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Structure-Based Drug Design: Docking and Scoring 
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Abstract: This review gives an introduction into ligand – receptor docking and illustrates the basic underlying concepts. 
An overview of different approaches and algorithms is provided. Although the application of docking and scoring has led 
to some remarkable successes, there are still some major challenges ahead, which are outlined here as well. Approaches to 
address some of these challenges and the latest developments in the area are presented. Some aspects of the assessment of 
docking program performance are discussed. A number of successful applications of structure-based virtual screening are 
described. 

INTRODUCTION 

 The need for a rapid search for small molecules that may 
bind to targets of biological interest is of crucial importance 
in the drug discovery process. One way of achieving this is 
the in silico or virtual screening (VS) of large compound 
collections to identify a subset of compounds that contains 
relatively many hits against the target, compared to a random 
selection from the collection. The compounds that are virtu-
ally screened can stem from corporate or commercial com-
pound collections, or from virtual compound libraries. If a 
three-dimensional (3D) structure or model of the target is 
available, a commonly used technique is structure-based 
virtual screening (SBVS) [1]. Here a so-called ‘docking pro-
gram’ is used to place computer-generated representations of 
a small molecule into a target structure (or in a user-defined 
part thereof, e.g., the active site of an enzyme) in a variety of 
positions, conformations and orientations. Each such dock-
ing mode is called a ‘pose’, Fig. (1). In order to identify the 
energetically most favorable pose (also referred to as ‘pose 
prediction’), each pose is evaluated (‘scored’) based on its 
complementarity to the target in terms of shape and proper-
ties such as electrostatics. A good score for a given molecule 
indicates that it is potentially a good binder. This process is 
repeated for all molecules in the collection, which are subse-
quently rank-ordered by their scores (i.e., their predicted 
affinities). This rank-ordered list is then used to select for 
purchase, synthesis, or biological investigation only those 
compounds that are predicted to be most active. Assuming 
that both the poses and the associated affinity scores have 
been predicted with reasonable accuracy, this selection will 
contain a relatively large proportion of active molecules, i.e., 
it will be ‘enriched’ with actives compared to a random se-
lection. 

 High-throughput docking has become increasingly im-
portant in the context of drug discovery [2–4]. Despite the 
technical challenges in reliably predicting the binding mode 
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of a molecule [5] and its binding affinity relative to other 
compounds [6], in many cases docking campaigns have 
yielded significant hit rate improvements compared to ran-
dom screening [7-10]. For a number of reasons even in the 
age of “real” high-throughput screening (HTS) there is a 
place for VS: External compound collections can easily be 
virtually screened and only compounds that are predicted to 
inhibit the target will then be acquired. Virtual libraries can 
be screened in silico and the results can be used to select 
scaffolds and to help design the final library to be synthe-
sized. When no HTS is envisioned or has been carried out 
yet, a discovery effort can be jump-started by VS of corpo-
rate and/or public compound collections. When no bio-
chemical or other functional assay is available, VS may be 
the only way of identifying inhibitors of a specific target. 
Compared to HTS, VS is fast and inexpensive. Also, it is 
conceivable that VS is complementary to HTS, i.e. com-
pounds that are falsely not detected as active (false nega-
tives) in first-round screening of an HTS campaign can be 
highlighted by their docking scores and therefore be re-tested 
in the confirmation rounds of a given screening campaign. 

BASIC REQUIREMENT FOR DOCKING: 3D ATO-
MISTIC REPRESENTATION OF THE RECEPTOR 

 In order to perform a structure-based virtual screening 
exercise it is necessary to have the receptor structure(s) of 
interest at hand. Most commonly the structure of the receptor 
has been determined by experimental techniques such as X-
ray crystallography or NMR. For proteins, if the structure is 
not available, one can resort to the techniques of protein-
structure prediction [11]. Most commonly applied are 
‘threading’ and homology modeling [12, 13]. During thread-
ing – or fold recognition – an assessment is made whether a 
given amino acid sequence is compatible with one of the 
structures in a database of known folds. Homology – or 
comparative – modeling relies on a clear relationship or ho-
mology between the sequence of the target protein and at 
least one known structure.  

 Be it from experiment or prediction, once the three-
dimensional structure of the protein of interest has been ob-
tained, it can be analyzed using a variety of computational 
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techniques. If the function of the protein is unknown, it may 
be important to search its structure for putative binding sites 
[14]. These binding sites can subsequently be explored for 
the binding of selected molecules, or they can be compared 
with other, known, binding sites. In many cases the binding 
site (and the function of the protein) is known by reference 
(e.g. the protein can be assigned to a protein family with 
known function), or the protein has been co-crystallized with 
a ligand. An analysis of the binding-site characteristics 
and/or the interactions with a given ligand can lead to impor-
tant insights for the design of novel ligands or the docking of 
putative ligand molecules [15, 16]. 

SEARCHING AND POSE PREDICTION 

 Searching for the correct binding mode (pose prediction) 
of a molecule is typically carried out by performing a num-
ber of trials and keeping those poses that are energetically 
best. It involves finding the correct orientation and, as most 
ligand molecules are flexible, the correct conformation of the 
docked molecule. This implies that the degrees of freedom to 
be searched include translational and rotational degrees of 
freedom of the ligand as a whole, as well as its internal de-
grees of freedom, i.e., predominantly the rotatable bonds. 
The search stops once a certain number of trials have been 
carried out and/or a sufficient number of poses have been 
found for a molecule. In order to explore a large search 
space, algorithms have been developed that keep track of 
previously discovered minima and guide the search into new 
regions [17-19]. The decision to keep a trial pose is based on 
the computed ligand–receptor interaction energy (score) of 
that pose. To identify and rank-order many different poses of 
a molecule during the search in a reasonable time, several 
programs calculate a ‘dock score’ (a crude score based on a 
simple energy function such as a force field with an electro-
static term and repulsive and attractive Van-der-Waals 
terms), which can be evaluated very rapidly during the dock-
ing process, while a more sophisticated function is used to 
calculate the final ‘affinity score’ for that molecule.  

SCORING OR AFFINITY PREDICTION 

 Affinity scoring functions are then applied to the ener-
getically best pose or n best poses found for each molecule, 
and comparing the affinity scores for different molecules 
gives their relative rank-ordering. The implicit assumption is 
that for a given molecule the best pose according to the af-
finity score is among the n saved poses identified with the 
dock score. For comprehensive overviews of various scoring 
schemes used to predict binding affinity, see references [20] 
and [21]. 

 Many of the scoring functions fall into one of two main 
groups. One main group comprises knowledge-based scor-
ing functions that are derived using statistics for the ob-
served interatomic contact frequencies and/or distances in a 
large database of crystal structures of protein–ligand com-
plexes. It can be assumed that only those molecular interac-
tions that are close to the frequency maxima of the interac-
tions in the database favor the binding event and therefore 
increase the overall binding affinity, whereas interactions 
that have been found to occur with low frequency in the da-
tabase are likely to destabilize binding and decrease the af-
finity. The observed frequency distributions are converted to 
what is usually referred to as potentials of mean force or 
knowledge-based potentials. Several such potentials to pre-
dict binding affinity have been developed (e.g., PMF [22], 
DrugScore [23], SmoG [24], Bleep [25]). All these ap-
proaches differ mainly in the size of the training database 
that was employed and in the types of molecular interaction 
that were considered.  

 The other main group contains scoring schemes based on 
physical interaction terms [26]. These so-called energy 

component methods are based on the assumption that the 
change in free energy upon binding of a ligand to its target 
can be decomposed into a sum of individual contributions: 

Gbind = Gint + Gsolv + Gconf + Gmotion

Fig. (1). Illustration of docking and scoring. R symbolizes a receptor structure, A, B and C represent small molecules to be docked into the 
receptor. 
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 The individual terms in this equation account for the 
main energetic contributions to the binding event, as follows: 
specific ligand–receptor interactions ( Gint), the interactions 
of ligand and receptor with solvent ( Gsolv), the conforma-
tional changes in the ligand and the receptor ( Gconf) and the 
motions in the protein and the ligand during the complex 
formation ( Gmotion). In principle, a separation into individ-
ual terms is only possible if the system of interest is divided 
into mutually independent variables [27]. However, many of 
the individual terms are highly correlated with each other 
and they can affect the binding affinity in more than one way 
(i.e., positive or negative contribution) [28]. Moreover, the 
free-energy contributions are not calculated as ensemble 
mean values, but are usually computed from a single struc-
ture. Also, the assumption of additivity in biochemical proc-
esses is not strictly valid [29]. Despite these approximations, 
energy component methods are very appealing as the simpli-
fications result in functions that can be evaluated very rap-
idly, which is important in a high-throughput docking set-
ting. More importantly, they have also been successfully 
applied to the prediction of protein–ligand affinity [30-32]. 
Two classes of function can be defined within this group of 
energy-component methods: in first-principle scoring func-
tions the terms are directly derived from physicochemical 
(statistical mechanics) theory and are not fitted to experi-
mental data [33, 34]. The other class comprises empirical or 
regression-based methods, which assume an often linear sta-
tistical relationship between the total free-energy change 
upon binding (i.e., the binding affinity) and a number of 
terms that characterize the binding event. Most frequently, 
these terms include descriptors for hydrogen bonds and ion 
pairs, the amount of buried and contact surface, and molecu-
lar flexibility of the ligands. A training set of crystal struc-
tures of ligand-protein complexes and associated binding 
affinity data is used to optimize the coefficients of the re-
gression equation. Many popular scoring functions have 
been derived this way (e.g., LUDI [35], ChemScore [36], 
Validate [37], GOLD score [38, 39], PLP [40, 41], FlexX 
score [42], ScreenScore [43], Autodock3 [44, 45]). Various 
approaches to derive optimal coefficients for regression-
based scoring functions exist. Most of them aim to reproduce 
experimental binding affinities. However, if the only goal is 
to classify molecules (i.e., to distinguish binders from non-
binders) and one does not mind sacrificing the correct rank-
ordering within the group of binding molecules, optimizing 
the scoring function by maximizing the score gap between 
binders and nonbinders is appealing [46]. 

DOCKING PROGRAMS AND THEIR UNDERLYING 
ALGORITHMS 

 A large number of docking programs and search algo-
rithms have been published. One criterion for classifying the 
underlying algorithms is the way the ligands are treated dur-
ing docking. In some of these algorithms the ligand is built 
up incrementally, starting from a docked ‘base fragment’. 
Programs that follow this approach include Hammerhead 
[47], DOCK [48-50], and FlexX [51]. In other programs, 
such as AutoDock [44, 52], Genetic Optimization for Ligand 
Docking (GOLD) [53], ICM-Dock [54, 55] and QXP [56], 
the ligand is treated in its entirety.  

 In addition to ligand flexibility, it may be desirable to 
keep at least part of the receptor flexible in order to allow for 
conformational changes that are necessary to accommodate 
the ligand, a phenomenon referred to as ‘induced fit.’ Be-
cause it is computationally expensive, few docking programs 
allow protein flexibility. Notable exceptions are the latest 
versions of AutoDock [52], FlexE [57], QXP [56], Affinity 
[58] and the latest version of ICM-Dock [54, 55]. The way 
flexibility is handled differs from program to program. For 
example, FlexE uses multiple receptor conformations, Affin-
ity allows any selection of atoms to be mobile with a user-
defined tethered buffer region between the fixed and mobile 
regions, and QXP allows user-defined parts of the protein, 
e.g., selected side chains or a particular loop, to move.  

 Another criterion to classify docking programs would be 
according to the search strategy employed. Roughly speak-
ing one could distinguish between programs trying to maxi-
mize shape complementarity – often based on geometric 
criteria – and programs incorporating an energy-driven or 
stochastic algorithm. Well known representatives of the for-
mer group are DOCK [48-50], FlexX [51] and FRED [59, 
60]. Among the latter group programs such as AutoDock 
[44, 52], ICM-Dock [54, 55], QXP [56] and GOLD [53] can 
be found. 

 A list of popular docking programs is given in Table 1. 
To illustrate some of the radically different approaches in-
corporated in some docking programs, the algorithms and 
scoring functions implemented in three of them (FlexX, 
GOLD, and QXP) are described in some detail below. It 
should be noted that this does not imply that they are better 
than other docking programs that are available. 

 FlexX [51] uses an incremental buildup algorithm where 
ligands are docked starting with a base fragment. Base frag-
ments are generated by severing all noncyclic bonds in a 
given ligand. All base fragments identified for a given ligand 
serve as starting points for the docking. After placement of a 
base fragment (in different positions) the complete ligand is 
constructed by adding the remaining components back on. 
Each component is added in accordance with a set of prede-
fined, allowed torsion angles, thus allowing for ligand flexi-
bility. At each step the interactions are evaluated and the best 
solution is selected according to the docking score. The 
docking score uses the model of molecular interactions de-
veloped by Böhm [69, 70] and Klebe [71]. For each moiety 
that can make an interaction, interaction centers and surfaces 
(usually spheres) are defined. Two moieties interact if the 
interaction center of one of them is situated at or near the 
interaction surface of the other one. Different levels of inter-
action are defined and the program attempts to satisfy high-
level interactions (such as hydrogen bonds) first. Subse-
quently, the docked results are scored using a modified ver-
sion [72] of the Böhm scoring function [73]. This function 
takes into account the loss of ligand entropy upon binding 
(counting the number of rotatable bonds in the ligand), hy-
drogen bonds, ionic interactions, aromatic interactions, and 
lipophilic contacts. For more details, see references [51] and 
[72]. 

 GOLD is based on a genetic algorithm (GA) [53, 74], 
that mimics the process of evolution by applying genetic 
operators to a collection of putative poses for a given ligand 
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(in GA terms, a population of chromosomes). GOLD chro-
mosomes contain conformational information of the flexible 
parts of the protein (OH of Ser, Thr and Tyr as well as lysine 
NH3

+) and of the ligand, as well as hydrogen bonds and lipo-
philic interactions. Chromosome decoding yields the corre-
sponding 3D pose for the ligand, which is followed by a 
least-square (LS) fitting procedure [75], with the objective to 
maximize the overlap between ligand and receptor features. 
The energy of the resulting pose (fitness) consists of three 
terms: (1) hydrogen-bonding energy, (2) internal energy of 
the ligand, and (3) steric interaction energy. 

 The population of chromosomes evolves through sequen-
tial application of genetic operations. Newly generated 
chromosomes are decoded, the fitness of the corresponding 
pose evaluated, and the chromosome is kept if it is fitter than 
the least-fit chromosome in the pool. After the application of 
a predefined number of genetic operations the algorithm 
terminates, and the poses with the highest scores are saved. 

 QXP (Quick Explore [56]) is part of the Flo+ program 
and contains two conceptually different docking algorithms: 
MCDock and ZipDock. The MCDock algorithm goes 
through repeated cycles of Monte Carlo followed by energy 
minimization in order to generate and refine an ensemble of 
low-energy ligand poses. New poses are added to the ensem-
ble if they are low in energy and dissimilar (as defined by an 
RMSD threshold) to the poses already present. As the num-
ber of cycles increases the number and size of the perturba-
tions are reduced, which makes the MCDock procedure very 
efficient in finding low-energy solutions.  

 The ZipDock algorithm was designed to carry out a near-
systematic search. First, a representative basis set of (200 by 
default) ligand conformers is aligned and stored in a con-
former tree. The conformer tree is docked rigidly and as a 
single entity, using a set of 2000 rotations and translating 

each of these 2000 instances to the centers of small spheres 
that fill the binding site. For each combination of rotation 
and translation, the interaction energy of each atom of each 
conformer in the tree is evaluated using a potential-energy 
grid. By combining parts of various conformers from the tree 
that exhibit favorable energies, one generates new conform-
ers with overall favorable energies. As each low-energy con-
former is discovered, it is evaluated using a rapid, approxi-
mate scoring method and added to the ensemble of best 
poses subject to the same energy and dissimilarity criteria 
that MCDock uses.  

 In terms of pose prediction accuracy, ZipDock and 
MCDock perform about equally well, but the ligands that fail 
to dock correctly with MCDock are often different from 
those that fail with ZipDock. Therefore, a combination of the 
ZipDock and MCDock algorithms – called FullDock – is 
available in QXP as well. 

 An interesting aspect of QXP is that it allows the user to 
define parts of the binding site as flexible. These sections 
can move during the energy minimization steps of the proc-
ess and are fully mobile or tethered to their initial positions. 
For the next cycle of searching, the program uses the binding 
site coordinates from the previous cycle (which may be 
modified as a result of allowing protein flexibility) with a 
random probability of 90%. Resetting occasionally to the 
starting coordinates prevents unrealistic protein motion 
caused by indefinite propagation through subsequent cycles. 

 Originally the program used a molecular mechanics force 
field as scoring function. The improved ‘plus’ incarnations 
(e.g. MCDock+) employ an empirical potency score to score 
each pose that is generated and to rank different poses of the 
same ligand. The main terms in this empirical score account 
for receptor-ligand atom-atom contacts, hydrogen bonds, 
steric repulsion, desolvation, internal ligand strain, and 

Table 1. Selection of Popular Docking Programs 

Program ALGORITHM REFERENCES 

AutoDock Lamarckian GA [44, 52]  

DOCK Shape matching (sphere images) [48-50] 

DOCK (NWU version) Shape matching (sphere images) [61, 62] 

FlexX Incremental construction [51] 

FRED Shape matching (gaussian functions) [59, 60] 

Glide Descriptor matching/MC [63-65] 

GOLD GA [53] 

Hammerhead Incremental construction [47] 

ICM MC minimization [54, 55] 

LigandFit Shape matching (moments of inertia) [66] 

QXP MC minimization, tree searching and pruning [56] 

SLIDE Descriptor matching [67] 

Surflex Dock Surface-based molecular similarity [68] 
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ligand and receptor entropy. Interestingly, this scoring func-
tion has been optimized to predict both the relative potencies 
of inhibitors in experimental structure–activity relationship 
series and the crystallographic binding modes of those in-
hibitors for which complex structures are available. 

TARGET-BASED OR “TUNED” SCORING FUNC-
TIONS 

 All docking programs come with built-in, “general”, 
scoring functions, but there are several reasons why these 
may not be the best choice for all purposes and why one may 
develop or optimize a scoring function. The built-in scoring 
functions of docking programs were developed to work 
across a large set of target proteins (i.e. to be of general use), 
but that does not necessarily mean that they are the best 
functions for a particular target. If one has experimental 
binding affinities or inhibition constants against a specific 
target for a set of compounds and associated binding mode 
information (from crystal structures or even from prior dock-
ing experiments), one can ‘tune’ the scoring function to that 
target (hence the expression ‘target-based’ or ‘tuned’ scoring 
function). This can be achieved by building a regression 
equation with various scoring function terms and adjusting 
the regression coefficients to maximize the correlation be-
tween observed and calculated affinities. The generation of 
target-based scoring function may also involve the addition 
of novel terms. Subsequently the tuned scoring function is 
applied in docking experiments against that same target. In 
the following a number of examples are given. 

 Most programs use a single scoring function for initial 
pose evaluation and acceptance on the one hand and for af-
finity prediction on the other, but it has been observed that 
scoring functions optimized for affinity prediction do not 
necessarily reproduce binding modes best and vice versa. 
Recently, Giordanetto et al. modified the scoring function in 
the program QXP by adding additional terms and refitting 
the resulting functions to experimental data [76]. They ob-
served a significant improvement in affinity prediction for 
their test set. However, when the pose prediction perform-
ance of these novel scoring functions was examined, the 
original (unmodified) QXP scoring function was found to 
perform much better. The original QXP function had been 
derived by also taking deviations from crystal structure poses 
into account in the fit procedure. By only using affinity data 
and descriptors derived from crystallographic complexes, 
Giordanetto et al. improved affinity prediction, but at the 
expense of pose prediction performance. It may therefore be 
advisable to generate separate functions for pose and affinity 
prediction.  

 Also, one needs a fast scoring function for the initial pose 
evaluation as one quickly needs to accept or reject many 
generated poses, while a slower scoring function may be 
acceptable for a more precise assessment of the binding af-
finity of the surviving poses. For these reasons the ICM-
Dock program [54, 55] has two different built-in functions: 
one for pose evaluation (the docking function) and one for 
affinity prediction (the scoring function). Alternatively, one 
can take the poses from a docking program that were scored 
with its built-in scoring function and rescore them in a sepa-
rate step outside the docking programs.  

 One example of target-based tuning is provided by the 
COMBINE approach [77]. Here one carries out a PLS analy-
sis of interaction energies in protein–ligand complexes to 
identify those interactions that contribute most to the vari-
ance in ligand affinity. This information can then be used to 
predict the affinities of other ligands or to guide structure-
based design efforts [78]. Interestingly, in a recent publica-
tion it was found that a variation of this approach works bet-
ter in lead optimization than in hit identification [79].  

 Another method, the adaptation of fields for molecular 
comparison (AFMoC) approach, is based on interaction 
fields for known ligands inside a given receptor-binding site 
[80]. These fields are correlated to experimental affinities 
using PLS. In order to prevent the AFMoC scoring function 
from becoming too biased towards the training set, it can be 
mixed with a more general scoring function. A mixing pa-
rameter then determines how much both scoring functions 
contribute to the final score. In a recent study on inhibitors of 
DOXP-reductoisomerase, this mixing parameter has been 
found to have a major influence on the results [81]. Setting 
the parameter to 0.5 (i.e., 50% contribution from the Drug-
Score scoring function and 50% contribution from the 
AFMoC fields) allowed for good affinity prediction of re-
lated ligands as well as structurally different inhibitors.  

 Yet another approach to tuning a scoring function is fol-
lowed in the latest version of the docking program QXP 
[56]. Using docking results from an initial run with com-
pounds whose experimental binding affinity is known, the 
user has the option to refit the scoring function to the ex-
perimental numbers. This refitted scoring function can sub-
sequently be applied in another docking run, where it serves 
not only as a scoring function but also as a docking function 
during the pose generation process. 

 In general it should be said that tuning of scoring func-
tions is statistical in nature, and it is possible that the result-
ing scoring function contains physically unrealistic terms 
and coefficients. The risk of straying from a physically 
meaningful model is that the tuned function may work well 
only with the same target and very similar compounds as 
those in the training set. There are several ways of reducing 
this risk. One can tune scoring functions to a family of re-
lated targets (e.g., serine proteases, kinases). Or one can use 
only scoring function terms that have physical meaning and 
that are known to work well in validated scoring functions, 
and make sure that the coefficients remain realistic. 

RESCORING 

 It has been observed that the scoring functions that come 
with docking programs do not always yield the best affinity 
predictions. One way to address this is rescoring. Here one 
takes the poses generated by a docking program and applies 
one or more alternative scoring functions to those poses. 
Rescoring and tuning are conceptually similar and the dis-
tinction is fuzzy. A key difference is that tuning uses scoring 
function terms as variables to derive an improved scoring 
function, while rescoring uses the scoring functions them-
selves. Other, less distinct differences are that one generally 
refers to tuning when the scoring function is optimized for a 
target or target family, but is still supposed to be transfer-
able. The tuned function is also often the result of a signifi-
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cant development and intended for use both as a docking 
function (for pose evaluation) and a scoring function (for 
affinity prediction), while rescoring is a strictly postprocess-
ing effort to improve affinity prediction. As we will see be-
low, rescoring may actually also involve fitting to experi-
mental data, which makes it more similar to tuning. Several 
approaches have been taken to rescoring. One is built on the 
physics of the binding process, while others apply a set of 
scoring functions and combine the results to generate a final 
score. Combining the results can be done simply by giving 
all scoring functions equal weights (consensus scoring) or, if 
one has experimental binding or inhibition data, by develop-
ing statistical models with optimized weights for the various 
scoring functions. 

Rescoring – Solvation-Based Scoring 

 Solvation plays an important role in molecular recogni-
tion, but appropriate treatment of solvent effects in scoring 
functions still remains a major challenge. In many scoring 
functions these effects are considered only partially, ne-
glected altogether, or included indirectly, as in some knowl-
edge-based scoring schemes. A more rigorous way of treat-
ing solvation effects in the estimation of binding affinities 
has become known as MM-PBSA or MM-GBSA scoring, 
where MM stands for molecular mechanics, PB and GB for 
Poisson–Boltzmann and Generalized Born, respectively, and 
SA for solvent-accessible surface area. The MM-PBSA ap-
proach has been pioneered by Kollman et al., and its basis is 
a thermodynamic cycle for complex formation in aqueous 
solution [82, 83]. The key element is that the electrostatics of 
(de)solvation and ligand-receptor interactions are treated in a 
more sophisticated manner using PB or GB instead of simple 
Coulomb-based terms. The (de)solvation process can be di-
vided into polar and apolar contributions. The associated 
energies, the polar free energy of solvation and the apolar 
free energy of solvation, are calculated with the PB or GB 
approach and using an expression containing a surface area 
term, respectively [84].  

 Recently, first applications of MM-PBSA as a more so-
phisticated scoring function in the context of SBVS have 
become known. In contrast to earlier applications, where it 
was combined with molecular dynamics (MD) simulations, 
the recent examples demonstrate its value also for ‘snapshot 
scoring,’ i.e., the evaluation of the MM-PB(GB)SA expres-
sion for one or a few poses per ligand. These poses had been 
generated using a conventional docking program and not by 
means of a lengthy MD simulation. Researchers at Wyeth 
[85] and SGX Pharmaceuticals [86] presented evidence that 
MM-PBSA scoring can lead to an improvement compared to 
conventional scoring. It was shown that, given a number of 
precomputed poses per ligand, re-ranking of the poses with 
MM-PBSA leads to a better separation between correct and 
incorrect poses. This improvement was due to a reduction of 
both false negatives and false positives. Also, it was illus-
trated that enrichment was significantly higher when MM-
PBSA was used to rescore larger databases of docked 
ligands. Treatment of a substantial number of compounds 
was computationally feasible, as the compute-intensive part 
of the MD simulations including explicit water had been 
replaced by pose generation with a fast docking program.  

 Kuhn and coworkers recently demonstrated the applica-
tion of MM-PBSA scoring to several different data sets [87]. 
Docking was performed using the programs FlexX [51] 
(ScreenScore function [6]) and FRED [59, 60] (ChemScore 
function [36]). Prior to rescoring, the complex structures 
were minimized in the presence of explicit water and counte-
rions. For one data set (neuraminidase) it was shown that the 
correct inhibitor pose is normally identified by docking, but 
that the ChemScore function is not able to differentiate be-
tween true and false positives. In this case MM-PBSA scor-
ing led to a significant improvement. Also, it was shown that 
MM-PBSA scoring improved pose prediction and conse-
quently enrichment for p38 MAP kinase inhibitors. Analysis 
of these cases indicated that a major deficiency of conven-
tional scoring functions is the lack of an energy penalty for 
the desolvation of mismatched, i.e., polar–apolar – protein–
ligand interactions, which MM-PBSA can improve upon. 
The authors concluded that the application of MM-PBSA to 
a single structure is generally valuable for rescoring after 
docking and for distinguishing between strong and weak 
binders.  

 In another study MM-PBSA scoring was incorporated as 
the last step in a hierarchical database screening process 
[83]. In this case 20 poses per ligand were generated using 
short MD simulations (20 ps after equilibration), starting 
from the previously docked ligand orientations. Although 
only a limited number of ligands was considered, an encour-
aging correlation between experimental and MM-PBSA 
binding free energies was found, and it was noted that the 
overall strategy achieved not only high efficiency but also 
high reliability.  

 In an earlier study the effects of different solvent models 
were compared using a data set of 189 protein–ligand com-
plexes [88]. In contrast to the afore-mentioned examples, 
comparing PB solvation with simpler solvent models – such 
as GB, constant or distance-dependent dielectric function, in 
conjunction with the CHARMm force field – did not indicate 
an advantage of more sophisticated solvation models in 
terms of the rank correlation between predicted and observed 
binding energies. Interestingly, the authors also noted that 
for pose prediction steric complementarity between the 
ligand and the receptor appears to be the most important fac-
tor. 

Rescoring – Consensus Scoring 

 All scoring functions may exhibit pathological behavior 
with certain compound classes or functional groups. To 
minimize the impact of this problem and to reduce statistical 
noise, composite scoring methods have been introduced [89-
91]. Rather than using a single scoring function, several 
scoring functions are combined such that in order to be clas-
sified as a potential binder, a molecule has to be scored well 
by a number of different scoring functions. Such composite 
scoring functions come in two flavors. Consensus methods 
combine the results of various single scoring functions in a 
predefined, unbiased manner without any training. Statistical 
composite methods, on the other hand, attempt to optimize 
the affinity prediction by developing a model that is based on 
a training set, which is relevant for the target being studied. 
Both approaches will be described below. For examples of 
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the successful application of composite scoring methods, see 
references, [89, 92 and 93]. 

 The premise of consensus scoring is that the more scor-
ing functions agree that a compound is active (or inactive), 
the more reliable the prediction is. So, a compound that re-
ceives a high score from multiple scoring functions is more 
likely to be a good inhibitor in an actual assay than a com-
pound that receives a high score from only a single function. 
Wang and Wang [90] simulated a docking and scoring ex-
periment by taking known binding affinities for a set of 
compounds to which they added a random error to mimic the 
behavior of a scoring function. They repeated this process 
for several scoring functions and subsequently carried out 
consensus scoring. They found that ‘‘consensus scoring out-
performs any single scoring for a simple statistical reason: 
the mean value of repeated samplings tends to be closer to 
the true value.’’ In other words, consensus scoring will work 
better than a single scoring function if the scoring functions 
are largely independent of each other and if the individual 
scoring functions themselves are equally predictive. Several 
ways of combining scoring functions exist.  

 In the rank-by-vote procedure, one lets several (N) scor-
ing functions ‘vote’ on all compounds. For each scoring 
function, all compounds are rank-ordered by their score and 
the highest scoring compounds (e.g. the highest scoring 2%) 
receive a vote. Subsequently, for each compound the votes 
from all N scoring functions are added together. All com-
pounds with N votes are predicted to be active. One can also 
allow one dissenting vote and regard all compounds with at 
least N-1 votes as active, but that does not necessarily in-
crease enrichment [93]. 

 A potential problem with the latter procedure is that, de-
pending on the agreement between different scoring func-
tions, more or less compounds may pass the test of receiving 
N (or N-1) votes. In order to pre-define the number of com-
pounds that are selected by a consensus scoring scheme, a 
novel, “non-reducing”, consensus scoring scheme was re-
cently developed [93]. This variant involves iteratively in-
creasing the number of compounds that receive a vote by 
descending the rankordered list of each scoring function, one 
compound at a time, until the number of compounds with N 
votes equals that pre-defined number. This procedure starts 
by giving a vote only to the single best-scoring compound 
per scoring function and ends by giving votes to all com-
pounds considered. One can also call this variant a worst-
rank consensus scheme because the worst rank a molecule 
has according to all scoring functions determines its final 
rank.  

 Another consensus approach uses the mean rank of each 
compound, i.e., the average value of the ranks of that com-
pound according to each of the scoring functions that are 
allowed to vote. Unlike rank-by-vote, the mean rank proce-
dure is by definition nonreducing.  

 Neither approach is consistently better than the other. 
The results depend on the docking program and on the num-
ber and the nature of the scoring functions that are chosen to 
vote. Although the appeal of these methods is that they are 
unbiased and that their application does not require any ex-
perimental binding data, in practice it is important to run 

some pilot experiments to determine how many and which 
scoring functions work best (i.e., yield the best enrichments).  

 In the preceding paragraph it was described how the re-
sults of rescoring docking poses with various scoring func-
tions can be combined in an unbiased way. If one has ex-
perimental binding affinity data, however, one can optimize 
the affinity prediction by developing a model that is based on 
this data (the training set). Recently, Bayesian statistics (BS) 
has made inroads in drug discovery and developing compos-
ite scoring functions is one possible application of BS. Co-
testa et al. [93] found that in the majority of cases BS per-
forms better than the individual scoring functions and than 
the unbiased consensus approaches in terms of enrichment 
(i.e., hit rate increases). It also works well in distinguishing 
between moderately active and very active molecules, mak-
ing the approach also suitable for lead optimization. 

CHALLENGES AND IMPROVEMENTS 

 Much work has been invested in the generation of better 
docking programs and scoring functions over the past years 
and, although much progress has been made, improvement is 
still necessary. In this section some of the fundamental chal-
lenges in docking and scoring and the ways that researchers 
have started to address them are outlined. Some general ap-
proaches to improve the performance of docking and scoring 
are presented, too. 

Challenge 1 - Docking into Flexible Receptors 

 One of the most challenging problems in docking and 
scoring is the treatment of flexible receptors. Numerous ex-
amples have become known where the same protein adopts 
different conformations depending on which ligand it binds 
to [94, 95]. As a consequence, docking using a rigid receptor 
representation corresponding to a single receptor conforma-
tion will fail for those ligands that require a different protein 
conformation in order to bind.  

 An example where relatively small conformational 
changes can have already a large effect is given by the fol-
lowing cross-docking example: in an in-house evaluation of 
the pose prediction performance of several docking pro-
grams at Pharmacia, a number of publicly known CDK2 
inhibitors was docked into a receptor conformation corre-
sponding to CDK2 in complex with adenosine triphosphate 
(ATP) (Protein Data Bank (PDB) code 1QMZ), after the 
natural ligand had been removed. One of the ligands that was 
especially difficult to be docked correctly was hymenialdis-
ine. Examination of the crystal structure of this ligand in 
complex with CDK2 (PDB code 1DM2) revealed that 1QMZ 
has a larger ATP-binding pocket than 1DM2. Moreover, in 
1DM2 a hydrogen bond exists between the carbonyl oxygen 
of the imidazolone moiety of the ligand and one of the two 
water molecules located behind K33 of the kinase. Also, 
D145 adopts a different conformation in 1DM2 and forms a 
hydrogen bond with the ligand. The result of these differ-
ences is that, when docked into 1QMZ, hymenialdisine can-
not engage in all binding interactions it makes in 1DM2. It 
can wobble around and adopt several distinctly different, but 
energetically degenerated poses. This larger, suboptimal 
binding site explains the failure of some docking programs 
to dock hymenialdisine correctly. In order to test this hy-
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pothesis, hymenialdisine was docked into the ATP-binding 
pocket of 1DM2 using QXP. Two runs were carried out: one 
with the water molecule present and one without the water 
molecule. In both cases QXP was able to identify the correct 
binding mode of hymenialdisine and to score the correct 
pose highest. Of course a much more radical example of 
different conformations adopted by kinases is the transition 
between so-called DFG-in or DFG-out conformations, where 
a stretch of three residues (DFG) is either rotated into or 
away from the ATP-binding pocket [96].  

 In order to deal with the problem of flexible receptors in 
docking, several approaches have been proposed, which can 
be grouped roughly into the following categories: (1) letting 
the receptor or parts thereof move during docking; (2) dock-
ing the compounds into several different conformations of 
the same receptor and aggregating the results; and (3) dock-
ing into averaged receptor representations. The borders be-
tween these three approaches are sometimes fuzzy and some 
of the practical implementations known contain elements of 
more than one of these methods. Examples for each of the 
three categories are provided here.  

 Regarding the first category, one rather well-known pro-
gram that allows receptor flexibility during docking is 
QXP [56]. Here the user can specify certain parts of the pro-
tein to move during the minimization step at the end of each 
Monte Carlo cycle during docking. In some cases this can 
alleviate clashes between the ligand and receptor that would 
otherwise occur and this can therefore lead to better pose 
prediction results. Also in the latest version of ICM-dock 
receptor flexibility is encoded [54, 55]. In this case the 
amino acid side chains are allowed to move during docking.  

 Another example for the incorporation of receptor flexi-
bility has been provided by researchers at Schrodinger. In 
this case rigid receptor docking using Glide is iteratively 
combined with protein structure prediction using Prime [97]. 
The authors reported that using only Glide the average root-
mean-square deviation (RMSD) to the crystal structure for 
21 different complexes was 5.5Å, and application of their 
new induced-fit docking (IFD) procedure reduced the aver-
age RMSD to 1.4Å. The tradeoff here is that the IFD proce-
dure requires a relatively large amount of time per ligand and 
is therefore not applicable to high-throughput docking. Nev-
ertheless, this methodology could prove useful for building 
and refining homology models, detailed binding studies dur-
ing lead optimization, and the generation of different con-
formational hypotheses prior to a larger docking exercise.  

 Regarding the second category, a number of approaches 
have been published where ligands are docked into several 

different conformations of the same receptor, in order to 
address the problem of receptor flexibility. Cavasotto and 
Abagyan have presented an algorithm to generate a discrete 
set of receptor conformations, and each of these structures is 
then used for rigid receptor docking [98]. Subsequently the 
results of the multiple docking runs are combined in order to 
improve enrichment. Combining the results is achieved by 
merging the hit lists for each of the docking runs and keep-
ing the best rank for each compound. For several protein 
kinases this procedure led to a significant increase in hit rates 
compared to the individual results. In another study scoring 
functions that are more (soft) and less (hard) tolerant to bad 

geometries were compared in docking runs against one or 
more conformations of the same receptor [99]. The soft scor-
ing function proved to be superior to the hard potential when 
a single receptor conformation was used. Conversely, when 
docking was performed into multiple receptor conformations 
the hard potential showed better performance. In this case 
multiple flexible regions of the binding site were treated in-
dependently, recombining them to generate different discrete 
conformations [100]. It was also noted that softer scoring 
functions can increase the likelihood of false positives. Us-
ing FlexX as docking program, a comparison of single ver-
sus multiple conformer docking was performed for protein 
tyrosine phosphatase-1B (PTP-1B) [101]. Different receptor 
structures had been created by considering different combi-
nations of side-chain rotamers within the active site. The 
inhibitors were then docked against all active-site models 
and for each inhibitor the model with the best interaction 
energy was identified. This allowed for successful discrimi-
nation between correct and incorrect binding modes as well 
as for an improvement in the ranking of the inhibitors. The 
FlexE program [57] is based on a united protein description 
originating from different superimposed conformations of a 
protein. During the incremental construction of a ligand dis-
crete protein conformations are sampled in a combinatorial 
fashion. The program was evaluated for 10 proteins repre-
sented by 105 crystal structures from the PDB and one mod-
eled structure. For 83% of the ligands the correct pose was 
found. The results were of a quality comparable to the one 
obtained by sequentially docking into all conformations 
separately, but the run times for FlexE docking were much 
shorter than for the sequential docking.  

 Receptor averaging is another way of approaching the 
problem of receptor flexibility. Using AutoDock it was in-
vestigated how the interaction energy grids for different re-
ceptor conformations can be combined [52]. The study was 
carried out using complexes of 21 peptidomimetic inhibitors 
with human immunodeficiency virus-1 (HIV-1) protease. 
Four different schemes of combining the grids were tested. It 
turned out that the mean grids performed worst, whereas the 
energy-weighted methods gave much better results. That 
using simply an average structure representing several dif-
ferent conformations leads to inferior results has been noted 
by researchers at Eli Lilly [102]. Their results indicated that 
docking accuracy decreases significantly when an average 
structure is used.  

 McGovern and Shoichet also carried out a very interest-
ing study [103]. The focus of this study was the information 
loss that occurs when the active-site conformation becomes 
less defined. To this end, 10 different enzyme-binding sites, 
represented by their holo, apo, and model structures, were 
investigated. The MDDR (MDL Drug Data Report) database 
of 95 000 small molecules containing at least 35 ligands for 
each of the 10 systems was docked against all 30 structures 
using the DOCK program [61,62]. The ability of each struc-
ture to enrich the known ligands for that enzyme over ran-
dom selection was evaluated. In seven cases, there was clear 
superiority of the holo structures over the apo and model 
structures. However, the apo and model structures proved 
superior for two and one enzymes, respectively. For the lat-
ter cases it was postulated that the holo structure may in 
some cases be overspecialized by induced fit to a particular 
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ligand, and therefore the apo or model structure may be a 
better choice for the docking experiment.  

 Summarizing, one may say that to date, protein flexibility 
remains one of the most challenging problems in docking 
and scoring. Progress has been made and interesting ap-
proaches have been proposed, but it is still an open question 
whether these techniques have advanced sufficiently to be of 
substantial help. 

Challenge 2 - Water  

 Water molecules often play a key role in protein–ligand 
recognition. If one ignores water-mediated interactions dur-
ing docking then the calculated interaction energy of a given 
ligand conformation may be too low. If, on the other hand, 
one retains crystallographically observed water molecules 
then the binding pose and affinity of a ligand that in reality 
replaces that water molecule will not be correct. It is notori-
ously difficult to treat water adequately, as first one needs to 
identify possible positions for water molecules where they 
could interact with the protein and ligand, and subsequently 
one must be able to predict whether a water molecule is in-
deed present at that position. Researchers at Astex and the 
Cambridge Crystallographic Data Centre recently imple-
mented an elegant procedure in the latest version of GOLD 
to address both these issues [104]. The water positions they 
consider for a given target are taken from a set of complex 
structures of that target, but one could also use programs to 
predict potential water-binding sites [105, 106]. Each water 
molecule can then be present (‘on’) or absent (‘off ’). If a 
water molecule is on, it can make favorable interactions with 
the ligand and protein, but it pays an entropic penalty for loss 
of translational and rotational degrees of freedom [107]. The 
value of this penalty was optimized using a training set of 58 
protein-ligand complexes. Considering both the training and 
test sets, on and off status are correctly predicted for 93% of 
the water molecules. This increases correct pose prediction 
rates of water-mediated complexes by 10–12 percentage 
points, but it decreases correct pose prediction rates for non-
water-mediated complexes by 6–7 percentage points. This 
latter decrease is readily explained when one assumes that 
prediction of a water molecule where there should not be one 
leads to an incorrect binding mode. The expectation is that 
the correlation of calculated and measured affinities will 
improve with the inclusion of water molecules in the dock-
ing runs, which in turn should improve the enrichments ob-
tained in VS experiments, but this remains to be investi-
gated.  

 Another approach to dealing with water molecules in-
volved in protein–ligand interactions has been incorporated 
in the FlexX docking program. This method, referred to as 
the particle concept, includes the calculation of favorable 
positions of water molecules inside the active site prior to 
docking. During the incremental construction phase these 
water molecules are allowed to occupy the precomputed po-
sitions if they can form additional hydrogen bonds with the 
ligand. The method was tested using a data set of 200 pro-
tein–ligand complexes and with pose prediction quality as an 
evaluation criterion. Similar to the observations made for 
GOLD, it was found that on average the improvement was 
minor. Nevertheless, in a number of cases the predicted wa-

ters corresponded to the crystallographically observed ones, 
which led to an improvement in the predictions [108]. 

 Another program that needs to mentioned in this context 
is the program SLIDE [67]. Prior to docking a knowledge-
based approach, CONSOLV [109], is applied in order to 
select those water molecules that are likely to remain in their 
positions upon ligand binding and to determine an energy 
penalty for their displacement. During docking, overlap be-
tween the docked ligand and these water molecules is re-
solved by iterative translations or annihilation of the water 
molecules, applying appropriate penalties in due course. 

Challenge 3 – Tautomers and Protomers 

 Another challenge in docking is accounting for the vari-
ous tautomeric and protomeric states the molecules can 
adopt. In many databases molecules such as acids or amines 
are stored in their neutral forms. Considering that they are 
ionized under physiological conditions it is necessary to ion-
ize them prior to docking. However, while standard ioniza-
tion is easy to achieve, the problem of tautomer generation is 
already much more challenging: which tautomer should one 
use? Or should one use more than one (or all possible) 
tautomers for a given molecule? Not only for tautomers, but 
also for different ionization states balanced equilibria be-
tween the different forms provide real challenges in docking. 
One (radical) approach to this would be to generate all pos-
sible forms, subsequently to dock all of them, and to choose 
the relevant form based on the scores. However, it remains to 
be seen whether such an approach would be beneficial or just 
generate a large number of false positives. 

Improvement 1 - Multiple Active-Site Corrections  

 A possible way of improving docking results is the appli-
cation of so-called multiple active-site corrections (MASC) 
[110]. Here the underlying idea is that scoring functions are 
biased towards certain ligand types or characteristics, such as 
large or hydrophobic ligands. This implies that some ligands 
are generally predicted to be good binders regardless of 
whether these ligands will bind to certain active sites or not. 
Therefore, a simple statistical correction has been intro-
duced, which can be interpreted either as a statistical meas-
ure of ligand specificity or as a correction for ligand-related 
bias in the scoring function. In order to calculate the MASC 
scores, each ligand is docked into a number of unrelated 
binding sites of different binding site characteristics. The 
corrected score (or MASC score) 
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molecule i across the different binding sites. Thus, the 
MASC score 
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molecule i for binding site j, compared to the other binding 
sites. The MASC scores were tested using FlexX and GOLD 
and a data set of 15 protein–ligand complexes. Without cor-
rections only in three (FlexX) or four (GOLD) cases the en-
dogenous ligand was identified correctly. After application 
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of the MASC the success rates rose to 11 for both docking 
programs. In another test, the MASC scores were applied to 
a database of 600 drug-like molecules mixed with 30 inhibi-
tors of p38a MAP kinase and 30 inhibitors of protein tyro-
sine phosphatase-1B (PTP-1B). Interestingly, when docking 
the 660 compounds into the p38a active site, the uncorrected 
GOLD scores led to an enrichment of PTP-1B inhibitors 
over the p38a inhibitors. Application of the MASC scores 
led to a reversal of this trend and the enrichment of true p38 
inhibitors was significantly improved. The authors con-
cluded that MASC improves the detection of true positives 
and reduces the number of false positives in database en-
richment studies.  

 However, in a recent study scientists at OpenEye found 
that the application of MASC can also lead to a deterioration 
of the results [111]. When the docking program FRED [59, 
60] was used in enrichment studies comparing different scor-
ing functions and different targets, it was found that the 
value of MASC scoring depends heavily on the type of target 
and the scoring function used. Regarding the change of en-
richment for five scoring functions plus consensus scoring, 
with each scoring scheme averaged across five different tar-
gets, only for consensus scoring a significant improvement 
using MASC scores was observed. Considering each target 
separately, the picture was also ambiguous. Only for reverse 
transcriptase did MASC lead to an improvement for all scor-
ing schemes investigated. Other targets exhibited a very 
mixed behavior, most notably HIV protease, where for three 
scoring schemes the results after MASC deteriorated signifi-
cantly, while for two scoring schemes a significant im-
provement was observed. For another target – the estrogen 
receptor – MASC scoring either reduced the enrichment or 
had no effect.  

Improvement 2 - Docking with Constraints  

 By introducing a bias during docking it is possible to 
influence the way poses are generated and which ones are 
preferentially kept. For example, in the DockIt program 
[112], one can apply distance constraints between ligand and 
protein atoms that are subsequently used during pose genera-
tion via a distance geometry approach. The genetic algorithm 
(GA) behind the GOLD program [53, 74, 75, 113] makes it 
easy to include different types of constraints in the fitness 
function, thus enabling the generation of biased poses. In the 
PhDock approach [114], as implemented in DOCK 4.0 
[115], one can perform pharmacophore-based docking by 
overlaying precomputed conformers of molecules based on 
to their largest 3D pharmacophore. The pharmacophore is 
then matched to predefined site points representing putative 
receptor interactions. Subsequently, all conformers are 
docked corresponding to the pharmacophore match and the 
fit of each individual conformer is scored. The advantage of 
this approach is twofold: speed through a rapid preorienta-
tion of the molecules to be docked as well as introducing 
bias towards good solutions by defining pharmacophore 
points that represent favorable interactions with the target 
binding site. The use of another docking program where one 
can apply pharmacophoric constraints during docking 
(FlexX-Pharm [116]) is illustrated below in the section on 
application examples.  

Improvement 3 – Postprocessing 

 One can in principle distinguish between two approaches 
for introducing bias after the docking: applying postdock 
filters and using tailor-made (re)scoring functions. The latter 
have already been described above. In many cases postdock 
filters are conceptually simple and may correspond to certain 
geometric criteria, such as the presence of certain interac-
tions (e.g., a hydrogen bond with a selected residue or a po-
lar interaction) or the filling of a specified pocket in the ac-
tive site. Many researchers in the pharmaceutical industry 
have written their own filters, but nowadays they are an inte-
gral part of several commercially available docking pro-
grams, such as Glide [63-65] and FRED [59, 60]. Implemen-
tation and automation of these filters can also reduce the 
need for the frequently quoted visual inspection of poses 
after docking and scoring.  

 The idea of checking for certain receptor–ligand interac-
tions can be extended to entire interaction patterns. These 
interaction patterns in turn can be compared to a target inter-
action pattern, as observed in the co-crystal structure of a 
highly active ligand and its receptor. An interesting method 
has recently been developed where a structural interaction 
fingerprint (SIFt) is calculated to provide a unique represen-
tation of a binding mode [117]. In this approach each bind-
ing site residue is encoded by a string of 7 bits that represent 
the different possible interactions with that residue. If such 
an interaction occurs the corresponding bit is set. All bits 
together constitute the SIFt of a binding mode. SIFts can 
then be used to evaluate similarities between different poses 
of the same or different molecules, to assess how close a 
pose is to a predefined (e.g., crystallographic) pose and, of 
course, to filter docking results to find compounds with de-
sirable interactions. One of the appealing features of SIFt is 
that it is an automated procedure, which can also objectively 
compare dissimilar ligands.  

 Another way of postprocessing is to use the docking re-
sults as input to develop a Bayesian model with the aim of 
reducing the numbers of false positives and false negatives. 
Klon et al. [118] did this as follows: they rank-ordered the 
list of compounds at the end of a docking run and designated 
the top-scoring ones as ‘good’ and the remaining ones as 
‘bad.’ In the next step fingerprints were calculated for all the 
compounds and a naive Bayesian classifier was trained. Sub-
sequently all compounds were re-ranked according to the 
Bayesian model. Applying this procedure to the results of 
high-throughput docking into an HIV-1 protease model us-
ing Glide, FlexX, and GOLD improved the hit rates in all 
cases significantly. Despite the impressive results, two cave-
ats are appropriate here. First, the data set investigated con-
sisted of a large number of inactives (the Available Chemi-
cals Directory data set) and a small set of potent HIV-1 in-
hibitors from in-house chemistry efforts, which is arguably 
the easiest scenario to achieve enrichment. Second, given 
that the docking programs have already enriched the ‘good’ 
compounds with HIV-1 inhibitor chemistry, it is conceivable 
that the Bayesian model just separates very similar HIV-1 
inhibitor-like compounds from other, chemically very di-
verse ACD molecules. The authors indicate, however, that 
the Bayesian model requires a large number of features for 
this approach to work and that consequently just the similar-
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ity between the core structures of the inhibitors cannot ex-
plain its success. At any rate, one would suspect the results 
to be very data set-dependent and further validation of this 
approach (which is in principle very interesting) with a dif-
ferent data set composition (e.g., with compounds that span a 
wide range of activities but have the similar core structures) 
would be important. 

Assessment of Docking Performance 

 A multitude of approaches and docking programs is 
available today. This poses the question which docking pro-
gram one should use, and which docking approach might be 
most appropriate for a given problem. In line with the two 
main tasks carried out by docking programs, evaluation 
thereof normally revolves about pose prediction and affinity 
prediction. As also noted by others, comparison and assess-
ment of docking programs are not easy tasks [119]. Quite a 
number of studies comparing docking programs and assess-
ing their performance have been published [6, 23, 89, 120-
128]. The general conclusions that can be drawn from these 
studies are that no docking program is consistently superior 
to all other programs, and that success and failure very much 
depend on the combination of ligand and receptor character-
istics as well as docking algorithm and scoring scheme used. 
In some cases certain scoring function characteristics (e.g. 
‘hard’ or ‘soft’) appeared to be more appropriate for certain 
target characteristics than others. It is beyond the scope of 
this review to elaborate on these studies in detail, and the 
remainder of this section will be devoted to discussing some 
general aspects of the assessment of docking programs in 
more detail. 

 Regarding pose prediction, it is desirable to evaluate 
docking programs with respect to their ability to reproduce 
experimentally known poses in a reliable manner. The tradi-
tional way to do this is to calculate the RMS deviation 
(RMSD) between a pose generated by a docking program 
and the experimentally observed binding mode. Despite the 
practical appeal of using RMSDs from a crystal structure to 
assess pose prediction accuracy, they do not do justice to the 
complex interactions ligands make with proteins. For that 
reason, a novel way to evaluate pose prediction accuracy was 
devised [129]. Here the correctness of a pose was determined 

by visually comparing the (hydrogen-bonded and other) 
ligand–protein interactions for that pose with the experimen-
tally observed interactions, and the resulting evaluation 
scheme was termed interactions-based accuracy classifica-
tion (IBAC). It was shown that RMSD to X-ray values do 
not always correlate with IBAC and that in some cases IBAC 
gives a better indication of the correctness of a pose. The 
method, however, requires optical inspection of each pose, 
and a more automated procedure would be desirable. The 
recent introduction of the SIFt method [117] would be one 
way to address this. 

 With respect to affinity prediction or scoring one impor-
tant aspect that needs to be considered when performing an 
evaluation is the data set under consideration. It would seem 
natural to carry out tests with data sets that resemble the data 
sets that will be used in production mode, but it appears that 
this is not always the case. The desired and expected activity 
range for inhibitors depends on the stage of a drug discovery 
project. At the hit identification stage, molecules with even 
weak activity (IC50 >100nM or >1 M) represent a useful 
source to initiate a medicinal chemistry program, while 
ligands with nanomolar affinity are searched for during the 
lead optimization phase. This puts different demands on the 
computational tools. In practice one rarely finds nanomolar 
compounds when screening databases of commercially 
available compounds, so for VS programs to be applicable 
during hit identification, they should be able to identify mi-
cromolar hits among a large number of inactive compounds, 
c.f. the ‘hit identification’ scenario in Fig. (2). By contrast, if 
one considers using these programs for lead optimization 
(e.g., for the design of a combinatorial library built around a 
potent scaffold), one needs to be able to distinguish potent 
compounds (<100nM) from moderately/weakly active 
(100nM – 10 M) and inactive (>10 M) ones. Consistent 
with observations made by Charifson et al. [89], one can 
expect that the ability of docking tools to distinguish active 
from inactive compounds depends considerably on the activ-
ity profile considered. In a recent study this was explicitly 
considered by defining three activity intervals and examining 
the docking and scoring results for each activity interval 
separately [93]. A main conclusion of this study was that 
affinity prediction and enrichment strongly depend on the 
distribution of activities in the data set. In this study it was 

Fig. (2). Graphical representation of different activity distributions that can be used in the assessment of docking program performance. The 
few active compounds are represented by the black dots. The many inactives are represented by the gray areas. Under each distribution the 
corresponding real-life situation is indicated. The ‘hypothetical’ situation is rarely encountered in real life, but is often used to assess docking 
performance nonetheless, as in that situation docking programs/scoring functions exhibit their best performance in terms of separating ac-
tives from inactives. 
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also mentioned that quite often the performance of docking 
tools is assessed by spiking a large collection of supposedly 
inactive compounds with several fairly active compounds. 
Even if these tools are intended for hit identification only, 
such an evaluation procedure can be considered suboptimal, 
as commercial or proprietary compound collections rarely 
consist exclusively of nanomolar compounds against a given 
target on the one hand and fully inactive ones on the other. 
Similar conclusions were also drawn in another study [64]. 

 Another point that needs to be considered for the assess-
ment of docking program performance is the properties of 
the compounds, such as molecular weight (MW) or polarity. 
Some authors have argued that care must be taken that both 
active and inactive compounds represent an identical or very 
similar distribution of such properties. This is because 
charges can introduce an unwanted bias towards certain 
molecules [130] and because scoring functions in many 
cases correlate with MW [131]. Of course naturally there is a 
tendency for larger ligands to be more active, as the number 
of contacts with the receptor increases, but care must be 
taken nevertheless. 

 Often there is relatively low correlation between experi-
mental and predicted activity. Docking has been successful 
in many cases nonetheless, because of its ability to select 
preferentially active compounds, thereby increasing the 
number of actives in a set of compounds that is selected for 
experimental testing. This increase is referred to as enrich-
ment and has become a standard measure of quantifying the 
success of a docking campaign. In many cases enrichment is 
displayed in the form of enrichment curves, where the num-
ber (or percentage) of actives found is plotted against the 
number of rank-ordered molecules. Recently it was advo-
cated to use receiver operating characteristic (ROC) curves 
instead [132]. The advantage of these curves is that they are 
independent of the proportion of actives in the test set. Also, 
they include information relating to false positives and false 
negatives in the same plot. 

APPLICATION EXAMPLES 

 Even if the main application of structure-based VS 
probably lies in hit identification, there are many variations 
on this theme. In the following sections several examples are 
given of the successful application of docking and scoring to 
a variety of different problems. Each of these examples illus-
trates that docking and scoring is not a stand-alone tech-
nique, but that it is normally embedded in a workflow of 
different in silico as well as experimental techniques, and 
that careful evaluation before application is a prerequisite for 
success. For an extensive review of docking success stories, 
see reference [133].  

Application Example 1 - Inhibiting cl-2 – Bak Interac-
tions 

 Bcl-2 is an important factor in the apoptotic pathway and 
is overexpressed in many cancer types. The ability of Bcl-2 
to form heterodimers with another regulatory protein called 
Bak confers it an anti-apoptotic role. Therefore, a virtual 
screen against Bcl-2 was performed with the idea to identify 
small molecules inhibiting the Bcl-2 Bak interaction [134]. 
To this end a homology model of Bcl-2 had been derived 

from the NMR three-dimensional structure of the complex of 
Bcl-XL with a Bak BH3 peptide. The National Cancer Insti-
tute (NCI) database of 206 876 organic molecules was 
docked against the BH3 binding pocket on Bcl-2 using the 
program DOCK. Ranking was performed with the energy 
scoring function implemented in the program and the non-
peptidic molecules among the top 500 in the rank-ordered hit 
list were considered as potential Bcl-2 – Bak inhibitors. Out 
of 80 compounds 35 were available and finally tested. Seven 
of them had IC50 values between 1.6 and 14.0 M. One of 
these hits also showed good anti-proliferative activity in a 
human myeloid leukemia cell line and induced apoptosis in 
cancer cells overexpressing Bcl-2. 

 Two important conclusions can be drawn from this study: 
Firstly, homology models can be suitable for virtual screen-
ing, if generated and evaluated with care. Another example 
for the successful use of a homology model is the virtual 
screen performed using a homology model of the alpha1A 
adrenergic receptor [135]. Secondly, the study demonstrated 
that virtual screening can be used also for identification of 
potential inhibitors of protein-protein interactions, which are 
thought to be notoriously difficult targets. Another example 
in this context has been provided recently by Trosset et al. in 
a virtual screen for inhibitors of the -catenin–Tcf interac-
tion [8].  

Application Example 2 - Virtual and Experimental 
Screening of Protein Tyrosine Phosphatase-1B (PTP-1B)  

 PTP-1B hydrolyzes phosphotyrosines on the insulin re-
ceptor, thereby deactivating it. Overproduction of this en-
zyme has been implicated in the onset of type-2 diabetes, 
and it is therefore a target for drug discovery [136, 137]. In a 
study by Doman et al. a comparison between HTS and dock-
ing against PTP-1B was performed [7]. For the HTS a li-
brary of approx. 400 000 compounds from a corporate col-
lection was screened. Some 85 compounds were found with 
IC50 values between 100 and 1 M, which corresponds to a 
hit rate of 0.021%.  

 In silico screening against PTP-1B was performed using 
235 000 commercially available molecules from the ACD, 
BioSpecs and Maybridge databases. Docking was carried out 
with the Northwestern University version of DOCK [61, 62]. 
Target was the crystal structure of PTB-1B (PDB entry 1pty) 
and the site was defined by the locations of two bound phos-
photyrosine molecules. After the docking the top-scoring 
1000 molecules (500 for the ACD and 500 for the combined 
BioSpecs and Maybridge databases) were considered for 
further evaluation. A total of 889 molecules were actually 
available, and after visual inspection 365 compounds were 
chosen for testing. Of these, 127 molecules were found to be 
active with IC50 <100 M, which corresponds to a hit rate of 
34.8%.  

 Although the compound sets used in HTS and virtual 
screening were not identical and the experimental conditions 
for the HTS screen and the testing of the 365 compounds 
varied somewhat, the differences in hit rates were impressive 
and underpinned the usefulness of docking and scoring. 
However, it was noted that there was no clear correlation 
between the docking scores and the IC50 values. This is il-
lustrated by the molecules listed in Table 2. Compounds 2
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and 3 in Table 2 have very different scores (and correspond-
ing ranks), but they possess equivalent activity. Compound 
1, in turn, is ranked relatively low, but has the highest activ-
ity. 

 In an absolute sense, a 35% hit rate resulting from a 
docking experiment is very high, but one sobering piece of 
information is that docking against the ‘open’ form of PTP-
1B (PDB code 1BZH [139]) did not produce any experimen-
tally confirmed hits, although admittedly only 15–20 of the 
docking hits were tested. One might think that the open form 
is not biologically relevant and that binding to it will not 
inhibit PTP-1B, but that is not the case, as 1BZH is actually 
a complex of the protein with an inhibitor.  

 Taken together, the high overall hit rate and the low cor-
relation with experiment indicate that the docking program 
and scoring function are good at eliminating compounds that 
do not fit the active site well electrostatically or sterically, 
but that they are not able to differentiate reliably between 
two compounds that both fit (and presumably both exhibit 
measurable inhibition). When taking random samples of the 
corporate collection and of the docking database, some struc-
tural similarity exists. Surprisingly, no similarity existed 
between the docking hits and the HTS hits, while one would 
expect the similarity to increase as a result of the bias to-
wards PTP1B inhibitors. This is also an indication that dock-
ing and HTS are complementary techniques and may be ap-
plied side-by-side.  

Application Examples 3 and 4 - Layered Virtual Screen-

ing: Carbonic Anhydrase II and Checkpoint Kinase-1 

 In some cases structure-based VS can be part of a cas-
cade of different computational techniques in the quest for 
binders of a given target. Two such examples are given here. 
The first example of the combination of different VS tech-
niques is given by a study that led to the successful identifi-
cation of subnanomolar inhibitors of carbonic anhydrase II

(CAII) [9, 140]. A layered strategy including pharmacophore 
and ligand-based modeling was applied, where the last step 
consisted of docking and scoring of a number of compounds. 
The starting point of the study was the high-resolution crys-
tal structure of CAII, and a set of 90 000 molecules (includ-
ing 35 known CAII inhibitors) from the Maybridge and 
LeadQuest databases. As a first step, a binding-site analysis 
was performed, in order to identify key interactions between 
a putative compound and the receptor. These key interactions 
were transformed into a 3D pharmacophore model, which 
was used to search the database of 90 000 molecules. The 
database scan led to the identification of 3314 molecules. In 
the second step, these 3314 molecules were rank-ordered 
using the program FlexS that evaluates their potential bind-
ing affinities by comparison with a reference compound. In 
the third and final step the 100 best-ranking molecules were 
docked into the binding pocket of CAII using the docking 
program FlexX. FlexX score and DrugScore were used to 
predict the binding affinity of the docked molecules and to 
rank-order them accordingly. The 13 top-scoring compounds 

Table 2. Selected Hits from the Structure-based Virtual Screen Against PTP-1B 
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were chosen for testing, and three inhibitors with IC50 values 
of <1 nM were identified. Two of the subnanomolar hits 
were co-crystallized with CAII, and the binding mode gener-
ated by FlexX and ranked highest by DrugScore was found 
to be in good agreement with the experimental structures. 
The study yielded two important insights. First, it turned out 
that water molecules played an important role during the 
docking process. Four conserved water molecules had been 
identified by superposition of all complex and apo structures 
of CAII. Inclusion of these solvent molecules in the docking 
process added to the steric restriction of the binding pocket 
and led to better solutions. Secondly, despite the successful 
identification of high-affinity binders, it was observed that 
overall correlation between the IC50 values and the binding 
affinities predicted by FlexX score or DrugScore was rather 
poor.  

 The second example for the integration of structure-based 
VS into an in silico workflow is provided by a study on 
checkpoint kinase-1 (Chk1) [141]. In this case, in the first 
stage the in-house compound collection was filtered by gen-
eral physicochemical properties, such as MW and number of 
rotatable bonds, followed by removal of compounds with 
undesired chemical functionality. In the next step the re-
maining compounds were evaluated by their fit to a pharma-
cophore representing a minimal kinase binding motif, con-
sisting of two hydrogen bonds (one acceptor, one donor) 
with the hinge region of the kinase, where the adenine moi-
ety of ATP binds. Approximately 200 000 compounds 
passed this pharmacophore filter and were subsequently 
submitted to docking with FlexX-Pharm [116] with the same 
pharmacophore as constraint. Up to 100 poses were saved 
for each successfully docked compound. All saved poses 
were then rescored with a consensus scoring scheme that had 
been derived in a study for another kinase (CDK2), which 
included a combination of the FlexX and PMF scoring func-
tions. Using this scheme and prior knowledge, 250 com-
pounds were retained for visual inspection. After application 
of this final human filter, 103 compounds were assayed, 
which yielded 36 active compounds from four different 
chemical classes with activities ranging from 110nM to 68 
mM. Several conclusions can be drawn from this study. In-
tegration of structure-based VS in a general in silico
workflow leads to a reduction of the number of molecules to 
be docked, thereby saving a significant amount of computing 
resources. A tailor-made scoring scheme that has been de-
rived for a related protein can be successfully transferred to 
the target of interest. Despite all efforts to ensure that dock-
ing programs generate realistic poses, one notices an indus-
try-wide, pervasive need to include visual inspection as the 
final filters in order to remove compounds whose poses are 
unrealistic.  

CONCLUSIONS AND OUTLOOK 

 Virtual screening for the rapid identification of small-
molecule ligands of macromolecular targets has become an 
established technology in drug discovery. High-throughput 
ligand docking or structure-based VS is a powerful technique 
to perform such a screen if a 3D structure of the target is 
available, and docking success stories are abundant. Re-
markably, there is quite a number of successful applications 
using homology models as the target structure. 

 Many docking programs exist, but no single program has 
yet emerged that outperforms all others in all cases. Gener-
ally, programs do an adequate job searching conformational 
space and generating correct ligand poses (binding modes), 
but the scoring functions need improvement. This is evi-
denced by the fact that the correlation between calculated 
and observed binding affinities is often low and that separate 
scoring functions are frequently needed for pose evaluation 
and affinity prediction. Other problem areas are target flexi-
bility, explicit water molecules and (de)solvation phenom-
ena. Fortunately, active research is taking place to address all 
these issues and appreciable progress is being made. Tunable 
scoring functions, MM-PBSA and other rescoring ap-
proaches, explicit protein flexibility (as, e.g., in QXP and 
ICM) and explicit incorporation of water (as, e.g., in FlexX 
and GOLD) are just a few examples. Regarding protein 
flexibility one still needs to find ways to avoid false posi-
tives, by properly taking protein conformational energy into 
account. Another, yet not adequately addressed, challenge is 
the generation of different tautomer and protomer states for 
the ligand molecules and implementation of the correspond-
ing scoring schemes. However, the ever increasing power of 
computer hardware will facilitate the implementation of 
more sophisticated methods and one can hope that docking 
tools will continue to improve significantly in the near fu-
ture.  

 Despite the docking successes highlighted in this review, 
achieving success is not trivial. A docking campaign cannot 
be regarded as a black box that one feeds a general com-
pound collection and that automatically produces a collec-
tion of high-affinity ligands. Preparing the protein and the 
ligands, selecting the docking programs and scoring func-
tions, setting and tuning the parameters, and carrying out the 
postprocessing (including the often necessary visual inspec-
tion) require profound expertise. Docking is especially useful 
in reducing a collection of virtual compounds down to a 
manageable number to be synthesized and in selecting com-
pounds from an external collection. Even when experimental 
HTS is envisioned, however, VS is important, as active 
compounds may be identified by one technique and not by 
the other. An added bonus is that VS is fast and inexpensive 
by any standard. It is recommended, if at all possible, to use 
docking in parallel with other techniques (experimental HTS, 
pharmacophore modeling, etc.), to dock to multiple confor-
mations of the target, and to use the docking results to select 
as many compounds as possible for experimental confirma-
tion.  

 In the light of the progress that has been made and con-
sidering the known successful applications and the ongoing 
developments, it is conceivable that the importance and im-
pact of VS will continue to increase significantly. 

ABBREVIATIONS 

ACD = Available chemicals directory 

AFMoC = Adaptation of fields for molecular compari-
son 

ATP = Adenosine triphosphate 

BS = Bayesian statistics 
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CAII = Carbonic anhydrase II 

CDK2 = cyclin-dependent kinase-2 

Chk1 = Checkpoint kinase-1 

GA = Genetic algorithm 

GB = Generalized Born 

HTS = High-throughput screening 

MASC = Multiple active site corrections 

MD = Molecular dynamics 

MM = Molecular mechanics 

MW = Molecular weight 

NMR = Nuclear magnetic resonance 

PB = Poisson-Boltzmann 

PDB = Protein data bank 

PLS = Partial least squares 

PMF = Potential of mean force 

PTP-1B = Protein tyrosine phosphatase-1B 

RMSD = Root-mean-square deviation 

ROC = Receiver operating characteristics 

SA = (Solvent accessible) surface area 

SBVS = Structure-based virtual screening 

SIFt = Structural interaction fingerprint 

VS = Virtual screening 
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