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Abstract

The focus of this paper is on the public communication required for generating a maximal-rate secret key (SK)

within the multiterminal source model of Csiszár and Narayan. Building on the prior work of Tyagi for the two-

terminal scenario, we derive a lower bound on the communication complexity, RSK, defined to be the minimum

rate of public communication needed to generate a maximal-rate SK. It is well known that the minimum rate of

communication for omniscience, denoted by RCO, is an upper bound on RSK. For the class of pairwise independent

network (PIN) models defined on uniform hypergraphs, we show that a certain “Type S” condition, which is verifiable

in polynomial time, guarantees that our lower bound on RSK meets the RCO upper bound. Thus, PIN models satisfying

our condition are RSK-maximal, meaning that the upper bound RSK ≤ RCO holds with equality. This allows us to

explicitly evaluate RSK for such PIN models. We also give several examples of PIN models that satisfy our Type S
condition. Finally, we prove that for an arbitrary multiterminal source model, a stricter version of our Type S condition

implies that communication from all terminals (“omnivocality”) is needed for establishing a SK of maximum rate.

For three-terminal source models, the converse is also true: omnivocality is needed for generating a maximal-rate

SK only if the strict Type S condition is satisfied. Counterexamples exist that show that the converse is not true in

general for source models with four or more terminals.

I. INTRODUCTION

Maurer [1] and Ahlswede and Csiszár [2] independently introduced the problem of generating a secret key (SK)

for a pair of terminals observing distinct, albeit correlated, components of a discrete memoryless multi-component

source. The SK is to be generated by communicating interactively over a noiseless public channel, and it is to be

kept secure from all passive eavesdroppers having access to the public channel. The problem was subsequently

extended to a multiterminal setting by Csiszár and Narayan [3]. The Csiszár-Narayan model is now commonly

referred to as the multiterminal source model. The quantity of interest in these papers, and indeed in much of the

literature that followed on this topic [4], [5], [6], [7], is the secret key capacity, i.e., the supremum of the rates of
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SK that can be generated within this model. In the two-terminal case, an exact characterization of the SK capacity

can be found in the original works of Maurer [1] and Ahlswede and Csiszár [2]. Csiszár and Narayan [3] later gave

an elegant single-letter expression for SK capacity in the general multiterminal source model.

In all the aforementioned studies, the noiseless public channel is viewed as an unlimited free resource, and no

attempt is made to restrict the amount of communication sent through it. Indeed, Csiszár and Narayan [3, Section

VI] left open the question of determining the minimum rate of interactive public communication needed to achieve

SK capacity. Tyagi [8] addressed this question in the two-terminal case, and gave an exact, although difficult to

compute, characterization of the minimum rate of communication. In this paper, we extend some of Tyagi’s ideas

to the multiterminal setting, and apply them to give an explicit answer to Csiszár and Narayan’s open question

in some interesting special cases, namely, certain instances of the so-called pairwise independent network (PIN)

model [5], [6].

A. Our Contributions

The primary focus of our work is on the following question: What is the minimum rate of interactive public

communication required to achieve SK capacity in the multiterminal source model? We shall refer to the minimum

rate of public communication as the communication complexity1 of achieving SK capacity, denoted by RSK. Csiszár

and Narayan’s original proof of the achievability of their single-letter expression for SK capacity [3, Theorem 1]

used a (non-interactive) communication protocol that enabled “omniscience” at all terminals, which means that the

communication over the public channel allows each terminal to recover the observations of all the other terminals.

It follows from their results that RSK is always upper bounded by RCO, the minimum rate of interactive public

communication required to achieve omniscience at all terminals. Furthermore, RCO is given by the solution to a linear

program [3, Proposition 1] (see (1) in Section II), so it can be computed efficiently. On the other hand, it is also well

known that omniscience is not necessary for maximal-rate SK generation — see the remark following Theorem 1

in [3], and also the proof of Theorem 3.2 in [4]. Indeed, it is not difficult to find examples where RSK � RCO; our

Example IV.1 is one such. Thus, the sources for which we have RSK = RCO constitute the worst-case sources in

terms of communication complexity; we call such sources RSK-maximal. We give a sufficient condition for a PIN

model defined on a uniform hypergraph to be RSK-maximal, and show that PIN models satisfying this condition

do exist. For these PIN models, it is easy to explicitly compute RCO, which then gives us an exact expression for

RSK. This is the first (non-trivial) explicit evaluation of RSK to be found in the literature, for a multiterminal source

model with more than two terminals. Interestingly, for PIN models defined on ordinary graphs (i.e., each edge is

incident with only two vertices), our sufficient condition is also necessary, which gives us an exact characterization,

decidable in polynomial time, of ordinary graph PIN models that are RSK-maximal.

The main tool in our analysis is a lower bound on RSK obtained via a multiterminal extension of Tyagi’s work [8].

Tyagi’s characterization of RSK for two terminals [8, Theorem 3] was in terms of the minimum rate of an interactive

common information, a type of Wyner common information (see [10]). In order to appropriately generalize these

1Our use of “communication complexity” differs from the use prevalent in the theoretical computer science literature where, following [9],
it refers to the total amount of communication, in bits, required to perform some distributed computation.

July 10, 2015 DRAFT



3

ideas, we propose extensions of conditional mutual information and Wyner common information to the setting of

more than two terminals. With these new multiterminal definitions in hand, we essentially follow the approach in [8]

to derive a lower bound on RSK in terms of the minimum rate of a multiterminal analogue of interactive common

information. As in the case of Tyagi’s result for two terminals, an exact evaluation of this bound appears to be a

difficult task even for simple source models such as Markov chains. However, unlike the two-terminal result, we

are unable to show that our lower bound to RSK is tight in general. Luckily, we are able to evaluate this bound

exactly for certain PIN models as mentioned above, and the bound turns out to be tight in these cases as it matches

the RCO upper bound.

A secondary line of investigation carried out in this paper concerns the nature of the public communication

protocols that achieve SK capacity. It is well known that, in order to generate a maximal-rate SK in the two-

terminal model, it is sufficient for only one terminal to communicate [1], [2], [3]. All this terminal has to do is

convey its local observations to the other terminal at the least possible rate of communication required to do so.

Thus, in the two-terminal setup, it is never necessary for both terminals to communicate to generate a capacity-

achieving SK. Even in the case of more than two terminals, there are examples wherein not all terminals need to

communicate — again, see the remark following Theorem 1 in [3]. However, as we will show in this paper, there

are plenty of other examples where all terminals must communicate in order to achieve SK capacity. We coin the

term “omnivocality” to describe the state when all terminals communicate. The problem of interest to us then is

the following: Characterize the instances of the multiterminal source model in which omnivocality is necessary for

maximal-rate SK generation. In this paper, we report some partial progress towards such a characterization.

In [7], Gohari and Anantharam considered the scenario where a subset of terminals is required to remain silent,

and yet all the terminals must agree upon an SK using only the communication from terminals that are allowed to

talk. They derived a linear programming formulation for the maximum SK rate achievable in this scenario. Observe

that omnivocality is necessary for achieving SK capacity in a source model iff any one terminal not being allowed

to communicate strictly lowers the maximum achievable SK rate for that model. This establishes a correspondence

between the omnivocality condition and the Gohari-Anantharam scenario involving silent terminals. We use this

correspondence to identify a sufficient condition under which omnivocality is necessary for achieving SK capacity

in a source model with at least three terminals. We further show that in the case of exactly three terminals, our

sufficient condition is also necessary. Based on this evidence, we had conjectured in [11] that our condition was

always necessary and sufficient. Unfortunately, a counterexample has been given by Chan et al. [12] that shows

that the condition is not necessary for four or more terminals [12]. This has also been independently observed by

Zhang et al. in [13].

B. Related work

Besides the work of Tyagi [8] that we have already mentioned, a few other recent papers have considered the

SK generation problem from a communication complexity angle. The line of work that is perhaps most directly

related to ours is that of Courtade and co-authors [14], [15], [16], which considers the coded cooperative data

exchange (CCDE) problem [17] with the goal of generating an SK. This is, in essence, a single-shot version of the
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SK generation problem defined on hypergraph PIN models. Here, by “single-shot”, we mean that each terminal sees

only one realization of the component of the source available to it, as opposed to the Csiszár-Narayan setup within

which each terminal sees a sequence of i.i.d. realizations. The single-shot SK capacity, i.e., the maximum size (as

opposed to maximum rate) of an SK that can be generated, was evaluated in [14, Theorem 6]. The capacity achieving

protocol used is a one-shot version of the communication-for-omniscience protocol of [3]. The follow-up works

[15] and [16] addressed the issue of determining the minimum amount (again, as opposed to rate) of communication

required to generate an SK of a particular size. However, this is done under a additional linearity requirement on

the communication, i.e., the communication is required to be a linear function of the source outputs. Theorem 11 of

[16] then gives an explicit characterization of what could be rightfully called the linear communication complexity

of generating an SK of a given size, in terms of the minimum number of hyperedges of an “inherently τ -connected

subhypergraph”. It was further shown in [16, Theorem 4] that there exist hypergraph PIN models for which non-

linear communication protocols for achieving (single-shot) SK capacity require lower amounts of communication

than the linear communication complexity. It should be emphasized that our results do not make any linearity

assumptions on the public communication.

In [18], Liu et al. study public communication for SK generation in another variant of the multiterminal

source model. The authors consider m + 1 terminals observing correlated i.i.d. sources. One terminal acts as

the communicator, sending information to each of the remaining m terminals via m different noiseless channels. A

communication rate-key rate tradeoff region is identified for this model. However, the model is of somewhat limited

interest to us because of the fact that each of the m different links have individual eavesdroppers, but co-operation

is not allowed among them. Secrecy is no longer guaranteed if the eavesdroppers co-operate. Therefore, the problem

setup is more of an amalgam of two-terminal problems rather than a truly multiterminal setup.

Communication complexity has also been studied for two-terminal interactive function computation without a

secrecy constraint. Braverman and Rao in [19, Theorem II.3] gave an exact characterization of the communication

complexity for two-party interactive function computation.2 The communication complexity is shown to be equal to

an information-theoretic quantity called the internal information cost. In a follow-up work, Braverman and Schneider

provide an algorithm to compute the internal information cost for binary function computation — see Theorem 1.1

of [20].

Turning our attention to the topic of omnivocality originally studied in our paper [11], Zhang et al. [13] have

recently obtained some new results. In particular, their Theorem 5 gives a sufficient condition for when a particular

terminal must communicate in any SK-capacity-achieving protocol. Our original sufficient condition for omnivocality

[11, Theorem 4] (Theorem 10 in this paper) can now be obtained as a consequence of Zhang et al.’s Theorem 5. In

addition, Theorem 4 of [13] provides a sufficient condition that guarantees the existence of an SK-capacity-achieving

protocol within which a given terminal can remain silent.

2To be precise, the quantity which we are calling communication complexity is referred to as amortized communication complexity in [19].
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C. Organization

The paper is organized as follows. In Section II, we provide the definitions and preliminaries needed for the rest of

the paper. In Section III, we state and prove our lower bound on the communication complexity RSK. In Section IV,

we identify a class of uniform hypergraph PIN models which are RSK-maximal. Section V identifies a condition

that makes omnivocality necessary for achieving SK capacity. The issue of verifying whether that condition holds

for a given multiterminal source model is addressed in Section VI. Finally, Section VII summarizes our results and

presents some open problems. To preserve the flow of the exposition, the proofs of some of our results have been

moved to appendices.

II. PRELIMINARIES

We start by giving a mathematical description of the multiterminal source model of [3]. Throughout, we use

N to denote the set of positive integers. Consider a set of m terminals denoted by M = {1, 2, . . . ,m}. Each

terminal i ∈ M observes n i.i.d. repetitions of the random variable Xi taking values in the finite set Xi. The n

i.i.d. copies of the random variable are denoted by Xn
i . For any subset A ⊆M, XA and Xn

A denote the collections

of random variables (Xi : i ∈ A) and (Xn
i : i ∈ A), respectively. The terminals communicate through a noiseless

public channel, any communication sent through which is accessible to all terminals and to potential eavesdroppers

as well. An interactive communication is a communication f = (f1, f2, · · · , fr) with finitely many transmissions

fj , in which any transmission sent by the ith terminal is a deterministic function of Xn
i and all the previous

communication, i.e., if terminal i transmits fj , then fj is a function only of Xn
i and f1, . . . , fj−1. We denote the

random variable associated with f by F; the support of F is a finite set F . The rate of the communication F is

defined as 1
n log|F|. Note that f, F and F implicitly depend on n.

Definition 1. A common randomness (CR) obtained from an interactive communication F is a sequence of random

variables J(n), n ∈ N, which are functions of Xn
M, such that for any 0 < ε < 1 and for all sufficiently large n,

there exist Ji = Ji(X
n
i ,F), i = 1, 2, . . . ,m, satisfying Pr[J1 = J2 = · · · = Jm = J(n)] ≥ 1− ε.

When J(n) = Xn
M we say that the terminals in M have attained omniscience. The communication F which

achieves this is called a communication for omniscience. It was shown in Proposition 1 of [3] that the minimum

rate achievable by a communication for omniscience, denoted by RCO, is equal to min
(R1,R2,...,Rm)∈RCO

m∑
i=1

Ri, where

the region RCO is given by

RCO =

{
(R1, R2, . . . , Rm) :

∑
i∈B

Ri ≥ H(XB |XBc), B (M
}
. (1)

Henceforth, we will refer to RCO as the “minimum rate of communication for omniscience”. Further, it can be

seen from the description of RCO that RCO <∞. More precisely, note that the point (R1, R2, . . . , Rm) defined by

Ri = H(Xi) for all i lies in RCO, and hence RCO ≤
∑m
i=1H(Xi) <∞.

Definition 2. A real number R ≥ 0 is an achievable SK rate if there exists a CR K(n), n ∈ N, obtained from

an interactive communication F satisfying, for any ε > 0 and for all sufficiently large n, I(K(n); F) ≤ ε and
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1
nH(K(n)) ≥ R − ε. The SK capacity is defined to be the supremum among all achievable rates. The CR K(n) is

called a secret key (SK).

From now on, we will drop the superscript (n) from both J(n) and K(n) to keep the notation simple.

The SK capacity can be expressed as [3, Theorem 1]

C(M) = H(XM)−RCO. (2)

Other equivalent characterizations of C(M) exist in the literature. Csiszár and Narayan observed in [3, Section V]

that since the linear program in (1) has an optimal solution, by strong duality, the dual linear program also has the

same optimal value. Using this fact, the expression for SK capacity can be rewritten as

C(M) , H(XM)−max
λ∈Λ

∑
B∈B

λBH(XB |XBc) (3)

where B is the set of all non-empty, proper subsets of M, and Λ is the set of all fractional partitions defined on

B. To be precise, any λ = (λB : B ∈ B) ∈ Λ satisfies λB ≥ 0, for all B ∈ B, and
∑
B:i∈B λB = 1, for all i ∈M.

It is a fact that H(XM)−maxλ∈Λ

∑
B∈B λBH(XB |XBc) ≥ 0 [21, Proposition II].

Another characterization of SK capacity can be given via the notion of multipartite information defined as follows:

I(XM) , min
P

∆(P) (4)

with ∆(P) , 1
|P|−1

[∑
A∈P H(XA)−H(XM)

]
and the minimum being taken over all partitions P = {A1, A2, · · · , A`}

ofM, of size ` ≥ 2. Note that I(Xn
M) = nI(XM). The quantity I(XM) is a generalization of the mutual information

to a multiterminal setting; indeed, for m = 2, we have I(X1, X2) = I(X1;X2). Note that I(XM) = 0 iff there

exists a partition P = {A1, A2, . . . , A`} ofM, with ` ≥ 2, such that the random variables XA1
, XA2

, . . . , XA` are

mutually independent. It was shown in Theorem 1.1 of [22] and Theorem 4.1 of [12] that

C(M) = I(XM). (5)

For the rest of this paper we shall use C(M) and I(XM) interchangeably.

The partition {{1}, {2}, . . . , {m}} consisting of m singleton cells will play a special role in the later sections of

this paper; we call this the singleton partition and denote it by S. The sources where S is a minimizer for (4) will

henceforth be referred to as Type S sources. If S is the unique minimizer for (4) then we call such a source strict

Type S. A connection between the optimal fractional partition in (3) and the optimal partition in (4) was pointed out

in [22]. For any partition P of M define λ(P) as follows: λ(P)
B , I{Bc∈P}

|P|−1 , for all B ∈ B and I{.} is the indicator

function. It is easy to check that λ(P) is a fractional partition on B, and ∆(P) = H(XM)−
∑
B∈B λ

(P)
B H(XB |XBc).

Hence, for any partition P∗ which is a minimizer in (4), the corresponding λ(P∗) is an optimal fractional partition

for (3).

We are now in a position to make the notion of communication complexity rigorous.

Definition 3. A real number R ≥ 0 is said to be an achievable rate of interactive communication for maximal-
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rate SK if for all ε > 0 and for all sufficiently large n, there exist (i) an interactive communication F satisfying
1
n log|F| ≤ R+ ε, and (ii) an SK K obtained from F such that 1

nH(K) ≥ I(XM)− ε.

The infimum among all such achievable rates is called the communication complexity of achieving SK capacity,

denoted by RSK.

The proof of Theorem 1 in [3] shows that there exists an interactive communication F that enables omniscience

at all terminals and from which a maximal-rate SK can be obtained. Therefore, we have RSK ≤ RCO <∞. Hence,

in terms of communication complexity, the sources that satisfy RSK = RCO are the worst-case sources. We will

henceforth refer to them as RSK-maximal sources. Such sources do exist, as will be shown in Sections IV and VI.

Tyagi gave a characterization of RSK in the case of a two-terminal model [8, Theorem 3].3 The key to his

characterization was the observation that conditioned on a maximal-rate SK K and the communication F from

which K is extracted, the observations of the two terminals are “almost” independent: 1
nI(Xn

1 ;Xn
2 |K,F) → 0 as

n → ∞. Thus, the pair (K,F) is a Wyner common information [10] for the randomness at the terminals. Tyagi

used the term “interactive common information” to denote any Wyner common information that consisted of a CR

along with the interactive communication achieving it.

We extend Tyagi’s ideas to the setting of m ≥ 2 terminals. We first extend the definition of conditional mutual

information to the multiterminal setting. We will refer to the multiterminal analogue of the conditional mutual

information as the conditional multipartite information, and denote the conditional multipartite information of XM

given a random variable L by I(XM|L). As a natural extension of (4), we could define I(XM|L) as minP ∆(P|L),

where ∆(P|L) , 1
|P|−1

[∑
A∈P H(XA|L)−H(XM|L)

]
. Note that

∆(P|L) = H(XM|L)−
∑
B∈B

λ
(P)
B H(XB |XBc ,L). (6)

Using this definition, we can indeed generalize Tyagi’s arguments to the case of m ≥ 2 terminals and obtain a

lower bound on RSK. It turns out, however, that a stronger lower bound can be obtained by defining I(XM|L) to

be equal to ∆(P∗|L), where P∗ is any partition that achieves the minimum in (4). One complication now is that

there could be more than one choice of P∗ that achieves the minimum in (4), and two distinct choices of P∗ could

yield different values for ∆(P∗|L). We simply choose the one that results in the largest value for I(XM|L). Thus,

we define

I(XM|L) , max
P∗∈argminP∆(P)

∆(P∗|L). (7)

The definition of I(XM|L) applies to any collection of jointly distributed random variables XM; in particular it

applies to the collection Xn
M. To be clear,

I(Xn
M|L) , max

P∗∈argmin∆(P)

1

|P∗|−1

[ ∑
A∈P∗

H(Xn
A|L)−H(Xn

M|L)

]
.

3It should be clarified that Tyagi’s characterization works only for “weak” SKs, which are defined as in our Definition 2, except that the
condition I(K;F) ≤ ε is weakened to 1

n
I(K;F) ≤ ε. Using our definitions, Tyagi’s arguments would only yield a two-terminal analogue of

our Theorem 2.
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We point out an important consequence of our definition of I(XM|L). We have I(XM|L) = 0 iff for any partition

P∗ which achieves the minimum in (4), the random variables XM are conditionally independent across the cells

of P∗ given L. We are now in a position to extend the notion of the Wyner common information to a multipartite

setting.4

Definition 4. A (multiterminal) Wyner common information (CIW ) for XM is a sequence of finite-valued functions

L(n) = L(n)(Xn
M) such that 1

n I(Xn
M|L

(n)) → 0 as n → ∞. An interactive common information (CI) for XM is

a Wyner common information of the form L(n) = (J,F), where F is an interactive communication and J is a CR

obtained from F.

Again, we shall drop the superscript (n) from L(n) for notational simplicity. Wyner common informations L do

exist: for example, the identity map L = Xn
M is a CIW . To see that CIs (J,F) also exist, observe that J = Xn

M

and a communication F enabling omniscience constitute a CIW , and hence, a CI.

Definition 5. A real number R ≥ 0 is an achievable CIW (resp. CI) rate if there exists a CIW L (resp. a CI

L = (J,F)) such that for all ε > 0, we have 1
nH(L) ≤ R + ε for all sufficiently large n. We denote the infimum

among all achievable CIW (resp. CI) rates by CIW (XM) (resp. CI(XM)).

The proposition below records the relationships between some of the information-theoretic quantities defined so

far.

Proposition 1. For a multiterminal source Xn
M, we have H(XM) ≥ CI(XM) ≥ CIW (XM) ≥ I(XM).

Proof: The first inequality is due to the fact that there exists a CI of rate H(XM). The second follows from

the fact that a CI is a special type of CIW , so that CI(XM) ≥ CIW (XM).

For the last inequality, we start by observing that for any function L of Xn
M and any partition P∗ of M which

is a minimizer in (4), we have

I(Xn
M)− I(Xn

M|L) ≤ I(Xn
M; L)−

∑
B∈B

λ
(P∗)
B I(Xn

B ; L|Xn
Bc) (8)

= H(L)−
∑
B∈B

λ
(P∗)
B H(L|Xn

Bc)

where (8) follows from (6) and (7) and hence,

1

n
H(L) ≥ I(XM)− 1

n
I(Xn

M|L). (9)

Now, if L is any CIW of rate R, then by Definitions 4 and 5, for every ε > 0, we have 1
nH(L) ≤ R + ε and

1
n I(Xn

M|L) ≤ ε for all sufficiently large n. Thus, in conjunction with (9), we have R+ ε ≥ 1
nH(L) ≥ I(XM)− ε

for all sufficiently large n. In particular, R + ε ≥ I(XM) − ε holds for any ε > 0, from which we infer that

R ≥ I(XM). The inequality CIW (XM) ≥ I(XM) now follows.

4In fact, there exist other ways of generalizing Wyner common information to the multiterminal setting (see [23] and [24]).
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Finally, analogous to Definition 3, we have a definition of achievable rate of interactive communication required

to get a CI.

Definition 6. A real number R ≥ 0 is said to be an achievable rate of interactive communication for CI if for all

ε > 0 and for all sufficiently large n, there exist (i) an interactive communication F satisfying 1
n log|F| ≤ R + ε,

and (ii) a CR J such that L = (J,F) is a CI. We denote the infimum among all such achievable rates by RCI.

III. LOWER BOUND ON RSK

The goal of this section is to state and prove a lower bound on RSK, which partially extends Tyagi’s two-terminal

result [8, Theorem 3] to the multiterminal setting.

Theorem 2. For any multiterminal source XM, we have

RSK ≥ RCI ≥ CI(XM)− I(XM).

By Proposition 1, the lower bounds above are non-negative.

The ideas in our proof of Theorem 2 may be viewed as a natural extension of those in the proof of [8, Theorem

3]. We start with three preliminary lemmas. In all that follows, λ∗ = λ(P∗) for any P∗ that achieves the maximum

in the right-hand side of (7); moreover, λ∗ = (λ∗B : B ∈ B).

Lemma 3. For any function L of XM, we have

nI(XM) = I(Xn
M|L) +H(L)−

∑
B∈B

λ∗BH(L|Xn
Bc).

Proof: Consider L = L(Xn
M). From (3), we have

nI(XM) = H(Xn
M)−

∑
B∈B

λ∗BH(Xn
B |Xn

Bc)

= H(Xn
M,L)−

∑
B∈B

λ∗BH(Xn
B ,L|Xn

Bc)

= H(Xn
M|L) +H(L)−

∑
B∈B

λ∗BH(Xn
B |L, Xn

Bc)−
∑
B∈B

λ∗BH(L|Xn
Bc)

= I(Xn
M|L) +H(L)−

∑
B∈B

λ∗BH(L|Xn
Bc)

the last equality above being due to (6) and (7).

Lemma 4. For any CR J obtained from an interactive communication F,

lim
n→∞

1

n

∑
B∈B

λ∗BH(J|Xn
Bc ,F) = 0.
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Proof: Fix an ε > 0. We have for all sufficiently large n, by Fano’s inequality,

1

n

∑
B∈B

λ∗BH(J|Xn
Bc ,F) ≤ 1

n

∑
B∈B

λ∗B (h(ε) + εH(Xn
Bc ,F))

≤ 1

n

∑
B∈B

λ∗B (h(ε) + εH(Xn
M,F))

=
1

n

∑
B∈B

λ∗B (h(ε) + εH(Xn
M))

=
1

n

∑
B∈B

λ∗B (h(ε) + nεH(XM))

≤ (2m − 2) [h(ε) + εH(XM)] (10)

where h(.) is the binary entropy function, and (10) follows from the fact that, by definition, λ∗B ≤ 1 and |B|= 2m−2.

Note that the expression in (10) goes to 0 with ε, since h(ε)→ 0 as ε→ 0, and H(XM) ≤ log(
∏m
j=1|Xj |).

The last lemma we need, stated without proof, is a special case of [4, Lemma B.1].

Lemma 5 ([4], Lemma B.1). For an interactive communication F we have

H(F) ≥
∑
B∈B

λ∗BH(F|Xn
Bc).

With these lemmas in hand, we can proceed to the proof of Theorem 2.

Proof of Theorem 2: The proof is done in two parts. In the first part, we prove that RCI ≥ CI(XM)− I(XM).

In the second part, we show that RSK ≥ RCI.

Part I: RCI ≥ CI(XM)− I(XM)

The idea is to show that I(XM) +RCI is an achievable CI rate, so that CI(XM) ≤ I(XM) +RCI.

Fix an ε > 0. By the definition of RCI, for all sufficiently large n, there exists an interactive communication

F satisfying 1
n log|F| ≤ RCI + ε/2 and a CR J such that L = (J,F) is a CI. We will show that 1

nH(J,F) ≤

I(XM) + RCI + ε for all sufficiently large n. This, by Definition 5, shows that I(XM) + RCI is an achievable CI

rate.

Setting L = (J,F) in Lemma 3, we obtain

1

n

[
H(J,F)−

∑
B∈B

λ∗BH(F|Xn
Bc)

]
− I(XM) =

1

n

[∑
B∈B

λ∗BH(J|Xn
Bc ,F)− I(Xn

M|J,F)

]

≤ ε/2, (11)

where (11) follows from Lemma 4. Re-arranging, we get

1

n
H(J,F) ≤ I(XM) +

1

n

∑
B∈B

λ∗BH(F|Xn
Bc) + ε/2

≤ I(XM) +
1

n
H(F) + ε/2
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the second inequality coming from Lemma 5. Finally, using the fact that 1
nH(F) ≤ 1

n log|F| ≤ RCI + ε/2, we see

that
1

n
H(J,F) ≤ I(XM) +RCI + ε

which is what we set out to prove.

Part II: RSK ≥ RCI

Fix ε > 0. From the definition of RSK , there exist an interactive communication F and an SK K obtained from

F such that, for all sufficiently large n, 1
n log|F| ≤ RSK + ε and 1

nH(K) ≥ I(XM) − ε. We wish to show that

(K,F) is a CI, so that by Definition 6, we would have RSK ≥ RCI.

Setting L = (K,F) in Lemma 3, we have for all sufficiently large n,

1

n
I(Xn

M|K,F) = I(XM)− 1

n
H(K,F) +

1

n

∑
B∈B

λ∗BH(F|Xn
Bc) +

1

n

∑
B∈B

λ∗BH(K|Xn
Bc ,F)

≤ I(XM)− 1

n
H(K|F) + ε (12)

≤ I(XM)− 1

n
H(K) + ε+ ε (13)

≤ 3ε, (14)

where (12) follows from Lemmas 4 and 5, (13) follows from the fact that I(K; F) ≤ ε, while (14) is due to the

fact that 1
nH(K) ≥ I(XM)− ε. Thus, by Definition 4, (K,F) is a CI.

An issue with our Theorem 2 is that the bounds are difficult to evaluate explicitly, as we do not have a computable

characterization of CI(XM). In addition to that, we do not know if the lower bounds of Theorem 2 are in general

tight, in the sense of there being matching upper bounds. For the special case of the two-terminal model, Theorem 3

of [8] shows that the bound on RSK is tight (albeit under a weaker notion of SK, as explained in Footnote 3).

In the general multiterminal model, with m ≥ 3, the best known upper bound on RSK is the minimum rate of

communication for omniscience, RCO. In the following section, we identify a large class of sources where our lower

bound equals RCO, i.e., the sources are RSK-maximal.

IV. RSK-MAXIMALITY IN UNIFORM HYPERGRAPH PIN MODELS

This section focuses on a special class of sources called the PIN model, introduced in [5] and [6]. A broad class

of PIN models defined on uniform hypergraphs (which is a generalization of the PIN models of [5] and [6]) is

identified to be RSK-maximal in this section. Briefly, a hypergraph PIN model is defined on an underlying hypergraph

H = (V, E) with V =M, the set of m terminals of the model, and E being a multiset of hyperedges, i.e., subsets

of V .5 For a hyperedge e having ` copies in the multiset E , we represent the different copies as e1, e2, . . . , e`.

To keep the notation simple, if a hyperedge e has only one copy in E , we simply represent it as e instead of e1.

Unless otherwise stated, we will assume that each hyperedge in E has only one copy. For n ∈ N, we define E(n) to

be the multiset of hyperedges formed by taking n copies of each element of the multiset E . Associated with each

5Note that we allow E to contain multiple copies of a hyperedge. In the graph theory literature, such a hypergraph is sometimes referred to
as a “multi-hypergraph”.
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hyperedge e ∈ E(n) is a Bernoulli(1/2) random variable ξe; the ξes are all mutually independent. With this, the

random variables Xn
i , i ∈ M, are defined as Xn

i = (ξe : e ∈ E(n) and i ∈ e). When every e ∈ E satisfies |e| = t,

we call H a t-uniform hypergraph. We will show that any Type S uniform hypergraph PIN model is RSK-maximal.

Theorem 6. For a Type S PIN model defined on an underlying t-uniform hypergraph H = (V, E), we have

CI(XM) = CIW (XM) = H(XM), and hence, RSK = RCO = m−t
m−1 |E|.

Type S PIN models defined on t-uniform hypergraphs do indeed exist, as we will see in Section VI. Also, it

is possible to efficiently determine if a given source XM (not necessarily a PIN model) is Type S; a strongly

polynomial-time algorithm for this has been given by Chan et al. [12]. In Section VI, we present another useful,

but inefficient, test for deciding the Type S property.

The proof of Theorem 6 will require a technical lemma which we state below.

Lemma 7. For any t-uniform hypergraph PIN model and any function L of Xn
M we have

m∑
i=1

I(Xn
i ; L) ≤ tH(L). (15)

The lengthy proof of this lemma is deferred to Appendix A.

Proof of Theorem 6: Observe that λ(S)
B = 1

m−1 , whenever |B| = m− 1 and λ(S)
B = 0, otherwise. Hence, for

any Type S source Xn
M, we have

I(Xn
M|L) ≥ H(Xn

M|L)− 1

m− 1

m∑
i=1

H(Xn
M\{i}|X

n
i ,L) (16)

using (6) and (7). Now assume that XM arises from a PIN model defined on a t-uniform hypergraph H = (V, E),

and consider any function L of Xn
M. This allows us to further simplify (16):

I(Xn
M|L) ≥ H(Xn

M)−H(L)− 1

m− 1

m∑
i=1

[H(Xn
M)−H(Xn

i )−H(L|Xn
i )]

=
n(t− 1)|E|
m− 1

−H(L) +
1

m− 1

m∑
i=1

H(L|Xn
i ) (17)

=
n(t− 1)|E|
m− 1

− 1

m− 1

[
m∑
i=1

I(Xn
i ; L)−H(L)

]

=
n(t− 1)

m− 1

(
|E|− 1

n
H(L)

)
− 1

m− 1

[
m∑
i=1

I(Xn
i ; L)− tH(L)

]

≥ n(t− 1)

m− 1

(
|E|− 1

n
H(L)

)
, (18)

the equality (17) using the facts that H(Xn
M) = n|E| and

∑m
i=1H(Xn

i ) = nt|E|, and (18) following from Lemma 7.

We will now compute CI(XM) using Proposition 1. The upper bound gives us CI(XM) ≤ |E|, as H(XM) = |E|.

For the lower bound, let L be any CIW so that for any ε > 0, we have 1
n I(Xn

M|L) < (t−1)ε
(m−1) for all sufficiently large

n. The bound in (18) thus yields 1
nH(L) > |E|−ε for all sufficiently large n. Hence, it follows that CIW (XM) ≥ |E|.

From the upper and lower bounds in Proposition 1, we then obtain CIW (XM) = CI(XM) = H(XM).
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Now from Theorem 2 we have RSK ≥ CI(XM)− I(XM). Hence, we have

RSK ≥ |E|−I(XM) = H(XM)− I(XM) = RCO, (19)

where the last equality is from (2). But we also have RSK ≤ RCO, as pointed out in Section II, which proves that

RSK = RCO.

To obtain the exact expression for RCO, we note that by (2) and (4), RCO = H(XM)−∆(S) = m
m−1H(XM)−

1
m−1

∑m
i=1H(Xi). This simplifies to the expression stated in the theorem using the facts (already mentioned above)

that H(XM) = |E| and
∑m
i=1H(Xi) = t|E|.

It turns out that for PIN models on graphs (i.e., t = 2), the Type S condition is also necessary for RSK-maximality.

It is possible that this holds for PIN models on t-uniform hypergaphs (with t ≥ 3) as well, but we do not have a

proof for this yet.

Theorem 8. A PIN model defined on a graph is RSK-maximal iff it is Type S.

We will prove the necessity of the Type S condition by showing that any graph PIN model that is not Type S

has an SK-capacity-achieving protocol of communication rate strictly less than RCO. To do this, we need a few

preliminaries. Consider a graph G = (V, E) and define G(n) = (V, E(n)) for any positive integer n. The spanning

tree packing number of G(n), denoted by σ(G(n)), is the maximum number of edge-disjoint spanning trees of G(n).

It is a fact that lim
n→∞

1

n
σ(G(n)) exists (see [6, Proposition 4]); we denote this limit by σ(G) and call it the spanning

tree packing rate of the graph G. It was shown in [6, Theorem 5] that for a PIN model on G, we have C(M) = σ(G).

Therefore, by (2) we have RCO = H(XM)− σ(G) = |E| − σ(G). We also have the following lemma, the proof of

which is given in Appendix B.

Lemma 9. For a PIN model defined on a graph G, we have RSK ≤ (m− 2)σ(G).

Proof of Theorem 8: The “if” part follows from Theorem 6. For the “only if” part, consider a PIN model on

G that is not of Type S. Using the fact that SK capacity equals the spanning tree packing rate, we then have via

(4)

σ(G) = C(M) < ∆(S) =
|E|

m− 1
.

Therefore, |E| > (m − 1)σ(G), or equivalently, |E|−σ(G) > (m − 2)σ(G). Since RCO = |E|−σ(G), we obtain

RCO > RSK via Lemma 9.

It is natural to ask at this point whether all Type S sources (not necessarily PIN models) are RSK-maximal. The

answer turns out to be “No”, as shown by the following example.

Example IV.1. Let W be a Ber(p) rv, for some p ∈ [0, 1]: Pr[W = 1] = 1− Pr[W = 0] = p. Let X1, . . . , Xm be

random variables that are conditionally independent given W , with

Pr[Xi = 01|W = 0] = 1− Pr[Xi = 00|W = 0] = 0.5
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and

Pr[Xi = 11|W = 1] = 1− Pr[Xi = 10|W = 1] = 0.5

for i = 1, 2, . . . ,m. Denote by h(p) the binary entropy of p.

It is easy to check that H(XA) = |A| + h(p) for all A ⊆ M, and H(Xi|Xj) = 1 for all distinct i, j ∈ M.

Therefore, all partitions P of M satisfy ∆(P) = h(p), and hence, I(XM) = h(p). In particular, XM defines a

Type S source. Furthermore, using (2), we have RCO = m.

We now show that RSK < RCO. Consider a Slepian-Wolf code (see [27, Section 10.3.2]) of rate H(X1|X2) = 1

for terminal 1. All terminals can recover Xn
1 since H(X1|Xi) = 1 for all i ∈ {2, 3, · · · ,m}. Then, using the

balanced coloring lemma [3, Lemma B3] on Xn
1 , an SK of rate H(X1) − H(X1|X2) = h(p) can be obtained.

Hence, RSK ≤ 1 < m = RCO.

In fact, there exist non RSK-maximal sources with S being a unique minimizer for (4). We provide one such

example in Appendix C.

V. OMNIVOCALITY: WHEN IS IT NECESSARY?

It is a well-established fact (see [1], [2]) that to generate a maximal-rate SK within a two-terminal source model,

it is enough for only one terminal to communicate.6 So it is natural to ask whether this fact extends to the general

multiterminal setting. In other words, for m ≥ 3, is there always an SK generation protocol involving m−1 or fewer

terminals communicating that achieves SK capacity? If not, can we identify a class of sources where omnivocality,

i.e., all terminals communicating, is required to achieve SK capacity? This section addresses these questions. The

main result of this section says that if a source is strict Type S, then omnivocality is required for achieving SK

capacity.

Theorem 10. For a strict Type S source on m ≥ 3 terminals, omnivocal communication is necessary for achieving

SK capacity.

There indeed exist sources which are strict Type S. We give a few examples of such sources in Section VI.

Theorem 10 gives a sufficient condition for identifying sources where omnivocality is necessary to generate a

maximal-rate SK. The next result shows that the condition is also necessary when m = 3, i.e., for any source on

3 terminals which is not strict Type S, there always exists a non-omnivocal key generation protocol that leads to

SK capacity.

Theorem 11. In the three-terminal source model, omnivocal communication is necessary for achieving SK capacity

iff the singleton partition S is the unique minimizer for I(XM) in (4).

6To be precise, the results in [1] and [2] are based on a weaker notion of secrecy, where in Definition 2, the condition I(K;F) ≤ ε is replaced
by 1

n
I(K;F) ≤ ε. However, it can be shown that one terminal communicating suffices to achieve SK capacity for m = 2, in the stronger

sense as in Definition 2. Terminal 1 uses a Slepian-Wolf code of rate H(X1|X2) to communicate Xn
1 to terminal 2. Both terminals now use

a balanced coloring (see [3, Lemma B.3]) on Xn
1 to get a strong SK of rate I(X1;X2) = I(X1, X2).
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A conjecture was made in [11] that the necessity of omnivocality implies a strict Type S source for any m ≥ 3.

It turns out that the conjecture is incorrect. Chan et al. have found an explicit example [12, Example C.1] of a

non-strict Type S PIN model on m > 3 terminals that requires omnivocality to achieve SK capacity. For ease

of reference, we reproduce this example in Appendix D. Theorem 5 in [13] indicates the existence of other such

examples.

We now turn to the proofs of Theorems 10 and 11. We prove the former theorem first. The main technical result

used in the proof is the SK capacity with silent terminals by Gohari and Anantharam in [7, Theorem 6]. More

precisely, suppose we restrict ourselves to SK generation protocols where, only an arbitrary subset of terminals

T ⊂M is allowed to communicate. We denote the maximum rate of SK that can be generated by such protocols

by IT (XM). Then we have7

Theorem 12 (Theorem 6, [7]). For any T ⊂M, IT (XM) = H(XT )−R(min)
T , where R(min)

T = min
R∈RT

∑
i∈T

Ri, with

RT =

{
R = (Ri, i ∈ T ) :

∑
i∈B∩T

Ri ≥ H(XB∩T |XBc), ∀B (M, B ∩ T 6= ∅
}
. (20)

Note that if I(XM) > IT (XM) for all T ⊂M of size |T | = m−1, then omnivocality is necessary for achieving

SK capacity. Thus, our approach for showing that omnivocal communication is needed in certain cases is to use

Theorem 12 to prove that I(XM) > IT (XM) for all (m − 1)-subsets T ⊂ M. For this, we will need a lower

bound on R
(min)
T when |T | = m − 1. To prove this bound, we make use of a simpler characterization (than that

given in Theorem 12) of the rate region RT when |T | = m− 1.

Lemma 13. Let T =M\{u} for some u ∈M. The rate region RT is the set of all points (Ri, i ∈ T ) such that∑
i∈B

Ri ≥ H(XB |XT\B) ∀B ( T,B 6= ∅, and (21)

∑
i∈T

Ri ≥ H(XT |Xu).

Proof: Observe thatRT is defined by constraints on sums of the form
∑
i∈B′ Ri for non-empty subsets B′ ⊆ T .

When B′ = T , the constraint is simply
∑
i∈T Ri ≥ H(XT |Xu).

Now, consider any non-empty B′ ( T . From Theorem 12, we see that constraints on
∑
i∈B′ Ri arise as constraints

on
∑
i∈B∩T Ri in two ways: when B = B′ and when B = B′∪{u}. Thus, we have two constraints on

∑
i∈B′ Ri:∑

i∈B′
Ri ≥ H(XB′ |XM\B′),

7Theorem 6 of [7] was based on the weaker notion of secrecy pointed out in Footnote 6. However, it can be easily verified that the result is
still valid for the stronger notion of secrecy as in Definition 2.
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obtained when B = B′, and ∑
i∈B′

Ri ≥ H(XB′ |XT\B′),

obtained when B = B′ ∪ {u}. The latter constraint is clearly stronger, so we can safely discard the former.

We can now prove the desired lower bound on R(min)
T .

Lemma 14. Let m ≥ 3 be given. For T ⊂M with |T | = m− 1, we have

R
(min)
T ≥ 1

m− 2

∑
j∈T

H(XT\{j}|Xj).

Proof: Consider any T ⊂ M with |T | = m − 1. For each j ∈ T , let Bj = T \ {j}. Now, let (Ri, i ∈ T ) be

any point in RT . Applying (21) with B = Bj , we get∑
i∈Bj

Ri ≥ H(XT\{j}|Xj),

for each j ∈ T . Summing over all j ∈ T , we obtain∑
j∈T

∑
i∈Bj

Ri ≥
∑
j∈T

H(XT\{j}|Xj). (22)

Exchanging the order of summation in the double sum on the left-hand side (LHS) above, we have∑
j∈T

∑
i∈Bj

Ri =
∑
i∈T

∑
j∈Bi

Ri =
∑
i∈T

(m− 2)Ri = (m− 2)
∑
i∈T

Ri.

Putting this back into (22), we get ∑
i∈T

Ri ≥
1

m− 2

∑
j∈T

H(XT\{j}|Xj).

Since this holds for any point (Ri, i ∈ T ) ∈ RT , the lemma follows.

For the proof of Theorem 10, we need some convenient notation. For T ⊂ M, |T | = m − 1, define ∆T (S) ,

1
m−2 [

∑
i∈T H(Xi)−H(XT )].

Lemma 15. For m ≥ 3 terminals, if the singleton partition S is the unique minimizer for I(XM), then ∆T (S) <

∆(S) for all T ⊂M with |T | = m− 1.

Proof: For any u ∈ M, consider T = M \ {u}. Using ∆(S) = 1
m−1 [

∑m
i=1H(Xi) − H(XM)] and the

definition of ∆T (S) above, it is easy to verify the identity

m−1
m−2∆(S) = ∆T (S) + 1

m−2I(Xu;XT ).

Re-arranging the above, we obtain

∆T (S)−∆(S) = 1
m−2 [∆(S)− I(Xu;XT )]
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= 1
m−2 [∆(S)−∆(P)], (23)

where P is the 2-cell partition {{u}, T} of M. By assumption, the expression in (23) is strictly negative.

With this, we are ready to prove Theorem 10.

Proof of Theorem 10: We will show that I(XM) > IT (XM) for any T ⊂M with |T | = m− 1. First, note

that since S is, by assumption, a minimizer for (4), we have I(XM) = ∆(S). Next, by Theorem 12 and Lemma 14,

we have

IT (XM) ≤ H(XT )− 1
m−2

∑
i∈T

H(XT\{i}|Xi)

= 1
m−2

[
(m− 2)H(XT )−

∑
i∈T

[H(XT )−H(Xi)]

]
= ∆T (S).

Therefore, IT (XM) ≤ ∆T (S) < ∆(S) = I(XM), the second inequality coming from Lemma 15.

We conclude this section with the proof of Theorem 11. Note that when m = 3, (4) reduces to

I(XM) = min{I(X{1,2};X3), I(X{1,3};X2), I(X{2,3};X1), ∆(S)}, (24)

and so, the unique minimizer condition is equivalent to

∆(S) < min{I(X{1,2};X3), I(X{1,3};X2), I(X{2,3};X1)}.

Note also that ∆(S) = 1
2 [H(X1) +H(X2) +H(X3)−H(X{1,2,3})].

Proof of Theorem 11: The “if” part is by Theorem 10. For the “only if” part, suppose that ∆(S) ≥

min{I(X{1,2};X3), I(X{1,3};X2), I(X{2,3};X1)}. Then, ∆(S) is either (a) greater than or equal to at least two

of the three terms in the minimum, or (b) greater than or equal to exactly one term. Up to symmetry, it suffices to

distinguish between two cases:

Case I: ∆(S) ≥ max{I(X{1,2};X3), I(X{1,3};X2)}

Case II: min{I(X{1,3};X2), I(X{2,3};X1)} > ∆(S) ≥ I(X{1,2};X3)

In each case, we demonstrate a capacity-achieving communication in which at least one terminal remains silent.

We deal with Case I first. Observe that ∆(S) can be written as 1
2 [I(X1;X2)+I(X{1,2};X3)]. Thus, the assumption

∆(S) ≥ I(X{1,2};X3), upon some re-organization, yields I(X1;X2) ≥ I(X{1,2};X3), i.e.,

I(X1;X2) ≥ I(X1;X3) + I(X2;X3|X1). (25)

Similarly, using the identity ∆(S) = 1
2 [I(X1;X3) + I(X{1,3};X2)] in the assumption ∆(S) ≥ I(X{1,3};X2), we

obtain I(X1;X3) ≥ I(X{1,3};X2), i.e.,

I(X1;X3) ≥ I(X1;X2) + I(X2;X3|X1). (26)
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The equalities in (25) and (26) can simultaneously hold iff

I(X1;X2) = I(X1;X3) and

I(X2;X3|X1) = 0.
(27)

From (27), it is not hard to deduce that the quantities I(X{1,2};X3), I(X{1,3};X2) and ∆(S) are all equal to

I(X1;X2), and I(X{2,3};X1) = I(X1;X2) + I(X1;X3|X2) ≥ I(X1;X2). In particular, I(X{1,2,3}) = I(X1;X2).

From the first equality in (27), we also have H(X1|X2) = H(X1|X3). Now, it can be shown by a standard

random binning argument that there exists a communication from terminal 1 of rate H(X1|X2) = H(X1|X3)

such that Xn
1 is a CR. It then follows from the “balanced coloring lemma” [3, Lemma B.3] that an SK rate of

H(X1) − H(X1|X2) = I(X1;X2) is achievable. Thus, the SK capacity, I(X{1,2,3}) = I(X1;X2), is achievable

by a communication in which terminals 2 and 3 are both silent.

Now, consider Case II, in which we obviously have I(X{1,2,3}) = I(X{1,2};X3). The idea here is to show that

a valid communication of rate H(X{1,2}|X3) exists in which terminal 3 is silent and (Xn
1 , X

n
2 ) is a CR. Given

this, an application of [3, Lemma B.3] shows that an SK rate of H(X{1,2}) −H(X{1,2}|X3) = I(X{1,2};X3) is

achievable. Thus, there is a I(X{1,2,3})-achieving communication in which terminal 3 is silent.

To show that the desired communication exists, we argue as follows. For i = 1, 2, let Ri be the rate at which

terminal i communicates. A standard random binning argument shows that an achievable (R1, R2) region, with

terminal 3 silent, for a communication intended to allow recoverability of (Xn
1 , X

n
2 ) as CR at all terminals is given

by
R1 ≥ H(X1|X2), R2 ≥ H(X2|X1),

R1 +R2 ≥ H(X{1,2}|X3).
(28)

Now, using the assumption in Case II that ∆(S) ≥ I(X{1,2};X3), we will prove that the inequality

H(X1|X2) +H(X2|X1) ≤ H(X{1,2}|X3) (29)

holds. It would then follow from (28) that there exist achievable rate pairs (R1, R2) with R1 +R2 = H(X{1,2}|X3),

thus completing the proof for Case II.

So, let us prove (29). We have ∆(S) = 1
2 [H(X1) + H(X2) + H(X3) − H(X{1,2,3})] and I(X{1,2};X3) =

H(X{1,2}) + H(X3) − H(X{1,2,3}). Using these expressions in the inequality ∆(S) ≥ I(X{1,2};X3), and re-

arranging terms, we obtain

1

2
[H(X1) +H(X2)− 2H(X{1,2})] ≥

1

2
[H(X3)−H(X{1,2,3})],

which is equivalent to (29). This completes the proof of the theorem.

VI. FINDING THE MINIMIZING PARTITION

The condition that the singleton partition be a unique minimizer for I(XM) plays a key role in the results of

Section IV and V. Thus, it would be very useful to have a way of checking whether this condition holds for a
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given source XM, m ≥ 3. The brute force method of comparing ∆(S) with ∆(P) for all partitions P with at least

two parts requires an enormous amount of computation. Indeed, the number of partitions of an m-element set is

the mth Bell number, Bm, an asymptotic estimate for which is (logw)1/2wm−wew, where w = m
logm [1 + o(1)] is

the solution to the equation m = w log(w+ 1) [28, Example 5.4]. The proposition below brings down the number

of comparisons required for verifying the unique minimizer condition to a “mere” 2m −m− 2.

For any non-empty subset B = {b1, b2, . . . , b|B|} ofM with |B| < m, define PB , {Bc, {b1}, {b2}, . . . , {b|B|}}

to be the partition of M containing |B|+1 cells, of which |B| cells are singletons comprising the elements of B.

Note that if |B| = m− 1, then PB = S.

Proposition 16. For m ≥ 3, let Ω = {B ⊂M : 1 ≤ |B| ≤ m− 2}. The singleton partition S is

(a) a minimizer for I(XM) iff ∆(S) ≤ ∆(PB) ∀B ∈ Ω;

(b) the unique minimizer for I(XM) iff ∆(S) < ∆(PB) ∀B ∈ Ω.

There is in fact a strongly polynomial-time algorithm (see [12]) for determining the minimizing partition of (4).

However, Proposition 16 is better suited to the purposes of our work.

Proof of Proposition 16: We prove (b); for (a), we simply have to replace the ‘>’ in (30) below with a ‘≥’.

The “only if” part is obvious. For the “if” part, suppose that ∆(S) < ∆(PB) for all B ⊂M with 1 ≤ |B| ≤ m−2.

Consider any partition P of M, P 6= S, with |P| ≥ 2. We wish to show that ∆(P) > ∆(S).

The following identity can be obtained from the definition of ∆(P) by some re-grouping of terms:∑
A∈P
|Ac|∆(PAc) = (|P|−1)[∆(P) + (m− 1)∆(S)].

Thus, we have

∆(P) =
1

|P|−1

∑
A∈P
|Ac|∆(PAc)− (m− 1)∆(S)

>
1

|P|−1

∑
A∈P
|Ac|∆(S)− (m− 1)∆(S) (30)

= m∆(S)− (m− 1)∆(S) = ∆(S). (31)

The inequality in (30) is due to the fact that at least one A ∈ P is not a singleton cell, so that PAc 6= S, and hence,

∆(PAc) > ∆(S) by assumption. To verify the first equality in (31), observe that
∑
A∈P |Ac|=

∑
A∈P

∑
i/∈A 1 =∑m

i=1

∑
A∈P:i/∈A 1 = m(|P|−1).

Next, we apply Proposition 16 to some interesting special cases. Random variables X1, X2, . . . , Xm, m ≥ 2, are

called isentropic if H(XA) = H(XB) for any pair of non-empty subsets A,B ⊆ M having the same cardinality.

Equivalently, X1, . . . , Xm are isentropic if, for all non-empty A ⊆ M, the entropy H(XA) depends only on |A|.

As a result, for disjoint subsets A,B ⊆M, conditional entropies of the form H(XA|XB) depend only on |A| and

|B|.

Corollary 17. Isentropic random variables form a Type S source.
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The proof involves checking that ∆(S) ≤ ∆(PB) holds for all B ∈ Ω, so that the result follows from

Proposition 16(a). We defer the details to Appendix E.

There are many examples of isentropic random variables. For example, exchangeable random variables (cf. [29])

are isentropic. (Random variables X1, X2, . . . , Xm are exchangeable if for every permutation Π : M → M,

the distribution of XΠ(1), XΠ(2), . . . , XΠ(m) remains unchanged.) A more relevant example for us is the PIN

model defined on the complete t-uniform hypergraph on m vertices, Km,t. More precisely, the complete t-uniform

hypergraph Km,t = (V, E) has V =M, and exactly one copy of every t-subset (i.e., subset of cardinality t) of M

belongs to E . It is straightforward to check that the random variables X1, X2, . . . , Xm in the PIN model on Km,t

are isentropic, and hence the source is Type S. In fact, we will show below that this PIN model is strict Type S,

and therefore it satisfies the hypothesis of Theorem 10. For this and other results proved in the rest of this section,

it will be useful to state a specialization of Proposition 16 to hypergraph PIN models.

In the case of hypergraph PIN models, for any B ∈ Ω, ∆(PB) can be written as ∆(PB) =
∑
e∈E [PB(e)−1]

|PB |−1 ,

where PB(e) is the number of parts of the partition PB intersecting with e. On the other hand, ∆(S) = (t−1)|E|
m−1 .

Hence, Proposition 16 can be rewritten for the PIN model as

Corollary 18. For a PIN model described on a t-uniform hypergraph, the singleton partition S is

(a) a minimizer for I(XM) iff (t−1)|E|
m−1 ≤

∑
e∈E [PB(e)−1]

|PB |−1 ∀B ∈ Ω;

(b) the unique minimizer for I(XM) iff (t−1)|E|
m−1 <

∑
e∈E [PB(e)−1]

|PB |−1 ∀B ∈ Ω.

Corollary 19. The PIN model on Km,t is strict Type S.

The proof is a relatively straightforward matter of checking that the condition in Corollary 18(b) holds — see

Appendix E for the details.

We next give an example of a non-isentropic source which is strict Type S. Consider the PIN model defined on

a k-regular k-edge-connected graph (t = 2). Formally, a graph G = (V, E) is called k-regular if every vertex in

v ∈ V has degree k, i.e., there are exactly k edges in E which are incident with the vertex v. A graph is called

k-edge-connected if deletion of any k-subset of E does not disconnect the graph, but there exists at least one

(k + 1)-subset of E the removal of which disconnects the graph.

Corollary 20. A PIN model on any k-regular, k-edge-connected graph is strict Type S.

The proof is again an application of Corollary 18(b); the details are in Appendix E.

The m-cycle Cm is a special case of a k-regular and k-edge-connected graph, with k = 2. Formally, the m-cycle

Cm = (V, E), is a graph with V = M and E =

(⋃m−1
i=1 {{i, i + 1}}

)⋃
{{1,m}}. The complete graph Km,2 is

another example of a k-regular k-edge-connected graph with k = m− 1. There is in fact a broad class of k-regular

k-edge-connected graphs called the Harary graphs (see [30] and [31]) of which Cm and Km,2 are special cases.

So far, the only example we have seen of a strict Type S source on a t-uniform hypergraph, with t > 2, has

been the PIN model on the complete t-uniform hypergraph, Km,t. It is natural to ask whether other classes of PIN

models on t-uniform hypergraphs (t > 2) exist which are strict Type S . The answer is ‘yes’. We will construct
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a class of uniform hypergraphs with t = 3, such that the PIN models on them are strict Type S. To do this,

we introduce the Steiner triple system (STS) defined on the set M. An STS on M is a collection of 3-subsets

of M, which we will denote by STS(M), such that any pair of elements from M is a subset of exactly one

element of STS(M). A trivial example of an STS is m = 3 and STS(M) = {{1, 2, 3}}. It is a fact that such

collections indeed exist as long as gcd(m − 2, 6) = 1 (see [32, Theorem 2.10]). For example, consider m = 7.

Then, STS(M) = {{1, 2, 4}, {2, 3, 5}, {3, 4, 6}, {1, 5, 6}, {2, 6, 7}, {1, 3, 7}, {4, 5, 7}}. Now, consider the 3-uniform

hypergraphs HSTS = (M,STS(M)), for all m such that STS(M) exists. We will show that a PIN model defined

on HSTS with m > 3 is strict Type S.

Corollary 21. A PIN model on HSTS with m > 3 is strict Type S .

Again, the proof of the corollary is given in Appendix E.

Corollaries 19, 20 and 21 show that the PIN models on Km,t, k-regular k-edge-connected graphs, and HSTS

satisfy the hypotheses of both Theorems 6 and 10. Thus, for these sources to achieve SK capacity, an omnivocal

communication is required. Also, the minimum rate of communication required is RCO. Hence, in terms of public

communication, these are the worst-case sources.

VII. CONCLUDING REMARKS

This paper dealt with two important aspects of the public communication required to generate maximal-rate SKs

in the multiterminal source model, one being the communication complexity RSK, and the other being omnivocality.

By extending the arguments in [8] to the setting of multiple terminals, we derived a lower bound on RSK in terms

of an information-theoretic quantity called the (multiterminal) interactive common information. In the two-terminal

case, it was shown in [8] that this bound is always tight, albeit under a weaker notion of secrecy. Proving such a

result for the general multiterminal case remains an open problem.

The minimum rate of communication for omniscience, RCO, is still the best known upper bound on RSK. We

proved that uniform hypergraph PIN models satisfying a certain “Type S” condition are RSK-maximal. In other

words, for these PIN models, RSK is equal to RCO. It was also shown via counterexamples that the Type S

condition is not sufficient to guarantee RSK-maximality for an arbitrary multiterminal source model. A complete

characterization of RSK-maximal sources is an interesting open problem.

It should be pointed out that neither our lower bound nor the RCO upper bound takes into account the fact that

the public communication is allowed to be interactive. It is possible that incorporating this information somehow

leads to better bounds on RSK.

The problem of characterizing communication complexity in the multiterminal source model is the stepping stone

towards two bigger problems of interest. One is to characterize the communication rate region required to achieve

SK capacity. The second problem is that of determining the minimum rate of communication required to generate

an SK of any arbitrary rate less than or equal to SK capacity. Both these questions appear to be difficult to answer

at this point. In fact, these questions are still open for the two-terminal case. It should be pointed out that these
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questions have been answered for a model similar to the multiterminal source model in [18]. However, that model

has severe constraints on the eavesdroppers, which makes it somewhat less interesting.

On the issue of omnivocality, we proved that for all strict Type S sources, omnivocality is needed to achieve SK

capacity. The converse of this fact, i.e., omnivocality is required only if the source is strict Type S turns out to be

true for three terminals, but no longer holds for four or more terminals. A more general problem along these lines

is, given an arbitrary multiterminal source model, what is the minimum number of terminals that must participate

in a public communication to generate a maximal-rate SK for the entire set of terminals? The answer to the “dual”

of this problem, i.e., what is the maximum rate of SK that can be generated when a fixed number of terminals

remain silent, is already known from the work of Gohari and Anantharam [7].

APPENDIX A

PROOF OF LEMMA 7

First we state two lemmas which we will require for the proof.

Lemma 22. For independent random variables X ,Y and W , and any other random variable Z, we have

I(X;Z|W ) ≤ I(X;Z|W,Y ).

Proof. This follows by expanding I(X;Y,Z|W ) in two different ways using the chain rule, and noting that

I(X;Y |W ) = 0.

Lemma 23. For independent random variables X and Y , and any other random variable Z, we have

I(X;Z) + I(Y ;Z) ≤ I(X,Y ;Z).

Proof. By Lemma 22, we have I(X;Z) ≤ I(X;Z|Y ), and hence, I(X;Z) + I(Y ;Z) ≤ I(X;Z|Y ) + I(Y ;Z) =

I(X,Y ;Z).

We first show that it is enough to prove Lemma 7 for the complete t-uniform hypergraph PIN model Km,t

(refer to Section VI for details on Km,t) and the corresponding source Xn
M. Consider any t-uniform hypergraph

H = (V, E) with |V|= m and the corresponding source X̂n
M, and fix a function L of X̂n

M. For any t-subset e of

V , define r(e) to be the number of times it occurs in the multiset E , and call r = max
e⊂V:|e|=t

r(e). Now, construct a

new source as follows: To the multiset E(n) add n(r − r(e)) copies of each t-subset e of V . Associate with each

of these newly added subsets independent Ber(1/2) random variables, which are independent of the pre-existing

Ber(1/2) random variables as well. Observe that the source thus constructed is none other than Xnr
M . Moreover, we

clearly have
∑m
i=1 I(Xnr

i ; L) ≥
∑m
i=1 I(X̂n

i ; L), and hence it is enough to show that tH(L) ≥
∑m
i=1 I(Xnr

i ; L).

For the rest of proof we will take Xn
M to be the source described on Km,t. We also have I(Xn

M; L) = H(L)

from the fact that L is a function of Xn
M. We now show that the PIN model on Km,t satisfies

m∑
i=1

I((ξne : i ∈ e, e ∈ E); L) ≤ t I((ξne : e ∈ E); L), (32)
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where ξne represents the collection of the n ξe’s associated with the n copies of the hyperedge e in E(n).

For any i ∈M, let Ei denote the set of hyperedges containing i, so that the left-hand side of (32) can be expressed

as
∑m
i=1 I((ξne : e ∈ Ei); L). Now, we write Ei as a union of two disjoint sets E≥i and E≯i, i.e., Ei = E≥i

⋃̇
E≯i.

The set E≥i is the subset of Ei containing no terminals from {1, 2, . . . , i− 1}. The set E≯i is thus the subset of Ei
containing at least one terminal from {1, 2, . . . , i− 1}. Observe that we have |E≥i|=

(
m−i
t−1

)
for 1 ≤ i ≤ m− t+ 1

and |E≥i|= 0 for m− t+ 2 ≤ i ≤ m. Therefore,

m∑
i=1

I((ξne : e ∈ Ei); L)

= I ((ξne : e ∈ E≥1) ; L) +

m−t+1∑
i=2

[
I
((
ξne : e ∈ E≯i

)
; L
)

+ I
(

(ξne : e ∈ E≥i) ; L
∣∣∣ (ξne : e ∈ E≯i

))]

+

m∑
i=m−t+2

I ((ξne : e ∈ Ei) ; L)

≤ I ((ξne : e ∈ E≥1) ; L) +

m−t+1∑
i=2

I

(ξne : e ∈ E≥i) ; L
∣∣∣(ξne : e ∈

⋃
j≤i

E≯j
)+

m−t+1∑
i=2

I
((
ξne : e ∈ E≯i

)
; L
)

+

m∑
i=m−t+2

I ((ξne : e ∈ Ei) ; L) (33)

= I ((ξne : e ∈ E) ; L)︸ ︷︷ ︸
P

+

m−t+1∑
i=2

I
((
ξne : e ∈ E≯i

)
; L
)

︸ ︷︷ ︸
Q

+

m∑
i=m−t+2

I ((ξne : e ∈ Ei) ; L)︸ ︷︷ ︸
R

(34)

where (33) follows from Lemma 22. Note that for t = 2, (32) follows directly from (34): by virtue of Lemma 23,

we have Q + R ≤ P , so that the right-hand side (RHS) of (34) is at most 2P , as desired. However, the case of

t > 2 is not as simple and needs further work.

To achieve the RHS of (32), we require Q+R ≤ (t−1)P . We proceed by defining Q(i) = I
((
ξne : e ∈ E≯i

)
; L
)

for all 2 ≤ i ≤ m − t + 1, and thus, Q =
∑m−t+1
i=2 Q(i). Similarly, define R(i) = I ((ξne : e ∈ Ei) ; L) for all

m− t+ 2 ≤ i ≤ m, so that R =
∑m
i=m−t+2R(i). The key ideas are the following:

1) Expand each Q(i) using the chain rule into conditional mutual information terms of the form I(ξne ; L|· · ·),

and further condition them on additional ξnẽ s appropriately.

2) Allocate these conditional mutual information terms to appropriate R(i)s.

3) Use the chain rule to sum each R(i) and the terms allocated to it to obtain P .

Since the conditional mutual information term I(ξne ; L|· · ·) can only increase upon further conditioning on additional

ξnẽ s (by Lemma 22), we have Q+R ≤ (t− 1)P as required.

To proceed, we need to define a total ordering on the set E . We represent a hyperedge e as a t-tuple (i1i2 . . . it),

with the ijs, 1 ≤ j ≤ t, being the terminals which are contained in e, ordered according to i1 < i2 < . . . < it.

We will use ‘<’ to denote the lexicographic ordering of the t-tuples (hyperedges) in E . Furthermore, based on the

ordering ‘<’, we index the hyperedges of E as ej , 1 ≤ j ≤
(
m
t

)
, satisfying ei < ej iff i < j. As an example, Table

I illustrates the indexing of the hyperedges in K5,3.
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TABLE I: Indexing of the hyperedges in K5,3

Hyperedge Index
(123) 1
(124) 2
(125) 3
(134) 4
(135) 5
(145) 6
(234) 7
(235) 8
(245) 9
(345) 10

To proceed further, using the chain rule we expand each Q(i) into a sum of conditional mutual information terms

of the form Qe , I(ξne ; L|(ξnẽ : ẽ < e, ẽ ∈ E)) as follows:

Q(i) = I((ξne : e ∈ E≯i); L)

=
∑
e∈E≯i

I(ξne ; L|(ξnẽ : ẽ < e, ẽ ∈ E≯i))

≤
∑
e∈E≯i

I(ξne ; L|(ξnẽ : ẽ < e, ẽ ∈ E)) (35)

=
∑
e∈E≯i

Qe (36)

where (35) follows from Lemma 22. Hence, we have Q ≤
∑m−t+1
i=2

∑
e∈E≯i Qe. A total of

∑m−t+1
i=2

[(
m−1
t−1

)
−(

m−i
t−1

)]
= (t − 1)

(
m−1
t

)
Qe terms are generated. Next, each R(i) is allocated

(
m−1
t

)
terms Qej , 1 ≤ j ≤

(
m
t

)
,

satisfying i /∈ ej . This allocation procedure is explained in detail below and is also formalized in Algorithm 1. We add

a further conditioning on each Qej allocated to R(i) to make it Qej|i , I(ξnej ; L|(ξnẽ : ẽ < ej , ẽ ∈ E), (ξnẽ : ẽ ∈ Ei)).

Lemma 22 and the definition of Qej|i ensure that R(i) +
∑
j:i/∈ej Qej ≤ R(i) +

∑
j:i/∈ej Qej|i = P .

We now give a more detailed description of the allocation procedure. Construct a table T with rows indexed

by i = 2, 3, . . . ,m − t + 1 and the columns indexed by j = 1, 2, . . . ,
(
m
t

)
. This table records the availability (for

allocation) of a Qej from the expansion of Q(i) in (36). Initialize the table as follows: T (i, j) = 1 if a Qej came

from Q(i) in (36); else T (i, j) = 0. We carry out the allocation procedure on each R(i) in ascending order of i.

The procedure of allocation is as follows. The idea is to allocate the necessary Qej s to R(i) in ascending order

of j. Once an i and ej are fixed, we test whether i /∈ ej is satisfied. If not, we increment j by 1. If i /∈ ej is

satisfied, then the availability of Qej from Q(k), for all 2 ≤ k ≤ m − t + 1, is checked using the table T . The

smallest k which satisfies T (k, j) = 1 is chosen, and R(i) is allocated the Qej coming from that Q(k). The table

is then updated with T (k, j) = 0 to record that the Qej from that Q(k) is no longer available for allocation. We

then increment j by 1 and repeat the allocation procedure. Once all Qej s with i /∈ ej have been allocated to R(i),

we begin the allocation procedure for R(i+ 1). We formally summarize this allocation procedure in Algorithm 1.
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Algorithm 1
i = m− t+ 2, j = 1.
while i ≤ m do

if i /∈ ej then
k = 2.
while k ≤ m− t+ 1 do

if T (k, j) = 1 then
Choose the Qej coming from Q(k) in (36).
Add the additional conditioning to make it Qej|i .
Allocate this term to R(i).
T (k, j)← 0.
Break.
end if
if T (k, j) = 0 && k = m− t+ 1 then

Declare ERROR and halt.
end if
k ← k + 1.

end while
end if
j ← j + 1.
if j =

(
m
t

)
+ 1 then

i← i+ 1.
j ← 1.

end if
end while

The flow of Algorithm 1 for K5,3 is illustrated in Example A.1 further below. We now make the following

claims:

Claim 1. Algorithm 1 never terminates in ERROR.

Claim 2. Algorithm 1 exhausts all the Qe terms generated in (36).

Claim 1 ensures that each R(i), for all m− t+ 2 ≤ i ≤ m, is allocated all the Qej s satisfying i /∈ ej . Therefore,

using Claim 2, we have

Q+R =

m∑
i=m−t+2

R(i) +
∑
j:i/∈ej

Qej


≤

m∑
i=m−t+2

R(i) +
∑
j:i/∈ej

Qej|i

 = (t− 1)P.

This completes the proof of Lemma 7, modulo the proofs of Claims 1 and 2, which we give below.

Proof of Claim 1: ERROR is possible only if for some m− t+ 2 ≤ i ≤ m and for some e satisfying i /∈ e,

all the Qe terms generated in (36) have already been allocated. This is impossible as there are always enough Qes.

To see this, suppose e contains t− 1− p terminals from {m− t+ 2, . . . ,m}, i.e., there are p R(i)s requiring an

allocation of Qe. Since the hypergraph is t-uniform, e must contain p + 1 terminals from {1, 2, . . . ,m − t + 1}.

This implies that the total number of Qes generated in (36) is p. Therefore, we clearly have enough Qes for all
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R(i)s.

Proof of Claim 2: As discussed earlier, the total number of Qe terms generated in (36) is (t−1)
(
m−1
t

)
. Also,

the total number of Qe terms required by each R(i) is
(
m−1
t

)
. Therefore, using Claim 1, the claim follows.

Example A.1. We illustrate how Algorithm 1 proceeds for K5,3. Denote the hyperedges in E using 3-tuples, i.e.,

the hyperedge containing terminals 1, 2 and 3 is (123). The indexing of E is illustrated in Table I. So for this case

we have Q(2) = I(ξn(123), ξ
n
(124), ξ

n
(125); L) and Q(3) = I(ξn(123), ξ

n
(134), ξ

n
(135), ξ

n
(234), ξ

n
(235); L). Thus, (36) takes the

form

Q(2) ≤ I(ξn(123); L) + I(ξn(124); L|(ξne : e < (124)) + I(ξn(125); L|(ξne : e < (125)) (37)

Q(3) ≤ I(ξn(123); L) + I(ξn(134); L|(ξne : e < (134)) + I(ξn(135); L|(ξne : e < (135))

+ I(ξn(234); L|(ξne : e < (234)) + I(ξn(235); L|(ξne : e < (235)) (38)

Observe that R(4) and R(5) require four Qe terms each, and a total of eight Qe terms are in fact available from

(37) and (38). The table T is initialized as follows:

1 2 3 4 5 6 7 8 9 10

2 1 1 1 0 0 0 0 0 0 0

3 1 0 0 1 1 0 1 1 0 0

We will now illustrate a few of the allocations carried out by Algorithm 1. The algorithm begins with i = 4 and

j = 1 and Q(123) needs to be allocated to R(4). With k = 2 we see that T (k, 1) = 1, and hence we allocate Q(123)

coming from Q(2) to R(4). The table T is then updated as below.

1 2 3 4 5 6 7 8 9 10

2 0 1 1 0 0 0 0 0 0 0

3 1 0 0 1 1 0 1 1 0 0

Next we will illustrate the allocation of Q(123) to R(5), i.e., i = 5 and j = 1. The state of the table T just before

this step is shown below.

1 2 3 4 5 6 7 8 9 10

2 0 1 0 0 0 0 0 0 0 0

3 1 0 0 1 0 0 1 0 0 0

Setting k = 2, we see that T (k, 1) = 0. So, we move to k = 3, for which T (k, 1) = 1. Hence the Q(123) term

coming from Q(3) is allocated to R(5), and the table T is updated as below.

1 2 3 4 5 6 7 8 9 10

2 0 1 0 0 0 0 0 0 0 0

3 0 0 0 1 0 0 1 0 0 0

We give one last example of an allocation. Observe that e = (234) is the largest (in terms of the ordering on E)

hyperedge such that Qe needs to be allocated to R(5). We will now illustrate this step. This happens when i = 5

and j = 7. The updated table T just before this step is shown below.
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1 2 3 4 5 6 7 8 9 10

2 0 0 0 0 0 0 0 0 0 0

3 0 0 0 0 0 0 1 0 0 0

With k = 2, we see that T (k, 7) = 0. So set k = 3, and note that T (k, 7) = 1. So, we allocate to R(5) the

Q(234) term contributed by Q(3). Upon updating, the table T now has all entries to be 0. Observe that at this

point no other allocation is required, as the Qej s for j = 8, 9 and 10 are not required by R(5) since terminal 5

is contained in each of e8, e9 and e10. Thus Algorithm 1 successfully terminates. Finally, we rewrite (37) and (38)

with underbraces showing the R(i) term to which each Qe term was allocated by Algorithm 1.

Q(2) ≤ I(ξn(123); L)︸ ︷︷ ︸
R(4)

+ I(ξn(124); L|(ξne : e < (124))︸ ︷︷ ︸
R(5)

+ I(ξn(125); L|(ξne : e < (125))︸ ︷︷ ︸
R(4)

(39)

Q(3) ≤ I(ξn(123); L)︸ ︷︷ ︸
R(5)

+ I(ξn(134); L|(ξne : e < (134))︸ ︷︷ ︸
R(5)

+ I(ξn(135); L|(ξne : e < (135))︸ ︷︷ ︸
R(4)

+ I(ξn(234); L|(ξne : e < (234))︸ ︷︷ ︸
R(5)

+ I(ξn(235); L|(ξne : e < (235))︸ ︷︷ ︸
R(4)

(40)

It can be clearly seen from (39) and (40) that R(i), i = 4, 5, have each been allocated with all Qes with i /∈ e,

and no Qe is left unallocated.

APPENDIX B

THE PROOF OF LEMMA 9

Fix an n ∈ N and let {T1, T2, . . . , Tσ(n)} be a set of edge-disjoint spanning trees of G(n) of maximum cardinality

σ(n) := σ(G(n)). We will run Protocol 1 of [29] independently on each of the trees Tj , 1 ≤ j ≤ σ(n). For the sake

of completeness, we describe the protocol below.

Fix a spanning tree Tj , 1 ≤ j ≤ σ(n), and fix a specific edge e from the set of edges of Tj . Define ξ(Tj) := ξe,

where, as usual, ξe denotes the random variable associated with the edge e. For any vertex i ∈M, denote by dj(i)

the degree of the vertex i in the spanning tree Tj . For any vertex i satisfying dj(i) > 1, without loss of generality

we label the edges of Tj incident on it by e(1), e(2), . . . , e(d), where d = dj(i). The communication from terminal

i derived from Tj is FTj (i) := (ξe(1) ⊕ ξe(2), ξe(2) ⊕ ξe(3), . . . , ξe(d−1) ⊕ ξe(d)), where ⊕ denotes the modulo-2

sum. Let FTj =
(
FTj (1),FTj (2), . . . ,FTj (m)

)
, and let FTj denote the range of FTj . It is not hard to check the

following facts: Firstly, every terminal can recover ξ(Tj) from FTj . Secondly, I(FTj ; ξ(Tj)) = 0. Thirdly,

log|FTj |=
m∑
i=1

[dj(i)− 1] =

m∑
i=1

dj(i)−m = 2(m− 1)−m = m− 2, (41)

where we have used the fact that the number of edges in any spanning tree is m− 1.

To complete the proof, we show that this protocol has communication rate (m−2)σ(G) and achieves SK capacity.

Denote the entire communication (FT1
,FT2

, . . . ,FT
σ(n)

) by F and denote its range by F . Set K = (ξ(T1), ξ(T2), . . . ,

ξ(Tσ(n))). Noting that the spanning trees Tj , 1 ≤ j ≤ σ(n) are edge-disjoint, we have, using the independence of
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the random variables associated with the edges in E(n), H(K) = σ(n), log|F|= (m − 2)σ(n) and I(K; F) = 0.

Therefore, K is a secret key satisfying lim
n→∞

1

n
H(K) = σ(G), and hence the protocol is capacity-achieving. The

protocol used a communication rate of (m− 2)σ(G) and thus RSK ≤ (m− 2)σ(G).

APPENDIX C

AN EXAMPLE OF A NON-RSK-MAXIMAL STRICT TYPE S SOURCE

In this section we provide an example of a source which is strict Type S and yet is non RSK-maximal. To construct

such a source we need to define “clubbing together” of independent multiterminal sources on M. Formally, for

independent sources Xn
M and Y nM, define the clubbed source ZnM as Zni = (Xn

i , Y
n
i ), for all i ∈M. Π∗X and Π∗Y

are defined to be the sets of partitions of M which are minimizers of (4) for Xn
M and Y nM, respectively. We will

denote the communication complexity (resp. minimum rate of communication for omniscience) for the individual

sources Xn
M and Y nM by RSKX and RSKY (resp. RCOX and RCOY ) respectively. The clubbed source satisfies the

following result.

Proposition 24. Consider two independent multiterminal sources Xn
M and Y nM and the corresponding clubbed

source ZnM. Then we have

I(ZM) ≥ I(XM) + I(YM) (42)

with equality iff Π∗X
⋂

Π∗Y 6= ∅.

Proof: Consider any partition P = {A1, A2, · · · , A`} of M. We have

∆(P) =
1

`− 1

[∑̀
i=1

H(ZAi)−H(ZM)

]

=
1

`− 1

[∑̀
i=1

H(XAi)−H(XM)

]
︸ ︷︷ ︸

∆X(P)

+
1

`− 1

[∑̀
i=1

H(YAi)−H(YM)

]
︸ ︷︷ ︸

∆Y (P)

(43)

where (43) follows from the independence of Xn
M and Y nM.

Thus we have from (43) that minP ∆(P) ≥ minP ∆X(P) + minP ∆Y (P) with equality iff P ∈ Π∗X
⋂

Π∗Y . The

result follows.

We conclude the section by constructing a non RSK-maximal source with S being the unique minimizer in (4).

Example C.1. Consider a clubbed source ZnM = (Xn
M, Y

n
M), where Xn

M is the source described in Example

IV.1 and Y nM corresponds to the PIN model on a k-regular, k-edge-connected graph. By Corollary 20, we have

Π∗Y = {S}.

Since Π∗X
⋂

Π∗Y = {S}, using Proposition 24 we have SK capacity I(ZM) = I(XM)+I(YM). By independently

running protocols achieving RSKX and RSKY , an SK of rate I(XM) + I(YM), i.e., SK capacity can be achieved.

The communication rate used in independently running the two protocols is RSKX + RSKY . Now, (2) and the
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independence of Xn
M and Y nM show that RCO = RCOX + RCOY . On the other hand, it is shown in Example IV.1

that RSKX < RCOX . Therefore, we have

RSK ≤ RSKX +RSKY < RCOX +RCOY = RCO.

APPENDIX D

A NON-STRICT TYPE S SOURCE REQUIRING OMNIVOCALITY8

For m ≥ 4, consider the multigraph G = (V, E) with V =M as usual. The multiset E consists of m− 2 copies

of the edges {i, i+ 1} for 1 ≤ i ≤ m− 1, and m− 1 copies of the edge {1,m}. Using techniques derived in [6,

Theorem 5], it can be shown that for the PIN model defined on G, we have I(XM) = m− 1. We will show below

that this PIN model is non-strict Type S, and yet it requires omnivocality to achieve SK capacity.

We first show that the source is not strict Type S. Simple computations reveal the following facts: H(Xi) =

2(m − 2), for all i ∈ {2, 3, . . . ,m − 1}, H(X1) = H(Xm) = 2(m − 2) + 1, H(X1, Xm) = 3(m − 2) + 1 and

H(XM) = m(m − 2) + 1. Using these it is easy to check that ∆(S) = m − 1, and moreover, ∆(P∗) = m − 1,

where P∗ = {{1,m}, {2}, {3}, . . . , {m− 1}}. Hence the source Xn
M is Type S, but not strict Type S.

Now, we show that this source requires omnivocality to achieve SK capacity. As in the proof of Theorem 10,

we make use of Theorem 12, and show that for any T ⊂M with |T | = m− 1, we have IT (XM) < I(XM). Let

T =M\{u} with u ∈M. Using symmetry it is enough to show IT (XM) < I(XM) for the following two cases:

Case I: u = 1.

Case II: u ∈ {2, 3, . . . ,m− 2}.

In both cases we will derive lower bounds on R
(min)
T and hence obtain an upper bound on IT (XM). First we

deal with Case I with T = {2, 3, . . . ,m}. In this case, H(XT ) = m(m− 2) + 1. Also, any point in RT satisfies

the following constraints from (21):

m−1∑
i=2

Ri ≥ H(X2, X3, . . . , Xm−1|Xm) = (m− 2)2

Rm ≥ H(Xm|X2, X3, . . . , Xm−1) = m− 1

Using the above constraints, we have R(min)
T ≥ (m− 1) + (m− 2)2. Thus,

IT (XM) = H(XT )−R(min)
T ≤ m(m− 2) + 1− (m− 1)− (m− 2)2 = m− 2 < m− 1 = I(XM). (44)

Hence, SK capacity cannot be achieved with terminal 1 remaining silent.

Next we deal with Case II. Assume an arbitrary u ∈ {2, 3, . . . ,m−2} is silent. As in Case I, we have H(XT ) =

m(m− 2) + 1. We see from (21) that the rate region RT is defined in part by the following constraints:

8This example is a contribution of Chan et al. See [12].

July 10, 2015 DRAFT



30

u−1∑
i=1

Ri +Rm ≥ H(X1, X2, . . . , Xu−1, Xm|Xu+1, Xu+2, . . . , Xm−1) = u(m− 2) + 1

m−1∑
i=u+1

Ri ≥ H(Xu+1, Xu+2, . . . , Xm−1|X1, X2, . . . , Xu−1, Xm) = (m− u− 1)(m− 2)

The above constraints imply that R(min)
T ≥ (m− 2)(m− 1) + 1 = (m− 2)2 + (m− 1). Hence, as in (44), we have

IT (XM) < I(XM).

Therefore, the source Xn
M cannot attain SK capacity without using omnivocality.

APPENDIX E

PROOFS OF COROLLARIES OF PROPOSITION 16

In this section, we give the proofs of Corollaries 17, 19, 20 and 21. We start with the corollary stating that

isentropic random variables form a Type S source.

Proof of Corollary 17: For a partition P of M with |P|≥ 2, let us define

δ(P) ,
1

|P|−1

∑
A∈P

H(XAc |XA) = H(XM)−∆(P).

By virtue of Proposition 16(a), we need to show that δ(PB) ≤ δ(S) for all B ∈ Ω.

For isentropic random variables, the quantity H(XB |XBc), for any B ⊆M, depends only on the cardinality of

B. Thus, for 1 ≤ k ≤ m, define g(k) , H(X{1,2,...,k}|XM\{1,2,...,k}); also, set g(0) = 0. With this, we can write

δ(PB) =
1

|B|

[
H(XB |XBc) +

∑
i∈B

H(XM\{i}|Xi)

]

=
1

|B|
g(|B|) + g(m− 1)

Also, note that δ(S) = m
m−1g(m− 1). Thus, we have to show that g(|B|)

|B| ≤
g(m−1)
m−1 for all B ∈ Ω. We accomplish

this by proving that for isentropic random variables, the function g(k)/k is non-decreasing in k, or equivalently,

kg(k + 1) − (k + 1)g(k) is always non-negative. Indeed, we have g(k + 1) = H(XM) − H(X{k+2,...,m}) and

g(k) = H(XM)−H(X{k+1,...,m}) = g(k + 1)−H(Xk+1|X{k+2,...,m}). Thus,

kg(k + 1)− (k + 1)g(k) = (k + 1)H(Xk+1|X{k+2,...,m})− g(k + 1).

It is straightforward to show that the above quantity is non-negative:

g(k + 1) = H(X{1,2,...,k+1}|X{k+2,...,m})

≤
k+1∑
i=1

H(Xi|X{k+2,...,m})

= (k + 1)H(Xk+1|X{k+2,...,m}),

since, for 1 ≤ i ≤ k + 1, H(Xi|X{k+2,...,m}) = H(Xk+1|X{k+2,...,m}) by isentropy.
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Next, we prove Corollary 19, which states that the PIN model on Km,t is strict Type S.

Proof of Corollary 19: Fix a set B (M with |B| ≤ m− 2. We will use Corollary 18 to show that the PIN

model on Km,t is strict Type S. First we make the observation that |E| =
(
m
t

)
for the case of Km,t. To proceed,

we need to evaluate the expression
∑
e∈E [PB(e)− 1]. We first consider the case when |B| ≥ t. The fact that |B|

is at least t implies that there are
(|B|
t

)
hyperedges which contain only elements of B, i.e., intersect the partition

PB in t parts. Now fix an i with 1 ≤ i ≤ t − 1. There are
(|B|
i

)(
m−|B|
t−i

)
hyperedges containing any i terminals

from B and any t − i terminals from M\ B, i.e., intersecting the partition PB in (i + 1) parts. Any remaining

hyperedge will contain terminals from Bc only and hence will intersect the partition PB in only one part. As a

result, we have
∑
e∈E [PB(e)− 1] = (t− 1)

(|B|
t

)
+
∑t−1
i=1

(|B|
i

)(
m−|B|
t−i

)
i = (t− 1)

(|B|
t

)
+ |B|

∑t−1
i=1

(|B|−1
i−1

)(
m−|B|
t−i

)
.

Observe that
∑t−1
i=1

(|B|−1
i−1

)(
m−|B|
t−i

)
is equal to

(|B|−1
t−1

)
subtracted from the coefficient of xt−1 in the expansion of

(1 + x)|B|−1(1 + x)m−|B| = (1 + x)m−1. Therefore,
∑t−1
i=1

(|B|−1
i−1

)(
m−|B|
t−i

)
=
(
m−1
t−1

)
−
(|B|−1
t−1

)
, and hence, for

|B| ≥ t, we have∑
e∈E

[PB(e)− 1] = |B|
(
m− 1

t− 1

)
+ (t− 1)

(
|B|
t

)
− |B|

(
|B|−1

t− 1

)
= |B|

(
m− 1

t− 1

)
−
(
|B|
t

)
. (45)

Next, we turn our attention to the case of |B|< t. In this case there are no hyperedges containing only terminals

in B. For any i satisfying 1 ≤ i ≤ |B|, there exist
(|B|
i

)(
m−|B|
t−i

)
hyperedges intersecting the partition in (i + 1)

parts, as in the earlier case. However, all the remaining hyperedges are contained in Bc only, and hence play no

part in the expression
∑
e∈E [PB(e)− 1]. Thus, noting |B|< t, we have as in the previous case,

∑
e∈E

[PB(e)− 1] = |B|
|B|∑
i=1

(
|B|−1

i− 1

)(
m− |B|
t− i

)
= |B|

(
m− 1

t− 1

)
. (46)

We will now apply Corollary 18. When |B| ≥ t, using (45) we have

1

|B|
∑
e∈E

[PB(e)− 1]− (t− 1)|E|
m− 1

=

(
m− 1

t− 1

)
− 1

|B|

(
|B|
t

)
− t− 1

m− 1

(
m

t

)
(47)

=
1

t

[
(m− 1)! t

(m− t)! (t− 1)!
− m!

(t− 2)! (m− t)! (m− 1)
−
(
|B|−1

t− 1

)]
=

1

t

[
(m− 1)!

(t− 2)! (m− t)!

(
t

t− 1
− m

m− 1

)
−
(
|B|−1

t− 1

)]
=

1

t

[(
m− 2

t− 1

)
−
(
|B|−1

t− 1

)]
> 0 (48)

where (48) holds as |B| ≤ m− 2. For the case of |B| < t, we have

1

|B|
∑
e∈E

[PB(e)− 1]− (t− 1)|E|
m− 1

=

(
m− 1

t− 1

)
− t− 1

m− 1

(
m

t

)
=

1

t

[(
m− 2

t− 1

)]
(49)

> 0
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where (49) follows from (47) and (48). Thus, using Corollary 18 we have the result.

Next up is the proof of Corollary 20, which states that PIN models on k-regular, k-edge-connected graphs are

strict Type S.

Proof of Corollary 20: Consider a k-regular, k-edge-connected graph G = (V, E). Using k-regularity, we

have |E| = km
2 . As usual, we fix a B (M satisfying 1 ≤ |B| ≤ m − 2 and proceed to evaluate the expression∑

e∈E [PB(e)− 1]. Observe that for an ordinary graph, the sum
∑
e∈E [PB(e)− 1] = |EPB |, where EPB is the set

of edges whose end-points lie in different cells of the partition PB . To proceed, we perform a graph contraction

operation along the partition PB on G to get a new graph G′ = (V ′, E ′). More precisely, we take V ′ = B
⋃
{Bc}

and E ′ =

{
{i, j} ∈ E : i, j ∈ B

}⋃{
{Bc, i} : ∃{i, j} ∈ E , i ∈ B, j ∈ Bc

}
, so that |EPB | = |E ′|. Now, the degree

of every v ∈ V ′ satisfying v ∈ B is k, whereas by the k-edge connectivity the degree of Bc in G′ is at least k.

Hence, we have |EPB | = |E ′| ≥
k(|B|+1)

2 . Therefore,

1

|B|
∑
e∈E

[PB(e)− 1]− |E|
m− 1

=
1

|B|
|EPB |−

km

2(m− 1)

≥ k

2

[
|B|+1

|B|
− m

m− 1

]
> 0 (50)

where, (50) follows from the fact that |B| ≤ m− 2. Using Corollary 18 we have the result.

Finally, we give the proof of Corollary 21, which states that a PIN model obtained from a Steiner triple system

(STS) is strict Type S. Recall that HSTS = (M,STS(M)) is a 3-uniform hypergraph obtained from an STS onM.

Proof of Corollary 21: We will use Proposition 16 to get the result. First, we calculate H(Xi) for any

i ∈ M. Observe that H(Xi) counts the number of elements of STS(M) containing i. Now, fixing i ∈ M,

there are m − 1 pairs of elements from M which contain i. Any set in STS(M) containing i contains two

such pairs. Further, by the definition of STS, we know that any such pair is a subset of exactly one element of

STS(M). Hence, we have H(Xi) = m−1
2 . Next, we evaluate H(XM) = |STS(M)|. Note that there are

(
m
2

)
pairs of elements in M, each pair being a subset of exactly one element of STS(M). Also, each element of

STS(M) contains three such pairs. Therefore, we have H(XM) = |STS(M)|= m(m−1)
6 . Using these facts, we

have ∆(S) = 1
m−1

[
m(m−1)

2 − m(m−1)
6

]
= m

3 .

Now, fix a B (M with 1 ≤ |B| ≤ m− 2 and evaluate ∆(PB). We consider two cases: 1 ≤ |B| ≤ m− 3 and

|B| = m−2. First, consider 1 ≤ |B| ≤ m−3. To proceed, we calculate a lower bound on H(XA) for any A (M.

Observe that H(XA) counts the number of sets in STS(M) which contain at least one element from A. We will

calculate an upper bound on the number of elements of STS(M) containing only elements of Ac, and subtract it from

|STS(M)| to get the required lower bound. The total number of pairs formed by the elements of Ac is
(
m−|A|

2

)
.

Again, as each element of STS(M) contains 3 pairs, the required upper bound is b (m−|A|)(m−|A|−1)
6 c. Thus,

we have H(XA) ≥ |STS(M)|− (m−|A|)(m−|A|−1)
6 . So, H(XBc) ≥ |STS(M)|− |B|(|B|−1)

6 , and hence, ∆(PB) ≥
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1
|B|

[
|B|(m−1)

2 − |B|(|B|−1)
6

]
= m−1

2 − |B|−1
6 . Therefore,

∆(PB)−∆(S) ≥ m− 1

2
− |B|−1

6
− m

3

=
1

6
[m− 2− |B|]

> 0 (51)

where, (51) follows from the fact that |B| < m− 2.

To complete the proof, we show that ∆(PB) − ∆(S) > 0 is satisfied when |B| = m − 2. To this end, we

fix a B = M\ {i, j}, where i, j ∈ M. We will exactly calculate H(XBc), which is the number of elements of

STS(M) containing at least one of i and j. It has been shown earlier that i and j each occur in exactly m−1
2

elements, and they occur together exactly once. Therefore, we have H(XBc) = m − 2, and hence, ∆(PB) =

1
m−2

[
(m−2)(m−1)

2 + (m− 2)− m(m−1)
6

]
. Thus,

∆(PB)−∆(S) =
1

m− 2

[
(m− 2)(m− 1)

2
+ (m− 2)− m(m− 1)

6

]
− m

3

=
m− 3

3(m− 2)

> 0 (52)

where (52) follows from the fact that m > 3.
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