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Abstract 

 

When I started Senior Design class I had an idea for my project – I wanted completely redesign 

and rebuild my earlier work - a hexapod, a 6 legged crawling robot. In my previous project I had 

designed and built mechanical platform, sensor array, and software package for such a robot, 

however I used pre-made electrical system and controller board. With experience gained from 

previous project, I had numerous changes I wanted to make to my new hexapod, and I thought it 

would be a perfect project for the Senior Design class.  

For the purposes of the class I started from scratch: I built and designed completely new 

mechanical platform, built my own electronic boards, designed new and improved sensor array, 

used more complicated control algorithms and more. Amongst the biggest changes from my 

previous work is the use of embedded computing – my robot has a powerful ARM-based Linux 

board capable for tremendous computing power. In short, my new hexapod bears little 

resemblance (both mechanically and electrically) to my previous design and is a substantial 

improvement in every single way. 

 

Introduction 

 

The objective of my project was to create a 6 legged hexapod robot with 6 Degrees of Freedom 

per leg (6 DoF), a 6 DoF head, and 4 DoF tail remotely controlled by PS3 controller.  

At the heart of the robot is the micro controller (uP) board. The uP board features 

ATxmega128A1U as the servo driver and data gathering center. In my design I use 23 



independently controlled servo motors each having its own PWM channel. Since every servo is 

controlled independently of the CPU, very precise and smooth motion can be achieved. Aside 

from servo control, my uP board also collects data from numerous sensors: battery voltages, 

body accelerometer data, head accelerometer data, head rangefinders, and power status. The 

acquired data is shared with Linux board with direct USB connection. 

A distinctive feature of my design is the motion controlled algorithm. I implemented a process 

called Inverse Kinematics (IK) to actuate the servos. In a nut shell, each of the hexapod’s legs 

has the ability to move directly between any two points in space given the initial and final 

coordinates. This allows for smooth control of the locomotion. The arithmetic behind IK is rather 

complex, requiring numerous floating point calculations. I decided to use newly released Linux 

development board (ODROID-X2) to do all the heavy lifting. The bidirectional communication 

between ODROID and uP board is the basis of motion control: ODROID requests current sensor 

status, processes it, and sends back the positions for the servos. The ODROID itself is controlled 

by the used via a PS3 controller. 

In my design power management was of a major concern. I had to have 3 separate voltage rails: 

3.3 V for the microcontroller, 5V for the ODROID, and 6V for the servo motors. To 

accommodate lifting ability for the servos, 6V rail is capable of handling 20A of continuous 

current. To ensure that my main battery supply is not drained below the rated capacity, my power 

management board is equipped with automatic relay shut off mechanism: when the voltage of 

any cell reaches below the specified threshold, the power to the robot gets cut off. To warn the 

user of the impending doom, a TTL warning signal is sent out shortly prior to main system 

shutdown. 



Electrical Design – Microcontroller board 

 

At the heart of my robot is the microcontroller (uP) board. The main feature of the board is 

ATxmega128A1U microcontroller. It serves three main functions: servo driver, data gathering 

center, and communication hub. There 23 servos in my design and each is controlled by a 

dedicated PWM channel on the ATxmega. This configuration allows for maximum precision 

with minimum CPU intervention. The uP board has 3 switching voltage regulators: 3.3V for the 

microcontroller, 5V for the Linux board, and 6V for the servo motors. The 6V switching 

regulator is a high power module capable of delivering 20A continuous current to the servos. 

This regulator is used exclusively for servos, which allowed me to maximize power output. Parts 

of schematic are shown in Figures 1 and 2. 

 

Figure 1. ATxmega and Power regulators. 



 

Figure 2. ADC Voltage buffers 

The ADC on ATxmega is capable of reading voltages up to 2.0V, so in order to read higher 

sensor outputs, I had to design op-amp buffer stages for each of the channels. These buffers are 

feed by 3.3 V and 5V regulators. During regular operation, ATxmega continuously gathers most 

recent sensor data and stores it in memory. The Linux board frequently requests various sensor 

data from ATxmega in order to do higher level functions. In addition, Linux board also provides 

uP board with current servo positions, so that motion can be achieved. Final layout of the board 

is shown in Figure 3 below. 



 

Figure 3. uP board layout, overall dimension 3.5X3.7 

It took considerable time in designing the layout. I had taken care and separated high power 

circuitry from the microprocessor. In the end, my 4 layer design allowed simultaneously 

exceedingly low ripple fluctuation on the microcontroller voltage supply (~3mV peak to peak) 

and high current operation on the servo side. 

Electrical Design – Power Router board 

 

In my robot, I used 3 cell Lithium Polymer (LiPo) battery with 4000 mAh capacity. While very 

energy density efficient, LiPo batteries can pose serious threat if not handled with care. In 

particular, overdrawing such a battery can cause failure on the next charge cycle. In order to 

protect my battery (and the robot) I designed a special board that continuously monitors the 

status of the LiPo. If any of the cells fall below specified threshold, the circuitry will 



automatically turn off relay that feeds all other boards and systems on my robot. The schematic 

for this board is shown in Figure 4. 

 

Figure 4. Power router schematic. 

Additional feature of this board is the ability to drive RGB LEDs. The board houses power 

transistors and current limiters to drive up to 60W of power to the LEDs. The layout of this 

board is shown in Figure 5. 

 

Figure 5. Power router layout. 



Electrical Design – Audio Board 

 

In order to meet analogue requirements of this course, I had to design a transistor level audio 

amplifier. The circuit is shown in Figure 6. 

 

Figure 6. Audio Amplifier circuit. 

My audio amplifier consists of three stages. Stage 1 and 2 are BJT common emitter small signal 

amplifiers. These two stages operate at relatively low current and bring the audio signal up to 6V 

peak to peak. The final stage is a double emitter follower that delivers output signal to the 8 ohm 

speaker with nominal voltage gain of about 1. At the time of the design, I did not have power 

BTJs available so I had to use logic level BJTs to drive the speaker. This resulted in reduced 

output power and lesser audio quality. The layout for the amplifier is shown in Figure 7. 

 



 

Figure 7. Audio Amplifier layout. 

In the end I was able to get my audio amplifier to work reasonably well, although I was limited 

by my power output. 

Linux Board 

 

I used ODROID-X2 development board as my main computation platform. Originally I had 

planned to use AVR32 to perform Inverse Kinematics calculations, however due to the time 

constraint of the course, I had to move all heavy processing to my Linux board. Currently, the 

ODROID is running all robot control algorithms. The robot is controlled by as PS3 controller 

that links to the ODRIOD upon startup. From this point on, all functionality and behavior of the 

robot is controlled by the PS3 controller. 



Communication Protocol 

 

Microcontroller board and Linux board operate according to a sophisticated communication 

protocol. First, there is a heartbeat in place that will reset the program in case there is a long term 

communication loss. Second, the communication packet itself has several layers of protection 

against corrupted data. The following is the structure of my communication packet: Start, Start, 

Start, Message Code, Message (lengths from 2-48 bytes), CRC checksum, End. The CRC 

checksum that is performed on the entire data packet virtually eliminates the possibility of 

incorrectly decoding a message. This system is in place to make sure that my robot will never set 

servo angle (or any other peripheral) to an illegal value on accident. 

Mechanical Platform 

 

Although the most complicated aspect of my project, the mechanical platform has little to do 

with Electrical Engineering, and therefore will be mentioned briskly.  Figure 8 shows right leg of 

my Hexapod (6 legs total).  



 

Figure 8. Leg design. 

Aside from the servo and servo mounting bracket, every part of the leg was custom made for this 

project (per my design specification). Same goes for the entire hexapod, which is shown in 

Figure 9. 

 

Figure 9. Solidworks design of the hexapod. 



My mechanical platform features six 6 DoF legs, 6DoF head, and 4DoF tail. 

Controller Algorithm 

 

The locomotion is done by using Inverse kinematics algorithm. Traditional hexapods operate by 

cycling through imperially determined states which results in jerky motion. In my design, every 

leg has a defined coordinate system. Within this system, the foot of every leg is able to travel 

between any two points along a fitted curve. Basically, I can move robot’s legs between two 

specified coordinates in a linear fashion using finite number of time steps. This gives motion 

silkiness and real life feel.  

 

Conclusion 

 

The project I picked for the Senior Designed turned out to be inadequately complicated for the 

time frame given. In the end I was able to get most of the design to work, although it came at the 

price of making sacrifices, mostly to the mechanical platform. By far the most difficult aspect of 

the project was the mechanical platform – 300+ screws, over a pound of wire, 23 moving parts 

that cannot collide and others were the reason for my poor sleep habits in the spring of 2013. 

At the time this report was written, much remains to be done for my own personal satisfaction.  


