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Abstract

Several naturally occurring as well as manufactured ob-
jects have shell-like structures, that is, their bound-
aries consist of surfaces with thickness. In this pa-
per we call these shell structures \fat surfaces". We
present an adaptive, hierarchical Hh-multiresolution re-
construction algorithm to model fat surface objects from
a matched triangulation pair. Fat surfaces are con-
structed by the contours of trivariate functions de�ned
on prism sca�olds. In the H-direction, a hierarchical
representation of the sca�old is constructed. For any
adaptively extracted sca�old from the hierarchy, a se-
quence of functions in the h-direction (regularly subdi-
vided mesh) is constructed so that their contours ap-
proximate the input shell to within a given error �. The
fat surfaces can be made to capture sharp curve creases
on the shell while being C1 smooth everywhere else. We
also allow function values to be attached to the input
vertices of the shell triangulations, so that physical data
�elds de�ned on the shell can be visualized and texture
mapping can be performed. Using an interval of iso-
contours of smooth trivariate spline functions, rather
than a pair of inner and outer surface splines, one avoids
the need for interference checks between the inner and
outer surface boundaries.

Key words. Curve & Surfaces, Geometric Modeling,
Level of Detail Algorithms, Mesh Generation

1 Introduction

Many human manufactured and several naturally oc-
curring objects have shell-like structures, that is, the
object bodies consist of surfaces with thickness. We call
such surfaces fat surfaces. Our use of the term fat sur-
faces di�ers from that of Barnhill, Opitz and Pottmann

[5], where this term is used to denote functions on sur-
faces. The problem of constructing smooth approxima-
tions to fat surface objects arises in creating geometric
models such as airfoils, tin cans, shell canisters, engi-
neering castings, sea shells, the earth's outer crust, and
the human skin, to name just a few.

1.1 ProblemDescription and Background

In engineering, shell structures are often analyzed by
�nite element methods (see [6, 8, 10, 27, 33]). In these
analyses, the shell is often assumed to be uniform in
thickness for simplicity, hence the output is often a tri-
angulation that represents the mid-surface of the shell.
More accurate �nite element analysis of shells uses vol-
ume elements, such as hexahedral (see [26]) or penta-
hedral (see [33]). In these cases, the output could be a
matched triangulation pair. In this paper, our aim is to
reconstruct smooth shells from triangulation. However,
we do not assume that the shell is uniform in thickness;
instead, we are given two triangulations which represent
two boundaries of the shell. These triangulations could
be obtained by o�setting the mid-surface triangulation
in the normal direction with varying thickness. In the
model (such as airfoil, arched roof and dam etc.) con-
struction, we often must respect the geometric data and
therefore cannot assume the shell is uniform in thick-
ness. Hence, our problem may be described as follows.

Problem Description. As input we are given a matched
triangulation pair T = fT (0); T (1)g (also called a fat tri-
angulation), with attached normals at each vertex and
possibly a vector of function values, which presents a
linearization of the inner and outer boundary surfaces
of a shell domain, also, we are given a error control
tolerance � > 0. The goal is to reconstruct hierarchi-
cal multiresolution smooth fat surfaces whose bounding
surfaces provide approximations of T (0) and T (1), re-
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spectively, with errors no larger than �. Furthermore,
if function values are attached, smooth functions on the
shell are also constructed that interpolate the function
values.

The purpose of allowing the attaching of vertex func-
tion values in our problem is to model physical data,
such as stress, temperature, and density etc., or graph-
ics data, such as (r; g; b) or the data for texture map-
ping.

In contrast with the geometric modeling problem of
shell construction, we refer to the problem of function
construction on the shell as functional modeling. In this
paper, the functions on the shell are constructed in the
same pipeline as the shell with the di�erent \feed" to
the pipeline. Hence our attention is focused on the geo-
metric problem, but still addresses the di�erence of the
functional one.

The hierarchical scheme is comprised of multireso-
lutions in two directions. The H-direction multireso-
lution is a level-of-detail (LOD) representation of the
(irregular) fat triangular mesh (we use \H" to repre-
sent it). The h-direction multiresolution is the regular
subdivision of each of the fat triangles (we use \h" to
represent it). The terminology Hh-multiresolution is an
imitation of hp-version in �nite element analysis (see
[33]), where h-version means mesh size h decrease and
p-version means the degree of shape functions (poly-
nomial) increase. Our H-direction corresponds to the
h-version. However, in the geometric modeling prob-
lem, using high degree polynomials in general leads to
surfaces containing pronounced waves and also increases
the computational costs. Hence, we use triangular cubic
spline functions on the regularly partitioned triangles.

Apart from �nite element analysis, another source
for producing matched triangulation pairs is the set
of nearby iso-contours of volume data. For example,
if one iso-surface triangulation represents the bound-
ary of a shell structure in a volume, for instance the
bone in medical CT data, the other boundary triangu-
lation could be obtained by shooting the surface with
the straight rays starting from the vertices and proceed-
ing in the normal direction (see Fig. 1.1). To obtain
a matched triangulation pair from two general point
clouds, we use local data �tting and project each one
onto the other (see Appendix for detail) to �rst pair up
the vertices, and then triangulate one cloud of points.
The other is correspondingly triangulated to get a matched
triangulation pair. Algorithms for triangulating surface
data may be found in [2, 3, 4, 12, 14, 23, 9, 28]. We
use the scheme of [2]. The Cohen et al.'s envelope ap-
proach for polygonal model simpli�cation [11] can pro-
duce LOD matched triangulation pairs that can be used
as our input.

Fig 1.1: Left: CT scan of a human knee. Right: A pair of

extracted C0 iso-surfaces for the knee skeleton boundaries.

1.2 Prior Solution Approaches

Traditionally, a thin shell was often treated as a sin-
gle surface (see [6, 25]) by taking the mid-surface of
the shell or assuming that the thickness is zero. These
treatments work �ne in the cases where the thickness
has little e�ect on the solution. However, if the thick-
ness is not small enough or it varies signi�cantly, using
a single surface to represent the shell will not be ac-
curate (see e.g. Fig. 4.3 and Fig. 5.2). Therefore, two
boundaries of the shell as well as surfaces in between
need to be constructed. Of course, one could solve the
proposed geometric modeling problem by using classi-
cal or existing methods (see, e.g. [16, 24, 30]) of para-
metric surface splines to construct individual boundary
surfaces as well as mid-surfaces of the fat boundaries.
However, the independent construction of each surface
not only increases tremendously the space and the time
costs, but also fails to guarantee that these surfaces are
always separate. Particularly, post local and/or global
interactive surface modi�cation requires extremely cum-
bersome surface-surface interference checks to be per-
formed in order to preserve geometric model consis-
tency.

To the authors' knowledge, the reconstruction of
shell structures by a uni�ed approach is a new area. In
an earlier paper [1], we proposed an adaptive approach
in which the fat surface is de�ned by the contours of
a single trivariate function F . The function is de�ned
on a collection of triangular prisms (sca�old) in IR3,
such that it is C1 and its contour F (x; y; z) = � for
any � 2 (�1; 1) provides a smooth mid-surface with
F (x; y; z) = �1 and F (x; y; z) = 1 as the inner and
outer boundaries of the shell structure.

1.3 Our Approach

In this paper, we considerably extend the reconstruction
method of [1] to achieve (a) hierarchical Hh-multiresolution,
(b) �-bounded approximations and (c) the ability to
capture sharp curve creases while being C1 smooth ev-
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Fig 1.2: The volume prism cell Pijk, the face Hik(t; �) and

the edge vi(�) de�ned by a fat triangle [ViVjVk]

erywhere else. To achieve adaptive multiresolution rep-
resentations in the H-direction, a hierarchical presenta-
tion of the prism sca�old is constructed. For each ex-
tracted sca�old from the hierarchy, a sequence of func-
tions (h-direction) is constructed, using triangular splines
on regularly subdivided triangular prisms, such that the
input data is approximated to within the allowable er-
ror �. To get an adaptive reconstruction, combinations
of di�erent levels in both the H- and h-directions are
allowed.

1.4 Notation

We assume T (0) and T (0) are orientable. For each fat
vertex (vertex pair) Vi = fV (0)

i ; V
(1)
i g with attached

normal pair fN (0)
i ; N

(1)
i g, we assume

[V
(1)
i � V

(0)
i ]TN

(s)
i > 0; s = 0; 1:

For each fat triangle [ViVjVk ], we further assume

[V
(0)
i V

(0)
j V

(0)
k ] \ [V

(1)
i V

(1)
j V

(1)
k ] = ;:

Our trivariate function F for constructing the shell is
piecewise de�ned on a collection of prisms. Let [ViVjVk]
be a fat triangle. Then the prism, denoted by Pijk , for
[ViVjVk] is a volume in IR3 enclosed by the surfaces
Hij ; Hjk , and Hki (see Fig. 1.2), where Hlm is a ruled
surface de�ned by Vl and Vm as follows

Hlm = fp : p = b1vl(�) + b2vm(�); b1 + b2 = 1; � 2 IRg

with vi(�) = V
(0)
i +�Ni; Ni = V

(1)
i �V (0)

i . The prism
Pijk is a volume represented explicitly as

Pijk(I) = fp : p = b1vi(�) + b2vj(�) + b3vk(�);

b1 + b2 + b3 = 1; bl � 0; � 2 Ig;
where I is a speci�ed interval. We call (b1; b2; b3; �)
the Pijk{coordinate of p = pijk(b1; b2; b3; �) = b1vi(�)+
b2vj(�) + b3vk(�). For each � 2 I , Tijk(�) := fp : p =
b1vi(�) + b2vj(�) + b3vk(�); b1 + b2 + b3 = 1; bl � 0g
de�nes a triangle. To ensure that this triangle is non-
degenerate, � is con�ned to lie in a certain interval Iijk .

This interval is de�ned and computed in Appendix. We
call the union of all Pijk(Iijk) a prism sca�old. For
the input fat triangulation, the corresponding sca�old,
denoted as S0, will be the �nest level in our hierarchical
representation of the sca�old.

Note that the triangulation (we always mean the
matched triangulation pair) and the sca�old correspond
closely. The vertex Vi, edge [ViVj ] and triangle [ViVjVk ]
of the triangulation correspond to the edge vi(�), face
Hij and prism Pijk of the sca�old, respectively. Hence,
any operation conducted on the triangulation implies
the same on the sca�old. For instance, removing a fat
vertex from the triangulation and then re-triangulating
implies removing an edge from the sca�old and then
\re-meshing" the prism sca�old. These operations are
performed in building the hierarchical representation of
the sca�old in x3.

Given a Pijk-coordinate for a point, it is straight-
forward to compute its coordinates in the xyz system.
However, the inverse is not trivial, since the transforms
between them are nonlinear. In the Appendix of this
paper, we describe a method to compute the local co-
ordinates from xyz coordinates.

The trivariate function de�ned on the shell is de-
noted by F in contrast with the function F for con-
structing the shell itself. Whenever it is necessary to
address the functions that are de�ned on the level i
sca�old (H-direction), the notations F (i) and F (i) are
used. Notations F� and F� will be used to address the
level � functions in the h-direction.

2 Algorithm Outline

This section gives the algorithm pipeline. The details of
the algorithm are provided in the sections that follow.
Step 1. Construct a C1 function on the sca�old S0.

The �nest level sca�old S0 is built on the input fat
triangulation. On this sca�old, a C1 function F (0) is
constructed (see x4.1). This function is regarded as ex-
act when constructing other functions at other resolu-
tions.
Step 2. Hierarchical representation of sca�old.

This step constructs a directed acyclic graph (DAG)
for the levels of detail of the sca�old. This DAG is
built based on the algorithm in [13, 17], with changes
to the vertex removal criterion and hole re-triangulation
method (see x3). Having such a DAG, we are able to
travel from �ne level to coarse or vice versa and extract
a required sca�old satisfying a given control error by
combining di�erent levels.
Step 3. Adaptive sca�old extraction.

For the given control parameters, extract a required
sca�old from the DAG that satis�es the given condition
(see x3.3).
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Step 4. Face data construction.
For each face of the prisms in any level, a C2 func-

tion and C1 gradient on the face is constructed. All
these data form a list. In the DAG structure, each prism
should have three pointers that point to the correspond-
ing face data (see x4.3). Having these data, we are able
to construct C1 functions on any extracted sca�old.
Step 5. Construct trivariate splines in each prism.

For the given control error � and the selected scaf-
fold, construct a sequence of C1 trivariate splines F� ,
� = 1; 2; � � � ;�, so that

S(�)� = fp : F�(p) = �; � 2 [�1; 1]g ; � = 1; 2; � � � ;�;

are smooth surfaces and S
(�)
�1 and S

(�)
1 are � error-

bounded approximations of the inner and outer bound-
ary surfaces of the input shell, respectively. In the
process of this construction certain curve creases are
tagged and captured. This step is described in detail in
x4.4 and x5.
Step 6. Evaluate and display the fat surface and any
functions on them See x6 and x7 for details.

3 Hierarchical Representation of

Prism Sca�old
The hierarchical representation of the sca�old is a se-
quence S0, S1, � � �, Sk of sca�olds, from the �nest level
to the coarsest. To construct the hierarchical repre-
sentation of the sca�old, we perform a vertex removal
procedure of the triangulation pair. The policy of the
vertex removal is adopted from [13, 17]. That is, if one
vertex is selected to be removed, then its neighbor ver-
tices may not be removed. Hence any two vertices, in
the set of vertices that are going to be removed, are dis-
connected (see Fig. 3.1). The next level of triangulation
is obtained by re-triangulating holes that are left when
the vertices are removed.

The hierarchy is stored as a directed acyclic graph
(DAG), whose nodes correspond to the prisms of S0 up
to Sk. The leaf nodes correspond to the prisms of S0.
Between the level i and i + 1, there is an intermediate
level which corresponds to the removed vertices of level
i. There is an arc from the star-shaped polygon that is
formed when a vertex is removed, to every triangle in
level i around the vertex, and to every triangle in level
i+ 1 formed by the re-triangulation of the star-shaped
polygon. A polygon at the intermediate level that is
between level i and level i+1 is called the parent polygon
of prisms at level i if these prisms are linked to this
polygon, and also it is called the child polygon of prisms
at level i+1 if these prisms are linked to it. Unchanged
triangles between two levels are linked directly by arcs.
These descriptions are better illustrated by Fig. 3.1.

Level   i

Level  i + 1

Intermediate 

level 

Parent polygons of the level i

Child polygons of the level i + 1

Fig 3.1: The vertices with circles on the top are the ones

that are going to be removed at level i. The star-shaped

polygons, that are shown in the middle of the �gure, ob-

tained by removing the selected vertices, are re-triangulated

as shown in the bottom. Newly formed prisms at level i+1

are linked to the prisms at level i by arcs through the inter-

mediate level. The unchanged prisms are linked directly.

Along with the DAG, we need to store some data.
One is of course the fat vertex list VertexList. This list
is �xed and does not change during the construction of
the DAG. Another list is FaceList, that of the faces of
the prism. This list is incremental. The initial list is
that of the faces of S0. Each entry of FaceList contains
the information of the C2 function and C1 gradient on
that face (see x4.3). When new prisms are produced,
the new faces are added to this list. In the DAG, each
prism needs to store three pointers that point to its
three faces. The reason for having this information is
to be able to construct C1 functions later within each
prism cell.

To achieve our goal of building the hierarchical rep-
resentation of the sca�old, there are two points need
to be addressed. One is the vertex removal criterion.
The other is the re-triangulation. In the following two
subsections, we detail these two steps.

3.1 Vertex Removal

The vertex removal is subject to the following condi-
tions:
Containment. The initial minimal prism sca�old is
always contained in the new sca�old when a vertex is
removed and the hole left is re-triangulated (see x4.2 for
computing the minimal prism sca�old).
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Lower bound of angle. The angles of triangles re-
sulting from the removal and re-triangulation are not
smaller than the given control angle �. Enforcing this
condition avoids producing thin triangles.

Under these conditions, we �rst subdivide all the
fat vertices into two groups. One group contains the
vertices that are not removable. The other group con-
tains the remaining vertices. The unremovable group
includes vertices that are marked as sharp (see x5), and
those that if they are removed, the resulting prisms do
not satisfy the containment condition or the resulting
triangles do not satisfy the lower bound condition.

There is plenty of literature on polygonal mesh sim-
pli�cation (see e.g., [15, 18, 20, 21, 22, 32]). Any ver-
tex removal scheme, for instance the scheme created by
B. Hamann [20, 21] that is based on the local curva-
ture estimation, can be adjusted to serve our purpose.
To have the adaptiveness property and to utilize the
normal information provided, our vertex removal crite-
rion is based on normal variation. The attest part of
the triangulation is removed �rst. Let R be the set of
removable vertices. Then for each vertex v 2 R, we
specify a grade to it that measures the normal varia-
tion. After all the vertices in R are graded, we sort the
grades in increasing order. Then start the removal from
the vertex that has lowest grade. Of course, when one
vertex is removed, its neighbor vertices become unre-
movable.

Let pi 2 R and Tijk ; (i; j; k) 2 Ki be all the tri-
angles around pi. Let Tjkl; (j; k; l) 2 K 0

i be the tri-
angles formed by the re-triangulation after pi is re-
moved. Let Gjkl be the regrouping of the data set
pi [ ([(i;j;k)2Ki

Gijk) into the prism Pjkl; (j; k; l) 2 K 0
i,

where Gijk = ; at level zero. The sets Gijk are recur-
sively generated, with each being the regrouping of the
union of similar sets at the previous level with a newly
removed vertex. Then the grade for the vertex pi is
de�ned by

Grad(pi) = max
(j;k;l)2K0

i

max
p2Gjkl

max
s=0;1

maxf�(s)jkl(p); w
~�
(s)
jkl(p)g

(3.1)

where �
(s)
jkl(p) is the angle between the averaging normal

b
(s)
1 N

(s)
j + b

(s)
2 N

(s)
k + b

(s)
3 N

(s)
l and normal N (s) of vertex

p, and ~�
(s)
jkl(p) is the angle between normal N

(s)
jkl of the

triangle T
(s)
jkl and normal N

(s). N
(s)
jkl is assumed to point

to the positive side of T
(s)
jkl . w is a weight. We take

w = 2. This grade is attached to each of the prisms
yielded from the re-triangulation for the later use of
sca�old extraction. The initial prisms in S0 are attached
zero grade. We use the same notation Grad(�) to denote
the grade of a prism.

p

p

p
j-1

j

j+1nj

nj+1

Fig 3.2: Convexity test by right-hand rule: The vertices

with black and white dots are labeled as convex and non-

convex, respectively.

3.2 Re-triangulation

After pi is removed, the resulting hole is re-triangulated.
We only consider the re-triangulation of one of the trian-
gular surfaces that make up the fat triangulation. The
other surface is triangulated in the same manner, pre-

serving similar topology for the twin. Let p
(1)
0 ; p

(1)
1 ; � � � ; p(1)n

be the vertex chain on the positive side that produces
the hole. We assume the chain is arranged in a coun-
terclockwise manner. The hole is triangulated by:

(1). If n = 2, one triangle is returned.

(2). If n � 3, then label the point p
(1)
j as convex if

(see Fig. 3.2) [(p
(1)
j+1 � p

(1)
j ) � (p

(1)
j�1 � p

(1)
j )]Tn

(1)
j > 0,

label it as non-convex otherwise, where � denotes cross
product.

(3). Find (j; k), 0 � j; k � n, such that

(i) p
(1)
j and p

(1)
k are not adjacent in the closed chain

fp(1)i g.
(ii) p

(1)
j and p

(1)
k are selected from the non-convex

vertices when there are two or more non-adjacent points
labeled as non-convex. If there is only one non-convex
point, or exactly two non-convex points that are adja-

cent, then one of p
(1)
j and p

(1)
k must be non-convex.

(iii) Under the conditions (i) and (ii), the geodesic

distance from p
(1)
j to p

(1)
k on the previous triangulation

fTijkg, (i; j; k) 2 Ki is minimal.

Next divide the hole into two [p
(1)
j ; p

(1)
j+1; � � � ; p(1)k ]

and [p
(1)
k ; p

(1)
k+1; � � �, p(1)j ], where each chain of the holes

is again arranged in counterclockwise order and the in-
dices are considered modulo n. For each hole, repeat
steps (1){(3).

3.3 Adaptive Extraction of Fat Surface

Support

It is obvious that simply taking a certain level of the
sca�old from the hierarchy would not have the adaptive
nature. Therefore, it is necessary to combine di�erent
level sca�olds to form an adaptive one. The extraction
algorithm in [13, 17] can be altered to serve our purpose.
From the construction of the DAG we know that each
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prism in any level has a grade that measures the normal
variation. We shall use this grade to control the scaf-
fold extraction for a given control value g 2 [0; �=2) of
the normal variation. To describe the extraction algo-
rithm precisely, we introduce some more notation. Let
P be a prism of level i. Then we denote by Gi(P ) the
collection of all prisms in the level i that are in the
same child polygon as P , and Gc

i (P ) the collection of
all prisms in the level i�1 that are linked to child poly-
gon of P . Let Subi(P ) be the collection of all prisms
in the levels i; i � 1; � � � ; 0, that are linked directly or
indirectly through intermediate nodes to the prisms in
Gc
i (P ). That is, Subi(P ) consists of the prisms in the

sub-DAG starting with Gi(P ). Then the algorithm for
extracting sca�old can be described as the following C
language style pseudo-code:

Qk = Sk; /* put all the prisms in Sk to Qk*/
for (i = k; i > 0; i��) f

Qi�1 = NULL;
while (Qi 6= NULL ) f
P = Qi[0];
if (Gi(P ) 6� Qi) f

accept all the prisms in Gi(P );
g else f

if (Grad(p) � g for all p 2 Subi(P ) ) f
accept all the prisms in Gi(P )

g else f
append to the end of Qi�1 all the prisms in

Gc
i (P )

g
g
remove from Qi all the prisms that in Gi(P );

g
g
if (Q0 6= NULL) f

accept all the prisms in Q0;
g

4 Construction of C1 Trivariate

Functions on Hierarchy

The C1 functions on the hierarchy are constructed in
three steps: (a). A C1 function F (0) on S0 is �rst con-
structed (x4.1). This function serves us as an exact ref-
erence while constructing the functions at other levels.
(b). C1 data are computed for each face of each prism
in each level (x4.3). (c). C1 functions are constructed
for each prism of any extracted sca�old that interpo-
lates the vertices of the sca�old and �t F (0) by splines
(x4.4).

4.1 Function over the Finest Level S0

The function F (0) is constructed in two steps. First,
function values and gradients (C1 data) are de�ned on
each of the faces of all the prisms, and then the function
is de�ned in the prisms, using the C1 data on the prism
faces.

Now we de�ne C1 data on the faces. LetHlm(t; �) be
a face of the prism Pijk where (l;m) 2 f(i; j); (j; k); (k; i)g.
Then the function value on this face is de�ned by cu-
bic Hermite interpolation on the line segment [vl(�)
vm(�)] = fp 2 IR3 : p = Hlm(t; �); t 2 [0; 1]g by interpo-
lating the directional derivativesDs

[vm(�)�vl(�)]s
F (vl(�))

andDs
[vm(�)�vl(�)]s

F (vm(�)) for s = 0; 1. Hence, F (Hlm(t; �))
can be written as

F (Hlm(t; �))= F (vl(�))H
3
0 (t) + F (vm(�))H

3
2 (t)

+ [vm(�)� vl(�)]
TrF (vl(�))H3

1 (t) (4.1)

+ [vm(�)� vl(�)]
TrF (vm(�))H3

3 (t);

whereH3
0 (t) = 1�3t2+2t3, H3

1 (t) = t�2t2+t3, H3
2 (t) =

3t2 � 2t3, H3
3 (t) = �t2 + t3 are Hermite interpolation

base functions, and

F (vi(�)) = 2�� 1; rF (vi(�)) = (1� �)N
(0)
i + �N

(1)
i :(4.2)

Here we have normalized the normals N
(0)
i and N

(1)
i

such that NT
i N

(0)
i = NT

i N
(1)
i = 2, in order to have

DNi
F = NT

i rF on the edge vi(�). Let

d1(�) = vm(�) � vl(�);
d2(t) = (1� t)Nl + tNm;
d3(t; �) = d1 � d2:

(4.3)

Then we de�ne the gradient rF (Hlm(t; �)) by the fol-
lowing conditions:8>>>><

>>>>:
dT1rF (Hlm(t; �)) =

@F (Hlm(t; �))

@t
;

dT2rF (Hlm(t; �)) =
@F (Hlm(t; �))

@�
;

dT3rF (Hlm(t; �)) = dT3r �Flm(t; �);

(4.4)

where

r �Flm(t; �) = (1� t)rF (vl(�)) + trF (vm(�)) (4.5)

From (4.4) we have

rF (Hlm(t; �))
T = [P;Q;R][d1; d2; d3]

�1 (4.6)

where [d1; d2; d3]
�1 = [d1kd2k2 � d2(d

T
1 d2), d2kd1k2 �

d1(d
T
1 d2), d3]

T =kd3k2, and P , Q and R are the right-
hand sides of (4.4).

Next we de�ne C1 functions within prisms. Let
[V1V2V3] be a typical fat triangle. The C1 function F
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in the prism P123 is de�ned by the side-vertex scheme
de�ned by Theorem 3.1 in [29]:

F (p123(b1; b2; b3; �)) =

3X
i=1

wiDi(b1; b2; b3; �) (4.7)

where wi =
Q

j 6=i b
2
j=
P3

k=1

Q
j 6=k b

2
j , and Di is de�ned

by Hermite interpolation from the data on the prism
faces (see [1] for detail).

4.2 Minimal Prism with � O�set

As we have pointed out that the shell fp 2 IR3 : F (0)(p) 2
[�1; 1]g constructed in this section will serve as exact,
the other shells constructed later will approximate this
shell to within the error �. Therefore, this shell with its �
o�set is required to be contained in all of the other scaf-
folds. This requirement will be one of the conditions in
building the hierarchical representation of the sca�old.
Since testing a triangular shell with � o�set contained
in another sca�old is time-consuming, we determine a
minimal prism that contains the triangular shell with �
o�set. In building the hierarchical representation, the
shell containment requirement will be replaced by the
minimal prisms containment requirement. Let [ViVjVk]
be a fat triangle. Let p(0) be the point in IR3 with

Pijk-coordinate (b
(0)
1 ; b

(0)
2 ; b

(0)
3 ; �(0)) and let p(1) be the

intersection point of the surface F (0) = 1 and the line

b
(0)
1 vi(�)+ b

(0)
2 vj(�)+ b

(0)
3 vk(�), where they intersect at

� = �(1). Then

kp(0) � p(1)k = j�(0) � �(1)jkb(0)1 Ni + b
(0)
2 Nj + b

(0)
3 Nkk:

Then we require j�(0) � �(1)j � �=
p
M , where M :=

M(Ni; Nj ; Nk) is the minimal value of the degree two
B�ezier polynomial kb1Ni + b2Nj + b3Nkk2 on the tri-
angle fb1 + b2 + b3 = 1; bi � 0g. Let Imin

ijk = [a; b] be

the minimal interval such that Pijk(I
min
ijk ) contains the

triangular shell. Then we de�ne the minimal prism as
Pijk(I

�
ijk) with I

�
ijk = [a � �=

p
M; b + �=

p
M ]. The in-

terval [a; b] can be computed by numerical methods (see
x6 ).

4.3 Compute Face Data

The function F in each prism is de�ned by trans�nite
interpolation of the data on the face of the prism (see
x4.1 or x4.4). To have F C1 in the prism, the function
and the gradient on the face need to be C2 and C1,
respectively. Now we de�ne the C2 function F (Hlm)
and C1 gradient rF (Hlm) on every face Hlm of every
prism in every level. For the �nest level, these functions
have been de�ned by (4.1) and (4.4). Now we consider
the functions on other levels. Though the face data on
level i + 1 could be incrementally computed from the

data of level i, we compute data on level i+1 from level
zero to avoid error accumulation. The DAG constructed
enables us to trace back to S0 to locate the required data
from level zero. Let

F (Hlm(t; �)) = Glm(t; �) + ��lm(t) +  �lm(t)� (4.8)

whereGlm(t; �) takes the same form as F (Hlm) in (4.1),
and

��lm(t) =

2��2X
i=2

�iN
�
i3(t);  �lm(t) =

2��2X
i=2

 iN
�
i3(t);

where fN�
i3(t)g2

�+1
i=�1 are C2 cubic B-spline basis func-

tions de�ned on the uniform knots ti = i=2�, i = 0; 1; � � �,
2�. Here we shift N�

i3 so that ti is the center of the sup-
port suppN�

i3 = ((i� 2)=2�; (i+ 2)=2�). Note that the
function values and the �rst order derivatives of ��lm
and  �lm are zero at the ends of the interval [0; 1].

Since Glm depends on vertex information only and
it is easy to construct, we do not store the data of Glm,
but only �i and  i. These parameters are determined by
approximating the two intersection curves of the �nest
level surfaces F (0) = �1 with the face Hlm, in the least
square sense:Z 1

0

[F (Hlm(t; �s(t))) + (�1)s]2 dt = min; s = 0; 1

(4.9)
where �s(t), for �xed t, is de�ned by the intersection
point of the line (1� t)vl(�) + tvm(�) with the surface
F (0)+(�1)s = 0. The required pieces of the intersection
are obtained from the DAG. The minimization in (4.9)
leads to a system of linear equations

2��2X
i=2

Z 1

0

(�i +  i�s(t))N
�
i3(t)N

�
j3(t) dt = cj

with cj = � R 10 [Glm(t; �s(t)) + (�1)s]N�
j3(t) dt and j =

2; � � � ; 2� � 2; s = 0; 1. The integrations in the sys-
tem are computed by Gauss-Legendre quadrature rule
on each of the sub-intervals [i=2�; (i + 1)=2�] and then
summed up. This order 2(2��2) equation can be solved
by solving two order 2��2 linear systems. The intersec-
tion point �s(t) is computed by Newton iteration. The
integer � is chosen on trial bases. Starting from � = 1,
we solve the equation, and compute the least square er-
ror. If the error is larger than the given �, then increase
� by one, until the error is within the tolerance.

Then we de�ne the gradient rF (Hlm(t; �)) by the
conditions (4.4), but �Flm(t; �) is modi�ed by adding a
spline function:

r �Flm(t; �) = (1� t)rF (vl(�)) + trF (vm(�))
+ ���lm(t) +

� �lm(t)� (4.10)
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with ���lm(t) =
P2��2

i=2
��iN

�
i3(t);

� �lm(t) =
P2��2

i=2
� iN

�
i3(t);

where ��i; � i 2 IR3 are determined by

Z 1

0

kr �Flm(t; �s(t))�rF (0)(Hlm(t; �s(t)))k2dt = min

(4.11)
for s = 0; 1, and �s(t) is de�ned as before. (4.11) can
be solved together with (4.9), since they share the same
coeÆcient matrix.

4.4 Construction of C1 Spline Approxi-

mations

In this section, we construct a piecewise C1 function
F = F� (� � 0 �xed) over the collection of the volumes,
such that it (Hermite) interpolates the C1 data and �ts
F (0). To achieve � approximation and multiresolution
representation in the h-direction, spline functions de-
�ned on triangles are utilized in the construction of F .
On a triangular domain with a regular partition, C1 cu-
bic splines de�ned in BB form were given by Sabin, 1976
(see [31]). Fig. 4.1 gives the BB{form coeÆcients of a
typical base function de�ned on 13 sub-triangles. Note
that, these splines in general are not linearly indepen-
dent (see B}ohm, Farin and Kahmann [7]). However, the
collection we use is indeed linearly independent. For a
regular partition of a triangle, say T , we shall associate
a base function to each sub-triangle of the partition.
To give proper indices for these bases, we label the sub-
triangles as Tijk for (i; j; k) 2 J� = J�1 [ J�2 , where J�1
and J�2 are de�ned as follows:

J�1 = f(i; j; k) : i; j; k 2 f1; 2; 3; :::; 2�g;
i+ j + k = 2� + 2g;

J�2 = f(i; j; k) : i; j; k 2 f1; 2; 3; :::; 2� � 1g;
i+ j + k = 2� + 1g;

where 2� is the resolution of the partition. Fig. 4.2 gives
J1 and J2 for � = 2. Now we denote the base function
de�ned by Fig. 4.1 with center triangle Tijk as N�

ijk .

4.4.1 F on Prisms

Let [V1V2V3] be a typical fat triangle. De�ne

F�(p123(b1; b2; b3; �)) =

3X
i=1

wiDi(b1; b2; b3; �)

+ T�(b1; b2; b3; �) (4.12)

where the �rst term of left-hand side is in the same form
as (4.7), and the second term is a spline function:

T�(b1; b2; b3; �) =
X

(i;j;k)2J�
3

(aijk +wijk�)N
�
ijk(b1; b2; b3);

with J�3 = f(i; j; k) 2 J� : i > 1; j > 1; k > 1g. This is
called a correction term, which is used to �t the �nest

0

0

0

000
0

0000

0
0

0

0

0

0

0
0

0 0

0
0

0
0

0
0 0 0

0

0
0

00

0

0
0

0

0

0

0
0

0

0 0

1

1 1
1

111

1 1
1

1
1

3

0 0

00

0 0
0

0 0

2 2
22

22

0

0

0

0 0 0
0

0 0 0 0

0
0

0

0

0

0

0
0

00
0
0

0
0

0
000

0

0
0

0 0

0

0
0

0

0

0

0
0

0

00

1

11
1

1 1 1

11
1

1
1

3

00

0 0

00

0

00

22
2 2

2 2

Fig 4.1: B�ezier coeÆcients for two C1 cubic spline ba-

sis functions. Each is de�ned on the union of 13 sub-

triangles, which forms the support of the function.
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3 3
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2,1,3 1,2,3
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Fig 4.2: For the regular partition of a triangle with reso-

lution 2�, the index set J� of the sub-triangles is divided

into J�
1 and J�

2 . This �gure shows them for � = 2.

level fat surface in the least square sense:ZZ
�

[F�(b1; b2; b3; �s(b1; b2; b3))� (�1)s]2dS = min

(4.13)
for s = 0; 1, where �s(b1; b2; b3) for each (b1; b2; b3) is
de�ned by the intersection point of the line b1v1(�) +
b2v2(�) + b3v3(�) with the surface F (0) + (�1)s = 0.
The required pieces of the intersection are obtained from
the DAG. The domain � in the integration is the unit
triangle de�ned by f(b1; b2; b3) : b1+b2+b3 = 1; bi � 0g.
The minimization in (4.13) leads to a system of linear
equations.

4.4.2 Hierarchical Representation of Correction

Term

In the construction of F = F� , we have associated it
with an integer �. This integer indicates the level of the
hierarchical multiresolution representation of F in the
h-direction. However, the construction and expression
of F in x4.4.1 is not incremental. The construction of
F�+1 does not utilize the information of F� . In this
subsection, we revise some parts of the construction in
x4.4.1, so that F is progressively constructed. Now we
want to have the following form expression:

T� = T��1 +
X

(i;j;k)2J�
3
n2�J��1

3

(a�ijk + w�
ijk�)N

�
ijk ;

where T1 = 0. Let

W � = spanfN�
ijk : i 2 J�3 n 2 � J��13 g;

S� =W 2 �W 3 � � � � �W � :
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Fig 4.3: h-direction hierarchical multiresolution construc-

tion for the hypersheet surface triangulation (513 fat tri-

angles) of level 2 of the DAG with � = 1(top-right), � =

2(bottom-left) and � = 3(bottom-right). The level 0 trian-

gulation has 917 fat triangles with varying thickness.

Then S� is a C1 cubic spline function space on a trian-
gle partitioned regularly with resolution 2� . Once T��1
has been de�ned, the coeÆcients a�ijk and w

�
ijk are com-

puted by �tting F (0) in the volume. Since the elements
in S� have zero function value and zero �rst order par-
tial derivative values on the boundary of the triangle,
we could use di�erent � for di�erent prisms to get an
adaptive construction without destroying the continu-
ity of the composite function. For the prism Pijk , let
��ijk be the �tting error. Then for any given �tting error
tolerance �, we can choose a minimal � so that ��ijk � �.
This � is prism dependent.

Basic Result The composite function F , de�ned on
any extracted sca�old and for any varying and prism-
dependent � � 0, is C1.

We omit the tedious mathematical derivation of the
proof of this result, but do give examples illustrating the
smoothness of the function F� . Fig. 4.3 provides exam-
ples of hierarchical multiresolution construction in the
h-direction. The �gures (for � = 1; 2; 3) with contin-
uous isophotes show the constructed surface is indeed
smooth. The �gures also show the surface shape im-
provement by the splines when � is increased.

The H-direction multiresolution is shown in Fig. 4.4.
To see the pairwise nature of the triangulation, T (1)

is plotted by wire, while T (0) is plotted by piecewise
planes. Fig. (a) is the original triangulation pair that
has 25561 fat triangles. Figs. (b), (c) and (d), which

have 13141, 6765 and 4069 fat triangles respectively, are
the extracted triangulation. More examples are given
in Fig. 8.1.

5 Capturing Curve Creases

To capture sharp curve creases, we need to mark certain
edges as sharp. To this end, we compute the dihedral
angle � = � � �1 for the two incident faces, for each
edge of the triangulation T (0) and T (1). If � > �, then
this edge is marked as a sharp edge. Here �1 is the
angle between the two normals of the two triangles and
� is a threshold value for controlling the sharp curve
crease. After marking the edges, the vertices also need
to be marked. If there exist sharp edges incident to a
vertex, then we say this vertex is sharp, otherwise, it
is non-sharp. For a sharp vertex, the normal that has
been assigned before needs to be re-computed. Now the
triangles around a sharp vertex are divided into some
groups by the sharp edges (see Figure 5.1). For each
group, we assign a single normal for the vertex. This
normal can be computed as the weighted average of the
face normals. The weight is chosen to be the angle
of the edges that are incident to this vertex. In the
construction of the surface patch for one triangle, there
is only one normal used for each vertex of the triangle.
This normal is the vertex normal if the vertex is non-
sharp, otherwise the normal is the group's normal.

For a sharp edge [VlVm], the function F (Hlm) de-
�ned in (4.8) and the gradient r �Flm de�ned in (4.10)
need to be rede�ned. The function F (Hlm(t; �)) is changed
to be the averaging function of the two local �tting func-
tions that are de�ned on the neighbor volumes of the
face. If there is only one neighbor volume, for a bound-
ary edge, the face function is taken to be the volume
function on that face. The averaging function makes
the composite function continuous on the face Hlm. For
the gradient on the face, we need to de�ne two gradi-
ent functions, each being from one of the two volume
functions. That is, the gradient function r �Flm in (4.11)
is replaced by the gradient of the volume functions on
this face. Hence, the gradient of the composite function
is not continuous at the face. Nevertheless, this gradi-
ent interpolates the sharp normals on the two vertices.
Hence, sharp curve creases are captured.

Two examples are shown in Fig. 5.2. The left two
�gures are input polygons, and the right two �gures
are the shell bodies that are the corresponding output.
In the star-like polygon on the top-left, the left four
inner and outer peak edges are labeled as sharp. The
fat surface on the top-right exhibits the sharp curve
creases. For the bottom-left polygon, the left four peak
edges of the outer polygon are labeled as sharp, and
no edge is labeled as sharp for the inner polygon. The
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(a) 25552 fat triangles, g = 0Æ (a1) Inner boundary

(b) 13128 fat triangles, g = 5Æ (b1) Outer boundary

(c) 6754 fat triangles, g = 15Æ (c1) Inner boundary

(d) 4074 fat triangles, g = 30Æ (d1) Outer boundary

Fig 4.4: H-direction smooth reconstruction of fat triangula-

tions: (a) the input triangulation. (b), (c) and (d) are adap-

tively extracted meshes from the DAG with g = 5Æ; 15Æ; 30Æ,

respectively. The right column shows inner/outer boundary

surfaces with isophotes showing the smoothness. The level

in the h-direction is zero.

Fig 5.1: Grouping the triangles by the sharp edges (thick

lines) and assigning a normal for each group.

Fig 5.2: Left: the input polygons with some edges marked

as sharp. Right: the constructed fat surfaces with sharp

curve creases. There are four fat edges (inner and outer) on

the top polygon marked as sharp. On the bottom polygon,

only four outer edges are marked.

�gure on the bottom-right shows the outer sharp, inner
smooth nature. Another example that has sharp curve
creases is shown in Fig. 8.1, (f) and (f1).

6 Evaluation and Display of Fat

Surfaces

Often we wish to evaluate the surface F = � for a given
� 2 [�1; 1]. Let [ViVjVk ] be any fat triangle. Then for

each (b1; b2; b3), bi � 0;
P
bi = 1, determine �

(�)
min =

�
(�)
min(b1; b2; b3) such that

F (pijk(b1; b2; b3; �
(�)
min)) = �;����(�)min � 1

2

��� = min
����� 1

2

�� : F (pijk(b1; b2; b3; �)) = �
	
:

(6.1)

The surface point is de�ned by p = pijk(b1; b2; b3; �
(�)
min).

The main task here is to compute �
(�)
min for each (b1; b2; b3).

It follows from (4.7) that Di(b1; b2; b3; �) is a rational
function of �. It is in the form

f0 + f1�+ f2�
2 +

N0 +N1�+N2�
2 +N3�

3 +N4�
4

D0 +D1�+D2�2
:

(6.2)

10



F  =  1

F  = - 1

(b  ,  b  ,  b   )1 2 3

Fig 6.1: Evaluation of a fat surface: The surface is parame-

terized in each prism with the triangle fb1+b2+b3 = 1; bi �

0g as its domain.

Hence �(�) := F (pijk(b1; b2; b3; �)) is a rational func-
tion of � of the form (6.2). The nearest zero to 1=2 of

�(�)�� is the required �
(�)
min. Although �(�)�� = 0 is

a nonlinear algebraic equation, �(�)�� can be approx-
imated by a polynomial of degree at most 2, since the
rational term in (6.2) is small compared with the poly-
nomial term. Hence, taking the roots of the polynomial
part as an initial value, and then using Newton itera-
tion, we obtain the required solution. The computation
shows that this approach is very e�ective.

In addition to extracting the boundary surfaces of
a shell, we can also extract the surfaces between the
boundaries by taking � 2 (�1; 1). Furthermore, by
taking a sequence of � in increasing order, the shell
can be divided into layers (see Fig. 6.2), an onion-like
structure.

Fig 6.2: Middle surface and multiple layers of a shell: Inner

surface and two layers are presented.

Using the hierarchical representation of the correc-
tion term, the evaluation of the fat surface can be pro-
gressive in the h-direction. Since F� � F�+1 in general
is small, F� = � is good approximation of F�+1 = �.
Hence in the Newton iteration for getting the surface
point on F�+1 = �, F� = � is a very good initial value.
Furthermore, coeÆcients in (6.2) are the same for F�

and F�+1, except for f0 and f1 which are a�ected by
the correction term. H-direction progressive evaluation
(from coarse to �ne) is also possible in theory but it
is not as cheap as the h-direction, since an extracted
sca�old may combine di�erent levels. Hence, we do not
recommend the H-direction progressive evaluation.

7 Construction and Display of Func-

tions on Fat Surfaces

The construction process of F is valid for constructing
functions on the shell. In this section, we address the
di�erences. Without loss of generality, we assume there
is only one function value on each vertex, since each
function could be constructed independently.

a. Vertex data. Instead of interpolating a pair
of function values f�1; 1g at a fat vertex in the shell
construction, we interpolate another pair of function

values ff (0)i ; f
(1)
i g. The normal pair fN (0)

i ; N
(1)
i g is re-

placed by a gradient pair fg(0)i ; g
(1)
i g. These gradients

can be computed by locally �tting the function values
by a quadratic, similar to the normal estimation proce-
dure (see the Appendix). Now the function on the edge
vi(�), that is de�ned by (4.2) for the shell of a prism, is
replaced by

F(vi(�))= f
(0)
i H3

0 (�) +NT
i g

(0)
i H3

1 (�)

+ f
(1)
i H3

2 (�) +NT
i g

(1)
i H3

3 (�):

The gradient on the edge vi(�) is replaced by

rF(vi(�)) = (1� �)g
(0)
i + �g

(1)
i + �(1� �)B(�)

where B(�) is de�ned by the conditions dF(vi(�))=d� =
NT
i rF(vi(�)) and kB(�)k = min. This yields

B(�) = 3Nif2[f (1)i � f
(0)
i ]�NT

l [g
(0)
i + g

(1)
i ]g=kNik2:

b. Face data. In determining �i and  i in (4.8),
equation (4.9) is replaced by

Z 1

0

h
F(Hlm(t; �s(t)))�F (0)(Hlm(t; �s(t)))

i2
dt = min

for s = 0; 1, where F (0) is the function de�ned on S0.
c. Function in prisms. In determining aijk and

wijk in (4.12) for the prism Pijk , equation (4.13) is re-
placed byZZ

�

[F�(p123(b1; b2; b3; �s(b1; b2; b3)))�
F (0)(p123(b1; b2; b3; �s(b1; b2; b3)))]

2 dS = min

for s = 0; 1.
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d. Adaptive Construction of F . To have the
construction of F adaptive as well, the grade de�ned in

(3.1) needs to combine one more term #
(s)
jkl(p) that is

necessary for F . This term is the same as �
(s)
jkl(p) but

with changing normals to gradients in its de�nition.
e. Evaluation of F . Evaluation of F is straight-

forward. It should go along with the evaluation of the
shell. For every computed (b1; b2; b3; �) for the shell in
a prism, simply compute F to get the function value.

Fig 7.1: Contour plot of an acoustic pressure function de-

�ned on the head. Smooth iso-contours show that both the

shell and the function on the shell are smooth.

Fig 7.2: Texture map on the inner surface of Fig. 6.2. A

marble 3D texture function is used.

Fig. 7.1 shows the contours for a function de�ned
on the head with di�erent colors in the region between
two contours. The function value represents the pres-
sure of the acoustics on the head. The data is obtained

from �nite element analysis of the acoustic scattering
problem|Helmholtz di�erential equation. Fig. 7.2 shows
texture mapping on the teapot. The 3D texture I(u; v; w)
represents a piece of marble.

8 Conclusions

We have presented an adaptive hierarchical Hh-multiresolution
reconstruction algorithm to model smooth fat surface
objects from a matched triangulation pair. We also al-
low function values to be attached to the input vertices
of the triangulations, so that physical data �elds de�ned
on the shell can be visualized or texture mapping can
be performed. The implementation and test show that
the proposed method is correct and ful�lls our purpose.
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A Appendix

1. Compute Pijk{Coordinate
For a given p 2 IR3, compute (b1; b2; b3; �)

T such
that

p = b1vi(�)+b2vj(�)+b3vk(�); b1+b2+b3 = 1: (A.1)

It follows from (A.1) that we have

p� vk(�) = [vi(�) � vk(�); vj(�) � vk(�)] [b1; b2]
T
:

Therefore,

det[p� vk(�); vi(�)� vk(�); vj(�) � vk(�)] = 0: (A.2)

The left-hand side of (A.2) is a polynomial of degree 3 in
�. Solve the equation for �, then choose the root such
that the solution (b1; b2; b3) of (A.1) satis�es bi � 0,P
bi = 1.

2. Normal Estimation and Pairing up the Ver-

tices.

We estimate normals and pair up the vertex data as
well by �tting the surface data. We use the weighted
least square approximation to �t locally the data around

each vertex. Let V
(0)
i = (x

(0)
i ; y

(0)
i ; z

(0)
i )T 2 D(0) be

a given vertex and p
(0)
j 2 D(0), j = 1; 2; � � � ;m, and

p
(1)
j 2 D(1), j = 1; 2; � � � ; n, be some neighbor points of
V
(0)
i . Let

Qk(x; y; z) = �1
+

X
0<u+v+w�k

quvw

�
x� x

(0)
i

�u �
y � y

(0)
i

�v �
z � z

(0)
i

�w

be the �tting function, where the degree k is chosen
to be 2 or 3 in our implementation. Then determine
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the coeÆcients quvw by solving the following constraint
minimization problem:8><

>:
Pm

j=1 !
(0)
j [Qk(p

(0)
j ) + 1]2+Pn

j=1 !
(1)
j [Qk(p

(1)
j ) + 1 + �]2 = min;

q2100 + q2010 + q2001 = 1;

(A.3)

where � is a parameter that needs be solved together

with the other unknowns, and the weight !
(l)
j is deter-

mined by the distance from p
(l)
j to V

(0)
i . For example,

take !
(l)
j = 1=kp(l)j � V

(0)
i k: Note that the form of Qk

makes V
(0)
i lie on the surface fQk(x; y; z) = �1g, and

the second condition of (A.3) guarantees that V
(0)
i is a

regular point of the surface since krQ(V (0)
i )k = 1. The

�rst summation of the �rst equation of (A.3) forces the

points p
(0)
j to be on the surface fQk(x; y; z) = �1g.

The second summation forces the points p
(1)
j to lie on

another surface fQk(x; y; z) = �1� �g. To solve prob-
lem (A.3), let x1 = [q100; q010; q001]

T , and x2 be a vector
consisting of all the other coeÆcients in (A.3) plus the
parameter �. Then equation (A.3) can be expressed as
a least square problem in matrix form:

M [x2; x1]
T = 0; kx1k = 1; (A.4)

where M is an m+ n by (k + 3)(k + 1)2=6 matrix. We
require m+n � (k+3)(k+1)2=6. If problem (A.4) has
no unique solution, then increase the number of �tting
points or decrease the degree of the �tting polynomial.
To solve (A.4), let the QR decomposition of M be

M = Q

2
4 R11 R12

0 R22

0 0

3
5 ;

where Q is an orthogonal matrix, Rii are upper triangu-
lar for i = 1; 2, and R22 is a 3�3 matrix. Then problem
(A.4) is equivalent to�

R11 R12

0 R22

��
x2
x1

�
= 0; kx1k = 1:

Using the singular value decomposition ofR22 = U
P
V T ,

we �nd that x1 = v3, the third column of V (see [19]),
and then x2 = �R�1

11 R12x1 .
Having determined the �tting polynomial Qk and

the normal at V
(0)
i , which is x1, the companion point

V
(1)
i of V

(0)
i is computed as the intersection point of

the surface Qk(x; y; z) = �1�� and the line V
(0)
i + tx1.

This leads to the following equation:

kX
s=2

ts

 X
u+v+w=s

quvwq
u
100q

v
010q

w
001

!
+ � = 0:

Solve this equation for t and take the minimal solution

in absolute value as the required t. Then take V
(1)
i =

V
(0)
i + tx1.

For any vertex V
(1)
i 2 D(1), its companion point

V
(0)
i is similarly computed.
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(a) 4074 fat triangles (b) 3707 fat triangles (c) 3421 fat triangles

(a1) Smoothing of (a) (b1) Smoothing of (b) (c1) Smoothing of (c)

(d) 2013 fat triangles (e) 2782 fat triangles (f) 3586 fat triangles

(d1) smoothing of (d) (e1) Smoothing of (e) (f1) Smoothing of (f)

Fig 8.1: Fat surface constructions: (a){(f) are the extracted triangulations from the DAGs with g = 30Æ; 5Æ; 40Æ; 30Æ; 30Æ and

30Æ, respectively. (a1){(f1) are the corresponding fat surface reconstruction with error � = 0:05. The original triangulations

have 25552 (head), 4629 (aircar), 7798 (femur), 20216 (foot), 5804 (cow), and 12946 (fandisk) fat triangles, respectively.
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