O) = 
{v E %: j[V/~ I r}). 
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Proof. If there exists a solution u of (6.6), we need only choose r so that (1~11~ < r for u to 
satisfy (6.7). Conversely, if U, satisfies (6.7) and (6.8) for some r > 0, then there is a u E K, such 
that O-U, = e(w-u,) for w E K and E sufficiently small. Then (A(u,), u -ur)= 
r(A(u,), w - u,) 2 0, VW E K, i.e. uI satisfies (6.6). 0 

Now a careful examination of the above lemma and a comparison with Theorem 1-6.1 
reveals that solutions u, always exist to (6.7) whenever conditions (i) and (ii) of Theorem 1-6.1 
are satisfied, because K, is convex, closed, and bounded. Thus, we need to furnish an additional 
condition on A that will guarantee that (6.8) holds. One such condition is 

There exists a u. E K and an r > 0 with 
(Iuo/le < r such that for all u E K with 
(Jz& = r we have 

(A(u), u - ug) > 0. 

(6.9) 

For suppose (6.9) holds and u, is a solution of (6.7). Then if (Iu,(Jou = r and (6.9) holds, we have 
(A(u,), u, - ug) > 0, which contradicts (6.7). Hence, I(u,(la < r when (6.9) holds. 

Note that condition (6.9) is satisfied whenever the following coerciveness condition of A 
holds 

There exists a uoE K such that 
1 

(A(u), 0 - 00) 
Ibll 

-++m as Ilvll++m * (6.10) 

for v E K. 1 

It is important to realize the difference between surjectivity theorems for pseudomonotone 
operator equations and existence theorems for pseudomonotone variational inequalities. If f is 
arbitrary data given in %’ and we wish to solve the problem of finding u E K such that 

(A(u)-f,u-u)rO VUEK (6.11) 

then condition (6.9) is not sufficient to conclude the existence of solutions to (6.1 l), assuming 
conditions (i) and (ii) of Theorem 1-6.1 hold. If only (i), (ii) and (6.9) hold, we will generally need 
to impose additional conditions on f in order to guarantee solutions to (6.11). This also means 
that if (6.9) holds and A is not coercive in the sense of (6. lo), the existence of a solution to (6.11) 
may still be established provided we add a suitable condition on the choice of the data f E 031’. 
Note, however, that the stronger coercivity conditions (6.10), together with (i) and (ii) of 
Theorem 1-6.1 are sufficient for the solvability of (6.11) for unbounded K. 

We now summarize these results: 
Theorem l-6.2. Let conditions (6.1) hold with K unbounded. Let A: K -+ %’ satisfy the 

following conditions: 
(i) A is bounded. 

(ii) A is pseudomonotone. 
(iii) A satisfies the weak coercivity condition (6.9) or the coercivity conditions (6.10). 

Then there exists at least one solution u E K of the variational inequality (6.2). 
Moreover, if conditions (6.1) and conditions (i) and (ii) above hold and if A is coercive in the 

sense of (6.10), then a solution exists to (6.11) for any f E 91’. 0 
Many useful corollaries of Theorem l-6.2 can be obtained by replacing condition (ii) by 

conditions which imply the pseudomonotonicity of A. For example: 
Corollary l-6.2. Let (6.1) hold, K being unbounded, and let A: K-+ %’ be bounded and 

coercive in the sense of (6.10). Then there exists at least one solution u E K of (6.11) if any one 
of the following conditions hold: 

(i) A: K + %’ is monotone and hemicontinuous. 
(ii) A: K + Q’ satisfies. 

(A(u) - A(u), u - u) 2 - H(p, l(u - u(l,v) Vu, D E B,(O) n K (6.12) 
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where ?f is a Banach space in which 91 is compactly embedded and H 
non-negative valued continuous function satisfying 

dl+ $ H(x, ey) = 0, x, y E [O, m) (6.13) 

[O,m)x[O,m)+R is a 

(iii) A: K + 91’ satisfies 

(A(u) - A(u), u - u) 2 - (B(u) - B(v), u - u) Vu, u E K (6.14) 

where B: K + ‘W is a completely continuous operator. 
(iv) A: K+ 91’ is expressible in the form A(u) = A(u, u), where (u, v)+A(u, u) is a map 

from K x K into 91’ satisfying 
(iv. 1) Vu E K, u + A(u, u) is bounded and hemicontinuous 
(iv.2) Vu, u E B,(O) n K, 

6% u) - A(u, u), u - u) 2 - H(p, (Iu - uJ( Y) 

where H is a function of the type described in (ii) above. 
(iv.3) If {u,} is a sequence converging weakly to u E K, then 

and 

liminf(A(u,u,)-A(u,u),u,-u)?O VUEK 
PIZ- 

lim inf (A(u, u,) - A(u, u), w) = 0 Vu, w E K. 
“- 

(6.15) 

(6.16) 

Several other conditions could, of course, also be listed. 

1.7 Pseudomonotone variational inequalities of the second kind 
We recall from Theorem l-5.1 that so-called variational inequalities of the second kind arise 

in minimization problems involving non-differentiable functionals. We will now describe some 
results for general inequalities of this type for pseudomonotone operators. The major theorem 
is as follows: 

Theorem 1-7.1. Let 91 be a reflexive Banach space and A: 91 + (42%’ a bounded, pseudomono- 
tone operator. Let 4: 91+ (- 33, m] (4f + CD) be a convex lower semicontinuous functional on %. 
In addition, let the following condition hold 

There exists a u. E % and a real number 
r > 0 with ()u~)(~ < r such that 

(A(u), r - 00) + 4(r) - I > 0 

for all u E 011 such that J(& = r. 

(7.1) 

Then there exists at least one solution u E CQ = {v E %: 4(u) < + a} to the variational inequality 

(A(u), u - u) + 4(u) - 4(u) 2 0 Vu E %. (7.2) 

Proof. Let B: (% x R)+(% x R)’ be an operator defined on the product space 41 x R by 

B(v, a) = (A(u), 1); u E Q, (Y ER. 

The operator B is easily seen to be pseudomonotone on Q x R because A is pseudomonotone: 
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Indeed, if (u,, (Y,) +(u, a) and lim sup (&I(,,,, a,,,), (u,, (Y,) -(u, (Y)&~ 5 0, then 
m-r 

1193 

= lim inf [(A(u,), u, - u) + 1 . (a, - p)] 
ItI- 

2 (A(u), /A - u) + l(a - p) 

= @(U, a), (4 a) - (4 /%xR v(U, p) E % x R. 

Since 4 is proper and lower semicontinuous, the set 

K = {(u, /3) E % x R: p 2 4(u)} 

is a non-empty closed convex subset of % x R. Moreover, condition (7.1) for A implies that B 
satisfies condition (6.8) on % x R; in fact 

(A(u), u - 00) + p -PO= ((A(u), I), (0 - uo, p - POhxR 

= (B(u, p),(u, ~)-(UOY PohR >o 

for I((uo. POhxR < r and Mu, ~111% = r. Th us, from Theorem l-6.2, there exists at least one 
solution (u, (Y) E K of the variational inequality 

@(u, a), (u, p) - (4 a))%xR z 0 v(u, p) E K (7.3) 

or 

If ue a$, (7.2) is obviously satisfied. Take u E 9+ and p = 4(u). Next, note that from the 
definition of K, 4(u) I a. However, upon setting u = u in (7.3) with p = b(v) we obtain 
d(u) L a. Hence (Y = 4(u). Thus (7.2) is obtained from (7.3). Cl 

(A(u),u-u)+p-ar0. 

(7.4) 

As in the case of Theorem l-6.2, condition (7.1) can be replaced by the stronger coercivity 
conditions 

There exists a ug E % such that ’ 

(A(v), u - uo> + 44~) - 4(uo) 

ll4h 
*+m’ 

for I(u(Jql +a. 

We also remark that if the functional 4 in Theorem 1-7.1 is Gateaux differentiable on 9*, 
then (7.2) reduces to the variational equation 

u E C&: (A(u), iv)+ @4(u), w) = 0 VW E 91. (7.5) 

This is obtained from (7.2) by replacing u by u + Bw, 8 > 0, dividing by 8, and taking the limit as 
0 + 0. This results in an inequality ( I 0) instead of (7.5). The converse ( I 0) is concluded using 
the convexity of 4 (i.e. 4(v) - 4(u) - (m(u), u - u) 2 0). 

We emphasize that (7.2) holds for non-differential 4. However, a useful technique for 
solving inequalities of the type (7.2) consists of approximating 4 by a sequence {4”} of 
differentiable functionals such that 4n(u)+4(u), VUE% and lim inf 4n(un)z4(u) for any 

n- 
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sequence {u”}E % which converges weakly to u. By Theorem I-7.1, a bounded sequence 
I&n)E %m of solutions exists, for any m, to the system 

Thus, there exists a subsequence, also denoted {u,}, which converges weakly to a point u E %. 
Then J@_ inf (A(u,), u - u,) 2 $i inf (&(u,,,) - &m(u)) 2 0; i.e. ,l& sup (A(u,), u, - u) 5 0. 

Hence, from the assumed pseudomonotonicity of A, 

(A(u), u - u) - 4(u) + d(u) 5 lim inf (A(u,), u - u) 
m-m 

+ lim inf &(um) - lim &(u) SO, 
m- Wl- 

i.e. u satisfies (7.2). 

1.8 Quasi-uariational inequalities 
In several important classes of physical problems, we encounter cases in which the 

admissible set K depends upon the solution of the problem which is, of course, not known in 
advance. Variational inequalities associated with problems of this type are called quasi- 
variational inequalities. 

In our present study of quasi-variational inequalities, we are only interested in cases in 
which existence theorems are derived from so-called comparison theorems and maximum 
principles of variational inequalities. To this end, the concept of ordering relations associated 
with positive cones in linear topological spaces is necessary. 

We will first establish some preliminary concepts. A subset C of a linear space 91 is called a 
pointed cone with vertex 0 if tC C C for every t >O, t E R and 0 E C. A partial ordering 
relation, denoted by 5, can be defined on a pointed cone C by setting 

psq ifandonlyif q-pEC. (8.1) 

It is clear that 

PIP VPE% 

p sq and qsr implies p IT Vp,q, r~% I 
(8.2) 

These relations imply that the partial ordering is compatible with the structure of a linear space 
in the sense that 

01p implies Ostp, Vt>O, tER 
(8.3) 

q1p implies q+rcp+r Vr. 

Conversely, for any partial ordering I, the set 

C=(pE%:prO} (8.4) 

is the positioe cone with respect to the ordering relation. Its negative cone is given by 

-C=(pE%:p10}. (8.5) 

If C fl (- C) = {0}, the relation 5 is an ordering relation. 
Let %* be the algebraic dual space of 91. The polar cone C* of a cone C is then defined by 

C*=(P*EQ*:(p*,p)rO VpEC} (8.6) 
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Since C* is a pointed cone with vertex 0 in %*, it defines a partial ordering relation 5; i.e. 

p*sq* if and only if q* -p* E C*. (8.7) 

If %* is a (topological) dual space of a linear topological space %%, and if C is a pointed 
closed convex cone with vertex 0, then we have the properties 

pEC ifandonlyif Osp and 

Ospifandonlyif Os(p*,p) Vp*EC*. 

Since C** = (C*)* = C 

PEC if and only if ~EC** and 

p E C** if and only if 0 5 (p, p*) VP* E C*. 

(8.8) 

(8.9) 

If the set (p, g} of elements of a partially ordered set L have a least upper bound and a 
greatest lower bound, they are called the join, denoted by p v q, and the meet, denoted p A q, of 
(p, q}, respectively. If, for every two elements in L, both of the join and the meet belong to L, 
the partially ordered set L is said to be a lattice ordered set. If we define 

p+=p v0 and p-=(-p)vO, (8.10) 

any element p E L can be decomposed according to 

We note that, for every p, q EL, 

p =p+-p-. (8.11) 

suP(Pvq)=Pvq=P+(q-P)+=q+(P-q)+ 

inf(p,q)=pAq=p-(p-q)+=q-(q-p)+. 

(8.12) 

A typical example is the Sobolev space Wmss(fl), M L 0, s > 1, defined on a bounded open 
domain in R” whose boundary is smooth enough. Under the ‘*natural” ordering 

u 5 u if and only if u(x) I V(X), a.e. x E R 

the space Wmgs(fl) is a lattice ordered linear space, and the positive cone WY(n), defined by 

wyyn) = {u E WrnsS(fl): 0 5 u} 

is closed; see Littman, Stampacchia and Weinberger [27]. 
Let 011 be a lattice ordered real reflexive Banach space. An operator A from 41 into its dual 

91’ is said to be T-monotone if 

(A(u) - A(v), (u - u)‘) 2 0 (8.13) 

for every u, u E 91 such that (U - u)’ E 41. If the equality is satisfied by the only (u - u)’ = 0, A 
is strictly T-monotone. 

Lemma 1.8.1 (Comparison Theorem 1). Let K be a non-empty closed convex set in a lattice 
ordered real reflexive Banach space 91 and let A be a strictly T-monotone operator on %. 
Suppose that UI E K and u2 E K are solutions to problems 

u,EK:(A(u,),u-uJr(f,,u-u,) VUEK 

u2 E K: (A(uz), u - ~2) 2 (f2, u - ~2) Vu E K 
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for given data fl and fz in W. In addition, suppose that uI -(u, - u2)” E K and u2 t (ul - uz)+ E 
K. Then 

whenever fl5 fi. 

Adding these two inequalities gives 

MtM - 4~2h Cut- M+> 5 (fi - fi, @I- W? 5 0. 

Since A is strictly T-monotone in ‘tr, this implies that 

k~~rna 1.82 (Comparison Theorem 2). Let K1 and Kz be non-empty, closed convex 
subsets of a lattice ordered real reflexive Banach space % and let A be a strictly ~-monotone 
on %. Suppose that ~1 and u2 are solutions such that 

for some f E “Ir. If ur -Cut - u$’ E KI and ~2 + (ul - U# E Kz, then 

Proof. Substituting ~ti - (ur - uz)+ and uz + (~1 - u2)+ for tr, gives 

Mu,), - @I - ~217 2 U, - (~1 - ~2)+) 

(Ah), (UI- u2)+) 2 (f, (UI - u2)+). 

Adding these two inequalities gives 

(A&,) - 4~21, (UI- u2)+) 5 0. 

Since A is strictly T-monotone, this result implies 

(u, -UZ)+=OI i.e. uI Suze iY 

l,emrnn f.8_3 (Maximum %‘icip~e). Let K be a non-empty closed convex subset of a lattice 
ordered real reflexive Banach space %. Let A be a strictly T-mcnotone operator form “u into its 
dual 41’. Let u E K be a soluti&r of the variational inequality 

UEK: (A(u), u-u)2:0 VUEK. 

Suppose that there exists functions k’ and k such that 

(8.14) 

and 
-(A(~),(~-i)*)(:O VuEK 

(A(k), (& - u)+) r 0 VU E K 

I 

(8.15) 

inf (u, Ej E K and sup (u, &) E R 
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(8.16) 

Proof. Taking o = inf (u, l) = u -(u - L)‘, 

(A(u), - (u - k)‘) 1: 0, i.e. (A(u) - A(t), (u - &+) 5 (A(i), (u - 6)+)‘) zs 0. 

Since A is strictly T-monotone 

(u--)+=0, i.e. USE 

Similarly, by taking 21 = sup (u, k), 

can be obtained. Cl 
Example 1-8.1. Let A be strictly T-monotone operator. Let % be a linear space, the 

elements of which are measurable functions defined on some domain fi C R”. Let K C 9 be 
defined by 

K={vE%: U+!J, a.e. in fi) 

where 9 is a given function such that I(, 2 0, a.e. in a. Let f be given data such that f 2 0, a.e. in 
!I. Let u E K be a solution of the variational inequality 

(A(u), v - u) 2 cf, v - u) Vu E K. 

Suppose that 

A(k) = &, ar0 and ~20 

for every constant function k. Then 

u 20. 

Indeed 

(A(O)+, (0-u)+)=-(f,(-u)+)lO. 0 

Theorem 1-8.1. Let % be a lattice ordered real reflexive Banach space and A be an operator 
from % into its dual 41’ such that 

(A(u) + B(u) - A(v) - B(u), u - v> 2 m(b - o/b\ 

(A(u) - A(v), w> 5 Nib - vbbI/. 1 
(8.16) 

Here B is a completely continuous operator from 41 into 91’ (i.e. B(P) converges strongly to 
B(u) for every weakly convergent sequence u” whose limit is u), the function M: [0, a)+R is 
strictly increasing, continuous, and is such that m(0) = 0, and the function N: [O, m)+R is 
continuous. Also let 

B(uI) rB(u~) in 91’ if UI 5 UZ. 

Let M be a function defined on % such that 
(i) M(u,) 5 M(uZ) in % if ul 5 u2. 
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(ii) M(u) 2 0 in 41 if u L 0. 
(iii) For any monotonically decreasing sequence u” in 031 satisfying M(u”-‘) 2 u”, its weak 

limit u satisfies 

M(u) 2 u. 

Further, suppose that 

{A(O) + B(O), (0 - u)‘) I 0. 

Then, there exists at least one solution of the quasi-variational inequality. 

u 5 M(u): (A(u), u - u) z 0, Vu 5 M(u) 

proof. Let u” be a solution of the problem 

(A(u’), v) = 0 Vu E % 

(8.17) 

such that u’>O. We denote that the existence of such a solution is assured by (8.16). 
Let us define u”, n 2 1, as a solution of the variationai inequaiity 

u” E K(u”-‘): (A(P) + B(d), Y - u”} I (B(u”-‘), u - u”) 

for every 

Y E Kfu”_‘) 

where 

K(u”-‘) = {u E 41: ?I I M(P)}. 

We shall show that 

UD . .LUJ-’ 2:U”>...LO 

JIu”J( 5 c. 

We first prove that u” 2 u’ and t(’ 2 0. In fact 

(A(#) + B(u’), u - u”) z (B(u’), II - u*) Vv E % 

(A(d) + B(u’), v - u’) 2 (B(u’), v - u’) Vu E K(u’). 

Since A + 3 is strictly T-monotone, and since K(u”) C Q 

ilo1 u’ 

as shown in Lemma 1.8.2. Since u” 2 0, M(u’) 2 0. By the maximum principle. Lemma 1.8.3, 

u’2.0. 

For u”-’ and u” 

g-1 + (u” - u=-I)+ I M(u”_‘) I M(u”_2) 

UR -(u” - u-l)+ “= M(u”-‘). 



Theory of variational inequalities, flow through porous media 

That is, u”-’ + (u” - u”-I)+ E K(u”-*) and U” -(u” - u”-‘)+ E K(u”-‘). 
Moreover, since u”-* 2 u”-’ 

1199 

B(u”-*) 2 B(P). 

By Lemmas 1.8.1 and 1.8.2, 

u” I u*-‘. 

Since II*-’ 2 0, i.e. B(u”-‘) 2 0, 

U”L0 

by the maximum principle (Lemma 1.8.3). Thus 

On the other hand, putting u = 0 I M(u”-‘) gives 

(A(u”), u”) + (B(P), u”) ~(B(u~-~), u”) I (B(u’), u”). 

This implies 

Since any monotonically decreasing bounded sequence converges weakly to a unique limit, the 
sequence u” converges weakly to u in %. 

By the hypothesis (iii) 

u I M(u). 

For every u 5 M(U) 5. . . I hf(U”) 5 hf(U”-‘) 5 * + *, 

(A(P) + B(u”), u - u”) =r (B(u”-‘1, u - 1.8’). 

By the hypothesis on B, A + B is pseudomonotone. Since B is completely continuous 

(A(u), u - u) I 0 VY 5 M(u). 

Therefore, u is a solution of the quasi-variational inequality (8.17). Cl 
Note that the above sequence {u”} converges to a unique limit U, but this does not imply the 

uniqueness of the solution to the quasi-variational inequality, since the initial element u” can be 
chosen arbitrarily. 

Existence of solutions of the quasi-v~iationa1 inequ~ity of the second kind, e.g. 

uE%:(A(u),u-u)+j(u;u)-j(u;u)zO forevery otz% (8.18) 

follows from similar arguments with Theorem l-8.1. To this end, we recall the comparison 
theorem for variational inequalities of the second kind of Duvaut and Lions[8]. 

lieu l-8.4 (Comparison Theorem 3). Let Q be a lattice ordered real reflexive Banach 
space, and let A be a strictly T-monotone operator on Q into its dual 91’. Suppose that u1 and 
u2 in % are solutions to problems 

u1 E Q: (A(u,), v - ul)+ j,(o)- jl(ut) 2 0, Vu E % 

u2 E Q: (Afu2), LI - u2) + j*(u) - j2(u2) 2 0, Vv f % 
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for given proper convex semicontinuous functionals jr and jz defined on %. Then 

whenever 

(8.19) 

for every VI, v2 E Q. 
Proof. We introduce 

w2 = sup (uz, Ul) = u2 t (u, - u4+ 

wl = inf (u2, ul) = ul - (ul - u2)+. 

Substituting of wl and w2 into v of the first and second inequalities, respectively, we have 

Mud, - (UI - ud+) tidinf 042, UI)) -idud 2 0 

Mu2), (ul - UZ)+) + idw (~2, UI)) -hW 2 0. 

Adding above two inequalities, and applying the assumption (8.19), we obtain 

- (A(u,) - A(~219 (UI - u2)+) 2 0. 

Since A is assumed to be strictly T-monotone, 

(ul -u2)+ =0, i.e. uI Iu2. 0 

Theorem l-8.2. Let % be a lattice ordered, real, reflexive Banach space, and let A be a 
hemicontinuous, strictly T-monotone, and coercive operator of 91 into its dual 41’. Suppose that 
if a 5 b in % 

j(a; inf (v, w)) t j(b; sup (v, w)) I j(a; w) t j(b; v) (8.20) 

where (v, w)+ j(v; w) is proper convex lower semicontinuous from % into R, and that there 
exists a non-negative solution u. E 91 of the non-linear equation 

(A(uo), v) = 0, Vu E 91. 

Then there exists at least one solution to the quasi-variational inequality of the second kind 

uE%:(A(u),v-u)tj(u;v)-jj(u;u)zO (8.21) 

for every v E 0%. 
Proof. We define the iterative solutions {u”} by the variational inequalities of the second 

kind 

u” E 91: (A(&‘), v - u”) t j(u”-I; v) - j(u”-‘; u”) 20 (8.22) 

for every v E 91. 
We will show that if u”-’ I une2 , then u” I u”-‘. By the definition of {u”} 

(A(@), v -u n-l) t j(une2; u) _ j(u”-2; Un-l) 2 0 

(A(P), v - u”) t j(u”-‘; v) - j(u”-‘; u”) 2 0. 
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Taking v = sup (u”-‘, u”) = u”-’ + (u” - u n-‘)+ and v = inf (P’, u”) = u” -(u” - &-I)+ in the 
above first and second inequalities, respectively, we obtain that 

(A(&), (u” - u n-l)+) + j(K2; sup (u”-‘, u”)) - j(P2; u”-‘) 2 0 

(A(P), -(u” - u “-I)+) + j(u”-‘; inf (u”-‘, u”)) - j(u”-‘; U”) 2 0. 

Adding the above two inequalities, and applying the assumption (8.20) we have 

-(A(P) - A(u”-‘), (u” - u”-I)+) 2 0. 

Since A is strictly T-monotone 

(LP-U n-‘)+ = 0, i.e. u" 5 u”-‘. 

Thus. we can conclude that 

.I u” 5 un-’ 5. . 5 u’ 5 UO. 

Furthermore, since A is coercive, the sequence {u.} is uniformly bounded in 91. Therefore, the 
sequence {u”} converges weakly to u in %. Since (v, w) + j(v; w) is convex and lower 
semicontinuous on 41, we can pass to the limit n + + QJ in (8.22), i.e. 

(A(u),v-u)+j(u;v)-j(u;u)zO 

for every v E %. 0 
Remark 1-8.1. The ordering u s v in Sobolev spaces deserves some additional comments. 

Suppose u E Wm,p(fI). Then u is an equivalence class of functions with generalized derivatives 
in Lp(fi). The notation u 10 (for example) means that we can find a representative li of u in 
this class with the following property: there is a sequence $& E C”(R) such that (pk converges 
strongly to ti in Wm*p(Q and (pk IO, Vk 2 1. Similar arguments and orderings apply to traces of 
W”“-functions on the boundary. For instance, if ‘yi: Wm”(n) + Wm-‘-“P*p(3R), 0 5 j I m - 1, 
are the trace operators, the notation “$v/&ri 5 0, a.e. on aa” is used to signify that n(v) 5 0 
where (5) is interpreted in the sense just described. 

Throughout the remainder of this study (particularly in Chaps. 3-5) orderings on Sobolev 
spaces and on boundary traces will be interpreted in the sense described here. Thus, for 
example, “v 5 0, a.e. on r C aR” will be understood to apply to partial orderings of traces of, 
e.g. H’(R) on aR restricted to H”‘(T). For additional details on this subject, see Oden and 
Kikuchi[25] and Littman, Stampacchia and Weinberger(271. 0 

1.9 Comments 
The theories discussed in this chapter summarize many of the fundamental results on 

variational inequalities developed over roughly the last decade. Our development follows 
principally the works of Mosco [5,9], Lions [ 11,281, Brezis [4,29] and Stampacchia[ lo]. More 
details of the theory of variational inequalities can be also found in Oden[30] and Kikuchi[31] 
together with various examples from solid mechanics. 

The introductory explanation of the concept of variational inequalities in Section 1.1 follows 
from Stampacchia[lO]. Example 1-1.1 is used in Kikuchi[32] in order to show a relationship of 
variational inequalities to free boundary problems. 

Theorem 1-2.1 is found in, for example, Mosco[5]. Theorem l-2.2, i.e. the existence theorem 
of minimizers of functionals, follows from Vainberg[24]. Theorem l-2.3 is an obvious result of 
Theorems 1-2.1 and l-2.3, and equivalent properties of monotonicity of the gradient operator 
DF of a convex functional F, (2.3). Geometrical interpretations of a minimizer of a convex 
functional on R” can be found in Mosco[5]. 

The inequality representation of the projection of a Hilbert space into a closed convex 
subset follows from Lions and Stampacchia[3], Stampacchia[ 101 and also Brezis[4]. 
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Construction of the contraction T for a strongly monotone Lipschitzian operator A was first 
introduced by Lions and Stampacchia[3]. 

The Hartman-Stampacchia theorem, Theorem 1-4.1, was proved by Hartman and 
Stampacchia[26] in 1%5. This is the first existence theorem on solutions to variational 
inequalities involving non-linear operators, and it had a significant impact on the development 
of the non-linear theory of monotone operators on subsets of reflexive Banach spaces. 

Variational inequalities of the second kind were introduced by Browder[33] in applying the 
notion of an indicator functional for closed convex subsets of Banach spaces. Further results 
along these lines were contributed by Brezis [4]. 

Pseudo monotone theories of variational inequalities of the first and second kind, Sections 
1.6 and 1.7, are found in Brezis[4], Lions [ 1 I] and Stampacchia[lO]. 

The theory of quasi-variational inequalities discussed in Section 1.8 was studied by 
Mosco[9] and Lions[28]. Comparison theorems and a maximum principle follow from the 
works of Brezis [29] and Mosco[9]. Theorems 1-8.1 and l-8.2 can be found in Lions[28] together 
with several examples. 0 

2,APPROXIMATIONANDNUMERICALANALYSIS 

OF VARIATIONAL INEQUALITIES 

2.1 Convergence of approximations 
In this chapter, we discuss theories of approximation of variational inequalities with special 

emphasis on those theories applicable to finite element methods. We will be primarily con- 
cerned with the general variational inequality: find u E K such that 

(A(u),v-u)rO VvEK. (1.1) 

An approximation of (1.1) generally involves seeking a function &, in a set Kh which is a 
subset of a finite dimensional subspace ah of q, h being an appropriate index. The ap- 
proximation of (1.1) will then involve seeking uh E & such that 

(A(&,), vh - u,,) 2 0 vu,, E Kh. (1.2) 

In general, @, is a member of a family of closed subspaces {%h}O<h5i of %, each containing 
a Set & so that {&}O<h<l iS a family Of subsets Of Q approximating in some sense the 
constraint set K. We are interested in determining sequences of solutions {uh} to (1.2), 
uh E Kh C Qh, and in investigating the behavior of the approximations as h +O. In particular, we 
wish to determine conditions under which {uh} converges in some sense to a solution to (1.1) 
and in estimating the error u - uh. 

The first question that arises is what is meant by a consistent approximation of the set Kt,? 
For our purposes, the following general condition is sufficient: 

Let K be a subset of a normed linear space (&. A sequence of subsets 
{Kh} in 91 is said to converge to a set K if 
(i) for every v E K, there exists a sequence vh E Kh which converges 

strongly to v, and 
(ii) for every weakly convergent sequence {I(h), uh E Kh, its weak limit u 

belongs to K. 

(1.3) 

Our hrst result is a general existence and approximation theorem for problems of the type 
(1.1) in which the operator A is of the Girding type (i.e. it satisfies a generalized G&ding 
inequality in the sense of Oden[34]), and is coercive. Operators of this type can be shown to be 
pseudomonotone (see Oden[34] for a proof of this fact). The following approximation theorem 
and a priori estimates are discussed in Kikuchi[31]. 

Theorem 2-1.1. Let K be a non-empty closed convex subset of a reflexive Banach space 021. 
Let {Kh} be a sequence of closed convex sets in % convergent to the set K in the sense of (1.3). 
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Let K be a subset of % such that, for every 0 < h 5 1, K and K,, belongs to K. Let A: K + 91’ 
be an operator on K satisfying the conditions, 

(i) A is coercive. 
(ii) 

for every u, u E K with IjujI~, (Jr& 5 A4, p > 1, 4 > 1, where Y is a normed linear space in which 
0% is compactly imbedded and (., .) is the duality pairing on 91’ X %. 

(iii) A is bounded in the sense that (~A(u)(/%~ < + m for (It& < + m. 
Then there exists at least one solution u E K of (1.1). Moreover, let {u,,} be a sequence of 

solutions to (1.2) obtained as h -+O. Then there exists a subsequence {u,,,} of {uh} which 
converges strongly to a solution u E K of (1.1). 

Proof. The existence of solutions u E K of (1.1) and uh E Kh of (1.2) follow from results 
established in the previous chapter (see Theorem 1.6.1). Owing to the coerciveness of A on K, 
any solutions of (1.2) are bounded in %. Since % is reflexive, there exists a subsequence {u;l} of 
the sequence Of solutions {uh}, uh E Kh, which converges weakly t0 li E %. 

Using the first condition (i) of convergent sets Kh in (1.3) 

(A(h), U - uh) = (A(&,), vh - uh) + (A(h), 0 - oh) L - llA(uh)h,b - uhll91 

for every u E K with uh + v strongly in ‘%. Then 

h(A(U,), u,,-U)>o VUEK. 
h-4 

(1.3 

By condition (ii) in (1.3), the weak limit of ul, belongs to K, i.e. ti E K. Since A is pseudomono- 
tone on K, it can be easily shown that ti is also a solution of (1.1). Indeed 

0 L lim inf (A(u& UL - u) 2 (A(@, u’ - u). 

That is 

(A(fi),u-8)sO VUEK. 

We shall show that a subsequence {ui} of {uh} converges strongly to ri E K. By the GArding 
inequality, we have 

where p^ = max {p(f[uh’(/d, ~((lfiJ(d}. Then, by (1.5) and since fi E K 
h 

0 B lim (A(@, u,, - ti) 
h-4 

2 a pJ Ilu;: - all;. (1.6) 

Here we have used the fact that Q is compactly embedded in ‘v” and, therefore, any 
subsequence {u{} of {uj,} converging weakly in Q must converge strongly in ‘l? This completes 
the proof. 0 

We observe that if P(M) 5 0, then A is strongly monotone on K. In this case, the solutions 
of (1.1) and (1.2) are unique and {uh} converges strongly to the solution of (1.1). 
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We remark that the conclusions of Theorem 2-1.1 can easily be extended to cases of 
variational inequalities in the second kind which involve the sum of the gradient DF of a 
weakly lower semicontinuous functional F and a coercive, convex, non-differentiable func- 
tional 4: K +k Indeed, let A = DF, F: K +R, and let C#J be continuous and coercive on K. 
Then (1.2) becomes 

By the convergence condition (i) of (1.3) for every u E K, 

(A(h), v - uh) + b(u) - b(uh) 2 - (@(Uh)(lwj(V - uhll% + 4(V) - 4(uh). 

Then 

tii{(A(U/,),U-U/,)+4(V)-&U/,)}?O VUEK. 

By the G&ding-type inequality 

(A(4), uh - u> 2 (A(u), uh - U> + a/bh - Ull& - &h - Uli;. 

Then 

0 2 ‘hz {(Ah), Uh - u) +  d’(uh) - d’(U)} 

2 Fi KA(u), uh - u) +  4bh) - #‘(u) +  a(juh - u/l& - p^‘/luh - uII$). 

Since C$ is convex and continuous on K, C#J is weakly lower semicontinuous on K. Then 

which means that the results stated in Theorem 2-l. 1 can be extended to variational inequalities 
of the second kind. 

Another interesting result is the following estimate which is useful for obtaining an a priori 

error estimate of approximations. Let K and Kh be closed convex subsets of a reflexive Banach 
space. Let u and &, be solutions of the respective variational inequalities 

ueK:(A(u), u-u)rO VUEK (1.7) 

u,, E Kh: (A(&,), a,, - uh) 2 0 vuh E Kk. (1.8) 

Then, for every v E K and trh E Kh, 

(A(u), U - uh) 5 (A(u),V - uh) 

= (A(u), U - oh) + (A(u), U - U,, + v,, - U) 

- (A(Ud. U - 4,) 5 (A(h), oh - U) 

Adding these two inequalities gives 

(A(u) -A(h), u - uh) 5 (A(u) - A(Uk), U - uh) 

+  (A(u), vh - U) +  (A(u), u - uk). (1.9) 
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If K,, C K for every h > 0, we can take v = &,. Thus 
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(A(u) - Ah,), U - 4,) 5 (A(u) - A(%), U - oh) + (A(u), oh - U). (1.10) 

Theorem 2-1.2. Let K and Kh be closed convex subsets of a reflexive Banach space a. Let 
u E K and uh E Kh be the solutions of variational inequalities (1.7) and (1.8). Then, for every 
v E K and v,, E Kh, 

(A(u) - A(u& U - u,,) 5 (A(u) -A(&), U - v,,)+ (A(u), vh - U + V - u,,). 

If Kh C K 

Estimates (1.9) or (1.10) and the Girding type inequality are useful in obtaining a prioti 
estimates for u and uh. 

For variational inequalities of the second kind, (1.7) and (1.8) become 

u~K:(A(u),v-u)+~(v)-c+(u)>0 VvCK 

u,,EK,,:(A(U,,),vh-u,,)+4(v,,)-4(u,,)?O VVE&. 

(1.11) 

(1.12) 

Then, for v E K and uh E Kh, 

(A(u), u - uh) 5 (A(u), U - oh) +  (A(u), V - uh + uh - U) +  4(V) - 4(U) 

- (A(Uh)r u - uh) 5 (A(Uh), uh - u)+ ddvh) - ‘#‘(uh). 

Adding these two inequalities gives 

(A(u) - Ah,), u - uh) 5 (4~) - A(Uh)r U - vh) +  (A(u), vh - U> 

+ M4, V - uh) +  (4(vh) - d’(u)) +(4(u) - 4tuh)). (1.13) 

If Kh C K for every h > 0, then 

(A(u) - A(&,), u - 4) 5 (A(u) - A(&,), u - 0,) + (A(u), uh - U> 

+ d’(uh) - 4(u). (1.14) 

Theorem 2-1.3. Let K and Kh be closed convex subsets of a reflexive Banach space (3. Let 
u E K and uh E Kh be the solutions of variational inequalities (1.11) and (1.12), respectively. 
Then, for every v E K and vh E Kh, 

(A(u) -A(h), u - uh) 5 (A(u) - A&h), U - vh) 

+  (A(u), vh - u + v - l(h) +  4(vh) - 4(u) +  4(v) - 4(uh). 

If Kh C K is assumed for every h > 0, 

(A(u) - A&), u - uh) 5 (A(u) - A(b), u - oh) 

+(A(u),vh--U)+~(vh)--(U). 0 

2.2 Error estimates for finite element approximations of variational inequalities 
We will now consider cases in which the subspace %,, and the subsets Kh have a structure 

typical of that found in finite element approximations. The parameter h can be regarded as the 
mesh parameter, which is typically the largest diameter of a finite element in a given mesh. The 
families {%,,}O<hSl and {K h } O<h5l are generated by appropriate refinements of the finite element 

IJES Vol. 18. No. IO-C 
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mesh. In all applications of our results, the space % is generally a Sobolev space Wm,P(iI) or 
H”(R), R being a bounded open domain in R”, and m 2 0, 1-c p < m. 

For simplicity, we will restrict our attention to variational inequalities involving linear 
operators defined on a non-empty closed convex set K of a real Hilbert space H. 

Let a(*, .) be a continuous coercive bilinear form defined on H such that 

(2.1) 

Our first major result is an important theorem due to Falk[ 161: 
Theorem 2-2.1. Let (2.1) hold and let u E K and uh E Kh be respective solutions of 

variational inequalities 

(2.2) 

where K and Kh are non-empty closed convex sets in a Hilbert space H and a finite 
dimensional subspace Hh of H, respectively. Let A: H + H’ be an operator defined by 

(A(u), u> = 4~ v) -f(u) 

where (., .) denotes duality pairing on H’ x H and f E H’. Then the following inequality holds 
for every u E K and for every vh E Kh 

Proof. From the estimate (1.9) 

(A(u) - A(uh), U - Uh) 5 (A(U) - A(&,), U - Vh) + (A(U), Vh - U + V - uh). 

That is 

a(u - i?,,, u - uh) 5 a(u - u,,, u - Vh) + (A(U), V,, - U + V - Uh). 

Then, from (2.1) 

m[(U - uh’)),$( kflju - uhlbllu - Vh)h/H + (A(u), Vh - u + V - uh). (2.4) 

(2.3) 

Using Young’s inequality 

abC~a2+&b2 Ve>O; a,bER 

we have 

Ml/u - Uh\(H(IU - Vh(IH $ ((u - uhlkf+g (/u - Vh’($f. 

Substituting this into (2.4) yields (2.3). 0 
The next corollary follows immediately from Theorem 2-2.1. 
Corollary 2-2.1.1. Let the conditions of Theorem 2-2.1 hold and in addition let H be 

continuously embedded in a Banach space Ce. Suppose that Kh C K (so that one can take v = &, 
in (2.3)) and A(u) E ‘3, the dual of ‘S. Then 

lb - uhlli+b 5 IIu - Vh’b+ + IlAi(U)llv/U - Vhb (2.5) 
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Moreover, if K = H and K,, = Hh so that A(u) = 0 in H’, then 
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(2.6) 

We recognize the estimate (2.6) as that of the usual finite element estimates for linear elliptic 
problems; see, for example, Oden-Reddy [ 191. 

In general, solutions of elliptic variational inequalities are not expected to be smoother than 
to belong to W2*P(fi). However, as shown by Baiocchi[l3] there are cases in which 
the solution of the variational inequality belongs to w2.5-‘,2(Q), E being a sufficiently small 
positive number. In such cases, we may obtain higher-order rates of convergence than h, h 
being the mesh-size parameter, by using finite elements of higher order than linear elements. 
The following example problem follows Brezzi and Sacchi [35] and Kikuchi [36]. 

Example 2-2.1. Let fl be a bounded open convex domain in R* and let its boundary I be 
smooth enough; for example, I can be piecewise C*. According to Baiocchi[l3], the solution u 
of the variational inequality 

UEK: 
I 

Vu.V(u-u)dx+ 
I 

(V-u)dxrO VVEK 
n n 

K = {v E H’(a): v = g, a.e. on I, v 20, a.e. in Sz} 

(2.7) 

(2.8) 

can be characterized by 

(-V.Vu+l)u=O, -V.Vu+llO, ur0, in R 

ujr = g and u E H2.5-C(fl) 
(2.9) 

if the data g are smooth enough; for example, if g belongs to C*(I). Then 

-V . Vu + 1 E H0.5-s(fi) c L”(R). (2.10) 

Let fl be exactly triangulated by a finite element mesh and let Z and & denote the sets of all 
nodal points in R and on the boundary I, respectively. We consider the following cases: 

(a) Linear case. We first consider the case in which linear polynomial approximations are 
used over each finite element. Suppose that the admissible set K defined by (2.8) is ap- 
proximated by 

Kh = iv/, E sh: @I-) = d&h v(Z) 2 0). (2.11) 

Then 

& C K. 

For this case, we take H to be the linear manifold 

H = {v E H’(a): v = g, a.e. on I} 

and set 

Then 

9 = 9’ = L*(n). 

IbIh = Id, 2 C/lull, Vu E H 
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so that Corollary 2-2.1.1 yields 

(2.12) 

Here 11. I( and 1. II are the Sobolev norm and semi-norm on H’(R), respectively, and ~~~~~~ is the 
L*(n) norm. It is well known that for regular refinements of piecewise linear finite elements, the 
following interpolation estimates hold (see Ciarlet [20] or Oden and Reddy[l9] and Falk[ 161) 

inf I(u - u,,lb 5 Czh*Ju)2. 
OhEKh 

Introducing these estimates into (2.12), we obtain for the final error estimate 

11~ - U/&J 5 Ch (2.14) 

where C is independent of h. 

(b) Quadratic case. Next, suppose that quadratic polynomial approximations are used over 
each finite element and let Kh be defined by (2.11). Then it is clear that Kh Q K. This implies 
that the term 

(A(u), t+, - U + U - u,,), U E K, u,, E Kh (2.15) 

in (2.3) has to be estimated in order to obtain the rate of convergence of the method. Toward 
this end, let us consider the integral 

(-v*vU+l)(Uh-U)dX (2.16) 

from which the term (2.15) is derived. If 

U = SUP (u,,, 0) E K (2.17) 

then &, - u vanishes in fl except in finite elements where the VdUe of uh is zero on at least one 
but not all of the nodal points. By examining the structure of the matrix induced by the bilinear 
form a(&,, uh), we observe that the number of such finite elements in the model is at most Ch-‘, 
where C is some constant which depends only upon the boundary data g. Then 

Is Ch-’ I (-v * VU + I)(& - U) dx 
0, 

where R, is a representative finite element of the type described above. By the regularity of the 
solution described in (2.10), 

Is Ch-‘I[- V . Vu + lI~~,rn,o,~~&, - ~~~o,~n, 

where II - Io+-A is the LP-norm on R,. Since uh - u = 0 on the boundary of R,, the following 
estimate is known to hold for u E H’(h), fi C R” 

IJuIJ~,~,~~ 5 C(mes ~)('+("p'-"'q"llu(J~.q,~ (2.18) 

bh - ullo,,,n, 5 ch4bh - ull+,n, 
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Since (I - V * Vu + 111 0,~Xl* = II - v * vu + 10 O,mDr and since l/u,, - u,II I,ra,o, is bounded, we obtain the 

estimate 

where C is a constant independent of h. Thus 

I (-V . Vu + l)(uh - u) dx 5 Ch3. 
n 

(2.19) 

Next, we will use essentially the same procedure used to obtain (2.19) to estimate the term 

I (-V . Vu + l)(u - u,,) dx 
n 

We observe that the integral 

(-V.Vu+l)(u-u,,)dx 

where q, is the interpolant of u, vanishes in fi except on finite elements in which the value of u 
is zero on at least one but not all of the nodal points. Then 

J 5 Ch-' I op (- v . vu + l)(u - u,,) dx 

5 Ch-'II- V *Vu + lllo.m,n,llu - Q$I.I~,. 

Applying (2.18) 

J 5 Ch-‘I(- V * Vu + 1()o.m,o,h2~‘+‘-“*~(IU - u,,1(,,2,n, 

= Ch*ll- V . Vu + ll~o,m.n,~~r~ - ~,ll,,z,n. 

By the interpolation property (Oden and Reddy[201) 

inf I/u - uh’)II 5 Ch3’2-fJIu()2.5_c 
OhESh 

we obtain 

(2.20) 

J I Ch”*-‘(Jul(2,~_s. (2.21) 

Finally, collecting the estimates (2.19) and (2.21) and introducing them into (2.3), we have 

JIu - u,,lj’ 5 C($ h3-eJIul(2.5_. + f (Ch7/2-rJJu’J12.5_r + Ch’)) 

< Ch3-’ - 

Thus, the final error estimate is 

I/u - u,,l(, sO(h3’*-‘). 0 (2.22) 
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Example 2-2.2. We describe briefly some numerical results obtained by solving a I- 
dimensional version of problems (2.7) and (2.8) studied in Example 2-2.1. We are particularly 
interested in verifying the rates of convergence of the finite element approximations derived in 
Example l-1.1. In this simple case, a= (0,l) and we take g(0) = 0.25 and g(1) = 0. The problem 
was solved for several uniform meshes using both linear and quadratic finite elements. The 
results are shown in Fig. 2.1. The computed rates of convergence are seen to be 0(/r’.‘-‘) for 
quadratic finite elements in the Hi-norm, in perfect agreement with the theoretical estimates 
(2.14) and (2.22). Cl 

2.3 Solutions methods 
The approximation of variational inequalities by finite element methods leads to finite 

systems of inequalities in the nodal values of the approximate solution. For example, consider 
again the problem 

UhEKh:(A(uh),Vh-Uh)LO vv,,E&, (3.1) 

where & is a subset of the finite-dimensional space %!,, spanned by the collection of basis 
functions {cpi}El generated using finite elements for a fixed partition of a bounded domain R. A 
is, for example, a strongly monotone operator from K C % into %‘. If {xi}iN,r are nodal points in 
&, the approximation of R, then the functions {pr} are designed so as to have the property 

(pi(Xi) = Sij, 1 5 i, j 5 N 

Then uh and ah are of the form 

where 

uh(X) = 5 k@(X), Vh(X) = 2 Vipi(X), X E flh 
i=l i=l 

I 

Ui = uh(xi) and Vi = Vh(Xi) I 

IO-* 
-h 

(3.2) 

Fig. 2.1. Rates of convergence of a quadratic finite element approximation of Example l-1.1. 
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Substitution of (3.2) into (3.1) yields the system of iV inequalities in the N unknowns 
u1, fi2,. . . , UN: 

(3.3) 

To proceed further, we must solve numerically the system (3.3) in such a way that the constraint 
u,, E Kh iS fulfilled. 

The purpose of this section is to outline and discuss several numerical techniques for 
solving systems of inequalities of the type (3.3). Since variational inequalities are closely related 
to constrained minimization problems, several standard algorithms in use in the theory of 
constrained optimization problems are directly applicable to our study. 

Here we discuss four major methods of this type: fixed point methods (i.e. successive 
approximation), pointwise relaxation methods, penalty methods and Lagrange multiplier 
methods. We follow the works of Cryer[37], Cea-Glowinski[38], Levitin_Polyak[39] and 
Glowinski-Lions-Tremolieres [6]. 

We will adopt the following conventions. Let 91 be an N-dimensional Euclidean inner- 
product space with inner product (+, *) given by 

(3.4) 

and the natural norm on % induced by (., .) is 

Ilull = (4 UP2 (3.5) 

Let K be a non-empty closed convex subset of %, and let a map A be continuous and strongly 
monotone from % into %‘. (Here %’ is identified with 91 itself.) That is, we assume constants m 
and M exist such that 

(A(u)-A(v),u - n)zrn[(u - u/', m >O 

(A@)-A(v), w)~M~lu--z#lw~~ 
(3.6) 

for every u, u, w E %. We will investigate solution methods for (3.3) for cases in which A 
satisfies (3.6). 

(i) Fixed-point methods. Our first method involves a simple reiteration of the contraction 
mapping ideas developed in Section 1.3. Recall that if PK is a projection of % onto a set K, the 
mapping 

T(u) = Mu -PA(U)) 

is a contraction mapping for operators satisfying (3.6) whenever p satisfies 0 < p < 2m/M. For 
this choice of p, T has a unique fixed point in K which can be calculated using the classical 
method of successive approximations: U’ = T(u’-‘), t = 1, . . . . 

We summarize the essential ideas in the following theorem. 
Theorem 2-3.1. Let 91 be an N-dimensional inner product space and let A: 91 + %' satisfy 

(3.6). Then the variational inequality 

u~K:(A(u),u-u)zO VuEK (3.7) 

admits a unique solution which can be calculated as the limit of the sequence {u’} where 

U t+‘= PK(u'-pA(u')), p>O, u'EK. (3.8) 

Here PK is the projection map of % onto K, and 

O<p<2mlW. 0 (3.9) 
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Use of this iteration scheme to 
discussed by Brezis and Sibony[39]. 

(ii) Pointwise relaxation methods. 
representable in the form 

ODEN and N. KIKUCHI 

obtain solutions of variational inequalities has been 

Suppose that the non-empty cfosed convex set K is 

K = fi Ki, Ki = [Ui, bi] 
i=l 

(3.10) 

where ai and bi are some real numbers. We only consider here the case in which the map A is 
potential, that is, there exists a potential F: $1 -+R such that its Gateaux derivative DF 
coincides with A. Let 

i t+l= 
U 

ffl 
(Ui ). . *, Uf+‘, Uf+),* . . , ug 

iOf+ r= (uf”, . . *, UfL!i, 4, Uf+j, *s v 1 Uh) 

f=0,1,2,... 

where we use the convention 

Out+’ = u’ = (uf, * . . ) uj$>. 

We note that the variational inequality 

uEK:(DF(u),u-u)zO VUEK 

is now equivalent to the minimization probfem 

uEK:F(u)~:(v) VvEK. 

The pointwise relaxation scheme is based on the algorithm 

&4:+‘EKi1Yi: ~~U'+')~~~~'+') VVi EKi 

for i=l,..., Nandt=O,l,.... Here we assume that u” E K. 
Theorem 2-3.2. Let F be a continuously differentiable functional on K such that? 

@F(u)- DF(u), u - a) 2 r&& - ulf) 

I/u// < M, /iv/l < M Vu, y E K i 

(3.11) 

(3.12) 

(3.13) 

(3.14) 

where t+ r&t): [0,2M]+R’ is continuous strictly increasing function such that MO) = 0. 
Suppose either that K is bounded or that F is coercive on K, i.e., 

F(V)-+i~ as l/u//*+-m VvEK 

Then, the pointwise relaxation procedure (3.13), with K given by (3.10), converges to the 
solution u E K of the problem (3.11). 

Proof. Setting Iii = u: in (3.13) gives 

The coerciveness of F or the boundedness of R implies the boundedness of u’; i.e. 

llu’jl~ M for any t. 

~Condition (3.14) is gua~nteed by the strict convexity of the continuously differentiable functionai Fort RN. See Cea- 
Glowins~i[38]. 
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By integrating the expression 
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(DF(u + s(u - u))-DF(u), u - u)+&u -u/) 

from 0 to 1 in s. with 

we obtain 

F(u) - F(u) 1 @F(u), u - u) + &(](‘I - u’l/). 

Thus 

~(i-*~‘+*) - F($y+*) 2 (u; - uf+*pp(i~~+*) + fM(Iu: - uf+‘l) 

where QF(u) is the i-directional derivative of F at u. By the definition (3.13) of u?‘, 

(ui - u:+‘)QF(Iu’+‘) 2 0 Vui E Ki. (3.16) 

Thus, we have 

F(i-‘u’+‘) - F@‘+‘) 2 &,(/u: - u;+‘l). 

Summing from i = 1 to i = N gives 

F(u’) - F(u’+‘) L $ &,(ju: - u:+‘l). 

By (3.19, F(u’)- F(u’+‘)+O as t+m, which implies lu: - uf+‘(+O as t+m for every i, i.e. 

u’-uf+‘+O as t++m. 

We now show that u’ converges to the solution u E K of the problem (3.7). According to 
(3.14) 

(DF(u’+‘)-DF(u), u’+‘-u)q,(IIu’+‘-uII). 

Let u be the solution of (3.7), i.e. u satisfies @F(u), u - u) 2 0, Vu E K. Then 

@F(P), u’+’ - u)q,,(I(u’+‘-u(l). 

Using (3.16), we have 

~(ui-u[il)QF(iu’+‘)ZO U’EKi, i= l,.. . ,A’, 

Under the condition (3.10), Ui E Ki since u E K. Adding (3.17) and (3.18) yields 

(3.17) 

(3.18) 

2 (uf" - u’)(QF(u”‘)- QF(‘u’+‘)) L rM(Jlu’+’ - ~11). 
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Since F is continuously differentiable and coercive, and since (Iu’+’ - $P’jJ I J/U’+’ - ~“(1, we can 
conclude that 

This completes the proof of the theorem. fl 
It is important to note that property (3.10) is crucial to the proof of the above theorem. In 

many simple cases (e.g. if K = {(ur, u2)E R*, ~1~0, ~~10, ul + v2 2 1)) this convergence 
theorem is not directly applicable. 

A final question must be resolved if we are to use this algorithm in actual compu~tions; 
namely, how can we compute the intermediate minimizers u:+’ in (3.13) i.e. the solution 
u:+’ E Ki of the inequality (3.16)? To answer this we recall Example 1-3.1. Let 

DiFfiU'+') = ~ EEjUjf’ + ~ ~~j~~~ 
j=l j=i+l 

Dividing (3.16) by D&y we have 

where 

Then, applying (l-3.9), we have 

Uf+’ = min max Ui,g $j*i+‘t 2 

( (’ 

GjUi ,bi 

j=l j=i+l > I 

for 1 CilN. 
Relax Z-3.1. As we mentioned, if the constraint set I( is given by, e.g. 

K = ((v,, ~2) E R*: vi + v2 2 1) 

we cannot apply the above convergence theorem. However, in this case, we change the variable 
u2 by the affine transformation 

u*=vi+v*-1. 

Then the constraint becomes simply 

For example, if the minimi~tion of the functional 

is considered on K, using the new variables (v,, ut), we need to minimize 

1 1 
=u:-V,zi~f-ii~-u,+u*+- 

2 2 
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on the set K given by 
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. 
K = ((“1, uz): u2 2 0). 

Thus, we can apply the algorithm described in Theorem 2-3.2. 0 
(iii) Penalty methods. Both of the methods discussed up to this point involve the con- 

struction of a projection map PK. In the pointwise relaxation method, PK is constructed only 

when the non-empty closed convex subset K has the form K = z Ki. One alternative approach 
i=l 

which avoids the construction of a projection PK is provided by the so-called penalty methods. 
To describe the genera1 ideas underlying penalty methods, let us consider the case in which 

K is of the form 

K={vE$!:Mj(V)ZO; j=l,..., m, m<N}. (3.19) 

Here Mj(*) is a continuously differentiable concave function on % for each j, 1~ j 5 m. Further, 
suppose that the operator A (appearing in (3.1) and satisfying (3.6)) is derivable from a convex 
potential F: %+R; i.e. A=DE Then the variational inequality is equivalent to the minimization 
problem: find UEK such that 

F(u)sF(v) VvEK. (3.20) 

In this case, A is continuous, monotone and symmetric on %. 
Penalty methods for this class of problems involve the construction of special auxiliary 

functionals which depend on an arbitrary real parameter l and are constructed as the sum of F 
and a “penalty term” which depends on E and the constraint K. In the present case, we may 
introduce the penalized functional 

E(v,E)= F(v)+fM(v)- (3.21) 

where 

N(V)- =SUP(- Mj(U)v 0)~ M(V)-=,z A!fj(V)-a 
(3.22) 

Then 

M(u)- = 0 if and only if u E K. 

Next, instead of (3.20), we consider, for fixed l , the auxiliary minimization problem 

ll, E %: E(u,, E) 5E(v, E) vu E 4!l. (3.22) 

Since M(v) is concave and continuous on 4!& the penalized functional E(*, E) is also convex and 
continuous. Since M(v) 2 0, Vu E Q and since F(e) is coercive, there exists a solution u, E 91 of 
the penalized minimization problem (3.22) for each l > 0. If DF (or A) is strictly monotone, F 
is strictly convex. Then the solution is unique for every E > 0. Coerciveness of F(a) on % 
implies the uniform boundedness of u, in E. 

The importance of the solutions u, of the penalized problem is made clear in the following 
theorem: 

Theorem 2-3.3. Let F: ‘-?.l +R be. coercive, strictly convex, and differentiable on % and let 
K C ‘% be given by (3.19). Then 

(i) There exists a unique solution u E K of the minimization problem 

F(u) 5 F(v), v E K. (3.23) 
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(ii) The solution u of (3.23) satisfies the variational inequahty 

(DzJ(U),V-U)ZO, VEK. (3.24) 

(iii) For every E > 0, there exists a unique solution tie E % of the penalized minimization 
problem 

E(u,, E) 5 E(u, E) Vv E % (3.25) 

(iv) The sequence (&} of solutions to (3.25) obtained as E+O converges strongly to the 
solution u of problems (3.23) or, equivalently, (3.24). 

Proof. Since 

F( uc) 5 E( u,, E) I ii; E( v, E) = :I,nfx F(v) = Ff u) 

coerciveness of F(e) on % implies the existence of a convergent subsequence u,f of U, whose 
limit is w E %. Since F is convex and differentiable, it is lower semicontinuous and, therefore 

Moreover 

Taking the limit as E+O yields 

M(u)- 5 0. 

Since M(w)- 2 0, M(w)- = 0; i.e. w E R Since F is strictly convex, its minimizer in K is 
unique; i.e. u = w. This conclusion is reached for every convergent subsequence u,” of u,. Thus, 
the original sequence u, converges to W=UEK as e+O. To show strong convergence, note that 
under the conditions of the theorem, (3.14), holds. Since u is the solution of (3.24) 

O>(L)&& u-&(Q) 
=(DF(u)-DF(u,), u-u,)+(DF(u,), u-u,) 

WFh), u,-Mu,)) 

Since u, is the solution of (3.25), and since the penalty functional AK is convex, we have 

(DF(u,), u-u,)al4-(u,)-M-(u)sO. 

Then 

OZ!~ (~~(lIu-~,ll)+(~F(u), u,+‘,(0) 

=lii r&&d-u.‘ID. 

This indicates that the sequence {u,} converges strongly to u as E+O. Cl 
In general, penalty methods can be constructed for quite general minimization problems in 

which 

F: Q + R is weakly lower semicontinuous and coercive. 
P: % + R is the penalty functional, and P satisfies, 

(i) P: Q +R is differentiable (in the sense of Gateaux) and weaMy lower semicontinuous, 
(ii) P(v)=0 and P=O if and only if vfK; &ELy implies P(v)>O. 

Then the penalty functional 

E(v,e)= F(v)+iP(v) (3.26) 

has a minimizer u, (not necessarily unique) for every E > 0, and a subsequence of minimizers {u,} 
converges weaMy to a solution u of the minimization problem 

inf F(v) = F(u). 
SK 

We further generalize the penalty method to the v~iation~ ineq~lity (3.7). Let A be a 
continuous map from a non-empty closed convex subset K of a finite dimensional Euclidean 
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space % into W. Let PK be the projection map from 91 onto K. Then the map fl: Q-&’ given 

by 

p(u) = 0 - pK(u) (3.27) 

is monotone and continuous on % and 

p(v) = 0 if and only if v E K, 

Indeed, using (l-3.2) 

and 

(p(u)-p(u), u - u) =(u - v, u - v)-(P,‘(u)-&‘(v), u-v) 

z l/u - vl(‘- IIpK(u) - pK(~)/b - uI/ 

20 

(P(U) - P(v), W) = (U - v, W) - U'K(U) - PK(u), WI 5 211~ - uJIJJwII 

Then, for every E > 0, there exists a unique solution u, E % (%, we recall, is now finite 
dimensional) to the problem 

u, E 41: (A(u,) +; p(u,), v) = 0 Vu E % (3.28) 

provided A is assumed to be strictly monotone, and coercive in the sense that 

(A(v) - uo, u)/l(v(l+ + ~0 as IJuIJ +m, 00 E K 

Furthermore, u, is uniformly bounded in c > 0. Then there exists a convergent subsequence u,, 
which converges to w E %. By the definition of u, 

(P(uA 0) 5 +W~)llllvll 

i.e. 

VVE% 

p(u.)+O as e-+0 

Since B is continuous, /3(w) = 0, i.e. w E K. Moreover, for every v E K 

(A(uJ, v - u,) + 5 (P(uc) - P(v), u - u,) = 0 

i.e. 

Taking E + 0, we have 

Mu,), v - us) = f (POd -P(v), u, - 0) 2 0 

(A(w),v-w)rO VvEK 

because of continuity of A. Since the solution of the variational inequality 

u~K:(A(u),u-u)rO VuEK 

is unique, w = u, and for every convergent subsequence u,” the conclusions are the same. Thus 
the sequence U, converges to the solution u E K of the variational inequality. 
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Summarizing, we have: 
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Theorem 2-3.4. Under the conditions stated above, the sequence u, E % such that 

u, E 91: (A(u,) + f p(ue), u) = 0 vu E % 

converges to the unique solution u E K of the variational inequality 

u~K:(A(u),u-u)zO VUEK 

as e-0. 0 
More general cases in reflexive Banach spaces are discussed by Lions [I 11. 
If K is defined by an equality constraint such as 

M(u) = 0, M is continuous 

then the penalized functional E(u, l ) can be defined, for example, by 

E(u, E) = F(u) +& (M(u), M(u)) (3.29) 

(iv) Lagrange multiplier methods. A method closely related to penalty methods is the 
classical Lagrange multiplier method. Again the idea is to release constraint conditions defining 
a closed convex set K by amending the “cost” functional F. If equality constraints are 
involved, Lagrange multipliers methods can be applied in the usual way with no restrictions. 
However, if the constraint conditions are the inequality type, some restrictions must be also 
imposed on the Lagrange multipliers. It is notable that the admissible set K for such restricted 
Lagrange multiplier problems can always be represented in the form 

N=fiN, N=[ci,di] 
i=l 

even though the set K which characterizes the original constraint condition cannot be 
represented by the form 

K=fi Ki, Ki = [ai, bi]. 
i=I 

This means that the pointwise relaxation scheme described earlier is applicable to formulations 
based on Lagrange multiplier methods and, as is well known, the optimization problem can be 
formulated in such a way that the unknowns are free from any constraint conditions. While 
penalty methods often lead to non-linear equations and sometimes even non-differentiable 
functionals for linear operator equations, Lagrange multiplier methods need not have such 
difficulties, Computationally, however, the Lagrange multiplier methods often lead to iterative 
schemes whose rate of convergence is slower than other methods for problems which can be 
resolved by all the methods discussed earlier. We shall study this feature in some detail in the 
next section. 

Let us consider the problem 

u~K:(A(u),u-u)zO VUEK 

K = {U E ‘&: Mj(u) 50, i = 1,. . . , m} I 
(3.27) 

where the operator A maps % into itself and is such that (3.6) holds and M: % + 5’; 5’= R”, is 
an operator satisfying 

]]M(u) -M(n)]],,, 5 cl/u - u]], (3.28) 
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where (1, I[,,, denotes the norm in R” (m 5 N). Introducing the notation 
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we introduce Lagrange multipliers p and replace (3.27) by the equivalent system 

(A(u),v-u)-_(p,M(v)-M(u)),rO VvE% 

(4-P,Mu))*~O VqEN 
(3.29) 

where N is the set 

N={qER”:qiSO, i=1,2 ,..., m}. (3.30) 

We now establish the following iterative procedure for the numerical solution of (3.29). 
(i) Pick a starting value pO=O. 
(ii) Determine the tth iterate u’E% as the solution of the unconstrained problem 

(A(d), v) - (p’, M(v)), = 0, Vu E %. 

(iii) Using u’, p’+’ is defined by 

P ‘+I = Pf.J(p’ - PM(d)) 

where PN: Sr-+ N a projection of “zr onto N. Then (u’,p’) converges to the solution (u,p)~ 
% x N of problem (3.29). In fact, by (ii) 

(A(d), v - u’)-(p’, M(v)-M(u’)), 10 Vu E %, 

i.e. 

(A(u’), u-u’) - (p’, M(u) - M(d)), 2 0. 

Also 

(A(u), u’ - u) -(p, M(u’) - M(u)), 2 0. 

Adding these two inequalities gives 

(A(u’)-A(u), u’-u)-($ -p,M(u’)-M(u)), SO. 

Putting e’ = u’ - u and r’ = p’ - p, we have 

mJ(e’)(‘s (r’, M(d) - M(u)), 

and, according to (ii) and the definition of p 

P ‘+I = Pj-&’ - pM(u’)) 

p = ho - PMUN. 

(3.3 1) 

Then 

rt+’ = P&l’ - &f(d)) - PN(P - PM(U)). 
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Since Phi is non-expansive 
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By (3.28) and (3.31) 

Ilr’+‘ll~ 5 Ilr’llrT - 2pm))e'(l* + p*c*)(e’(l*. 

If p(pc’-2m)<O (i.e. O<p<2m/c*), llr’]],,, ’ d IS ecreasing as t++m. Thus u’ converges to u as t-m, 
indeed, 

where P=p(pc2-2m). For additional details, see Glowinski et al. [6]. 
Summarizing, we have 
Theorem 2-3.5. Suppose that A and M satisfy (3.6) and (3.28). Then the sequence (u’,p’) 

defined by the above algorithm converges to the solution (u, p) of (3.29) as t + m. 0 
The obvious computational procedure suggested by (i) and (ii) is generally known as 

Uzawa’s method (see Arrow et al. [40]). 
We finally show that the solution (u,p) E 91 X N to the Lagrangian problem (3.29) also 

satisfies the variational inequality (3.27). 
Since (3.29)* is equivalent to the system 

(p, M(u)) = 0, p ~0, and M(u) ~0 

we have, from (3.29)i 

(A(u),v-u)z(p,M(v)-M(u))=(p,M(v))rO, vEK 

2.4 Numerical experiments 
In this section, we will consider a l-dimensional version of the problem of seepage flow 

through a homogeneous rectangular dam. We will solve this problem numerically using the four 
solution methods discussed in the previous section. See Chap. 3. 

The example problem involves finding a solution u E K of the variational inequality 
considered in Example l-l. 1 

I 
I 

0 
u’(v-u)‘dx+ O’(v-u)dx?O VVEK 

I 
(4.1) 

where 

K = {v E H'(0, 1): v(0) = l/4, v(1) = 0, and v(x) 2 0 in (0, 1)) (4.2) 

and u’ = duldx. 
Let the domain R = (0,l) be discretized by a uniform mesh containing N-l finite elements. 

Within a finite element, every function v E H’(R) is approximated by functions of the form 

v = v'(Pd5)+ v2v2(1) (4.3) 

where vi is the value of v at ith local nodal point, qi(t) is the local interpolation function at ith 
local nodal point, and .$ is a local coordinate in the finite element. For a unit linear element 

a(5)= 1-c (P*(5)= 6 (4.4) 
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Upon assembling the elements, a global model is obtained for which every function v E H’(a) 
is approximated by 

Vh(X)=$ V&‘(X) (4.5) 
I 

where vi is the value of oh at ith (global) nodal point, and @(x) is the global basis function 
corresponding to the ith (global) nodal point. Introducing the approximation (4.5) into (4.1) and 
(4.2), the variational inequality (4.1) on the admissible set (4.2) reduces to an optimization 
problem in RN 

{ Ui} E Rh : (Vi - Ui)(K”Uj - F’) 2 0 V{ Vi} E Rh (4.6) 

where repeated indices are summed and 

&,={{Vi}~RN:V~=1/4, VN=O, ~20, i=2 ,..., N-1) (4.7) 

Kir = I,’ (#)‘(@)’ dx, I-? = - 1,’ ti dx (4.8) 

and N is the total number of nodal points in the finite element model. 
We now solve (4.6) and (4.7) using the four methods discussed in the previous section. 
(i) Fixed point methods. The iterative scheme defined by (3.8) becomes 

Uf+’ = max (O., Uf - pi(K”Uj - F’)), i = 1,. . . , iV (4.9) 

assuming we have constructed some initial approximation u’i 2 0, i = 1, . . . , N. That is, the 
operator A(*) is defined by 

A(.) = KlI.I- W} (4.10) 

and the projection PK is defined pointwise by 

PA.]) = {max (O., .)I. (4.11) 

In (4.10), [K] is the N x N-matrix defined by (4.8h. We 
(4.11) of the projection is implied by the special structure 
(4.7); that is, Rh can be represented by the product of RX 

note that the pointwise expression 
of the admissible set Rh defined by 

(4.12) 

R~={v’ER:v’~O, v’=1/4 if i=l, vi=0 if i=N}. (4.13) 

The iteration factor pi appearing in (4.9) has to be chosen so that condition (3.9) is satisfied. 
In general, it is preferable to use a modification of the iteration scheme (4.9) given by 

ul+‘=maX(O.,ul-~i(~K”uj+‘+~K”u:-F)). (4.14) 

That is the terminal values u!+’ 
the iteration factor pi is chose; io 

1 li < i, are used in calculating the value if+‘. Moreover, if 
that 

pi = (Y/&i (4.15) 

then (4.14) reduces to the same form as the pointwise projectional S.O.R. method to be 
discussed later. For this case, (4.14) becomes 

IJES Vol. 18. No. Ill-D 

i-l 

-~KiiU~+‘- 2 K”Uj+F 
j=l j=i+l >/ > 

Kii . (4.16) 
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This suggests that as a choice for the value of pi, we take 

&=ff/lyii, 0< ff <2 (4.17) 

since the S.O.R. method for positive definite linear systems converges for 0 < a < 2. 
(ii) Pointwise relaxation methods. Since the matrix [K] defined by (4.8) is symmetric, there 

exists a functional F(u) such that 

(here repeated indices are summed; 15 i, j 5 N). Then, the discrete variational inequality (4.6) 
is equivalent to the constrained minimization problem 

{Ui}ER~:F(U)5F(V), V{Ui}E& (4.19) 

where & is defined by (4.7). We note that the admissible set & can be represented by (4.12) 
and (4.13) which is consistent with (3.10). 

Then, the general relaxation scheme (3.13) becomes 

g+ = max (O., Uf+(*‘*)) (4.20) 

where 

U!+w2) = 
I (- # K'ju;+' - j$, K”uj + F)/IP, 

In general 

(4.21) 

(4.22) 

is taken instead of (4.21). The scheme (4.21) is called the Gauss-Seidel algorithm, and the 
scheme (4.22) is called the S.O.R. algorithm for (Y > 1. The pointwise relaxation (4.20) and (4.22) 
is called the pointwise projectional S.O.R. method here, after the S.O.R. method for systems 
of linear equalities. As mentioned above, the scheme (4.20) with (4.21) coincides with the 
special choice of pi, (4.19, in (4.14). That is, the fixed-point method is equivalent to the 
pointwise relaxation method for the specific example (4.6) if the parameter pi is chosen as in 
(4.15). 

(iii) Penff~~y methods. Since the admissible set & can be represented as the product of 
componentwise sets in R as shown in (4.12) and (4.13), the penalty functional P can be 
constructed by the rule 

P(V)=$(*;)(Q;)* V~=SUp(O~-~~). (4.23) 

Indeed, u +P(Y) is convex, continuous and differentiable. Its gradient is given by 

DP(u) = {- II;}. (4.24) 

Moreover, P(u) 2 0 and P(v) = 0 if and only if u; = 0 for every i = I,. . . , J?, i.e. vi r 0 for 
everyi=l,...,N. 

Since P(m) is convex, the gradient LX’(*) is monotone. It is clear that DP(*) is continuous and 
D’(o) = 0 if and only if o; = 0, i.e. vi 2 0 for every i = 1,. . . , N. Thus the gradient LX’(*) can be 
used as a penalty operator, i.e. 

/3(v) = UP = {- v;). (4.25) 
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It is worth noting that 

P&(U) = {UT}, UT = SUP (0, Ui) 

u - P&(U) = {u: - u; - UT} = {- u;}, 1 
(4.26) 

that is 

DP( u) = (I - PR*)( u). (4.27) 

Thus, the variational inequality (4.6) can be approximated by the penalized equations 

{u~}ERN:Kii,J-;(u:)-=F’, i=l,...,N (4.28) 

with the boundary condition 

ui=1/4 and u~=O. (4.29) 

The non-linear non-differentiable system (4.28) can be solved by the modified S.O.R. method. 
That is, at tth increment, u?’ can be obtained by the algorithm 

i-l 
RI = _ 2 Kijurt _ 2 KBuf.-l + pi 

j=l j=i+l 

1 
D, = Kii +- if 1(5’-’ <O I E (i: no sum) 

D.=Kii if ~5-12-0 I I 

~~‘=(l-wi)U~‘-‘+oiRf/Di. 

(4.30) 

Here the iteration factor oi is defined, for 0<0<2, by 

oi = 0 if uf”-’ 20, Wi=l.O if U;“-‘CO. (4.31) 

(iv) Lagrange multiplier methods. The Lagrange multiplier pi is introduced to release the 
constraint 

UirO, i=l,...,N 

in the admissible set Rh defined by (4.7). 

piUi = 0, 

The problem corresponding to (3.29) is 

The vector (p} is expected to satisfy 

$20, i=l,..., N. (4.32) 

puj -pi = F’ 

(4’ - pi)Ui 2 0 V{,(S~} E RN with qi z 0. 
(4.33) 

The solution ({u}, b}) to the problem (4.33) is obtained by the iterative scheme 

(i) ui = (Kc)-'(F' +pf) 

(ii) pi+, = max (O., if - pu:). 
(4.34) 

Here, the initial vector b,} is given so that pi L 0, i = 1, . . . , N. In (4.34), (i) can be solved for 
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unknown vector (PJ at each iteration step. However, (4.34) is sometimes solved 
iterative scheme 

i-l 

u~=(l--a)ufml+~ --zKiju;- 2 Kiju:-l+p+pf 
( 

Kii 

j=i+l 
)/ 1 

pL = max (O., Pf - puf). 1 

by the full 

(4.35) 

Whife the factor LY is in (0,2) as in the usual S.O.R. method, the iteration factor p for the 
Lagrange multiplier tip) has to be sufficiently small. One suggestion for the choice of p is 

p = 0.05 x (m$ Pi) (4.36) 

since the dimension of pu: becomes the same as that of Cp’). 
Example 2-4.1. We soIve the variational inequality (4.6) for iV = 20 using the four methods 

described above. 
In Fig. 2.2, the exact solution and approximate finite element results on the variational 

inequality (4.6) are shown. 
In Table 2.1, the convergence of the penalty method with respect to E is also shown. A 

rather large e gives a reasonable approximation (E = fOe2) to the solution of the variational 
inequality (4.6). 

In Table 2.2, numerical results obtained by using the schemes (4.14), (4.22), (4.30) and (4.35) 
are listed and compared with the exact solution of (4.6). According to these numerical results, 
Lagrange multiplier methods give the poorest results in accuracy of the solution as well as in 
the speed of the convergence. Fixed-point methods and pointwise relaxation methods give 
results the same to four significant figures. 

Table 2.1. Convergence of penalty method. Over relaxation factor, w = 1.55; Tolerance for convergence, 

e= 1 ~u~+‘-u~~/~u~+‘~~lo-~ 
i=l 

Competed results 
Node c = l.OE-I E = 1 .OE-2 f = 1 .OE-3 c = 1.0E-4 E = LOE-5 

I 0.2wOoO 0.250000 0.25OOoO 0.250000 0.250000 

5 
0.215704 0.215861 0.215877 0.215878 0.215878 
0.183912 0.184226 0. I84257 0. I84260 0.184260 

: 
0.154624 0. IS5095 0.155141 0.155145 0.155146 
0.127838 0.128467 0. I28329 0.128534 0.128534 

6 0.103555 O.I#342 0.1~19 0.104425 0.104426 

;I 
0.081774 0.082720 0.082811 0.082819 0.082820 
0.062495 0.063600 0.063706 0.063715 0.063715 

9 0.045718 0.046981 0.047102 0.047111 0.047112 
10 0.031441 0.032864 0.032998 0.033009 0.033010 

t : 
0.01%65 0.021247 0.021397 0.021408 0.021409 
0.010389 0.012130 0.012293 0.012306 0.012307 

13 0.~3613 0.005513 0.~5~9 O.~S704 0.~5705 

1: 
- o.OfJO664 0.001395 0.~1586 0.~1~1 0.001603 
- 0.002774 - O.ooO223 - 0.000019 - 0.00&?02 - o.OOOOOO 

1; 
- 0.003770 -0.OOo46O - o.OOOo49 - o.OOOOO5 - o.oOOuOO 
- 0.004152 - 0.000494 - o.OooO5o - o.OOOOO5 -O.OOOOOO 

I8 -0.004111 - 0.000498 - o.OoOO5o - o.OoOOO5 -O.OOOOOO 
I9 - 0.003624 - 0.000489 - 0.000050 - o.OOOOO5 - o.OOOOOa 
20 - 0.002450 - 0.000427 - o.OOOo49 - o*Oowo5 -O.OOOOOO 
21 -0.~ -0.~ -0.~ -0.~ - 0‘~ 

c No. of Iterations 

IO-’ 30 
10-* 31 
10-S 31 
IO-* 31 
IO-’ 31 
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Table 2.2. Ccmparison of numerical methods. Iteration factors: Pointwise relaxation, w = 1.6; Lagrange 
multiplier, p = 0.04, o = 1.0; Successive approximation, p = 0.04; Penalty, e = IO-“, w = 1.55. Tolerance for 

convergence, I .0&S 

Node S.O.R. 

Computed results 
Fixed 

Lagrange point Penalty Exact 

I 

4 
5 
6 
7 
8 
9 

IO 
II 
I2 
I3 
I4 
I5 
I6 
I7 
I8 
I9 
20 
21 

0.250080 0.25OQOO 
0.215895 0.215927 
0.184291 0.184352 
0.155187 0.155277 
0.128581 0.128699 
0.104475 0.104620 
0.082867 0.083039 
0.063758 0.063956 
0.047148 0.047371 
0.033040 0.033283 
0.021431 0.021693 
0.012324 0.012601 
0.005716 0.006008 
0.001608 0.001912 
O.OOOOW 0.000140 
O.OOOOOO - 0.000538 
O.OOOOOO - 0.000807 
O.OOOOOO -0.001001 
O.OOOOOO -0.001178 
O.OOOOOO - 0.001083 

-o.OOOOOO O.OOOOOO 

0.250000 0.250000 0.250000 
0.215895 0.215878 0.215895 
0.184291 0.184260 0.184289 
0.155187 0.155146 0.155184 
0.128581 0.128534 0.128579 
0.104475 0.104426 0.104473 
0.082867 0.082820 0.082868 
0.063758 0.063715 0.063763 
0.047148 0.047112 0.047157 
0.033040 0.033010 0.033052 
0.021431 0.021409 0.021447 
0.012324 0.012307 0.012341 
0.005716 0.005705 0.005736 
0.001608 0.001603 0.001631 
O.OOOOOO -o.OOOOOO 0.000025 
O.OOOOOO -O.OOOOOO O.OOOOOO 
O.OOOOOO -o.OOOOOO O.OOOOOO 
O.OOOOOO -o.OOOOOO O.OOOOOO 
O.OOOOOO -O.OOOOOO O.OOOOOO 
O.OOOOOO -o.OfKWO O.OOO8OO 
OSIOOOOO O.OOOWO O.oooooO 

No. of Iterations 

Pointwise relaxation, 
Lagrange multiplier, 
Successive approximation, 
Penalty, 

I7 
271 

I7 
31 

- Exact solution 

0 FEM 

Fig. 2.2. Numerical results obtained for a one-dimensional variational inequality. 

3. APPLICATIONS TO SEEPAGE PROBLEMS FOR HOMOGENEOUS DAMS 

3.1 Problem setting and Baiocchi’s transformation 
In this section, we consider applications of the theory of variational inequalities and their 

approximation, discussed in Chaps. 1 and 2, to the problem of seepage of fluids through a 
porous media. For simplicity, we confine ourselves to 2-dimensional problems and we choose 
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the classical model for such phenomena in which the flow is governed by Darcy’s law (see, e.g. 
Bear[41]). 

For this class of problems a rather elegant formulation is possible which fits the analysis 
conveniently into the framework of the theory of variational inequalities discussed thus far. We 
begin with a study of flow through non-rectangular homogeneous dams; we later extend these 
results to rectangular dams with variable permeability. 

Derivations of quasi-variational inequalities associated with the seepage flow analysis 
mainly follow the work of Baiocchi et al. [14], Baiocchi[42], Baiocchi, Brezzi and 
Comincioli[43] and Lions [44]. 

Consider the case of a homogeneous isotropic dam on a horizontal impervious foundation, 
through which water is filtered so as to produce a steady it-rotational incompressible 2- 
dimensional flow field. For simplicity, we take the specific weight y of the water as unity. Then 
the problem is to find the pressure field p = p(x, y) in the domain 0 CR* representing the flow 
region such that the following conditions hold 

p>O in R, p=O in LNi 

-Ap=O in !I, 
(1.1) 

p=H-y on AF, p=h-y on BC, p=O on CD 

(p+y)“=O i.e. @+y),=O on AB 

p=O, (pty),=O on S=FD 

(1.2) 

The geometry of our problem, including the definition of terms in (1.1) and (1.2), is defined in 
Fig. 3.1. The symbol A denotes the Laplacian operator. The subscripts (a),, and (a), denote the 
normal derivative 

and the derivative with respect to y, where n = {n,, n,} is the outward unit vector normal to the 
boundary of the domain 0. S is the free surface which is unknown a priori, and the dam D is 
made up of three parts, D = D, U 4 U 4, as shown in Fig. 3.1. 

The pressure p can be characterized by the relation 

cp =PlY+Y 

Y 

(1.3) 

Fig. 3.1. Geometry of flow through an arbitrary porous dam. 
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where cp is a velocity potential with the property that 
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v’=-kgradq (1.4) 

3 being the velocity of the water, k the permeability which, for the moment, is assumed to be 
constant, and y is the specific weight of the water which is assumed to be unity. Equation (1.4) 
is referred to as Darcy’s law for seepage flow. 

Theorem 3-1.1. Let xo be the characteristic function for the domain CI defined by 

i 

1 if (x,y)ER 
‘o(” ‘) = 0 if (x, y) $ R. 

If (1.1) and (1.2) hold, the pressure p satisfies the equation 

- AP = (xdy 

(1.5) 

(1.6) 

in the sense of distributions on the domain D. 
Proof. Let cp E C;(D). Then, by (l.l), 

Vp.Vpdxdy= 

BY (l-2)3 

pnipds=- y,cpds=- 

Then 

Vp.Vcpdxdy=- xocPrdxdy, 

i.e. 

- AP = (xd, 

in the sense of distributions on D. Cl 
Suppose that (1.6) is satisfied in the usual sense. Integrating (1.6) from 0 to y yields 

(1.7) 

Indeed 

I 
’ (x&(x, t) dt 

O + Wk 0) = x& Y) - xnk 0). 
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that is, (1.7) is implied. Here we have used the fact that the line AB is always saturated by 
water. Thus 

Theorem 3-1.2. Let u be defined by 

I 
Y 

U(& Y) = P(X, t) dt. (1.8) 
0 

If p is a solution of (1.1) and (1.2), then u satisfies 

-Au=/w. IJ (1.9) 

Equation (1.9) is defined on the whole domain D, while (l.l)* is satisfied only on the 
unknown domain R. The relation (1.8) is called the Baiocchi transformation. This novel change 
of variables makes it possible to reformulate the problem in terms of functions defined on the 
entire domain D; see Baiocchi[l3]. 

We now introduce the following notations: the free boundary FDC in Fig. 3.1 is represented 

by 

y = Y(x) on (0, c) (1.10) 

and the surface of the dam AFEDCB is given by 

y =2(x) on (a,!~). (1.11) 

BY (1.111 

I 
Y(x) 

UC% Y) = p(x, t) dt for every y E (Y(x), Z(x)) (1.12) 
0 

that is, u(x, y) is constant with respect to y in the non-flow domain Ufi. Moreover, (l.l), also 
implies that u(x, y) is a strictly increasing function with respect to y in the flow domain R 

u(~~YI)<u(~,Y~) if YI<YZ in fl (1.13) 

Combining (1.12) and (1.13) 

0 5 u(x, y) < u(x, Z(x)) for (x, y) E R 

u(x, y) = u(x, Z(x)) for (x, y) E a’si. 
(1.14) 

The fact that u(x, Y(x)) = U(X, y) = u(x, Z(x)) in D/b has been used in (1.14). We note that 
(1.11) is given, while the free surface (1.10) is unknown a priori. From the definition of (1.8) of u 

P(X> Y) = ug(x, Y). 

This leads to the boundary conditions 

u,=H-y on AF, u,=h-y on BC, u,=O on CD. (1.15) 

Moreover, by (1.8) 

u=O on AB. 

The conditions ( 1.2)2 and (1 .2)J have already been incorporated into (1.9), etc. 

(1.16) 
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Summit up, we have proved the following: 
yeomen 3-1.3. Let u be defined by (1.8). If p is a solution of (1.1) and (1.2), then u satisfies 

-Au=xn in D 

0 5 u(x, y) < u(x, Z(x)) for (x, y) E n 

u(x, Y) = 4x, Z(x)> for (x, y) E Wb 

u,=H-y on AF, u,=h-y on SC, u,=O on CD 

u=O on AB. 0 

(1.17) 

3.2 A va~atio#al formulation 
In the previous section, the seepage flow probIem (1.1) and (1.2) was transformed into the 

equivaIent problem (1.17) through Baiocchi’s transformation (1.8). Here a variational for- 
mulation associated with (1.17) will be discussed. We will show that this formulation leads to a 
quasi-variational inequality. 

Lemma 3-2.1. For every Z(x) E C*(a, b), u, v E C’(D) with v = 0 on AB, the relation 

f 
(- z’u,u, f Z’u,v, - Z%,v) dx dy = 

D 
-~u”vd~+~~~u~vd~ (2.1) 

is satisfied, where Z’(x) = dZ(x)/dx and f = I’/AB and r is the boundary of D. 
Proof. By integration by parts 

I (- Z’u,u, -I- Z’u,v, - Z”u,v) dx dy 
D 

= ,(-z I ‘u,rt, + Z’u,n,)v ds - 
I 
o (- Z”u, - Z’u, + Z’u,, + Z”u,)v dx dy 

= I E( - i+,nx f u,n&‘v dx 

Let f(x, y) = y -Z(x). Then the outward normal unit vector n = {nX, n,} can be represented by 

Thus 

In,, n,} = p-Z’, 1wiTF 
- t&z = (zyn,, nyz = - n, 

(- u,n, + u&z’ = u~n~(~)z - l&n, = - (uyny + u.4,) f t1+ (-q2)uyn, 
=- u, -I- VTqpu,. 

Substituting this result into the above boundary integral gives (2.1). El 
Suppose that u satisfies (1.17). Let v be an arbitrary function in H’(D) such that v = 0 on 

AB. Then 

{Vu ’ V( v - u) - Z’u,(u - u), + Z’u,(v - u), - Z”u,(u - u)) dx dy 

I 
.” VE@$4,(v - u)dx 

and 

(-Au)(u-u)=(o--u)-(I-xxn)(v-u)=(v-u)--(u-Q)(o-u). 
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and 

Wv)k Y) = { 
1 if u(x,y)>O 
0 if 22(x, y) CO. 

(2.2) 

(2.3) 

Setting 

a(u, u) = (Vu . VU - z’u,v, t Z’u,v, - Z”U,D) dx dy (2.4) 

L(Y) = I, o dx dy + f’(Ei - y)%‘l + (Z‘)*u dx + 1’ (h - y)mu dx (2.5) 
(I c 

yields 

H(u-u&u-u)dxdy=L(u-u). 

Indeed, 

a(u, 2, -u) = 
I 

{(u - u)-H(u - u&u - u)}dx dy 
D 

+ a(~-y)~(~-u)dx+~b(~-y)~(~-u)dx 
I n c 

since 

Putting 

u,=O on CD and u,=O on FED. 

j(u; u) = I (u - uz)+ dx, (p+ = sup {O., cp} 
n 

we have 

j(u; u) - j(u; u) 2 
I 

n H(u - u&v - u) dx dy. 

Indeed, for every u, b E R 

where 

a+ - b+ 1 H(b)@ - b) 

H(b)=0 if b<O, H(b)=1 if b>O 

OsH(b)sl if b=O. 

Therefore, the problem (1.17) can be transformed to the variational form 

(2.6) 

(2.7) 

(2.8) 

u~~:u(u,~-~)+j(u;~)-j(u;u)~~(~-u) forevery vEVo (2.9) 
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where (recall Remark l-8.1) 

K = {u E vo: u 5 uz, uz(x, y) = u(x, Z(x))} 

V. = {u E H’(D): u = 0 a.e. on Al?}. 
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(2.10) 

(2.11) 

The reason every element of V. belongs to the Sobolev space H’(D) is that 

a(~, VI 5 (I+ lIz’llo.m + llZ”llb.m~lI~Il,ll~ll, < + ~0, (2.12) 

if 2 E C*(a, 6). The virtual work a(u, u) is finite in H’(D) if Z is smooth enough. The 
estimate (2.12) further means that the bilinear form a(., -) is continuous on H’(D) x H’(D). For 
every u E Vo, 

a(u, u) = I( D 

VuVu-Z+u2), dxdy 
I 

= VuVudxdy-; 
I 

b 

z”u2 dx 
D I (1 

L +[/;,D -; Ib z”U2 dx 
(I 

(by Poincare’s inequality). If the dam D is assumed to be convex, i.e. Z”(x) 50 on [a, b], the 
bilinear form a(-, .) is coercive. In this analysis, we will assume the convexity of D for 
simplicity so that 

a(% 0) z &ll:,D. (2.13) 

Theorem 3-2.1. Suppose that the domain D is convex and that there exists a solution u E V,, 
of the variational inequality 

u E Vo: u(u, u - u) t j(u; u) - j(u; u) 2 L(u - u) Vu E Vo. (2.14) 

Then the solution u E V,, satisfies 

6) 

(ii) 

u 20, a.e. on D, 

-AuEL”(D), and OS-Au11, 

(2.15) 

(2.16) 

(iii) u - uz 10, a.e. on D, and (2.17) 

(iv) u, =0 on (x,Z(x)), xE(0, c), 

u, = H-y on (x,Z(x)), x E(u,O), (2.18) 

u, = h -y on (x,Z(x)), xE(c, b). 

In other words, the solution u E V, of the variational inequality (2.14) is also a solution of (1.17). 
Proof. (i) u 2 0: Taking u = u+ E V, in (2.9), yields 

- a(~-, u-) t 
I 
D {(u+ - uz)’ -(u - uz)+} dx dy > 

I 
u- dx dy, 

D 

since u = u+ - u-, a(~+, u-) = 0, H - y 2 0, and h - y 2 0. By the following inequality 

(u’-uz)+=(u-tu-uz)+I(u-)++(u-uz)+=u-t(u-uz)+, 
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- a(~-, u-)20, i.e. u- =0 so that u 20 

(ii) 0 5 -Au s 1: Taking v = u + cp E VO, p E C${D), in (2.9), we obtain 

Since @ f q)+ s p+ + 6j+ 

a(u, cp) t cp+ dx dy 2 
I 

cp dx dy. 
D 

Taking 4p 10 in -0, we obtain 

that is 

-Au-1~0 

in the sense of distributions on D. Taking cp 2 0 in 0, we have 

that is 

-Aus0 

in the sense of distributions on I). Thus, we conclude that 0 I: - Au 5 1. This further implies 
that -Au E L”(L)). 

(iii) u I uz: Since we have already proved that u z 0 in Q uz 2 0 must hold. Then 

(u - uz)+ = 0 on r 

where f is the Sunday of the domain A Substitution of v = u -(u - uz)+ E V. into (2.9), and 
integrating by parts gives 

- 
I 
D (- Au)(u - uz)+ dx dy t {(u - uz - (u - uz)+)+ -(u - uz)+} dx dy a- 

i.e. 

J (- Au)( u - uz)+ dx dy 5 0. 
D 

Since -Au z 0, this inequality implies (u - uz)’ _( 0, i.e. u - uz 10. 
(iv) Boundary conditions: Taking v = u + w, w E VO, in (2.19) and integrating by parts, we 

can obtain the following estimate 

I 
D(-w)+dxdy> 

I 
b~1+Z’2uYwdx-~o(&y)6-%vdx 

(1 (I 

- (h -y)mwdx? - D(-Au- I)wdxdy- 
f 
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Since 

If D (- IV)+ dx dy 

If 
(w)’ dx dy 

D 

we have 

b- 
dl+Z’2u,wdx- o(H-y)~wdx-/b(h-y)~wdx/~2/wl,,D 

C 

Since it is possible to take arbitrary values on (x, Z(x)), x ~(a, b) while (wI,,~ 5 E for 
arbitrary given small number E > 0, we can conclude that 

U, = H-y on (a,O), u, = h-y on (c, b), and u, = 0 on (0, c). 0 

We now consider the problem of determining sufficient conditions for the existence 
solutions of the variational inequality (2.14). 

an 

of 

Let us investigate properties of the functional j defined by (2.6). To this end, we introduce a 

function cp defined by 

cp(u; u) = (a - Uz)‘. 

Suppose that a I b. Then we define x by 

x = 0, a) + cp(b, w) - ~(a, inf (a, w)) - cp(b, SUP (v, w)) 

= (u - a~)+ + (w - b.$ - (inf (u, w) - a=)+ - (sup (u, w) - b,)‘. 

If u 2 w, 

,y=(u--az)++(w-bz)+-(w-a=)+-(u-b=)+. 

Then 

X= 

i.e. x 2 0. If 0 C w 

0 (u>whbra) 
b,--w (uzbrwru) 
bZ-uz (uzbruzw) 
u-w (bruzwru) 
u - UZ (brusuzw) 
0 (b L a 2 u .z w), 

,y=(u-uz)++(w-bZ)+-(u-uz)+-(w-bZ)+=O. 

Therefore, we have 
Lemma 3-2.2. For p 5 q, 

i(P;u)+j(q;w)-j(p;inf(u,w))-j(q;sup(u,w))rO (2.19) 

for every u, w E Vo. 0 
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As shown above, the bilinear form a(.;) is continuous and coercive (recall (2.12) and (2.13)) 
on a closed subspace Vo of H’(D), if convexity of the domain is assumed. Moreover, the 
non-differentiable convex functional j(u; -1, which depends upon the solution itself, satisfies the 
~~monoton~~ity” condition (2.19). Thus, we can establish the following existence theorem by a 
direct application of the general existence theorem, Theorem l-8.2, discussed in Section 1.8. 

Theorem 3-2,2. Suppose that the domain D is convex so that the bilinear form a(,, -) is 
coercive on Vo. Then there exists a solution u E V, of the variational inequality (2.14). Cl 

Continuing, we further note that the solution u E V. of the variational inequality (2.14), 
referred to as a variational inequality of the second kind in Chap, 1, also satisfies a variational 
~nequaIity of the first kind. That is, u E V. is a soiution of 

where 

u E K(u): a(u, u - u) r: L(U - u), VU f K(u) (2.20) 

K(u)={vE vo: u-&lo}. (2.2 1) 

Indeed, as shown in (2. I?), EC - uz s 0, i.e. 

j(u; 24) = 0. 

For every I.J E K(u), j(u; U) = 0. Thus u E V. satisfies (2.20). 
Solutions to (2.14) will not, in general, be unique. This fact implies considerable difficulties 

in obtaining approximate solutions, as indicated in the following example. 
Example 3-2,1, We wifi consider an example problem of seepage flow through a non- 

reactangular quadrilateral isotropic homogeneous dam as shown in Fig. 3.2. The foundation is 
horizontal and is assumed to be impermeable. Physical dimensions and a discretization of the 
domain D are also shown in Fig. 3.2. 

fn this case, the vocational inequality (2.9) and the admissible sets (2.10) and (2,ll) become 

uEK:a(u,u-u)tj(u;u)-j(u;u)~L(u-u) VuE V. 

K = (0 E Vb: v(x, y) 5 v(x, Z(x)), a.e. x E (0, c)) 

flo=(vfH’fD): t-‘fx,O)=O, a.e. xE(O,b), 

(2.22) 

(2.23) 

~(0, y) = i (2Hy - _Y’), a.e. y E (0, H)} (2.24) 

where 

(2.25) 

i(u; u) = I 13 W, Y) - WY zW)l+ dx dy. (2.27) 

AX’ 0 

aY’O 
.25 
.25 

Fig. 3.2. lXm&zatian of domain in Example 3-2.1. 
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An interesting fact is that if we seek sequential solutions of the variational inequalities 

u,+~ E V6 a@,+,, u - u,+J +i(Un; v) -i(Un; u,+I) 2 L(u - u,+I), Vu E VO (2.28) 

only “trivial” solutions would be obtained in the following sense: if the initial function uI is the 
solution of the “Neumann” problem 

u1 E vo: a(u1, u) = L(u), vu E v, (2.29) 

then for all n = 2,3,. . . , the solution u, of the variational inequality (2.28) always coincides 
with ul. This fact suggests that the variational inequality (2.14) may not be capable of predicting 
physically meaningful solutions to the seepage flow problem (1.1) and (1.2). In turn, this 
suggests that some additional conditions are needed in the model in order to preserve physical 
consistency which has apparently been lost in the process of deriving the quasi-variational 
inequality (2.14). We postpone a fuller exploration of such conditions until the end of this 
section. 0 

Recently, Brezis, Kinderlehrer and Stampacchia[45] introduced a new formulation to the 
seepage flow problem (1.1) and (1.2) using an (extended) pressure p(x, y) defined on the whole 
domain of dam D described in (1.1). Their weak formulation is based on Theorem 3-l. 1 instead 
of Theorem 3-1.2. Indeed, if an additional condition 

(p + y), 50 on CD 

is assumed, the solution p(x, y) of (l.l), (1.2) and (2.30) satisfies 

(2.30) 

I Vp.Vqdxdy+ (pydxdy= 
I I (p+y),cpdssO 

D n CD 
(2.31) 

for every cp E C’(D) with cp = 0 on AF U BC and cp 2 0 on CD. Using the Heaviside function, 
(2.31) can be written by 

I (Vp . VP + H(p)cp) dx dy 5 0 
D 

(2.32) 

where H(p) = 1 if p > 0, H(p) = 0 if p < 0, and 0 5 H(p) 5 1 if p = 0. Then the mathematical 
problem is defined as follows: 

Find p E H’(D) and g E L”(D) such that p ~0, a.e. on D, g(x, y) = 1 if 
, 

p(x, y) > 1,O sg(x, y) 5 1 if P(X, Y) = 0, pk Y) = 0 on FEDS, ~6, Y) = 

H-y on AF, p(x,y)=h-y on BC, and ID(Vp*VP+gcp,)dxdy10, (2.33) 

for every cp E H’(D) such that cp L 0 on FEDC, cp = 0 on AF U BC. 

To show existence of solutions to the problem (2.33), Brezis et al.1451 introduce a penalized 
problem: 

Findp,EH1(D)withp=OonFEDC,pp,=H-yonAF,andp,=h-y 
on EC such that JD(Vp,. Vq + H,(p,)cp,)dx dy = 0 for every cp E 

t 
(2.34) 

H’(D) with cp = 0 on FELX U AF U BC where 

H,(P) = 

0 if ps0 

kp if Ospce 

1 if csp, 

(2.35) 
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Then, applying the Schauder fixed-point theorem, it can be easily proved that the problem (2.34) 
has a unique solution p. E H’(D) n W&D) for every E > 0 and s <cc, and that pc is uniformly 
bounded in H’(D). Since H’(D) is reflexive, there exists a sequence {E,}, E, +O as n +m, such 
that 

PC -p weakly in H’(D) 

pc -)p strongly in L’(D) 

H,(p,)--g weakly in L”(D). 

Moreover, since p. 2 0 in D, we have 

(p& 10 on CD. 

Thus, for cp E H’(D) with 40 = 0 on AF U BC U FE and q 2 0 on EC, we have 

I (VP. . Vq + K(P&P,) dx dy = I (P,),cP ds 5 0. 
D EC 

Passing the limit en +O, (2.33) is obtained. In summary, we have 
Theorem 3-2.3. There exists a solution p E H’(D) II W&D), s < + m, to the problem (2.33). 

Furthermore, the solution p is the limit of the sequence (p,} which is a unique solution of the 
penalized problem (2.34) for each positive E > 0. 0 

Example 3-2.1. (Continued). Using the discrete model described in Fig. 3.2, we now solve 
the penalized problem (2.34) for E = 0.1 using the S.O.R. method discussed in Chap. 2. We plot 
saturated nodal points, which are identified whenever nodal values of the pressure exceed 10m3, 
in Fig. 3.3. 

The same problem is solved by a conventional adaptive mesh method, details of which will 
be discussed in Appendix I,? using the discrete model shown in Fig. 3.4. Numerical results are 
given in Fig. 3.5, and the convergence characteristics of the adaptive mesh method are 
described in Fig. 3.6. 

The position of the free surface obtained by the penalized formulation, (2.34), is slightly 
higher than the one by the adaptive mesh method. 

We note that the penalty parameter E > 0 in (2.35) cannot be taken independently of the 
parameter of discretization of the model. One suggestion for the choice of the penalty 
parameter E is that the order of l should not be smaller than the one of the discretization 
parameter h (or Ax, Ay). 0 

We will call the method in which the penalized formulation (2.34) of the problem (2.35) is 
used to obtain the free surface the extended pressure method. 

Surface 

6’0.1 

w = 1.75 

iteration 57 

10-3 

Fig:3.3. Free surface calculated using the extended free pressure formulation, 

tEven though we will frequently cite results obtained using the adaptive mesh method for comparison with other 

techniques, we delegate a more detailed discussion of this method to an appendix since it is not based on variational 

inequality formulations and since an analysis of its convergence properties is not known (and, in fact, may not exist). 
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Fig. 3.4. Initial finite element mesh for adaptive mesh method for Example 3-2.1. 

Fig. 3.5 

I; : ; ; ; : ; ; .: 
12345676910 

Number of Iterations 

Fig. 3.6 

Fig. 3.5. Free surface calculated by adaptive mesh method. 

Fig. 3.6. Convergence characteristics of adaptive mesh method for Example 3-2.1. 

3.3 Special cases 
Suppose that BRE, in Fig. 3.1, is vertical, i.e. 6 = c = d. Then the bilinear form a(., -) and the 

linear form L(s), defined by (2.4) and (2.9, respectiveIy, have to be modified since Z’ and Z’ 
now do not exist on BDE. Toward developing a formulation appropriate for this case, we note 
that from the definition (1.8) of u(x, y), on the vertical fine BDE, we have 

u&y)= ‘p(b,t)dt= I ‘(h-t)dI=i(2hy-y2) for O<ysh 
0 1 

u(b,y)=iP for h5y 

(3.1) 

where h is the level of the fluid downstream. 
Since there is no outflow from the foundation AB and the free surface FIX, the con- 

servation law asserts that 

I 
Y(X) 

46) = u,(x, t) dt = constant (3.2) 
0 

IJES Vol. 18. No. IO-E 
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for every x E (0, d), where u,(x, y) is the x-component of the velocity vector of flow at the point 
(x, y), and q is the net flow from upstream to downstream through the dam. By the definition 
(1.8) of u(x, Y), 

uxk Y) = - (P + Y), = - Px = - (u,), = - W,k Y) 

in the flow domain R. Since u is an extended function defined on the whole domain 0, (3.2) can 
be written 

I 
Z(X) 

- q(x) = (u~)~(x, t) dt = constant D 

for every x E (0, d), i.e. 

- 4 = uxk Z(x)) - ux(O, 0). 

Since u = 0 on AB, we obtain 

- q = u,(x, Z(x)) in (0, d). 

Integrating with respect to x gives 

u(x, Z(x)) = - qx + c in (0, d) 

where c is a proper constant. In (3.3), q and c are unknown. 
We record this result as a lemma: 
Lemma 3-3.1. In the domain 4, i.e. for x E (0, d), the condition 

u(x, Z(x)) = - qx + c 

(3.3) 

(3.4) 

is satisfied. Here q is the net seepage flow and c is a finite constant. Cl 
Continuing, we observe that if BDE is vertical, then according to (3.1), 

u(b,Z(b))=-qb+c=ih’, i.e. c=;h2+qb. 

Here we have set d = b. Thus, in (0, d), 

u(x, Z(x)) = - q(x - b) +; h2. (3.5) 

This means that the boundary condition on FED (see Fig. 3.1) is represented explicitly by (3.5) 
to within an unknown flow q. In this case we introduce the following definitions 

a(u, u) = (Vu . Vu - Z’uYu, + Z’u,u, - Z”u,u) dx dy (2.4a) 

L(u)=/ udxdy+/O(H-y)~udx 
D 

i(P; u)= /n(u-[;h2-,,-b)))+dx 

u E H’(D): D =O, a.e. on AB, u = ;(2hy- y2), 

a.e. on BC, u = i h2, a.e. on CD, 

(2Sa) 
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and 

u(x, Z(x)) = - q(x - 6) +; h2, a.e. on FED 
I 

K(q) = {u E V,: 4x, y) 5 v(x, Z(x)), a.e. on 0). 

(2.1 la) 

(2.14a) 

Thus, problems (2.9) and (2.20) now assume the forms 

uEK(p):a(u,v-u)tj@;v)-j(p;u)rL(u-u), forevery uEV, (2.9a) 

and 

u E K(p): a(u, u - U) 2 L(u - u) for every u E K(p) (2.20a) 

respectively. 
A question that arises for the variational inequalities (2.9a) and (2.20a) is that of finding an 

unknown discharge p which is compatible with the seepage flow problem. Since the pressure at 
the point F in Fig. 3.1 is expected to be zero, we may employ the condition 

f@) = ; U@)(F = 0 (3.6) 

as the compatibility condition for determining the discharge p of the seepage flow. That is, the 
variational problem associated with the seepage flow problem for the vertical wall BDE is the 
pair of {(2.9a), (3.6)) or {(2.2Oa), 3.6)). 

In the discrete system, such as encountered in finite difference or element approximations, 
the compatibility condition (3.6) can be approximately written 

i(P) = uNo.N, - uNo,N,-I -; (AY)' = 0 (3.7) 

using the notation described in Fig. 3.7. Condition (3.7) means that the pressure at fi in Fig. 3.7 
is assumed to be (1/2)Ay, i.e. that velocity of the flow is assumed to be zero at R 

One way of solving problem {(2.9a), (3.6)) or {(2.20a), (3.6)) is to employ the discharge 
descent method described below. First, for properly chosen approximations ql and q2 of 
discharge of the seepage flow, we solve the variational inequality (2.9a) or (2.2Oa) and obtain 

Y 

P I I I au 
ay ;= 

“N& - %,&-I 

f AY 
= $Ay 

Fig. 3.7. Discrete compatibility condition. 
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solutions u(qJ and u(qz), respectively. Then f(qJ and f^(qz) are calculated by the discrete 
compatibility condition (3.7). Using these values of ql, q2, f(q,) and f(q2), the third ap- 
proximation q3 of the discharge is obtained by 

i.e. 

q3 = q2 -f(,y; I;;q,) h2). (3.8) 

Using 43, we solve (2.9a) or (2.20a) and get u(q3) and f(q3). If f(q3) is far from zero, we 
calculate the fourth approximation q4 through an equation similar to (3.8). We repeat these 
procedures until convergence is obtained. 

If AF and BDF are vertical, i.e. if the cross section of the dam is rectangular, the 
quasi-variational inequalities (2.9a) and (2.20a) reduce to variational inequalities. In fact, as in 
(3.1), on the line AF 

u(O,y)=i(ZHy-y2) for OlylH 

LH2 for y L H. 

Combining (3.5) and (3.9) 

qb + i h* = i H2, i.e. q=&-(H*-h2), ie . . 

u(x, Z(x)) = - & (H2 - h’)(x - 6) +; h2. 

Then 

(3.9) 

(3.10) 

a(u,v)= Vu-Vvdxdy 
I 

(2.4a) 
n 

L(v) = I, v dx dy (2.5a) 

i(u) = ~n(v-(;h2-~(H2-h2)(~-b))}+dxdy (2.6b) 

VO= u E H’(D); v =0, a.e. on AB, u =4(2hy-y*), a.e. on BC, 
t 

v=lh2, 
2 

a.e. on CD, v = i(2Hy - y2), a.e. on AF, 

1 1 
v=-s(H’-h2)(x-b)+jh*, a.e.on FED 

> 
(2.11b) 

K = {v E Vo: v(x, y) 5 v(x, Z(x)), a.e. in D}. (2.14b) 
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Problems (2.9a) and (2.15a) now become 

uEK:a(u,u-u)+j(u)-j(u)2L(u-u) VU&V@ 

u~K:a(u,u-u)rL(u-u) VUEK 

(2.9b) 

(2.20b) 

respectively. 
Existence of solutions to the problems {(2.9a), (3.6)} and (2.9b) follows from the general 

existence Theorem 3-2.2 under the assumption that the dam D is convex. Thus, we need only 
show uniqueness of the solutions of {(2.9a), (3.6)} and (2.9b). 

Suppose that p is the true discharge of the seepage how in (2.9a), and suppose that ul and u2 
are solutions of (2.9a). Then, since uI, u2 E K(p) 

Adding the above two inequalities, we obtain 

a(u, - u2, u1- u2) 5 0. 

Thus, by (2.13), UI= ~2, 
By the same arguments, we also can establish uniqueness of the solution of (2.9b). Thus, we 

have 
Theorem 3-3.1. Suppose that the domain of dam D is convex, and that 2 E C*(a, b). Then 

there exists a unique solution to the variational inequality (2.9a) or (2.2Oa) for a fixed discharge 
p. Ptrrthermore, if the dam D is rectangular, there exists a unique solution to the variational 
inequalities (2.9b) or (2.20b). q 

Example 3-3.1. This is a continuation of Example 3-2.1. Here we derive an additional 
condition which apparently overcomes the inconsistencies in the variational inequality (2.9) 
discussed earlier. Let us first suppose that the functions U(X, y), p(x, y) and n = (a,., n,) are 
sufficiently smooth. The discharge of seepage flow through the line connecting (x, 0) and (x, y) is 

dx, Y) = I,’ (- U&G 8)) dt = - 16 uxtk t) df 

= -4(x, Y). 

If discharge through the wall connected with &Z(x)) and (e,Z(e)) on CE is assumed to be 
zero, then 

- u&x, Z(x)) = q on x E (0, c), 

where q is the true discharge of seepage flow. By integration with respect to x, we obtain 

u(x, Z(x)) = - qx +$” on x f (0, c). 

We note that the discharge q is certainly unknown a priori. However, an additional equation 
can be obtained by im~sing the “compatibility” condition 

f(4) = P(C, Z(c)) 

= Iii {u(c, Z(c)) - ar(c - e, Zfc - e))}/(Z(c) - zcc - El) 

= 0, 

where u(x, y) is the solution for a “given” discharge q. 
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Here we employ the discharge descent method discussed earlier in this section. We start the 
process with 

41 = (HZ - h2)/2b = 1.7143 

q2 = qr - E = 1.5143.(say) 

The numerical results obtained are shown in Fig. 3.8. 0 
Example 3-3.2. We consider the problem of flow through a quadrilateral dam as shown in 

Fig. 3.9. Let the level of upstream and downstream be H = 5 and h = 1, respectively. The dam 
is isotropic and homogeneous and the horizontal foundation is impermeable. Physical dimen- 
sions and a discrete model for the variational inequality (2.9a) are also shown in Fig. 3.9. The 
solution method used is the projectional S.O.R. method discussed in Chap. 2. As an initial 
discharge ql, we take 

4,=&H’-h2)=6. 

Using the compatibility condition (3.6) or (3.7), we correct the discharge through the descent 
method (3.8). Convergence and numerical results are shown in Fig. 3.10. 

The same problem is also solved by the adaptive mesh method using the discrete model in 
Fig. 3.11. Numerical results and convergence of the adaptive mesh method are given in Figs. 
3.12 and 3.13, respectively. 

Both methods provide almost the same configuration for the free surface. It is noted that if a 
uniform element mesh is used in the discretization of the variational inequality (2.9a), the 
projectional S.O.R. method can be applied in the same manner as finite difference methods. 
This leads to rather short calculation times compared with the adaptive mesh method even 
though the number of unknowns is quite large. 0 

g- 
9 f 

I 17143 O 60428 

2 I5143 I 2635 

3 I 9505 -0 COO003 

Projectional S.0 R Method 

W = 1.75, lteratlons 28 

Fig. 3.8. Numerical results for Example 3-3. I obtained by discharge descent method. 

AX= Ay = 0.25 

Fig. 3.9. Discrete model for Example 3-3.2. 
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ITERATIONS 
I a I t 

w-1.71 
Itrratho $0’43 
lolomnoe IO-’ 

Fig. 3.10. Numerical results for Example 3-3.2 obtained by solving finite system of variational inequalities. 

Fig. 3.11. Initial mesh for calculation of Example 3-3.2 by adaptive mesh method. 

I------- b=7 -------I 

Fii. 3.12. Free surface in Example 3-3.2 calculated using adaptive mesh method. 

1 
L T, I I I1 I I#, 

L 2 3 4 5 6 7 8 9 IO II 12 

Number of Iterations 

Fii. 3.13. Convergence characteristics of the adaptive mesh method for Example 3-3.2. 
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Example 3-3.3. In this example, we consider finite element models of three different 
formulations of the problem of determining the free streamline of the flow through an isotropic 
homogeneous rectangular dam: a variational inequality obtained using Baiocchi’s trans- 
formation, the extended pressure method, and the adaptive mesh method. Physical dimensions 
and a discrete model for the method of variational inequalities and the extended pressure 
method are given in Fig. 3.14. 

dx= y=o.5 

Impermeable 
foundation 

Fig. 3.14. Mesh used in discretization of a rectangular dam-Example 3-3.3. 

S.O.R. Method 

w = 1.75 

<<IO-‘at 26 
iterations 

* points in the 

, flowdomainfl , p ~ 

____~ 
l oeoooooo hi2 

l o@oooooo I 

Fig. 3.15. Results of numerical solution of variational inequalities for Example 3-3.3. 
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Since the dam is rectangular, we choose to solve the variational inequality (2.9b) or (2.2Ob), 
using the projectiona S.O.R. method discussed in Chap. 2. However, in this case the discharge 
of seepage is known a priori. This leads to no iterative calculations of the type in Example 
3-3.2. Numerical results are shown in Fig. 3.15. 

For the extended pressure method, we choose the penalty parameter E = 0.1 for a mesh size 
h = Ax = Ay =OS. As mentioned earlier, the penalty parameter E depends strongly upon the 
mesh size h. To solve the non-hnear system obtained by the discretization of the penalized 
formulation (2.34), we again apply the S.O.R. algorithm. Numerical results are shown in Fig. 
3.16. The position of the free streamline obtained by the extended pressure method coincides 
with that obtained by variational inequalities. 

Using the discrete model given in Fig. 3.17, we have also solved the same problem by the 

WE 1.7 
e =? 5 X 10e4 tit 20th Iteration 

l PII .o 

m 
r=10-’ cf. AX = Ay=0.5 

------_--- 

Fig. 3.16. Flow domain in Example 3-3.3 computed by extended pressure method. 

i b=5 - 

Fig. 3.17. Initial mesh for adaptive mesh calculation of Example 3-3.3. 
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At 15th Iteration, the 
maximum prclsrurs on the 

Fig. 3.18. Flow domain in Example 3-3.3 computed by adaptive mesh method. 

adaptive mesh method. After 1.5 iterations the adaptive method converged to the solution 
indicated in Fig. 3.18. The results obtained by this method also agree well with those obtained 
by the other two methods. 0 

4. NON-HOMOGENEOUS DAMS 

4.1 Seepage flow p~~~e~s in ~o~-~o~oge~eo~~ dams 
Suppose that the dam is non-homogeneous, isotropic, and that the permeability of the dam is 

denoted by k(x, y). If the seepage flow is governed by Darcy’s law, the problem can be 
represented as the following boundary-value problem: 

Find Cp(x, y), Y(x)} such that 

p(x,y)>O in 0, p(x,y)=O in trfsl [ 

-V.(kV@+y))=O in fi I 
(1.1) 

p=H-y on AF, p=h-y, on BC/ 

k@+y),=O on AB I 
(1.2) 

p=O and k~+y)“=O on FL) (1.3) 

p=O and k(p+y),rO on CD (1.4) 

a= {(x, y) ED: y r Y(x)} (1.9 

Here, the same notations as in Chap. 3 are used, see Fig. 3.1, The function Y(e) indicates the 
position of the free surface FD. 

Suppose that p(x, y) satisfies the above boundary-value problem (1.1) - (1.5). Then, for 
every qc E Cl@) with cp = 0 on AF U BC, and cp 2 0 on CD, we have 

= I k(p + y),,Q ds 5 0, 
co 
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Here T’ denotes the boundary of the (unknown) flow domain R. Thus, the results by Brezis, 
Kinderleher and Stampacchia[45] given in Section 3.2 can be extended for the case of 
non-homogeneous dams. That is, using the extended pressure p(x, y), the following variational 
problem is derived from the boundary-value problem (1.1) - (1.5). 

Find (p(x, y), g(x, y)} E H’(D) x L”(D) such that 

g(x, Y) = 1 if p(x, Y) > 0 

05g(x,y)Il if p(x,y)=O, 

p=H-y on AF, p=h-y on BC, 

p=O on FED, 

(1.6) 

(1.7) 

I (kvp s Vy, + g&J dx dy 10 
D 

(1.8) 

for every 4 E II’(D) with cp 2 0 on CD and 60 = 0 on AF U BC. 
The penalized problem corresponding to (1.8) is then defined by: 
Find pb E H'(D) with pz = H - y on AF, pf = h - y on BC, ps = 0 on FED, and 

I W’p, . VP + H,(p,)kuoy) dx dy = 0 
D 

(1.9) 

for every rp E H’(D) with cp = 0 on AF U BC U CD where 

(1.10) 

Applying the same arguments as Theorem 3-2.3, we can establish the following results: 
~he~~e~ 4.1.1. Suppose that k(x, y) is a bounded positive function defined on If. Then there 

exists at least one solution @(x, y), g(x, y)) to the problem (1.6) - (1.8). Moreover, the solution 
p(x, y) is the weak limit of the solution (Pe(x, y)} of the penalized problem (1.9) as E +O, 
where pE is the unique solution to (1.9) of each fixed c > 0. Cl 

We now recast the seepage flow problem (1.1) - (1.5) using Baiocchi’s transformation. 
However, to obtain the for~uiation by variational inequalities through Baiocchi’s trans- 
formation, we cannot consider general cases of non-homogeneity k(x, y) as shown below. We 
will study only two cases; k = k(x) and k = k(y). 

4.2 The case k = k(x) 
We first consider the case in which k = k(x). Again we introduce Baiocchi’s transformation 

(2.1) 

Let u E G(D) and w(x, y) = JJ” u(x, t) dt, i.e. u = w, and w E C:(D). Suppose that (1.1) holds. 
Then 

f 
kVu - Vv dx dy = kVu . (VW), dx dy 

n I R 

(kVu), * VW dx dy + 

= - kVu, . V w dx dy + 

= kw, dx dy + 
I 

(kVu . Vw)n, ds 
r 
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kVu.Vvdxdy=- kVu, . VW dx dy - (kVu . Vw)n, ds = - 

These imply 

I 
kVu . Vu dx dy = kv dx dy + ([(kVu . Vw)Bn, ds 

D I n I s 

where [VI = (p+ - cp- is the jump in rp on S. Since kVu is continuous on D, 

I 
kVu . Vu dx dy = (2.2) 

D 

Here xo is the characteristic function of the domain R. Continuity of kVu is verified by 

kvu = (k[pX dt)i+(kp)j 

= ([ kp, dt)i+(kp)j. 

If we define 

a, Y) = J ’ k(x)p(x, t) dt. 
0 

then, instead of (2.2), we obtain 

I 0 D 
kV f .Vvdxdy= 

(2.3) 

(2.4) 

Summarizing, we have: 
Theorem 4-2.1. Let the permeability k depend upon only the x-coordinate. Let the pressure p 

satisfy (1.1) - (1.4). Then u, defined by (2. l), satisfies 

-V * (kVu) = kxn (2.5) 

in the sense of distributions on D. 0 
Boundary conditions, described in Fig. 3.1, are written 

u,=H-y on AF, u,=h-y on BC, 

u,=O on CD. 

Impermeability of the bottom implies 

k(x)Qm + pyn, + n,) = 0. 

Since k(x) f 0 

u,,n, + (uyy + 1)ny = 0. 

(2.6) 

Since the bottom of the dam is assumed to be flat, 

u,, + 1 = 0. 
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- (ku,.), = 0 i.e. ku, = const. (2.7) 

By the definition (2.1) 

u=O on AB. 

1249 

(2.8) 

This means that (2.7) is automatically satisfied. 
Let the set K(u) be defined by 

K(u) = {v E H’(D): v =0 a.e. on AB, OSV(X, y)z~u(x,Z(x)), a.e. in D}. (2.9) 

Suppose that k(x) is differentiable. Then 

I (- Z’ku,v, + Z’kuxv, - (2’k)‘t.y) dx dy 
D 

I 

b 

= k(- u,n, + u,n,)Z’v dx 
0 

b - 
=-- 

I 
k(uknx + u,n,)u ds + 

I 
ku, gl + 2”~ dx 

r 0 

for every u, v E Cm(B) with v = 0 on AB. If, in addition, we require that u be a solution of (2.9, 
(2~9, (2.8), then 

utx, Y) = 4x, Z(x)) w, Y) E o/n (2.10) 

and if we denote 

atut 0) = I D Ikth - Z’u,Jvx f (u, - Z’ux)v,) - (kZ')'u,v} dx dy 

L(v) = j- kv dx dy +J” k(H - y)mv dx + 1’ k(h - y)dmv dx 
D n c 

(2.11) 

then, for every v E R(u), 

a&v-u)=L(v-y)+ (-V*(kVu)-k)(v-u)dxdyzL(v-u). 
I D 

Therefore, the ~uus~-vu~ut~onul ~~e~uu~ity 

uEK(u):u(u,v-u)>L(v-u) VvEK(u) (2.12) 

is obtained for the case in which k = k(x). 

4.3 Speciai cases for k = k(x) 
By arguments similar to those used in Lemma 3-3.1, we can show that the function 

q given by 
Y(x) Z(X) 

4” o I 
kp& t) dt = 

I kpx(x, t) dt (3.1) 0 

is constant, a.e. on (0, d). Since p = ~4, 

4’ (k(x)u,), dt = 4x)u,(x, 2%)) - W)u,(x, 0). 
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Since u(x, 0) = 0 for all x E [0, d] 

r&(x, Z(x)) = &. 

By integration with respect to x, we get 

u(x, Z(x)) = C, f 16; $ ds. (3.2) 

(i) The case that EDCB is ~e~~c~~: In this case 

u(d,y)=~u,dt=~~h-t)dr 

@(d, Z(d)) = 1’ (h - t) dt = ; ht. 

(3.3) 

Then 

u(x,Z(x))=;h”-~d&ds xE[O,d] (3.4) 

The quasi-variational inequality (2.12) under the “moving” admissible set K(U) 
defined by (2.9) becomes 

uEK(q):a(u,u-u)>t(u-u) VuEK(q) (3.5) 

where a(u, U) is same as (2.11),, L(v) is 

LO’) = j. kv dx dy + /* k(H - y)dl + (Z’)* dx, 
D a 

(3.6) 

Here 

K(q) = {v E H’(L)): u = 0, a.e. AB, tt = i y(2h - y), 

a.e. on BC, u(x, Z(x)) = g(q) a.e. FDC, 

u(x, y) 5 g(4), a.e. (x, y) E 42. (3.7) 

&I) = j ‘p- I xd q/k(s) ds = u(x, Z(x)). (3.8) 

We note that there is only one parameter 4 physically representing the discharge 
of the flow through the dam in the admissible set K(q) of (3.7). That is, for physically 
meanin~ul discharges q the solution u of (3.5) has to satisfy the “compatibility” 
condition 

f(q)=p = u, =0 at E (3.9) 

(ii) The case of a dam with two vertical layers. In this case, the discharge q can be 
obtained explicitly. By the definition of I(, 

m ZW) = zj ’ Ht. (3.10) 

From (3.4), 

~(0, Z(0)) = + h* - id auk ds. (3.11) 
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Let tl be the thickness of the first layer. Let kl and k2 be permeabilities for the first 
and second thickness of the rectangular two-layered dam, where k, and k2 are constants. Then 

q = - k,k2(H2 - h2)/2(rlkz + (d - r,)kr) 
(3.12) 

g = ; Hz + qx/k(x). 

The quasi-variational inequality (3.5) is then reduced to the variational inequality 

uEK:d(u,v-u)d(v-U) VVEK (3.13) 

d(u, v) = I kVu . Vu dx dy, i(v) = 
I 

kv dx dy (3.14) 
D D 

K ={v EH’(D): v =0, a.e. on AB, v =i y(H- y), a.e. on AF, 

v =i y(h - y), a.e. on BC, v = g, a.e. on FDC, 

0 5 v Ig, a.e. in D}. 

(iii) The case of a dam with three vertical layers. In this case 

(3.15) 

q = - k,k2kj(H2- h2)/2(tIk2k3 + (r2- rl)k3k, + (d - r2)k,ka) 

g = ; H2 + qx/k(x) 
I 

(3.16) 

where k,, k2 and k3 are constant permeabilities of three layers, respectively, t1 and t2 are thickness 
of the first and second layers, respectively. The variational inequality (3.13) now represents the 
problem after an adjustment using (3.16). 

Example 4-3.1. We solve numerically the variational inequality (3.13) on (3.15) for the case 
of a dam with two vertical layers using the methods discussed in Chap. 2. For simplicity, the 
dam is assumed to be isotropic and rectangular. Physical dimensions and a discretized model of 
the example problem (3.10) are shown in Fig. 4.1. The discretized problem (3.10) is solved by 
the projectional S.O.R. method described in Chap. 2. The iteration parameter o is taken as 1.75, 
and the convergence of the S.O.R. method is obtained within 35 iterations. The numerical 
results are shown in Fig. 4.2. 

The same example problem was also solved by the extended pressure method using a similar 
discrete model for the method of variational inequalities. The parameter of the penalization is 
E = 10-l for a mesh size of h = Ax = Ay = 0.25. Numerical results are given in Fig. 4.3. The 
position of the free streamline obtained by the extended pressure method almost coincides with 
that of the variational inequality (3.13). 

The discrete model described in Fig. 4.4 was obtained by the adaptive mesh method. 
Numerical results are shown in Fig. 4.5. It is noteworthy that the iterative scheme used in the 
adaptive mesh method may not converge if the number of mesh divisors of material II in the 
vertical direction is the same as that of material I, and if the free streamline turns out to be 
coincident with the interface of the two materials. •i 

4.4 The case k = k(y) 
For the case that k = k(y), the Baiocchi’s transformation becomes 

4% Y) = I ’ k(r)p(x, r) dt. 
0 

(4.1) 
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Material I 

-I-- 

Material II 

k, = I k,= IO 

Fig. 4.1 

TOTAL DISCHARSE 15.3S 

Fig. 4.2 

Fig. 4. I. Discrete model for Example 4-3. I. 

Fig. 4.2. Numerical solution of the discrete variational inequality of Example 4-3.1. 

H=IO 

Ax =Ay ~025 

E=O I 

0.p ,=-0.06 
‘>J 

S.0 R Method 

.W=I 4 

l Tolerance -Z Id3 

. Converae at the 83-th 

Fig. 4.3. Numerical results obtained by the extended pressure formulation (Example 4-3.1). 



Theory of variational inequalities, flow through porous media 1253 

T 

I 
0 17 Iterations 

o Maxlmum Pressure on 
The Free Stream Line is 

6.68X G3 

+ 2.5 + 25 - 

Material I Material II 
(k= 1) ( k = IO) 

Fig. 4.4 

H=IO 

Stream 

(h=l) (k=IO) 

Fig. 4.5 

Fig. 4.4. Initial mesh for adaptive mesh calculation of Example 4-3.1. 

Fig. 4.5. Numerical results obtained by the adaptive mesh method for Example 4-3.1. 

Then, as in the proof of Theorem 4-2.1, for v E G(D), 

I n; Vu * Q(kv) dx dy =I,{~~w~~+(t~~)(kw~)~}dxdy 

(Vu . Qw)n, ds 

I lQu-Q(kv)dxdy=- 
D/ok I 

(Vu * Q w)n, ds. 
FLI 

Using the continuity of Qu on FD 

=kxn (4.2) 

in the sense of distributions on D. 
Theorem 4-4.1. After the Baiocchi transformation (4.1), the solution u of (4.1) satisfies 

in D (4.3) 

in the sense of distributions. Cl 
Boundary conditions, described in Fig. 3.1, are written 

u,=k(H-y) on AF, u,=k(h-y) on BC 

u,=O on CD. 
(4.4) 

UES Vol. 16. No. IO-F 
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Since the bottom foundation is horizontal 

u=O on AB. (4.5) 

Impermeability of the bottom is given by 

pxn, t (p, t l)n, = 0, i.e. pY + 1 = 0 

which implies that 

1 ( > py -t-1=0 
Y 

and then 

u,, =0 on AB. (4.6) 

This requirement is automatically satisfied by the boundary condition (4.5). That is, the 
transformation (4,l) is compatible with the assumed impermeability of the flat bottom. 

Let the set K(u) be defined by 

K(u)={uEH’(D): u =0, a.e. on A& v(x, y)= u(x, y), a.e. on FIX, 

0 ~2 0(x, y) 5 u(x, Z(x)), a.e. in 0). 
(4.7) 

We note that 

u(x, y) = u(x, Z(x)), a.e. (x, Y) f UQ 

a.e. (x, y) E DX”I 

(4.8) 

Suppose that u is a solution of (4.3), (4.4), (4.5) and (4.8) and k(y) is differentiabIe on I). Then, 
for every Y E K(u), 

I( D ; (ux - Z’u,)(ku - ku), +; (u, t Z’u,)(kv - ku), 

-Z”u,((o-u)-;Z’u,(v-u) dxdy 
1 

+ u,~(u - u) dx t u,~(u-u)dx. 

By putting 

a(u, u) = SI ; (ux - Z’uJku), +; (uY t Z’u,)(ku), - Z”uYu -; Z’u,v I 
dx dy (4.9) D 

L(v) = j 
b 

k(h - y)z/l f Z% dx (4.10) 
D 

ku dx dy + j” k(H - y)+( 1-f. 2% dx + 
a I f 

we obtain, for arbitrary Y in K(u), 
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Thus, we arrive at the quasi-v~iational inequality 
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u E K(u): a(u, v -u) 2 L(v - u), vu E K(u) (4.11) 

4.5 Special cases for k = k(y) 
By arguments similar to those used in the proof of Lemma 3-3.1, we conclude that the 

function 

I 

Z(X) 
4=- &Ax, t) dr (5.1) 

0 

is constant, a.e. on (0, d). Since kp = u, 

I 
Z(x) 

-4= (Ut dt = W, Z(x)) - Mx, 0). 
0 

Since u(x, 0) = 0 on (0, d) 

Integrating with respect to x yields 

u(x, Z(x)) = c, - qx. 

(i) llte cuse that EDCB is ue~ica~: By the definition of u, 

utd Y) = I ’ k(t)(h - t) dt 
0 

Then 

h C, = k( t)(h - t) dt + qd. 

This implies 

g(q) = u(x, Z(x)) = l’ k(t)@ - t) df + q(d -x). (5.4) 

The quasi-variational inequality (4.11) under the admissible set (4.7) is reduced to 

u E K(q): a(u, u - u) 2 i(v - u) vu E K(q) 

x‘(q) = { u E H’(D): v = 0, a.e. on AB, 

Y 

lJ= 

I 
k(t)(h - t)df, a.e. on BC, v = g(q), a.e. on EDC, 

0 

0 5 v -‘g(q), a.e. in 4 

&) = ( ku dx dy + 1’ k(H - y)v??% dx. 
D 0 

(5.2) 

(5.3) 

(5.5) 

(5.4) 

(5.7) 
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We note that for a physically meaningful 4 the compatibility condition 

f(q) = p = u, = 0 at F (5.8) 

must be satisfied. 
(ii) The case of a dam with two horizontal layers: Suppose that the thickness of the lower 

layer is given by b > h and that k, and k2 are the permeabilities of the upper and lower layers, 
respectively. Then (5.3) becomes 

fk2(2hy-y’) for y oh 
u(d, y) = gd = 

; k2h2 
(5.9) 

for y 2 h 

and also we have 

u(O, Y) = go = I ; kz(2Hy - ~‘1 for ysb 

i(k,-k,)(ZHb-b2)+kkI(2Hy-y2) for yrb 

and 

LA 

(5.10) 

g(x) = ; (k2 - k,)&Hb - b2) +; k,H* 

i&k,-k,)(ZHb-b*)+;k,H’-;k,h’). -- 

d(u, v) = u,.(ku), +; u,(kv), dx dy 

t(v) = kv dx dy. 

(5.11) 

(5.12) 

(5.13) 

Then the quasi-variational inequality (5.5) is reduced to the variational inequality 

u~K:d(u,v-u)zi(2,-u), VvEK 

K = {v E H’(D): v = 0, a.e. on AB, v = gd, 

a.e. on BC and CE, v = go, a.e. on AF, 

Osu(x,y)sg(x), a.e. in D} 

(5.14) 

(5.15) 

where gd, go and g(x) are defined by (5.9) - (5.11). 

4.6 Comments 
The formulations using extended pressures follow from Brezis, Kinderlehrer and 

Stampacchia[45] with slight modifications. The inequality (1.8) simply becomes an equation if 
the test function rp E H’(D) satisfies cp = 0 on the unknown seepage line CD. This also holds for 
the penalized problem (1.9) in this case. We emphasize again that the penalty parameter E 
cannot be selected arbitrarily for the discrete model of (1.8); it strongly depends upon the 
parameter h of the discretization of the domain. Moreover, the flow region R is defined by, e.g. 

where a is a proper constant. Discretizations of (1.8) by finite element methods have also been 
studied by Le Tallec[46]. 
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Our derivations of variational inequalities in Sections 4.2 - 4.5 mainly follow the work of 
Baiocchi et al.[14] and Kikuchi~36], A ~fferent type of non-homogeneous dam is anaiyzed by 
Benci[47], but his treatment is essentially the same as that given here. 

We have not considered issues such as existence, uniqueness and regularity of solutions in 
this chapter. However, several results on these questions follow easily from arguments given in 
Chap. 3. 

5. SEEPAGE FLOW PROBLEMS IN WHICH DISCHARGE IS UNKNOWN 
5.1 Dam with an impermeable sheet 

We will now consider the case of a rectangular, homogeneous, isotropic dam through which 
the flow is restricted by the presence of an impermeable sheet on part of the upstream side of 
the dam, as shown in Fig. 5.1. Whife such a problem can be formulated in terms of the pressure, 
as in the previous two chapters, the problem is described here in terms of the extended velocity 
potentiaf tp. This problem is formally stated as follows: 

Problem 5-1.1 Find (p, Y) such that 

Acp=O in fi=(O, a)x(O, Y) 

cp = Y in WQ, I)= (0, a)x@, yd 

rp=yl on AH, y, = y2 on BC, 6p=y on CD 

z=O on GH and $=O on AB 

q=y and z=O on GD 

where 

acp &J Jcp &=nq-” -, 
y aY 

n = {n,, n,} is the unit vector normal to the boundary JR of the domain R. 

(1.1) 

(1.2) 

(1.3) 

(1.4) 

cl 

Fig. 5.1. Geometry of flow through a rectangular dam. 
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We note that the velocity potential 40 appearing in problem (1.1) is the extended potential, in 
the sense that 

$4&Y)= y c 4%~) if tx,~)Efl 

if tx, Y) E DQ 

where 4(x, y) is the usual velocity potential defined on the flow region Q (retail 3-1.3). 
~~~i~io~ 5-1.1 Let us define the new function w by 

w(x, y) = ” (p(x, t) - t) dt. 

If w E C’(@, then 

d-F Y) = Y - 2 tx, Y). 

(1.5) 

(1.6) 

(1.7) 

Moreover, since the pressure p(x, y) defined by 

P(X, Y) = cpk Y) - Y (1.8) 

is always non-negative on the whole dam 0, and is strictly positive on the flow region 0, we 
must have 

w(x,y)rO in f) and w&y)>0 in St (1.9) 

if cp is the solution of Problem 5-1.1. 
We next establish governing equations for w(x, y) when rp is the solution of Problem S-1.1. 

Let u be the function defined in (2.1). Then 

UC% YJ = a, Y) + wtx, Y) 

Thus, since u satisfied (2.5) for k = constant, 

This implies that 

-Aw-tXo=O 

in the sense of distributions on D, where 

‘o(” ‘) = { 
1 if (x,y)EQ 
0 if (x, yj E #ct. 

(1.10) 

(1.11) 

In the process of obtaining (1. lo), the boundary conditions (1.4) on the unknown free boundary 
y = Y(x) have been used. 

We shall consider the im~rvious condition achy = 0 on AB. By (I .7) 

Jrp 
ay’l -$=OonAB. 
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In view of (MO), we shall choose w so that 

$=O on AB. 

Since the foundation AB is horizontal, 

aw 
x=-q on AB 

where q is a constant. Inte~ation with respect to x yields 
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(1.12) 

(1.13) 

where C, is again a constant. From (1.12) and (I.@, 

d I 
Yl 

xi0 (cp(x, t) - t) dt = I OY’$x,t)dt=-q, (1.14) 

This means that q is the discharge of flow from upstream to downstream. It is obvious that q is 
unknown in this model problem. 

The boundary conditions (1.2) now become 

~(0, y) = I ” (~(0, t) - t) dt 
Y 

= dykO,t)-t)dt+ 
I I 

d(y,-t)dt 
Y 

= G -+ Yl(d - y) -i (d2 - y2) for y E (0, d) 

~(a, Y) = :’ (&a, t)- t) dt = 0 I 
for y E (y2, y,) 

w(a,y)= Yz(yZ-t)dt=;y:-y2y+;y2 
J for Y E (0, Yl). 

Y 

(1.15) 

(1.16) 

(1.17) 

By (1.13) and (l-17), 

w(a,O)=-qa+c,=;y:. 

That is 

(1.18) 

By (1.13) and (l.lS), 
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That is, 
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Then the condition (1.15) becomes 

(1.19) 

w(o,Y)=~yI+qa-y~y~~y2 

=;y’-y,y+qa+~ 2 * Y2. (1.20) 

On the impervious sheet GH 

(1.21) 

because of (1.3)i. 
Summarizing these results, we have: 
Theorem 5-1.1. Suppose that cp is the solution of Problem 5-1.1. Then the new variable w 

defined by w(x, y) = 1,‘~ (6(x, t) - t) dt satisfies 

-Aw+xa=O in D (1.22) 

w>O in 0 and w=O in Q’sZ (1.23) 

whN =g, and 
itW 
- an I-~=’ I 

where IN = FH, r is the total boundary of the dam D = (0, a) X (0, ~1) and 

on HA 

6% = 
-q(x-a)+; y: on AB 

on BC 

on CE and EF. 0 

It is important to note that since w(x, y) z 0 in the whole domain D, the condition 

must be imposed. That is 

o~;y2-y,y+qix+;g: 

=;(y-yl)2-;y:+qu+~y: Osysd 

and 

These are satisfied if 

OS-q(x-a)-;y: OlXlU. 

(d2+ ~3, -; Y:]. 

(1.24) 

(1.25) 

(1.26) 
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Moreover, the discharge q for the case with the impervious sheet is less than the one for no 
impervious sheet, i.e. 

1 
qs+Y:-Y:). (1.27) 

Thus, the fixed parameter q, which represents the total discharge of seepage, must satisfy the 
conditions (1.26) and (1.27). 

We next seek a variational formulation in terms of the new variable w, using the results 
in Theorem 5-l. 1. Let the set V, be defined by 

V, = {u E H’(D): u = g,, a.e. on I/I,}. (1.28) 

Suppose that w satisfies (1.22) - (1.24) for fixed q, which is now restricted by (1.26) and (1.27). 
Then, for every u E V,,, 

Vw.V(u--w)dxdy=- 

Since 

,y*(u-w)=u+-w++x~(u-w)-u++w+ 

= u+- w+-(u+-,yfp)+ w+-_xfiw 
=u+-w+-(u+-~xnu)~u+-w+ 

we obtain 

I Vw.V(u-w)dxdy+ 
D I 

(u+-w+)dxdyrO VuEV, 
D 

(1.29) 

where, as usual 

Q+ = SUP (Q, 0). 

Thus, we have 
Theorem 5-1.2. Suppose that w satisfies (1.22) - (1.25), and that q satisfies the restrictions 

(1.26) and (1.27). Then, w satisfies the variational inequality (1.29). Cl 
An alternative principle can also be formulated: 
Theorem 5-1.3. If w is a solution of the variational inequality (1.29), then 

w 20, a.e. in D (1.30) 

and w satisfies the inequality 

I Vw.V(u-w)dxdy+ 
I 

(u-w)dxdyzO VuEK, (1.31) 
D D 

where 

K4 = {u E V,: u 5 0, a.e. in D}. (1.32) 

Proof. Since the conditions (1.26) and (1.27) are satisfied 
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is assured. Then v = w+, w+ = sup [0, w}, satisfies the boundary condition on r/rN, i.e. w’ E V,. 
Substituting this into (1.29) implies 

f 
Vw-V(w+-~)d~dy~O, 

D 

i.e. 

I VW- - Qw-dx dy I 0. 
D 

Since w- = 0 on IJ/rN, we can conclude that w- = 0, a.e. in 0, i.e. w z 0, a.e. in D. This means 
that w E K4. The inequality (1.31) then follows from w E K4. Cl 

The above theorem shows that the variational formulation (1.29) is equivalent to (1.3 1). Using 
this fact, we will show the existence of a unique solution of (1.29) for a fixed value 4 which 
satisfies the conditions (1.26) and (1.27). 

Theorem 5-1.4. Suppose that the value 4 satisfies the conditions (1.26) and (1.27). Then the 
set K4 is non-empty. Further, this implies the existence of a unique solution of the variational 
inequality (1.31) and, therefore, of the variational inequality (1.29). 

Proof. As shown above, the condition (1.26) is set so that g, 2 0 on the boundary I?rN. 
Moreover, g, E Cm(I’/r,). Then the extension of g, by zero to the interior of the domain D 
certainly belongs to &. Convexity and closedness of Kq are clear since the trace from H’(D) 
onto EP2(1) is continuous. 

The bilinear form 

is continuous on H’(D) x H’(D); indeed 

where J/./i, is the Sobolev norm of H’(D). Using Friedrich’s inequality, it can be shown that 

a(u - v, u - u) z CIJU - VI/: 

for every u, o E V,. This shows the strong ellipticity of the bilinear form. 
The linear form 

L(v) = vdxdy 

is continuous on H’(D). Thus a unique solution of the variational inequality (1.31) follows the 
general existence theorems on variational inequalities discussed in Chap. I (See Theorem 
l-3.1). 0 

Up to this point, we have developed a formulation of problem (1.1) in terms of the variable 
w. We next discuss some of the properties of the solution of the variational inequality (1.29), or, 
equivalently, of the variational inequality (1.31). 

Theorem 5-1.5. Suppose that w is a solution of the variational inequality (1.29). Then 

-Aw EL”(D) (1.33) 

O-cAwzzl, a-e. in D (1.34) 

$J = 0 fi-WN) (1.35) 
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In particular, w E C(d), and on setting 

51, = {(x, y) E D: w(x, y) > 01 

it follows that 

-Awtl=O 

1263 

(1.36) 

(1.37) 

in the sense of distributions in 0, 
Proof. Setting u = w t cp, q E G(D) and Q 2 0, yields 

This means that 

-AwtlzO 

in the sense of distributions on D. 
Putting u = w - Q, Q E G(O) with Q 2 0, implies 

- 
I D 

Vw*vrpdxdyt D{(w-cp)+-w+}dxdyrO 
I 

since (W t (- Q))' 5 W+ t (- Q)' = W+ 

Vw.Vqdxdy?O. 

That is 

AwzO 

in the sense of distributions on D Thus 

This also implies that Aw E L”(D). 
The natural boundary condition (1.35) then follows in the sense of H-l’*(P) from the fact 

that w E H’(D) and Aw E L”(D) C L*(D): Let 

V. = {v E H’(D): v = 0, a.e. on lYrj~}. 

Putting v = w 2 U, u E V,, in (1.29), and integrating by parts, we obtain 

i.e. 
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where (., a),., denotes duality pairing on H-“‘(TN) X H”‘(rN). Since we can find functions u 
such that IA has non-zero values on rN but vanishes in D, we can conclude (1.35). 

For the moment, we set f = Aw E L"(D). Then the solution w of (1.29) is a solution of the 
mixed boundary value problem 

w~fZ’(D):Aw=f, w=g, on I’/rN, $=O on rN. 

By standard regularity results for second-order partial differential equations (see, e.g. Lions and 
Magenes[48]), it can be shown that 

w E H'3'2'-'(D), l > 0. 

By the Sobolev imbedding theorem, we know w E C(D). Thus the definition 

flq = {(x, Y) E D: w(x, Y) > 01 

is meaningful. 
The differential eqn (1.37) now follows by taking u = w +- E(P, cp E G(0,) and q = 0 in tin,, 

for sufficiently small E > 0. 0 
In the above discussions, we have assumed that the discharge q is given. However, the 

quantity q is, in fact, unknown in this problem. Thus, the question remains as to how we can 
determine the true discharge 4 using the variational solution w for a given value q. To resolve 
this difficulty, suppose that rt, E C’(D), where W is the solution corresponding to the true 
discharge q. Since the impervious sheet covers the portion FH, the condition 

g=O at (0,~) for d<y<y, 

holds, as shown in (1.21). If D is the solution, this condition must be satisfied at the point H, i.e. 
(0, d) where the Dirichlet boundary condition is also imposed. That is, the condition 

aw - 
ax I =d = Iii; (@(C, d) - biqo, d)} = 0 (1.38) 

Y 

must be satisfied. We easily see that this “compatibility” condition may not be satisfied for 
an arbitrary assumed discharge q. Thus, we must demand that 4 be such that @ satisfies the 
compatibility condition (1.38) in order to obtain the variational solution of problem (1.2). In 
Baiocchi et al. [ 141, the following facts are proved: 

if f(q)=*/ , and if f(q’) and f(q”) are finite, 
UA lF;f 

then f(q,) 5 0 I f(q,,) and 

f(4’) < f(q”) for 40 22 q” < 4’ 

where w(q) is the solution of (1.29) for a fixed q, and 

1 
41 = 2;; (Y: - Y:) 

qO=max O,- { ; (yrd-@+y3)}. 

(1.W 
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That is, if ~w~~~ at H = (0, d) is finite, the function f(4) = ~w(4)/~~ is a strictly decreasing 
function of 4. From this we have the existence of a proper 4 which satisfies the compatibility 
condition (1.38). This, at the same time, guarantees the existence of solutions to problem (5-I. 1). 
Moreover, the inequalities (1.39) suggest again the discharge descent method for obtaining 
approximations of the discharge 4 which satisfy condition (1.38). Suppose that, for given 
numbers 4o1 and qc2), f(4(i,) and f(412,) are known. In general, we may take 4(l) = 41 and 
4(z) = 4i- e, E > 0. Then, the third iterate 4ot is defined so that 

i.e. 

4~3) = 4~2) -f t;Jy;,2,, (40, - 4~9)~ (1.41) 

If f(4& is still far from zero, we use (1.41) to construct the fourth approximation qc4) (by 
replacing 4(z) with 40,, f(q& with f(q&, etc.). This iterative process can yield good ap- 
proximations to the variational problem (1.29). q 

Example 5-1.1. Here we wish to calculate the free surface of seepage flow through a 
homogeneous, isotropic, rectangular dam with an impermeable sheet on a upper part of the 
upstream wall, as shown in Fig. 5.2. 

Following the arguments of Chap. 2, a discrete model for solving the variational inequality 
(1.29) is shown in Fig. 5.2, The method of solution of (1.29) is again the projectional S.O.R. 
method with the iteration factor w = 1.75. We note that uniformity of the mesh makes it 
possible to develop finite difference schemes equivalent to the projectional S.O.R. method. 
Numerical results are indicated in Fig. 5.3. 

Rapid convergence of the iterative scheme (1.41) for the discharge 4 is observed. The 
projectional S.O.R. method converges within 30 iterates for each iteration on 4. 

Y-7 AXsAy= 0.25 

........... .......... ............. ............. ................ ................ ................. ................. ................... ................... 
................... 

................... 

................... 

................... 

................... 

................... 

ITERATIONS 

Fig. 5.2 

4.0074 -0.02072 
3.9839 -0.00097 

Fig. 5.3 

Fig. 5.2. Geometry and discrete model of dam in Example 54.1, 

Fig. 5.3. Numerical results obtained for Example 5-1.1 using projectional S.O.R. method for solving system 
of variational inequalities. 
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The same example problem is solved by the adaptive mesh method using the discrete model 
given in Fig. 5.4. Numerical results are shown in Fig. 5.5 and its convergence is described in 
Fig. 5.6. Eleven iterations are necessary to obtain convergence which is indicated by the 
absolute value of the pressure on the free streamline. Since the system of linear equations is 
solved twice at each step of iteration, 22 systems of equations are solved. However, the total 
number of degrees of freedom for this discrete model is very small, whereas many nodal points 
are necessary if we chose to solve the system of variational inequalities. 

The total discharge of seepage flow calculated is 4.14 as opposed to 3.98 calculated using 
variational inequality (1.29). The position of the free boundary obtained by the adaptive mesh 
method is slightly higher than that obtained by solving the variational inequality (1.29). 0 

l Moving Nodal Point 

o Fixed Ncdal Point total discharge q= 4.14 

Fig. 5.5 
Fig. 5.4 

1 I 1 1 ’ 
I 2 3 4 5 6 7 6 9 IO II 

Number of Iterations 

Fig. 5.6 

Fig. 5.4. Initial mesh geometry for adaptive mesh method for Example S-1.1. 

Fig. 5.5. Computed free surface profile for Example S-l.1 computed using adaptive mesh method. 

Fig. 5.6. Convergence characteristics of adaptive mesh calculations of Example 5-1.1. 
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5.2 Free surface from a symmetric channel 

1267 

We now consider the problem of 2-dimensional seepage flow from a symmetric channel into 
a permeable isotropic homogeneous foundation in which a horizontal drain is embedded as 
shown in Fig. 5.7. Let U; be the velocity potential and let 4 be the stream function defined on 
the unknown flow region Q = ABEF which is assumed to be contained in the domain 
D = AWES. The domain D is chosen artificially in order to define the “fixed” region for the 
problem. This leads us to: 

~rob~ern 5-2.1. Find the triplet (4, 4, fi) such that 

,. 
&-I,!+ =0 and &t I,& =0 in Sl 

$=yr on EF, @=O on AB 

J=; and &=O on AF 

$=O, i=y, &=O on EB. Cl 

(2.1) 

(2.2) 

(2.3~ 

(2.4) 

Here 6c, = a~\ax, 4pY = aday, rp, = n,cp, + nrqY, n = {n,, n,} is the unit vector outward normal to 
the boundary 8R of the flow region 0. 

We next extend the above problem defined only on the unknown flow region CR into the fixed 
domain D. Let 

The new functions cp and J, are called the extended velocity potential and extended stream 
function, respectively. 

Theorem 5-2.1. Suppose that the pair (Q, 4) satisfies (2.1) and (2.4). Then the equations 

are satisfied in the sense of distributions defined on the fixed domain D. Here ,yn is the 
characteristic function of 0, i.e. 

Xn(-C Y)= 1 if 6% y)EG x&x. y)= 0 if (x, y)j&Q. (2.6) 

Fig. 5.7. Geometry of flow from a symmetric channel in a porous media. 
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Proof. Let u E G(O). Then, by (2.1), and (2.4), 

This means that 

(Y - v)x + $4 = 0 

in the sense of distributions on D. Similarly 

I D{-(y-cp)uy++4d~dy= nHy-cp)u,+Wdxdy I 
= I, KY - P), - &x)u dx dy + I, KY - v)n, + ~xb ds 

=j-/dxdy=/joudxdy. 

This means that 

(Y-(Ply-vk=xfl 

in the sense of distributions on D 0 
Thus, problem (5-2.1) can be rewritten in terms of the extended velocity potential and 

stream function in the fixed domain D as follows: 
Problem 5-2.2. Find the triplet (cp, I,+, a) such that 

(~-cp)~+&=O and (Y-(P)~-&=xo in D (2.7) 

(p=y and $=O in Ufl (2.8) 

cp=yl on EF, cp=O on AB (2.9) 

JI=: and cpX=O on AF. 0 (2.10) 

We note that the conditions on the free boundary EB are now imbedded in eqn (2.7). Let the 
scalar-valued function w(x, y) be defined by 

w(x, Y I= I Ep I- II dx + (Y - cp) dyl, (2.11) 

where the integral is considered as the line integral from the point E to the point P = (x, y) of 
d Since the value w(x, y) does not depend upon the path of integration, and since 

y-(0<0 in a, y-cp=O in WfI 

it is easily verified that 

w(x,y)>O if (x,y)ER 
w(x, y) = 0 if (x, y) E DISZ. > 

(2.12) 
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Moreover, we have 

w,=y-qo and NJ,=--$. (2.13) 

Substituting (2.13) into (2.7) shows that the lirst equation in (2.13) is automatically satisfied by 
the new scalar-valued function w, and that the second equation of (2.13) now reduces to 

Aw=xo (2.14) 

where, as usual, A = at/ax2 + a*/ay*. The condition (2.8) is im~dded into the condition (2.12)* in 
terms of the variable w(x, y). Boundary conditions (2.9) and (2.10) become 

w, = y - yl on EF, w, =O, i.e. w, =0 on AC (2.15) 

9 w, = --, i.e. 
2 

w”=: on Al? (2.16) 

Thus, we can conclude the following: 
Theorem 5-2.2. Suppose that the triplet (rp, I+$ a) is the solution of problem (5-2.2). Then the 

scalar-valued function w defined by (2.11) satisfies 

-Aw+xo=O in D 
1 

w>O in R and w=O in D/n 

wY=y-yi on EF, w,,=O on AC, wR=:. U 
, 

(2.17) 

We next consider a variational formulation to the problem (2.17). In this case, a major 
difference between this problem and those in Chap. 3 is that a proper “Green’s” formula like 
(3-2.1) cannot be obtained. The identity (3-2.1) has been used to express the natural boundary 
condition w, = y - yl or w, = y - y2 in Chap. 3. The special identity (3-2.1) is, thus, introduced to 
equip the associated variational (or weak) formulation with the proper ingredients to cover the 
classical formulation. 

In the present case, the bilinear form includes a term which consists of the first derivative of 
the function w on the part of the boundary I of the domain D. However, the first derivatives of 
this function in H’(D) (which is the proper space for this variational setting of the problem) 
cannot be defined on the boundary. 

Let V. be defined by 

VO = {Y E H’(D): u =O, a.e. on ED and NY]. 

Suppose that w satisfies (2.17). Then, for Vu E V. 

I D 
Vw*V(~-w)d~dy= o(-Vw)(~-w~d~dy+ 

I 

-,yn(u-w)r-(v+-w+) a.e.inD 

Then we have (by purely formal manipulations) 

I Vw.V(v-w)dxdy- 
D 

w,n,(o - w) ds + 
I 

(u* - w+) dx dy 
D 

(2.18) 

4 _>-- 
2 AF(-W+ I I FE (Y - YI)~~(u - w) ds. 

UES Vol. IS. No. IO-G 

(2.19) 
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If n, = 0, i.e. if FE is horizontal, then the variational inequality (2.19) becomes 

I D 

Vw.V(u-w)dxdy+ D(v+-w+)dxdy+ 
I 

~~T(u-~)dy+(y-y,)~~~(~-w)dx. 

(2.20) 

This problem represents the case shown in Fig. 5.8. 
As mentioned above, the variational form (2.19) is improper in the space H’(D), since the 

second term of (2.19) includes the first derivative of w on the boundary FE. Thus, the 
inequation (2.19) is just a formal one. To make the development more precise, we introduce a 
selection map S defined by the following way: Let w, be the solution of the variational 
inequality 

W” E vo: I D 

VW, +V(v- w,,)dxdy+ D(~+- w;)dxdy+ aF(u- w,,)dy 
I I 

I 

’ (2.21) 

+ (WI+ (Y - YI)~,)(u - wu) dy 
FE 

for every u E VO 

for a given data u, which is an element in H2(D). The map S: H2(D)+H2(D) is then defined by 

S(u) = w,. (2.22) 

Thus, the solution of (2.19) is the fixed point of the selection map S defined by (2.22). 
It is not difficult to show that only a single solution w,, E H2(D) can exist for each given 

u E H’(D). However, the existence of a fixed point of the selection map is still open. 
From the governing eqns (2.17), we can obtain a relationship which may indicate how proper 

data u E H2(D) in the auxiliary problem (2.21) are selected. Let C be an arbitrary constant 
function defined on the domain D. Then 

I (-Aw+Xo)Cdxdy= hVw*VCdxdy+Cmesfi+ I 
I w.C ds 

D Jan ” 

Fig. 5.8. Special geometry of flow from a rectangular channel. 
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where aR is the boundary of the flow region R. Applying the boundary conditions in (2.17) 

mes fl -s mes (AF) + 
I 

wxn, ds + 
FE I 

FE (y - y&r, ds = 0, 

i.e. 

I FE 
w,n, dx = ! mes (AF’) + 

I 
FE (y, - y)n, ds - mes a. (2.23) 

Therefore, the following procedure may be adopted to obtain the solution of (2.19): for an 
arbitrary element u E V,,, e.g. u = 0, the variational inequality (2.21) is solved. Let this solution 
be denoted by w,. Using w,, we next obtain mes !I which depends upon the data u. Then 
substitute this into (2.23), and obtain an approximation of IFE w,n, ds. Finally, this ap- 
proximation is substituted into the fourth term of the ineqn (2.21). Then by solving (2.21), a 
second approximation of w,, is obtained. This process is repeated until convergence is 
(hopefully) obtained. 

Remark 5-2.1. Despite the difficulties of the variational formulation (2.19) mentioned above, 
Bruch and Sloss[SO, 511 have obtained numerical solutions which are in good agreement with 
analytical solutions available for special cases. In their work, only a formal variational 
framework is presented. Numerical solutions are obtained using a finite-difference discretization 
of the system (2.17). The question of conditions for the existence of solutions to problem (2.1), 
specifically the variational inequality (2.19), for the case in which the first derivative of the 
unknown on the boundary is included, appears to be open. 0 

Example S-2.1. Although some open theoretical questions on the variational inequality (2.19) 
remain for the case n,# 0 on the bottom of the channel, reasonable numerical solutions can be 
obtained without much difficulty. Following Bruch and Sloss[SO], the unknown discharge ~7 is 
obtained by the compatibility condition 

h?)=!i_mo~m YJ-why,-c))=O. (2.24) 

Fi. 5.9. Geometry and mesh for calculations in Example 5-2.1. 
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The condition (2.24) means that the pressure p(x, y) = &(x, y)/~y is zero at the point E in Fig. 
5.8. The same iterative procedure as (1.41), which is called the discharge descent method, is 
adopted to obtain the proper discharge q. 

Geometry and a discrete model of a model problem with a triangular channel are shown in 
Fig, 5.9. Numerical results are indicated in Fig. 5.10. We note that a rather large starting value of 

~saturatrd 
nodal point 

8 

I 
ltemttons 

4 
166.67 - 243 96 

2 161 67 -235.74 

II- 

3 182.il - 1.456 
4 173 19 -0.487 

5 168.71 -0 053 

6 166. I6 -0 000 

Fig. 5.10. Flow domain in Example 5-2.1 calcuiated by solving system of varia~onal joequalities by 
discharge descent method plus S.O.R. 

/ 7.0 ------4 

HorIzontat Doratn 

Fig. 5.11. Initial mesh for solving Example 5-2. I by adaptive mesh method. 
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the assumed discharge is needed in this problem to bring the descent process within the radius of 
attraction of the solution to the discrete problem. 

The adaptive mesh method is also applied to solve the same problem. In this case, the 
seepage point B is unknown a priori. Thus, a discrete model for initiating the adaptive mesh 
method is not easily obtained. Moreover, the method is very sensitive to the position of the 
seepage point B. The numerical results obtained by solving the variational inequality (2.19) were 
used to define the mesh described in Fig. 5.11. Numerical results and its convergence are shown 
in Figs. 5.12 and 5.13. At each iteration, points S,, S, and S, (see Fig. 5.11) are defined by 
neighboring points Tr, T2 and T3 so that the x-coordinate of the point Si is same as that of Ti, 
i = 1, 2 and 3. As seen in Fig. 5.13, convergence of this method is, at best, very slow. Some 
improvement in the maximum pressure is obtained up to values of order lo-‘, but the method 
appears to diverge if sharper tolerances are imposed. Nevertheless, the calculated free 
streamline is in reasonable agreement with that shown in Fig. 5.10. However, in this relatively 
simple example it is possible to start the process with a mesh which comes close to fitting the 
actual flow domain. 

Numerical results such as these indicate that the adaptive mesh technique should be used 
with great care-if at all-for problems of this type. 0 

Fig. 5.12. Free streamline in Example 5-2. I calculated after six iterations using adaptive mesh method. 

I , , , , , , , , , , , , 
l23456789’101112 

Number of llerotions 

Fig. 5.13. Convergence characteristics of adaptive mesh method for Example S-2.1. 
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5.3 A seepage flow problem with a horizontal drain 
Let a rectangular dam D = (0, a) x (0, y,) be homogeneous and isotropic, and let the flow 

through the dam p be diverted by a horizontal drain on part of the foundation, as shown in Fig. 
5.14. Let 4 and r,& denote the velocity ~tentiai and the stream functions, respectively, for the 
unknown flow region Q. Then the problem can be expressed by 

Problem 5-3.1. Find a triplet (+,& a) such that 

&+-t+& =O, &--I& =0 in 0, (3.1) 

+=y, on AF, $=O on BC, $=q on AB (3.2) 

J=O, +=y, $,,=O on FC (3.3) 

where 4” = n,& t n,&, n = {nx, n,} is the outward unit vector normal to the boundary 80 of a, 
&. = &$8x, etc. q 

As in Section 5.2, I$ and 4 onto the whole dam 1) in the same manner as in (2.5); that is 

(3.4) 

Then, paralleling Theorem S-2.1 ., we have 
theorem 5-3.1. Let 4 and $ satisfy (3.1) and (3.3). Then the extended velocity potentiat q 

and stream function JI satisfy 

(y-(~)~-& =xo and (y--(~)~+& =0 in D. 0 (3.5) 

Following the plan of previous sections, we next introduce a new scalar-valued function 
w defined by 

WC% y)= I I-IIdx+(y-cp)dyl Fp 

where P is a point in @P = (x, y)]. 
Since 

w,=-$ and w,=y-q~ in D 

1 
Y 

orizontol Drain 

Fig. 5.14. Geometry of a recycle dam with a hound drain. 

(3.6) 

(3.7) 
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the governing eqn (3.5) can be reduced to 

Aw = xo. 

Moreover, by the definition of cp and 4, 

w=O in 016 

and 

w>O in fi 

because y - cp < 0 in R. The boundary condition (3.2) is changed as follows 

Since AF coincides with the 

where C is a constant. Since 

w, = y-y, on AF. 

y-axis, (3.11) can be integrated to give 

w(o,Y)=;Y2--YIY+c 

w = 0 at F, 

Then 

w(O,y,)=-iy:+C=O, i.e. C=iy:. 

w=$(y,-y)’ on AF. 

From 4 = q on AB, we have 

w,=-q 

and since AB coincides with the x-axis, (3.13) canbe integrated to give 

w(x, 0) = - qx + C, C = constant. 

Finally, since ~(0, 0) = (1/2)y! in accordance with (3.12), 

w=-qx+ly: 
2 

on AB (3.14) 

1275 

(3.8) 

(3.9) 

(3.10) 

(3.11) 

(3.12) 

(3.13) 

and since 4 = 0 on BC 

Summing up, we have: 

w,=O on BC. (3.15) 

Theorem 5-3.2. Suppose that the triplet (4, 4, fl) is a solution of Problem 5-3.1. Then the 
variable w defined by (3.6) must satisfy 

-Aw+xn=O, wr0 in D 

w>O in R and w=O in Wfl 

w =g, on UPN 

wY=O on PN 

(3.16) 
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where rN = BD, r is the boundary of the dam 0, and g, is given by 

~(Y_Y~)~ on AF 

& =. 
-qx+iy: on AB 

,O on EF uDE. 

(3.17) 

We now construct a variational formulation of (3.16). Let us define an admissibie set V, by 

V, = {v E H’(D): w = gq on IYrhi 
> 

. (3.18) 

Let w satisfy (3.16). Then, for each Y E V,, 

f 
Vw*V(o-w)dxdy= (-Aw)(u-wfdxdyt 

D I D I 
w,(u - w) ds 

J.N 

=- DXn(t’-w)dxdy- 
I I TN 

wr(u - w)dx 

L- 
I 

(v+- w+)dxdy 
D 

since, a.e. in D, 

Therefore, we obtain the variational inequality 

Vw.V(u-w)dxdy+ o(v+-w+)dxdyrO, VvEV, 
I 

(3.19) 

It is clear that the discharge q cannot be arbitrary since w z 0 has to be imposed on d From 
(3.17), the condition 

-qx+iy{zO for VxE(O,b) 

should be satisfied, i.e. 

1 
4Szj;Yi. (3.20) 

It is also not so dficult to show that there exists a unique solution w to the variational problem 
(3.19) for a given fixed number q > 0 which satisfies the restriction (3.20), since (1) the bilinear 
form (w, u) +JhVw 1 Vu dx dy is continuous, (2) the form o +JDv+dx dy is a convex and 
continuous functional on H’(D), and (3) the form (w, u)+_fDVw * Vu dx dy + JDU’ dx dy is 
coercive and strictly monotone on V, x V,. We record this fact in the following theorem: 

Theorem 5-3.2. There exists a unique solution to (3.19) for any choice of q, including the 
physically possible q’s satisfying (3.20). 0 

The remaining question is how to decide the proper constant q so that the corresponding 
solution w of (3.19) is the solution to the problem (J-16), i.e. to Problem 5-3.1. As discussed in 
Section 5.1, we may take as a compatibility condition at the point B the condition 

(3.21) 
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h =Ax =Ay:O.25 

Fig. 5.15. G~metry and mesh for Example 5-3.1. 

ITERATIONS 

I 9 t 

............. ............. 
.............. 

.............. 

................ 

................ 

............... 

............... 

............... 

............... 

I---- 3 -+x75--/ 

Fig. 5.16. Numerical results for Example 5-3.1 obtained by discharge descent iteration together with the 
projectional S.O.R. method. 

This means that the derivative of w with respect to the x-direction is continuous at the point B, 
or equivalently, the stream function 4 is continuous at 8. 

Characterizations of the solution of variational inequality (3.18) can be established by 
following the same procedures given in Section 5.1. 

Example S-3.1. As a final example, we solve a problem of seepage flow through a dam with 
a horizontal drain which is attached on a part of the foundation. Suppose that the dam is 
homogeneous isotropic and rectangular, and that the foundation is horizontal and impervious, 
as shown in Fig. 5.15. Physical dimensions of the model and a discrete model for the variational 
inequality (3.19) and for the extended pressure method are also given in Fig. 5.15. 

The compatibility condition (3.21) is used in order to obtain the proper discharge 4. That is 

has to be satisfied by the discharge q. Numerical results are shown in Fig. 5.16. Convergence 
for the discharge q is obtained within 4 iterations. 

Again the projectional S.O.R. method is used to solve the variational inequality (3.19) for each 
given q. 

The same problem is also solved by the extended pressure method using the same discrete 
model. The penalty parameter is assumed to be c = IO-’ for a mesh parameter h = Ax = Ay = 
0.25. Numerical results are shown in Fig. 5.17. The flow region 0 is here identified with the 
portion of D on which the pressure exceeds $2. 
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As mentioned in Example 5-2.1, it is difficult to apply the adaptive mesh method when a 
horizontal drain is situated along the foundation. Using the numerical results obtained by 
solving the variational inequality (3.19), the initial flow domain shown in Fig. 5.18 is con- 
structed. Then the adaptive mesh method is applied together with the strategy used in Example 
5-2.1 for positioning points Sr and S2, see Fig. 5.19; i.e. the x-coordinate of S, and S, is 
assumed to be same as that of Z’r and T2. Our numerical solution is shown in Fig. 5.19 and 
convergence characteristics are indicated in Fig. 5.20. While the rate of convergence indicated 
is a remarkable improvement over that experienced in Example 5-2.1, it was necessary to start 
the process with a mesh very closely resembling the final flow domain. Once again, this 
indicates the delicacy of the adaptive mesh process for problems of this type. Cl 

S.O.R. Method 

W = 1.75 , 77 -Iterations 

Penalty Parameter 

l : 0.1 

l pji=-oo5 

Free Stream Line 

Fig. 5.17. Flow domain and free surface profile calculated using the extended pressure formulation with 
penalty and projectional S.O.R. iterations. 

Fig. 5.18. Initial mesh for the adaptive mesh method for Example 5-3.1. 

Free Stream Line 

Fig. 5.19. Free streamline for Example 5-3.1 calculated using adaptive mesh method, 
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123439789l0 

NUMBER OF ITERATIONS 

Fig. 5.20. Convergence characteristics of adaptive mesh method for Example 5-3.1. 

5.4 Comments 
The problem discussed in Section 5.1 was first discussed by Baiocchi[42]. Our mathematical 

treatment of the problem follows mainly the work of Baiocchi[42] and Baiocchi et al. [ 151, 
The problem in Section 5.2 was first studied numerically by Bruch and Sloss[SO]. As 

mentioned earlier, several important mathematical questions (e.g. the existence and uniqueness 
of solutions) for such problems appear to remain open. 

The problem in Section 5.3 is a simplified version of a problem which has been discussed in 
Sloss and Bruch [5 11. 

A survey of seepage flow problems by variational inequalities is also given in Bruch[52]. 

6. CONCLUDING REMARKS 

While our principal concern in this study has been the application of variational inequalities 
and compatible numerical techniques to problems of flow through porous media, the foundation 
we have laid is quite broad. The general theories surveyed in Chaps. 1 and 2 can be used to 
formulate variational principles and computational methods for a wide range of free boundary 
problems in mechanics. These include problems in elastoplasticity, wherein the elastic-plastic 
interface is unknown, optimal control problems in the dynamics of distributed systems, Stefan 
problems in heat conduction such as those in which the interface between ice and water in a 
melting or freezing medium is unknown, contact problems in elasticity in which the contact 
surface is unknown, and many others. It is true that each of these areas of application requires 
special consideration of peculiarities of the physical problem at hand and the inequalities that 
model it. But many of the concepts and methods we have covered are fundamental to all of 
these applications. 

Nevertheless, there are several topics that we have not dealt with here that pertain to 
variational inequalities for seepage problems. For example, we have not discussed evolution 
problems characterized by variational inequalities in which the solution also depends upon time. 
Time-dependent seepage flow problems fall into the category of Stefan problems mentioned 
above. Much work has been done on the numerical analysis of problems of this type. However, 
less is available on finite element methods for variational inequalities of evolution. The 
similarity between the classical Stefan problem of freezing and thawing of ice and seepage flow 
problems should be mentioned in this regard. The free streamline of seepage flow on which the 
pressure p is zero is analogous to the interface of the solid and melted phase of ice on which 
the temperature field 8 is zero. There exists a discontinuity of the gradient of p and ,9 on this 
free boundary. If we replace the y-coordinate in our formulations of Chap. 3 with time t, our 
velocity potential cp with the temperature field and the (extended) pressure p by the heat 
potential u (which amounts to replacing Baiocchi’s transformation by Duvaut’s transformation), 
then the two problems are formally the same. Use of finite elements and variational inequalities 
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for studying such time-dependent free boundary problems has been investigated by Ichikawa 
and Kikuchi[53] and Kikuchi and Ichikawa[54]. 

There are many open questions deserving further study in the analysis of seepage problems 
by the methods discussed here. In particular, the theory of quasi-variational inequalities does 
not appear to be developed to an extent that it provides a complete framework for studying 
seepage flow in arbitrary non-homogeneous dams. This, of course, means that a complete 
understanding of approximate methods based on such formulations must await further 
development of the mathematical theory itself. The fact that our introduction of the discharge 
conditions into the formulations discussed in Chap. 3 lead to acceptable numerical schemes 
suggests that similar conditions might be necessary in the quasi-variational inequality for- 
mulations in order that these problems be well-posed. 

In particular, for homogeneous dams, the quasi-variational inequality formulation may not 
provide physically meaningful results without special consideration of certain conservation 
properties of the flow. However, the extended pressure method together with penalty 
arguments produces an approximation which is applicable to non-homogeneous cases and 
which leads to efficient schemes. 

More work is also needed on penalty methods for free boundary problems of the type 
considered here. Our numerical results indicate a dependence of the penalty parameter E on the 
mesh size h, but precisely how E depends upon h is unknown. The effects of “reduced 
integration” in such penalty methods is still not well understood and the absence of a prioti 

error estimates for complicated constrained problems of the type considered here stands in the 
way of a complete underst~ding of the qualitative behavior of finite-element approximations of 
these problems. 

We also note that all of the numerical techniques we have described herein are merely 
examples of methods selected from a long list of optimization techniques that could be applied 
to variational inequalities. It is likely that many more efficient techniques are available. We 
leave the exploration of these to the interested reader. One interesti~ observation has resulted 
from our sample comparisons, however: the adaptive mesh methods popular in engineering 
literature should be used with caution. Our results indicate that they are often divergent (even 
though the computed results may look reasonable). Moreover, when they work, one must select 
a “starting mesh” very close to that approximating the actual flow domain. Care must also be 
taken in the case of inhomogeneous dams which have interfaces of materials with large 
differences in permeability. There it often appears to be necessary to use a “~undary layer” of 
efements to model the interface in order to avoid oscillations in the approximation of the free 
surface (see the Appendix). A complete numerical analysis of such difficulties is not yet 
available. 
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APPENDIX 

THE ADAPTIVE MESH METHOD 

A popular method for solving free boundary probiems in the study of flow through porous media consists of developing 
a trial ~nite~lement model approx~ating only the flow domain Q and then changing the geometry of the mesh through an 
iterative process designed to converge to the correct flow domain. Such adaptive mesh methods were developed by 
Taylor [ I], Finn[2], Neuman et al. [3]. 

The underlying philosophy in the adaptive mesh method that we will employ is that the (n + I)-th approximation a”+’ 
of the flow domain 0 is defined by the nth iterate p” of an approximation of the velocity potential. This can be 
accomplished by a fixed-point algorithm of the type 

Y""(X) = Yyx) t ap”(x, Y”(x)) WI 

or 

X”+‘(Y)=Xn(Y)-Bd’(X”(Y),Y). (A2) 

Here y = Y(x) or x =X(.x) represent the position of the free boundary (free s~amline), p(.r, yf is the pressure geld 
defined by p = q - y, d(x, y) is the discharge of the point (x, y) which is obtained by multiplication of the stiffness matrix 
and the velocity potential in the finite element approximation, and (a, p) are proper iterative factors. We now show the 
procedure to obtain the free streamline y = Y(x) by the scheme (Al). 

(i) We begin by assuming a trial mesh 0’ involving an approximation of the flow region, y = Y’, and an initial 
discharge D’ from the seepage point D. 

(ii) Suppose that y = I’“, i.e. 0” and D” are known. 
Step I. (1) Solve the ~undary-value problem 

-Acp=O in R” 

cp=H on AF, (o=h on EC, (p=y on CG 

(p.=D” at D ~ti=OonFDUAB 

(2) Obtain the pressure on IDC, and calculate the (n + I)-th position of the free st~amline FD by the eqn (Al). 
Step 2. (1) Solve the Sunday-v~ue problem 

-Acp=O in 0”+’ 

p=H on AF, cp=h on EC, p=y on CD 

p-=0 on FDUAB 

(2) Obtain the discharge LT+’ at the point I). 
Here domains and boundary conditions are described in Fii. Al. 

When the dam is non-homogeneous, some special modifications are necessary in order to determine the free streamline 
along the interface of different material zones. For example, oscillating results such as those shown in Fig. A2 may be 
obtained if the ratio k,/k, of permeabilities is very small. Such difiiculties can be overcome by taking part of the interface of 

Step I 

(DG - Impermeable) 

Step If 

(K-Free) 

Fig. Al. Domains used in adaptive mesh method. 
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9.4 x 10-3 
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the Free Surface 

Material I Mrrterial 11 

$= $1 { kzJlOf 

Fig. A2, Oscillation of free surface. 

two different materials to be a part of the free streamline. ~oo~osciilatory results of the trpe shown in Fig. A3 are obtained 
when this assumption is introdused. The idea is similar to ~~u~w~~d~~g” methods employed in the calculation of 
convection-diffusion problems. 

Algorithm (Al) is not, in general, adequate far geometries of the type shown in Fig. A4, since the free streamline is very 
steep around the horizontal drain. To overcome this dticulty, we apply (Al) to a portion of the assumed free streamline 
and use the algorithm 

X”+i(Yl=X”(Yk+ %%WY),Yf (A3) 

on the remaining part of the free streamline, Here y is a proper positive constant. A numerical example is shown in Fig. 
AS. II 

Ckx’ivergence Obtairced at IS-th 
kratlon With Maximum 
Pressure at Free Surface of 
a.7 x ia 

Fig. A3. Smooth free surface obtained by mode{ti~g irrterface with Sunday-payer of etements. 
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0 Formula (A.7) 

D Formula (A.3) 

0 Formula ( A. I ) 

LI Formulo ( A-3) 

3.3 -I71 I---- 3 3 -4-1.2-J 

Fig. A.4 Fig. AS 

Fig. A4. Discharge model. 

Fig. AS. Final profile of free surface calculated by adaptive mesh method. 
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