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ABSTRACT: Protein search for specific binding sites on DNA is a fundamental biological state § L

phenomenon associated with the beginning of most major biological processes. It is frequently
found that proteins find and recognize their specific targets quickly and efficiently despite the
complex nature of protein—DNA interactions in living cells. Although significant experimental
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and theoretical efforts were made in recent years, the mechanisms of these processes remain ‘\‘\ 0 / m, statei
not well-clarified. We present a theoretical study of the protein target search dynamics in the 7 state 0
presence of semispecific binding sites which are viewed as traps. Our theoretical approach protein

employs a discrete-state stochastic method that accounts for the most important physical and

chemical processes in the system. It also leads to a full analytical description for all dynamic properties of the protein search. It is
found that the presence of traps can significantly modify the protein search dynamics. This effect depends on the spatial positions
of the targets and traps, on distances between them, on the average sliding length of the protein along the DNA, and on the total
length of DNA. Theoretical predictions are discussed using simple physical—chemical arguments, and they are also validated with

extensive Monte Carlo computer simulations.

B INTRODUCTION

All major biological processes are governed by protein—DNA
interactions." Many of them begin after a protein molecule first
searches and then binds to a short segment of DNA with a
specific sequence, which is known as a specific binding site.
This allows proteins to effectively transfer the genetic
information contained in DNA by initiating a cascade of
biochemical processes relevant for the successful functioning of
biological cells. Clearly, the protein search for targets on DNA
is one of the most important phenomena in nature." This
subject was investigated for many years,” but significant
progress was achieved in recent years with a development of
advanced experimental and theoretical methods.*™*° However,
many details of the mechanisms of the protein search for targets
on DNA still remain not well-understood.”” ™'

One of the most fascinating observations in this field is that
many proteins can find and recognize their specific binding sites
much faster than expected if the search would take place only
via 3D bulk diffusion.”>**”** This surprising result is called a
facilitated diffusion, and it is frequently argued that this happens
due to the protein search being a combination of 3D and 1D
modes.”>**”** More specifically, the proposed picture assumes
that the protein molecule associates nonspecifically to DNA,
scans some length of DNA by sliding, dissociates from DNA,
and repeats these actions several times until the target is
located. Several experiments support this point of view.” ' "'®
These observations also suggest that the specific nature of the
protein—DNA interactions should have a stronger effect on the
protein search dynamics. Indeed, in real systems there are many
sequences that have structures and chemical compositions
similar to the specific sites.””>® The protein molecule can be
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trapped in these semispecific sites for large periods of time, and
it is not clear then how a fast search can be accomplished.
However, the majority of theoretical models for the facilitated
diffusion ignore this effect, assuming that the nonspecifically
bound proteins slide along the homogeneous DNA chain with
the same diffusion constant.”** There are several theoretical
studies that take into account the possibility of trapping.'”**
They argue that the bound proteins can fluctuate between
several conformations while still being associated with the DNA
chain, and this leads to the avoidance of these semispecific
binding sites. However, the molecular mechanisms of this
avoidance are not clear, and there is no experimental proof for
this.

In this paper, we present a theoretical investigation of the
protein search for targets on DNA with semispecific binding
sites that are viewed as traps. Our analysis uses a discrete-state
stochastic approach'>'® that explicitly takes into consideration
major physical and chemical processes in the system. It allows
us to obtain a full analytical description for all dynamic
properties in the protein search by utilizing a method of first-
passage processes. The application of the discrete-state
stochastic method to the protein search without traps
uncovered three dynamic regimes, depending on the relative
values of the important length scales in the system.'® For the
protein sliding length A larger than the length of the DNA chain
L, the protein is involved in a 1D search process with a random-
walk dynamics. When the sliding length is larger than the target
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size but smaller than the length of DNA, the search mechanism
combines 1D and 3D motions. For even smaller sliding lengths
the diffusion along the DNA chain is not possible, and the
protein searches for the target only via 3D motions. By
generalizing and extending this method to the system with
semispecific sites, we show that the traps have a strong effect on
the search dynamics. Surprisingly, there are many counter-
intuitive observations when the presence of the traps might
accelerate the search. We also test our theoretical predictions
with Monte Carlo computer simulations.

B THEORETICAL METHODS

The discrete-state stochastic approach''® can be generalized
for analyzing the protein search with an arbitrary number of
targets and traps on DNA. To capture the main features of the
process, we consider a simpler model where a single protein
molecule searches for one specific binding site on a single DNA
chain, which also has one semispecific binding site, as presented
in Figure 1. To simplify things even further, we assume that
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Figure 1. General scheme for the protein target search on DNA with a
trap. There are L — 2 nonspecific, 1 specific, and 1 trap binding site on
the DNA chain. The target is at site m), and the trap is at site m,. A
protein molecule can slide along the DNA chain with rate 4, or might
dissociate into the solution with the rate k. The bulk solution is
labeled as a state 0. From the solution the protein can associate to any
site on DNA with the total rate k.

traps are irreversible; i.e., if the protein molecule binds to the
semispecific site it will never dissociate. This is a strong
assumption, but because the search times in many systems are
quite short and experiments can be done only for finite periods
of time, this should approximate the protein search dynamics
reasonably well.

We consider a single DNA molecule with L — 2 nonspecific
binding sites and two special sites: one of them placed at m, is a
specific target for the protein, while another one (at m,) is a
semispecific trap: see Figure 1. For convenience, we always
assume that m; < m,, i.e, the trap is always to the right of the
target (Figure 1). But the specific order of the target and trap,
obviously, does not affect the physics of this phenomenon. In in
vitro experiments the protein molecule moves much faster in
the bulk solution than on DNA, and we assume that it can
reach any site on DNA with the same probability. A total
protein association rate to DNA is equal to k,,, while the bound
protein can dissociate into the solution with a rate kg as shown
in Figure 1. In addition, the DNA-bound protein can slide
along the chain with rate u in both directions (Figure 1). This
rate can be viewed as a 1D diffusion constant for moving on
DNA. The protein search always starts from the solution that
we label as a state 0. There are two possible final outcomes of
the search process. The protein molecule can find the target,
and this is a successful event. Or, the protein might fall into the
trap and never leave it: this is not a successful event. Thus, the
probability to reach the target in this model is always less than
one.

The protein search for the target can be associated with a
first-passage process of reaching the specific binding site, and
this provides a direct way of evaluating the dynamics of the
system.16 We introduce a function F,(t) which is defined as a
probability to reach the target at time ¢ for the first time, while
not being trapped to the semispecific site, if initially (at t = 0)
the protein molecule starts at the state n (n =0, 1, ..., L). It is
important to note that this is a conditional probability for the
protein molecules that are not captured by the trap. The
temporal evolution of these probabilities can be described via a

set of backward master equationsls’16
dE(t)
dt = M[Et+1(t) + El_l(f)] + kB (t)

— Qu + k) E(t) e

for2 <n <L —1and n # m; or my,. At DNA boundaries the
dynamics is slightly different

dE(t)
# = uB(t) + kygFy(t) — (u + ko) E(t) @)
and
dE (¢)
st = uF_(t) + kogFo(t) — (u + kog)EF () 3)
In addition, for the bulk solution (n = 0) we have
dB(t)  k,, <
=—= ) E(t) — kBt
df L ﬂ;l n( ) on 0( ) (4)

Also, there are additional constraints in the system, which can
be written as

E(t=0)=60)  E(0)=0 ©
The physical meaning of these expressions is the following. If
the protein molecule starts at t = 0 at the target site m,, the
search process is successfully finished immediately. But if the
protein at any time binds to the trap site (m,), it will never find
the target.

To solve eqs 1—5, we reformulate the problem in the
language of Laplace transformations, i.e., with

E(s) = /000 e ™E(t) dt.'® Then the set of backward master

equations can be transformed into a set of simpler algebraic
expressions

(s + 2u + kog)E(s) = u[ E,,(s) + E_,(s)] + k.gF(s)

(6)
for2 <n <L —1andn # m; or my, and
(s + u + k) F(s) = uB(s) + kogFo(s) (7)
(s + u+ ko) F(s) = u F_y(s) + kogFo(s) (8)
P&

(s + ko)E(s) = == ) E(s)
oL g ©)
E()=1 E(s)=0 (10)

The solutions of these equations can be found by assuming a
general form of the solution as E,(s) = Ay" + B.'® This yields
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Figure 2. Contour maps for the mean search times to reach the specific binding site as a function of the positions of the target m, and trap m,.
Parameters used for calculations are ko, = u = 10° s and k. = 10> s™". The length of the DNA chain is (a) L = 100 and (b) L = 1000.

kon(koff + S)Sl(s)

T(s) =
() Ls(s + koo + kogr) + koo Sy(5) (11)
with
Sl(s) _ (1 + y)(12 _7fm1+m2—1) ]
T =@ +y™m ) +y™m™™) (12)
Sz(s)

_ (1 +y)[2(1 _ y2L+m17m2) + (1 _),mr"ﬁ)(yZMrI +yl+Z(L7m2))]
(1= )+ y (A 4y ) (14 ymm)

(13)

and

s+ 2u + kg — \/(s +2u + ko) — 4’
2u (14)

y(s) =

Explicit analytical expressions for the first-passage probability
functions in the Laplace form provide us with a complete
description for all dynamic properties in the protein search.
More specifically, a function IT [with y(s = 0) = y]

_ 5(0)
$,(0)
(1 _ ym1+m2—1)[1 +y1+2(L—m2):|
= 2(1 _ y2L+m1—m2) + (1 _ ymz—ml)[yZml—l +y1+2(L—mz):|
(13)

is the overall probability (at all times) for the protein molecule
to reach the target starting from the bulk solution. It is generally
less than 1 because of the possible falling into the trap. For a
symmetric distribution of the target and the trap with respect to
the middle of the DNA chain, when m, = L — m;+1, it follows
from eq 15 that the probability to reach the specific site is
always IT = 1/2.

A mean first-passage time to reach the target, T, which we
also identify as the average search time, is given by

IT = F(s = 0)

0F0(5) |
os =0

R (1

It is important to note that this is a conditional mean first-
passage time, which means that the average is taken only over
the successful trajectories that lead to the target. The search
trajectories that end up in the trap are ignored for the
calculation of the mean search times. The explicit expression for
T, can be written as

12412

— Lkoff + kon(L - SZ(O)) + Hi SZ—(S) |
° konkoS5(0) &6 7 an

It can be shown that the first term on the right side of eq 17
corresponds to the search time for the system with two targets
(at the positions m; and m,),”* while the second term corrects
this result by accounting for the fact that the site at m, is the
irreversible trap. From this point of view, the search time can be
presented as

Ty(target/trap) = Tp(2 targets) + Hi[ $:(9) :||s:0
ds| S(s) (18)
The reason that our system with the target and the trap is
related to the search on the DNA chain with 2 targets is due to
the fact that targets and traps are special positions on DNA that
guide the dynamics. In the system with two targets, there are
two probability fluxes for going from the solution to these
special sites, and the smallest time (or the largest flux)
determines the overall search time. In our model with the target
and trap we also have two probability fluxes to the special sites,
but only one of them, to the target, defines the search time.

B RESULTS AND DISCUSSION

Spatial Distribution of Targets and Traps. The first
question we would like to address is the effect of the spatial
distributions of targets and traps in the protein search
dynamics. The average times to reach the target as a function
of the positions m, and m, for different DNA lengths L are
presented in Figure 2. One can see that there are optimal
positions for the target and for the trap (Figure 2a), namely, m,
= L/4 and m, = 3L/4, for which the mean first-passage times
are minimal. These are exactly the same optimal positions for
the system with two targets.”* The following arguments can be
used to explain this effect. Because at these conditions the
search is taking place mostly through 1D diftusion, if the
starting position of the protein on DNA is the site n > (m; +
m,)/2, on average, it will not reach the specific binding site.
This means that the problem with the target at the site m; and
the trap at the site m, is identical to the search on DNA of the
length (m, + m,)/2 with only 1 target at m,. In this case, the
most optimal position for the target is in the middle of the
DNA segment,16 ie, m = (m; + m,)/4. This leads to the
relation m, = 3m;. Now, these optimal positions must also be
symmetric with respect to the middle of the chain because the
exchange of the locations of the target and the trap should not
affect the outcome. This yields m; + m, = L. It can be easily
shown then that putting the target and the trap to sites m, = L/
4 and m, = 3L/4 satisfies these requirements.
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However, the most optimal distribution is not observed for
all conditions. Increasing the length of DNA (see Figure 2b)
completely changes the picture. Now, any position of the target
and the trap along the DNA chain, as long as they are not at the
boundaries (m; # 1 and m, # L), leads to the same search
times. This is taking place because for 1 < 4 < L (where the
protein sliding length is given by A = /u/ky;) the search
follows the sliding regime: the protein molecule scans the
length A on the DNA before dissociating, and it repeats this
searching cycle many times (L/4 on average) before reaching
the target. After each dissociation, the protein does not have
any memory of what part of DNA it just scanned. With equal
probability it can bind to any site on DNA. As a result, the
absolute positions of the target and traps are not important
anymore for the search optimization.

Dynamic Phase Diagram. In the next step, we investigate
how the presence of the semispecific sites influences the
mechanisms of the search in different regimes. The results are
presented in Figure 3. First of all, the general features of the
dynamic phase diagram do not change with the addition of the
trap sites. There are still 3 search regimes depending on the

relative values of the scanning length 4 = /u/k. 4, the DNA

length L, and the target size, which is taken to be equal to 1.'e
When A > L we have the phase in which the protein molecule
binds to DNA and moves along the chain until it encounters
the specific binding site. This is the 1D random-walk search
regime with the expected quadratic scaling on the search times
as a function of the DNA length L.'® For 1 < 1 < L the system
is in the sliding regime, where the protein molecule binds
nonspecifically to DNA, scans a distance ~ 4, and dissociates,
and this search cycle, on average, is repeated several times until
the target is found. This search mechanism can be viewed as a
combination of 3D and 1D motions. In this phase, the scaling
of the search times is linear with L because the number of
search cycles is proportional to the DNA length, ie, T, ~ L/
A1 For even smaller scanning lengths, 4 < 1, the search
becomes purely 3D because the protein bound to DNA cannot
slide along the chain. Again, the linear scaling of the search
times with L is observed because, on average, the protein has to
visit L — 1 sites before it associates to the target.'

One can also see from Figure 3 that adding the trap
decreases the search times for the system that originally had
only a single target. However, it comes with a price of lowering
the probability to reach the target: see Figure 4. For the most
optimal positions of the targets and traps this probability is
always equal to 1/2 (Figures 3a and 4). This can be easily
explained if we notice that the most optimal distribution is
symmetric (m, = L/4 and m, = 3L/4), which means that
exactly half of the trajectories are successful and another half
end up in the trap. For other spatial distributions the
probability to reach the target depends on the search regime.
In the random-walk dynamic phase (4 > L), this can be
explained by purely geometric factors because of the one-
dimensional nature of the search process. As we already
discussed above, if the protein starts the search at the position n
> (my + my)/2 (see Figure 1), then on average it will be
trapped since the distance to the semispecific site is shorter. So
the probability to reach the target in this regimes can be
estimated as

m; + m,

M== (19)
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Figure 3. Dynamic phase diagrams for the protein search on DNA
with one target at position m, with two targets at positions m; and m,
and with the target and the trap at positions m, and m,. Parameters
used for calculations are k,, = u = 10° s~ and L = 10 000: (a) m = L/2,
m; = L/4, and m, = 3L/4; (b) m = L/4, m; = L/4, and m, = L/2; and
(¢) m=1L/2, my =L/2, and m, = L.

For the most optimal positions m, = L/4 and m, = 3L/4 this
yields IT = 1/2, while for m; = L/4 and m, = L/2 this gives I =
3/8, and for m;, = L/2 and m, = L we obtain I1 = 3/4. These
calculations fully agree with the results presented in Figure 4 in
the limit of very large scanning lengths A. For very small 4 < 1,
when the search follows the 3D mechanism, the spatial
positions of the target and trap are not important. In this case,
exactly half of the trajectories will be successful, yielding IT = 1/
2. For the intermediate sliding regime (1 < A < L), the
probability to reach the target obviously has the lower and
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Figure 4. Probability to reach the target as a function of the scanning
length for different distributions of the target and trap sites. Parameters
used for calculations are k,, = u = 10° s™!, L = 10000, and k. is
changing. Symbols are from Monte Carlo computer simulations.

upper bounds between 1/2 and % (which could be larger

or smaller than 1/2), and the explicit values of IT depend on the
relative contribution of 1D and 3D fluxes into the target site.

It is also important to compare the protein search dynamics
on DNA with two targets with the search in the system that has
only one target and one trap at the same positions, as shown in
Figure 3. In the jumping and sliding regimes (1 < L), there is
no difference in the search times between two systems because
the location of the special sites does not influence the search
mechanisms. The protein mostly reaches the specific binding
site from the bulk solution. For the system with two targets,
one-half of search trajectories will go to one of the targets, and
the second half will finish at the second specific site. The
symmetry requires that both of these sets of trajectories have
the same mean times because the targets are indistinguishable.
For the protein search on DNA with the target and the trap the
dynamics is similar: half of all trajectories will end up at the
trap, and they will not be counted. But another half of
trajectories that reach the specific binding site have the same
mean search time as in the case of two targets on DNA.

The situation is different in the random-walk phase (4 > L).
Here, the search times for the target and trap system could be
the same as for the two targets system (Figure 3a). This is the
case for the symmetric locations of the special sites. The
presence of the trap could also slow down the search (Figure
3c), or surprisingly, it could even accelerate the search (Figure
3b). It is interesting to note that, in the target and trap system
where the search is faster, the probability to find the target is
lower (see Figure 4). Thus, this effect can be also explained by
the geometric arguments, as discussed above. The traps
effectively remove trajectories with longer search times.

How Traps Accelerate the Search. We have already
shown that the addition of the semispecific site strongly affects
the protein search dynamics for specific binding sites. To
quantify this effect we introduce two auxiliary functions, r; and
15, which are defined as the ratio of the search times on DNA
with one or two targets and for the system with the target and
trap for the fixed values of the positions m, and m,, respectively

_ Ty(1 target)
B T,(target/trap)

T, (2 targets)
5 r=——
! > T,(target/trap) (20)

These acceleration functions for various sets of parameters are
presented in Figures 5 and 6.
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Figure S. Acceleration parameter r; as a function of the trap location
for the fixed position of the target. Parameters used for calculations are
koo = u = 10° s7%. (a) The target is at m; = L/4 and ko = 10> s™". The
target is at m = L/2 for the reference single target system. (b) The
target is at m; = 1, L = 100, and ko= 0.1 s™". The target is at m = 1 for
the reference single target system. Dashed line corresponds to r, = 4.
Symbols are from Monte Carlo computer simulations.
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Figure 6. Acceleration function r, as a function of the position of the
trap for the fixed position of the target. Parameters used for
calculations are L = 100, m; = 1, ky, = u = 10° s7%, and k. = 0.1
s~ Dashed line corresponds to r, = 1. Symbols are from Monte Carlo
computer simulations.

First, we analyze how the traps influence the search on DNA
with only one target as presented in Figure S. One can see that
it is usually faster to find the target if there is a semispecific site
in the system. For not very long DNA, there is an optimal
position of the trap that provides the shortest search times
(Figure Sa,b). The acceleration can even reach very high values
if the target is far away from the middle of the chain and the
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trap is close to the target: see Figure Sb. These observations can
be explained using the following arguments. For this set of
parameters, the protein reaches the specific binding site mostly
via 1D sliding along the DNA chain (L ~ 1). Introducing the
trap site into the system has two opposite effects: it removes
many long-time trajectories from the search, lowering the mean
search time. However, it also decreases the flux into the target
site from one side of DNA which makes the search longer.
Balancing these two effects leads to the optimal position of the
trap. These arguments also suggest that the maximal
acceleration can be achieved if the target sits at the boundary,
ie, m; = 1 (see Figure Sb). In the limiting case of m; = 1 and
m, = L the acceleration is equal to 4 (Figure Sb). This is
because this system of the target and trap on DNA with the
length L can be mapped into the search on DNA of the length
L/2 with the target and without the trap. Since the 1D search in
the random-walk regime has a quadratic scaling of the search
times (T, ~ L*), the search time acceleration becomes
LZ
n >~ W = 4.

Increasing the length of DNA L shifts the system to the
sliding search regime, and the maximal acceleration in the
search is equal to 2 (Figure Sa). The spatial positions of the
target and traps are not important because of 3D + 1D search
mechanisms, as explained above. In this regime, the trap
effectively removes half of all search trajectories, which is
equivalent to lowering the number of search cycles also in 2
times. Because of the linear scaling for the search times in this
dynamic phase, this yields r; = 2.

The comparison of the protein search dynamics on DNA
that has one target and one trap with the system with two
targets is shown in Figure 6. Here the effect of the trap sites is
more complex. For relatively short distances between the target
and the trap, the search is much faster than that for the case of
two targets. This result is unexpected, but it can be explained
using the geometric arguments. The trap effectively removes a
significant part of DNA from the search, and because for this
set of parameters (Figure 6) the search is mostly one-
dimensional, this leads to large accelerations. One could also
think about two closely located targets as one “effective” new
target, and all our arguments why it is faster to search by adding
the trap to the system with one target can be applied now.
However, moving the trap site away from the target lowers this
effect and starting from some distance the search in the system
with two targets is faster because the number of specific sites is
larger. One can see in Figure 6 that for m,/L > 0.67 the
acceleration parameters goes below the unity. Thus, our
calculations clearly show that the spatial distribution of the
targets and traps controls the search dynamics.

B SUMMARY AND CONCLUSIONS

We presented a theoretical investigation on the role of
semispecific binding sites in the protein search for targets on
DNA. Our approach is based on the discrete-state stochastic
method that connects the search process with the first-passage
events. The advantage of this approach is that it provides a full
analytical description for all dynamic properties in the system.
We determined that the protein search dynamics is governed by
several important length scales such as the DNA length, the
average sliding length of the protein along the DNA chain, the
distance between the targets and traps, and the distance to the
DNA ends from the specific and semispecific sites. It was found
that there is the optimal spatial distribution of the target and

traps that for short DNA leads to the smallest search time,
while for long DNA the search is not affected by exact positions
of specific and semispecific binding sites. This was explained by
exploring the dynamic phase diagram which shows three
different regimes for the protein search depending on the
relative values of the relevant lengths scales in the system. We
also analyzed the probability of reaching the target, and it was
found that it varies for different dynamic search regimes.
Furthermore, we investigated the acceleration in the search due
to the presence of the trap sites. Adding the semispecific site in
most cases decreases the search time for the system with only
one target. For the system with two targets on DNA the
substitution of one them with the trap leads to more complex
behavior. For a short distance between the special sites the
search is accelerated, while for large distances the search
becomes slower. These phenomena are explained by noting
that the significant fraction of the search trajectories is removed
from the search due to falling into the trap.

Our theoretical approach provides a simple and clear picture
of the complex biological processes during the protein search
for the specific binding sites on DNA. At the same time, it
should be noted that the presented theoretical method is not
exact, and it involves several approximations. The conforma-
tional freedom of DNA chains and the intersegment transfer
processes are neglected. We also assume that the protein moves
faster in the bulk solution than on DNA. In the real biological
cells all these assumptions probably are not valid, but it is not
clear how this would affect the overall search dynamics. But the
most serious issue in our work is the assumption of the trap
irreversibility. In reality, the protein molecules cannot be
absorbed by these traps for an infinite amount time, and they
will be eventually released. In addition, some of these traps are
not very strong. It will be critically important to address these
issues in more advanced theoretical and experimental studies.
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