
In Proceedings of the International Conference on Simulation of Adaptive Behavior (SAB 2004)
 Los Angeles, California, July 13-17, 2004

Planning the Sequencing of Movement Primitives

Marcelo Kallmann1, Robert Bargmann2* and Maja Mataric′

3

1,3 Interaction Lab/Robotics Research Lab
Computer Science Department

University of Southern California
Los Angeles, California 90089-0781, USA

{kallmann,mataric}@usc.edu

2 Computer Graphics Group
Max-Plank-Institut für Informatik

66123 Saarbrücken, Germany
bargmann@mpi-sb.mpg.de

(*Work done while at EPFL-VRlab)

Abstract
Neuroscience evidence supports the idea that

biological adaptive behavior may utilize combination
and sequences of movement primitives, allowing the
motor system to reduce the dimensionality of
movement control.

We present a framework, using sampling-based
motion planning, that is able to automatically
determine the sequencing of parametric movement
primitives needed to execute a given motion task.

Our approach builds a search tree in which nodes
are configurations reachable with one or more
movement primitives, and edges represent valid
paths connecting parent and child nodes. The paths
are determined by a motion planner that operates in
the parameter space of a single movement primitive.
The search tree is expanded with A*-like best-first
search using greedy problem-specific heuristics.

The benefits of our approach are twofold: 1)
planning complex motions becomes more efficient in
the reduced dimensionality of each movement
primitive, and 2) the ability to plan entire motions
containing heterogeneous types of constraints, such
as collision-free, balanced, alternating support
contacts, etc.

We present a general framework and several
simulation results of statically stable biped walking
motions among obstacles. The presented planning
capabilities enable robots to better handle
unpredicted situations, and can be used as a method
of self-organization of higher-level primitives.

1. Introduction
The control of complex robot motions remains a key
challenge in robotics. While the number of degrees of
freedom (DOF) can characterize the complexity of a robot,
the complexity of its motions is further influenced by the
constraints they are subjected to.

Evidence from neuroscience supports the idea that
complex and adaptive motor behavior might be obtained
through the combination of motor primitives [TS00] [Ma02].

In the frog and rat, for instance, the presence of spinal force
fields, when appropriately combined through supra-spinal
inputs, results in the entire repertoire of observed movement
[Gi+93]. Studies of human movement [TS00] also provide
evidence towards an encoding of primitives.

In robotics, most work in this domain has focused on the
design, learning, and combination of different kinds of motor
primitives [SS98] [AM02] [Wi96]. In contrast, our work
focuses on the problem of automatic adaptation and
sequencing of movement primitives in order to satisfy a
given motion task in an unknown environment.

We consider that a movement primitive affects the
configuration of a robot through a proper parameterization,
respecting a set of motion constraints. Our method is then
able to plan motions traversing different configuration sub-
spaces, each being covered by a single primitive. As a result,
we are able to plan entire motions respecting heterogeneous
types of constraints, such as: collision free, in balance,
alternating support contacts, etc (see Figure 1).

(a)

(b)

(c)

(d)

Figure 1: Climbing motion obtained with movement primitives
designed to operate in the different support modes.

Our method finds the sequencing of primitives by means
of a search tree in which nodes are configurations reachable
by more than one movement primitive, and edges represent
valid paths connecting parent and child nodes. A sampling-

based motion planner operating in the parameter space of a
single movement primitive determines each valid path.
Therefore, edges represent primitive motions leading to
nodes that serve as connection points allowing primitive
change. The tree is expanded with A*-like best-first search
using greedy problem-specific heuristics [RN95], until the
desired task is satisfied.

The given vocabulary of movement primitives is
responsible for reducing the planning complexity, which is
related both to the number of DOF to be controlled and to the
diversity of motion constraints to be satisfied. If the
vocabulary of movement primitives is able to express the
motions required to satisfy the task, the planner will easily
find connection points between primitives, allowing the
search tree to approach a solution. The chosen planner
dictates the strategy of how movement primitives are
adapted to overcome obstacles towards connection points.

Our method focuses on the generation of kinematic
trajectories, assuming that a PD controller is available in
order to transfer motions to the real robot. This choice is
motivated by three main reasons:

• Kinematic plans are independent of motor commands,
thus more suited to support the idea that complex
motions are structured trough combination and
sequencing of movement primitives.

• There is neuroscience evidence of representation of
kinematic trajectory plans in the parietal cortex and
inverse dynamics models in the cerebellum [SS98].

• We are able to plan motions respecting more difficult
constraints, such as maintaining support contacts during
locomotion or object manipulation.

We present a general framework, applicable to different
problems and several simulation results of a statically stable
biped walking among obstacles.

2. Related work
Very few works have attempted to plan complex robot
motions by sequencing movement primitives. Typically,
research has independently addressed the problems of
designing and learning control policies, or the general
problem of motion planning in configuration spaces. We
review the main works addressing these issues.

Motor primitives Most previous work in robotics related
to motor primitives has focused on the design and learning of
control policies, based on the combination of different kinds
of motor primitives [SS98] [AM02] [Wi96]. Note that,
although motor, movement, and motion primitives are
commonly interchangeable terms, the term motor primitive
usually deals with motor commands. Motor primitives are
often divided in two classes: oscillatory and postural
(discrete). Being influenced by neuroscience, these works
mainly concentrate on learning or skill acquisition, in
dynamically simulated or real humanoid robots.

Motion planning Several algorithms are available for the
general problem of robot motion planning [La91]. In
particular, sampling-based methods provide general

algorithms applicable to problems of arbitrary dimensionality
of control. These methods can be divided into two main
categories: multi-query and single-query.

Multi-query methods build a Probabilistic Roadmap
(PRM) [Ka+96] that can be used for several different queries
in a single static environment. The basic procedure consists
of randomly sampling the configuration space, creating
nodes when samples are valid, and connecting pairs of nodes
each time the connection is tested to be valid and the nodes
are considered to be close enough. Several variations to the
basic PRM approach have been proposed [Be03] [Si+00]
[BK00]. A good overview and comparison is given in
[GO02].

Single-query methods are used when the environment is
not static. Roadmaps are built specifically for each query,
but, for better efficiency, trees are used instead of graphs.
The Rapidly-exploring Random Tree (RRT) [KV00] [Va98]
is a popular single-query method. Its basic idea is to expand
nodes of the tree toward random samples until reaching the
goal configuration. Another efficient method is based on
Expansive Spaces Trees [Hs+99], where nodes in low-density
locations are locally expanded. An efficient bi-directional
version [SL01] incorporating lazy collision detection [BK00]
is also available.

We make use of probabilistic roadmaps constructed in
the valid portion of the configuration space covered by one
movement primitive. Nodes of the roadmap are candidate
configurations to serve as connection points to another
movement primitive. Although the choice of a planner
should take into account problem-specific issues, we use in
this work an RRT [KV00] [Va98] approach to create
roadmaps in the parametric space of movement primitives.

Legged locomotion Several different approaches have
been presented for the control of legged locomotion. Genetic
algorithms [RN95] have been used to adjust synapse weights
of neural networks in central pattern generators [Ij01], and to
evolve developmental programs based on pre-designed
specific grammars [Fi+99]. Dynamic biped locomotion is
usually achieved through the design of specific control
policies [Zo+02], or based on the Zero Moment Point
[Mi+95].

Our work is limited to statically balanced motions. Our
approach can be seen as a complementary way to plan
different patterns of motions required to overcome
unanticipated situations.

Some works in the virtual reality and computer games
domain have also addressed the locomotion problem of
legged characters. In particular, motion planners were
proposed for the multi-modal locomotion of a 2D character
[KP01], and for planning footsteps locations, which can be
connected with warped motion-captured sequences applied
to virtual characters [Ch03].

The work presented by Kuffner et al. [Ku+01] [Ku+02]
also relies on a search procedure in order to sequence pre-
designed leg motions of a simulated humanoid robot. Their
approach is more efficient than ours, however is limited to
pre-designed motions. In our approach new types of motions

are generated, for instance to avoid obstacles of any shape or
use them as support.

3. Definitions and notations
Let d be the number of degrees of freedom (DOF) of a given
robot and let C be the d-dimensional configuration space of
the robot. A configuration in C is said to be valid if it
satisfies problem-specific validity requirements. Examples of
validity requirements are: collision-free, balanced, etc. The
subset of all valid configurations in C is denoted as Cfree.

Movement primitive As d might be too high and C
might be too complex due to motion and environmental
constraints, we are limited to manipulating the robot only by
means of a finite set of movement primitives. Each primitive
defines a control policy that locally alters a given
configuration, according to a proper parameterization space.
Therefore, each movement primitive Pi, i∈{1, …, n}, when
instantiated at a given configuration s∈C, becomes a
function of the type:

Pi
s: Si

s → C (1)

Si
s is the parameter space of primitive i, instantiated at

configuration s. Configuration s is also said to be the starting
point of movement primitive Pi

s. There are two main reasons
for having the parameterization space dependable on s: first,
parameters are often considered in relation to a local frame
relative to s, and second, s might imply specific limits on the
parameterization. We also allow that the dimension of the
parameterization space change according to the instantiation.

Each primitive Pi has instantiation conditions to satisfy.
If, for a given s∈C, the instantiation conditions of Pi cannot
be verified, we say that Pi cannot start at configuration s. For
example, a movement primitive for balanced knee flexion
might be designed to start only when both feet are in contact
with a proper support.

Each movement primitive has to be constructed in such a
way as to allow the implementation of some required
operators. These operators vary according to the motion
planner selected to operate on the primitive parameter space.
Typical motion planners considered in our framework
require, for each instantiated primitive Pi

s, the existence of a
distance function and an interpolation function. The motion
planner is responsible for building a roadmap graph
connecting s to other configurations in the free portion of the
configuration space covered by primitive Pi

s.
Roadmap Let Ci

s ⊂ C denote the image of movement
primitive Pi

s, i.e., for any s∈C, Ci
s = Pi

s(Si
s) if Pi

s can be
instantiated at s, and Ci

s≡∅ otherwise. Ci
s represents the

subspace of C covered by primitive Pi
s.

We define the roadmap of a movement primitive instance
as a single connected graph R(Pi

s). Nodes in the graph are
valid configurations belonging to Ci

s∩Cfree, and edges in the
graph represent valid paths in Ci

s∩Cfree joining the edges
endpoints. The starting node s of the primitive is required to

be a node of R(Pi
s). For simplicity of notation, we may also

refer to the nodes of a roadmap as the configurations of the
roadmap.

Usually, for computational efficiency, roadmap edges are
determined by checking the validity of the interpolation
between the edge endpoints, and thus it is assumed that
primitive Pi

s has a proper efficient interpolation function
interpi

s of the type:

interpi
s: Si

s × Si
s × [0,1] → Si

s (2)

As usual, the interpolation function is parameterized over
the interval [0,1], so that interpi

s(p1, p2,0)= p1, and interpi
s(p1,

p2,1)= p2, for a given pair of points {p1, p2}∈Si
s. We say that

the interpolation of a pair of points {p1, p2} is valid if, for all
t∈[0,1], Pi

s (interpi
s (p1, p2, t)) is a valid configuration, i.e.,

belongs to Cfree.
Analogously, we say that there is a valid path joining

q1∈Cfree and q2∈Cfree if there is an instantiated primitive Pi
s

and two points {p1, p2}∈Si
s, such that q1=Pi

s(p1), q2=Pi
s(p2),

and the interpolation between p1 and p2 is valid.
Note that the interpolation function is defined in

parameter space, meaning that paths are first generated in
parameter space and then transformed into the configuration
space for validity testing. With this formulation all the
roadmap computation is done locally to the movement
primitive, and does not require the computation of the
inverse of the movement primitive function.

Besides the interpolation function, a distance metric is
often required during the roadmap construction process. In
Section 4 we describe an algorithm that constructs roadmaps
following the RRT [KV00] [Va98] expansion strategy.

Roadmaps are used as a sampling strategy to transform
the continuous parameterization of a movement primitive
into a discrete set of configurations (the nodes of the
roadmap), which are suitable for inclusion in a search tree.

Problem definition Let Pi, i∈{1, …, n} be a given set of
movement primitives manipulating a robot as defined above.
Consider that the task to be accomplished is defined as a
function that returns 1 if a given configuration q satisfies the
task, and zero otherwise, i.e.:

task (q) : C → {0,1} (3)

The problem we want to solve is determining a sequence
of configurations (qj)j=1,m, such that:

• The current robot configuration is equal to q1
• task (qm) = 1
• For each pair of configurations qk, qk+1, 1≤k<m, there is

a valid path connecting qk and qk+1.
Note that the determination of each valid path requires

the determination of the instantiated primitive that generates
it (trough the primitive’s interpolation function).

The solution (qj)j=1,m implies the determination of a
sequence of paths joining q1 to qm. For simplicity of notation,
we also say that a valid path between two configurations
exists when in fact there is a sequence of paths joining them.

When needed, we distinguish these two cases with the terms:
composed path and direct path.

4. General method
Our approach is based on a search tree where nodes represent
reachable valid configurations, and edges contain paths
between parent and child nodes. At any point, a partial
solution can be constructed by concatenating the paths in the
unique sequence of edges joining the root node to a given
node.

The algorithm starts by initializing the root of the tree
with the current robot configuration, and then an expansion
process adds nodes to the tree until the task function is
satisfied. A cost is associated with each node and represents
the cost of the path constructed so far. The root node is
initialized with cost 0. A priority queue is used to efficiently
store the leaves of the tree according to their priority of
expansion.

Generally, an A* expansion [RN95] is followed, where
the highest priority is given to the leaves with less heuristic
cost. The simplest heuristic cost for a given node n sums the
cost of n with an estimate of the distance to achieve the goal
task from n. Several problem-specific heuristics can be
added to this basic formula, and they are important in
ensuring that the search tree grows toward the solution.

After initialization, the highest priority leaf q is removed
from the priority queue (not the tree), and a roadmap is
constructed from q. Nodes in the roadmap that allow
primitive change are added to the priority queue as new
leaves, and added to the search tree as children of q.

The following algorithm summarizes this expansion step:

 expand (tree, queue)
 1. q = remove higher priority leaf from queue;
 2. if task(q)==1, do:
 return composed path from root(tree) to q;
 3. for i = 1 to n, do:
 4. if Pi can be instantiated at q, and
 Pi was not instantiated by q parent, do:
 5. R(Piq) = build_roadmap (i, q);
 6. for all configurations qr≠q in R(Piq), do:
 7. if qr can be instantiated by a different
 movement primitive than Pi, do:
 8. edge = add_child (tree, q, qr);
 9. store in edge the path in R(Pi

q)
 joining (q,qr);
10. add leaf qr to queue;
11. return null path;

 build_roadmap (i, s)
 1. R(Pis) = init roadmap with node s
 2. failures = 0
 3. while failures<MaxTries, do:
 4. prand = random point in Sis;
 5. pnear = nearest node to prand in R(Pi

s);
 6. dist = distance (pnear, prand);
 7. pnew = interpis (pnear, prand, IncrementalStep);
 8. if (pnear and pnew interpolation valid), do:
 9. add node pnew and edge {pnear,pnew} to R(Pis);
10. failures = 0;
 else
11. failures++;
12. return R(Pis);

Procedure expand is called until a non-null path
sequence (the solution) is returned. Each time a node is
expanded, procedure roadmap returns a single connected
roadmap graph. The nodes of the graph are candidate to
become new leaves in the search tree.

Procedure build_roadmap implements a general
roadmap construction method following the RRT [KV00]
[Va98] expansion strategy. It requires the definition of two
parameters. Parameter MaxTries specifies the number of
failures that are needed in order to decide that the roadmap
cannot grow any more. Parameter IncrementalStep
provides control over the length of the edges in the graph.
For more uniform resolution control, a length step measured
in configuration space should be used whenever possible.

Several problem-specific issues can be addressed during
roadmap construction. For instance, in the biped robot case
presented in the next section, whenever a node in the
roadmap is detected to be close to a configuration serving as
a connection point, we move the node to that connection
point.

Note that a random generator routine is used in procedure
roadmap in order to generate the points in parameter space
that guide the roadmap expansion. There is no problem if the
free portion of the parametric space is much smaller than the
whole parametric space. The RRT expansion strategy
provides a suitable gradual exploration of the free space, and
its implementation is simple and efficient. However,
whenever possible, the choice of the roadmap construction
strategy should be problem-(and primitive-)-specific.

As roadmaps represent a discretization of a continuous
space, it is not possible to guarantee that the search tree will
find the optimal solution. However, usually we are not
interested in finding the optimal solution as the search tree
easily becomes prohibitively large and greedy heuristics are
always preferred. In addition, problem-specific optimizations
are likely to be crucial for having acceptable running times
for complex problems.

In the next section we demonstrate how our framework
can be applied to generate motions for the control of a
statically stable biped robot.

5. Biped robot example
We have implemented and tested the algorithm described in
the previous section on planning statically stable walking
motions for a biped robot moving in a planar environment
containing polygonal obstacles. Obstacles are avoided during
motion and are also used as support, allowing the generation
of climbing sequences (see Figure 1).

The designed biped robot has a total of 9 DOF: the first
two specify the position of the body center in the Cartesian
plane. The remaining DOF are rotation angles: one to specify
the orientation of the body, and three for the articulations of
each leg (see Figure 2).

Each rotational DOF of the robot has specific lower and
upper articulation limits. The two positional DOF have no
limits, however when they are controlled by a movement

primitive, they have limits imposed by the instantiated
parameterization space of the primitive.

Configuration validity Let C be the 9-dimensional
configuration space of the biped robot. We define a
configuration q∈C to be valid if q:

• Satisfies the articulation limits of the robot.
• Is collision-free, i.e., does not intersect with obstacles.
• Is in balance, i.e., its center of mass projects inside the

support segment of the robot.
As the simulated robot is constructed in a planar

environment, the validity tests have a straightforward
implementation. However, some special care is required in
geometric tests, such as deciding support contacts. In our
implementation, all geometric tests are based on an epsilon
precision distance.

When the two endpoints of a foot are close enough to an
obstacle segment, but without crossing it, the foot is
considered to be in contact with the segment and a support
segment is defined. When both feet are in support, the
support segment is increased to contain the support segment
of the two feet.

For the computation of the center of mass we associate a
mass value mk, k∈{1, …, 7}, to the center of each robot part
Pk, each being a limb or the body. The center of mass
position is then determined by the following weighted
average sum:

(∑center(Pk)mk) / 7 (4)

The robot is considered in balance if its center of mass
vertically projects inside the support polygon. Collisions are
detected whenever a limb segment crosses an obstacle
segment or another limb segment.

Figure 2: The planar biped robot and its nine DOF.

The defined task function checks if the center of mass of
the robot is close enough to a desired location, according to a
given precision.

Movement primitives Three movement primitives are
defined, each specific to a support mode:

• Movement primitive PL is used to move the right leg of
the robot while balance is maintained only with the
support of the left foot. Therefore the instantiation
condition of this movement primitive requires support
on the left foot.

• Movement primitive PB was designed to move the body
while the two legs remain attached to the floor. The

instantiation condition is support on both feet, and its
parameterization controls the position and orientation
of the robot’s body, keeping the feet fixed at their
support location.

• Similarly to PL, PR is designed to move the left leg
while the robot keeps support on the right leg.

The parametric spaces of movement primitive PL and PR
both have dimension 4. The affected rotational angles have
the same range limits as those originally defined by the
robot, except for body rotation, which is allowed only in the
direction that favors the free leg to reach higher positions.
Whenever body rotation is changed, the angles of the support
leg have to be adjusted in order to maintain the support foot
in the same place. This adjustment is done by employing a
straightforward analytical Inverse Kinematics formulation
for the foot to be fixed.

Movement primitive PB defines specific range limits for
the two translational DOF it controls. Let s∈Cfree be a
configuration and assume that PB can be instantiated at s, i.e.,
s has support in both feet. Let p be the body center point of
the robot at s. The translational parameters of PB

s are limited
to be inside a rectangle of center p and sides with double the
length of the body sizes. In this way we have a much smaller
range of motion for the motion planner to explore the free
portion of the parameterization space.

An Inverse Kinematics formulation is also applied to
maintain both feet fixed at their original places while the
translational and rotational DOF of primitive PB are changed.
Table 1 summarizes the main characteristics of the
movement primitives.

Movement
Primitive

Instantiation
Condition Type of Motion

Parametric
Space

Dimension

PL support in
left foot

moves right leg
articulations and

body rotation
4

PB support in
both feet

moves body, legs
fixed with IK 3

PR support in
right foot

moves left leg
articulations and

body rotation
4

Table 1: Summary of used movement primitives.

Note that some configurations allow the instantiation of

two different movement primitives. This happens when the
configuration allows two different types of support, i.e.,
when the robot has support in both feet, and, at the same
time, support in one foot alone. Such configurations serve as
connection points between two different movement
primitives. Figure 3 illustrates the different kinds of support
modes.

Motion planner A single motion planner was
implemented to operate in the parameter space of primitives
PL, PB, and PR, and it closely follows the algorithm
build_roadmap of Section 4.

X

Y

The random function we used simply selects values
inside the range defined for each parameter of each
movement primitive. The interpolation function linearly
interpolates the corresponding parameters of two given sets
of parameters of a primitive.

As a distance function, instead of operating in the
parameter space, we compute the mean of the Euclidian
distances between the corresponding articulation points of
two given configurations. The same distance function is used
regardless of the movement primitive being considered.

 (a) (b) (c) (d) (e)

Figure 3: Example of configurations in different support modes:
only in left support (a), simultaneous left and both feet support (b),
only both feet support (c), simultaneous right and both feet support

(d), and only in right support (e).

In order to promote the appearance of configurations in
more than one type of support, we include a test during
roadmap construction that detects configurations which are
close to making contact with a new support. The test consists
on measuring the distance between each foot of the
configuration to its nearest obstacle. If one distance is
smaller than the pre-specified snap distance, the
configuration is adjusted with Inverse Kinematics in order to
precisely place the foot in contact with the support. Such
adjustment is critical, because the achievement of new
supports is the only way to find configurations allowing
primitive change. The specified snap distance trades the
ability to find new supports with the ability to avoid
obstacles, and should be set according to the environment.

Search Tree Heuristics After initialization, the search
tree is expanded following the general algorithm given in
Section 4. The heuristic cost of a leaf in the priority queue is:

hc(n) = cost(n) + distance(n mass center, target point) (5)

Term cost(n) is the cost of the path from the
configuration at the root of the tree to n. The cost is defined
as the length of the path, according to the same metric used
for the roadmap construction: the average of the Euclidean
lengths of the articulations paths. The target point is the same
point considered by the task function, which tests if the
center of mass is close enough to the target point.

The leaf with lowest heuristic cost has higher priority and
will be removed first from the priority queue. Removed
leaves are then expanded.

Figure 4 illustrates the expansion process. Figure 4a
shows the roadmap constructed for the robot in a
configuration with both feet in support. Each node in the
roadmap represents a full configuration, but in this image,
only the position of the body center is used to draw the
roadmap. The roadmap in Figure 4b shows a mark (a cross)
on each node allowing primitive change, which are the nodes
becoming new leaves in the search tree. Figure 4c shows the
robot configuration in the highest priority leaf, which is the

one selected for node expansion, now with a single leg
support. The roadmap in Figure 4d shows the coverage of the
free foot in free space, and shows marks in two
configurations again allowing a primitive change, and thus
becoming new leaves in the next expansion of the tree. In all
images, the circle identifies the root of the roadmaps.

(a)

(b)

(c)

(d)

Figure 4: Node expansion example starting with both feet support.

Although the heuristic cost function is rather standard,
three greedy optimizations were tested in order to reduce the
branching factor and direct the search to the goal:

• The first optimization, and the most important, relies on
the observation that some sequences of nodes in the
search tree are not useful. This occurs when three
adjacent nodes in the three have the support modes on:
left foot, both feet, and left foot, respectively; or all
have support simultaneously in both feet and in the left
foot alone. The same occurs to the analogous sequences
in relation to the right foot. Therefore, before inserting
nodes in the search tree, we ensure that such sequences
are not formed by checking the parent and grandparent
nodes in the tree. More complex analysis in the search
tree could be investigated, as, for instance, collapsing
different nodes with the supporting feet located at the
same place.

• Long locomotion sequences can easily demand
prohibitively large time and memory consumption. The
search tree is not suitable for planning long paths
around a large amount of obstacles, but for planning leg
motions for nearby obstacles. Therefore, whenever the
current node n being expanded is sufficiently far away
from the root node of the tree, the partial path until n
can be stored, the whole tree deleted, and initialized
again with the new root being n.

• Another optimization can be used to limit the creation
of excessive nodes in the same location of the
environment. A planar grid can be easily implemented

in order to control, for each cell, a maximum number of
nodes occupying that cell. This procedure can speedup
the search in some situations, but has some negative
impact on the quality of the generated paths.

6. Discussion and results
Our implementation is able to find simple motions in a few
minutes. Complex motions, however, require several minutes
or more to be computed on a 2.8GHz Pentium 4. The
required computation time is related both to the difficulty to
overcome obstacles and to the chosen parameters of the
planner and of the implemented heuristics. As example, the
motion shown in Figure 5 took 50 minutes to be computed
and generated a search tree of about 600K nodes.

The branching factor of the search tree is greatly
influenced by the resolution step used in the motion planner.
This step affects the number of nodes computed in each
roadmap, and thus also the branching factor. With a small
resolution step, the solutions are likely to be closer to an
optimum, but large branching factors are not efficient and
can quickly exhaust memory resources.

Parameter MaxTries (see Section 4) can be usually set
to low values, allowing fast computation of roadmaps.
However, in environments with many obstacles, larger
values are required. In such cases, roadmaps only generate
child nodes in the search tree after many random tries.

Due to the sampling strategy of roadmaps, solutions are
clearly not optimal. However, few optimal characteristics
could be noted: large steps are generated towards the goal in
the absence of obstacles and few finer steps are performed
next to obstacles in order to determine the best position
before overcoming them.

Figures 1, 5 and 6 show some of the results obtained.
Note that the final result may exhibit some jerky motions,
due to the exploration strategy of the roadmap computation.
A simple and efficient smoothing process consists of trying
to replace pair of points in the path by valid straight
interpolations [Sc+02]. However, the presented results were
not smoothed. Videos showing further results can be found
at: http://robotics.usc.edu/~kallmann/biped2d/

Figure 5: Example motion over an obstacle.

Although the robot design used in this work is quite
simple, we note that it is rather difficult to make it overcome
obstacles by manually controlling the parameters of the
movement primitives by means of a user interface. The
validity constraints leave a small motion range in several
situations, and precise positioning prior to obstacles is often

required before overcoming them. Nevertheless, the planner
successfully found several non-trivial solutions.

7. Conclusions
We have presented a search method for planning

complex motions trough the concatenation of paths
generated by biologically-inspired movement primitives. Our
approach introduces a way to apply sampling-based motion
planning techniques in order to compose motions controlled
by heterogeneous types of parameterizations. We are thus
able to respect different types of constraints, e.g., alternating
support contacts. In addition, planning complex motions
usually becomes more efficient in the reduced
dimensionality of each movement primitive.

Our method is able to find motions for unanticipated
situations. This adaptive behavior characteristic is of key
importance and is supported by neuroscience evidence
showing that complex motions in animals might be
structured through the use of movement primitives.

The framework presented in this paper can be applied to
other kinds of problems as well. Examples include mobile
manipulators equipped with different primitives for
locomotion and manipulation, and the automatic generation
of higher-level primitives based on motions planned with
simpler ones. For instance, portions of planned motions that
are detected to be useful can be directly encoded and used as
a new time-parameterized primitive.

In general, any control policy with a suitable
parameterization can be treated as a movement primitive.
However, the success of the best-search method greatly
depends on the availability of efficient problem-specific
heuristics; otherwise the branching factor of the search tree
can easily become prohibitively large.

Acknowledgments
The first author is grateful to Dr. Anand Panangadan for
fruitful discussions. This work was supported by a DARPA
MARS 2020 Program grant NAG9-1444.

References
[AM02] R. Amit and M. J. Mataric′, “Parametric Primitives for

Motor Representation and Control”, Proceedings of the
IEEE International Conference on Robotics and
Automation (ICRA-2002), Washington, DC, May 11-15,
2002, pp. 863-868.

[Be03] K. E. Bekris, B. Y. Chen, A. M. Ladd, E. Plakue, and L.
E. Kavraki, “Multiple query probabilistic roadmap
planning using single query planning primitives”, Proc.
of the International Conference on Intelligent Robots and
Systems (IROS), Las Vegas, USA, 2003.

[BK00] R. Bohlin and L. Kavraki, “Path planning using lazy
PRM”, Proc. of the International Conference on Robotics
and Automation (ICRA), San Francisco, USA, 2000, pp.
521-528.

[Ch03] M. G. Choi, J. Lee, S. Y. Shin, “Planning biped
locomotion using motion capture data and probabilistic
roadmaps”, ACM Transactions on Graphics (TOG),
22(2), 2003, pp. 182-203.

[Fi+99] D. Filliat, J. Kodjabachian, and J.-A. Meyer, “Evolution
of Neural Controllers of for locomotion and obstacle-
avoidance in a 6-legged robot”, Connection Science
11:223-240, 1999.

[Gi+93] S. F. Giszter, F. A. Mussa-Ivaldi, and E. Bizzi,
“Convergent force fields organized in the frog’s spinal
cord”, Journal of Neuroscience 13(2):467:491, 1993.

[GO02] R. Geraerts and M. Overmars, “A comparative study of
probabilistic roadmap planners”, Proc. of the
International Workshop on Algorithmic Foundations of
Robotics (WAFR), Nice, France, 2002.

[Hs+99] D. Hsu, J.-C. Latombe, and R. Motwani, “Path planning
in expansive configuration spaces”, International Journal
of Computational Geometry and Applications, 9(4-
5):495-512, 1999.

[Ij01] A. J. Ijspeert, “A connectionist central pattern generator
for the aquatic and terrestrial gaits of a simulated
salamander”, Biological Cybernetics 84(5): 331-348,
2001.

[Ka+96] L. E. Kavraki, P. Svestka, J.-C. Latombe, and M. H.
Overmars, “Probabilistic roadmaps for fast path planning
in high-dimensional configuration spaces”, IEEE
Transactions on Robotics and Automation, 12(4):566-
580, June 1996.

[KP01] M. Kalisiak and M. van de Panne, “A grasp-based
motion planning algorithm for character animation”, The
Journal of Visualization and Computer Animation
12(3):117-129, 2001.

[Ku+01] J.J. Kuffner, K. Nishiwaki, S. Kagami, M. Inaba, and
H. Inoue, “Footstep planning among obstacles for biped
robots”, Proc. of the International Conference on
Intelligent Robots and Systems (IROS), Maui, USA,
2001.

[Ku+02] J.J. Kuffner, S. Kagami, M. Inaba, and H. Inoue,
“Dynamically-stable Motion Planning for Humanoid
Robots”, Autonomous Robots, 12(1): 105-118, 2002.

[KV00] J. J. Kuffner and S. M. La Valle, “RRT-connect: an
efficient approach to single-query path planning”, Proc.
of the International Conference on Robotics and
Automation (ICRA), San Francisco, USA, 2000, pp.
995-1001.

[La91] J.-C. Latombe, “Robot motion planning”, ISBN 0-7923-
9206-X, Kluwer, Academic Publishers, 1991.

[Ma02] M. J. Mataric′, “Visuo-motor primitives as a basis for
learning by imitation”, In K. Dautenhahn and C.
Nehaniv, editors, Imitation in Animals and Artifacts,
MIT, Press, 2002, pp. 391-422.

[Mi+95] K. Mitobe, N. Mori, K. Aida, and Y. Nasu, “Non-linear
feedback control of a biped walking robot", IEEE
International Conference. on Robotics and Automation
(ICRA), 1995, pp. 2865-2870.

[RN95] S. J. Russell and P. Norvig, “Artificial intelligence: a
modern approach”, Prentice Hall, Englewood Cliffs, NJ,
1995.

[Sc+02] F. Schwarzer, M. Saha, and J.-C. Latombe, “Exact
Collision Checking of Robot Paths”, In Workshop on
Algorithmic Foundations of Robotics, Nice, France,
December 2002.

[Si+00] T. Simeon, J. P. Laumond, and C. Nissoux, “Visibility
based probabilistic roadmaps for motion planning”,
Advanced Robotics Journal, 14(6), 2000.

[SL01] G. Sanchez and J.-C. Latombe, “A single-query bi-
directional probabilistic roadmap planner with lazy
collision checking”, Proc. of the International
Symposium on Robotics Research (ISRR), Nagoya,
Japan, 2001.

[SS98] S. Schaal and D. Sternad, “Programmable pattern
generators”, In 3rd International Conference on
Computational Intelligence in Neuroscience, Research
Triangle Park, NC, 1998, pp 48–51.

[TS00] K. A. Thoroughman and R. Shadmehr, “Learning of
action through combination of motor primitives”, Nature
407:742–747, 2000.

[Va98] S. M. LaValle, “Rapidly-exploring random trees: a new
tool for path planning”, Technical Report TR 98-11,
Computer Science Dept., Iowa State University, Oct.
1998.

[Wi96] M. W. Williamson, “Postural primitives: interactive
bahavior for a humanoid robot arm”, Proceedings of the
4th International conference on Simulation of Adaptive
Behavior (SAB’96), MIT Press, 1996, pp. 124-131.

[Zo+02] F. Zonfrilli, G. Oriolo, and D. Nardi, “A biped
locomotion strategy for the quadruped robot Sony ERS-
210”, IEEE International Conference. on Robotics and
Automation (ICRA), 2002, pp. 2768-2774.

Figure 6: Two example sequences of planned motions. The vertical line illustrates the projection of the center of mass, which is always
inside the support segment of the robot. In the bottom row sequence, the trajectory of the center of mass is also shown. The last image

shows the center of mass of all nodes in the search tree, colored according to the support mode.

