UCLA Engineering

HENRY SAMUELI SCHOOL OF ENGINEERING AND APPLIED SCIENCE

Computer Science Department

PROPOSAL OF FIELDS OF STUDY FOR THE PH.D. DEGREE

Name:		First	Middle initial	UID:	
Last		FIISL			
Email:				Date:	
		bo following 7 pag	ges for general rules and pr	rocoduros	
			ges for general fules and pr	ocedures. >>>	
MAJOR FIELD:					
Course number		ourse title	Instructor	(Planned) Term of completion	Grade
FIELD CHAIR :	printed name		signature	date	
2					
Course number	Co	ourse title	Instructor	(Planned) Term of completion	Grade
FIELD CHAIR :					
	printed name		signature	date	
Course number			Instructor	(Planned) Term of completion	Grade
				(ramed) term of completion	Grade
FIELD CHAIR :	printed name		signature	date	
	printed name		Signature	uale	
	D 🗌 DENIED				
		PhD Advisor (pri	inted name and signature)	Date	
	D 🗌 DENIED				
		Graduate Studer	nt Affairs Officer (signature)	Date	

PROPOSAL OF FIELDS GUIDELINES & PROCEDURES

- 1. A "Proposal of Fields" form must be submitted to the Graduate Student Affairs Office (4403 Boelter Hall) by the end of the second year in the PhD program. The form can be revised later if necessary.
- 2. A major field consists of five courses, at least three of which must be graduate courses.
- 3. A minor field consists of two courses, at least one of which must be a graduate course.
- 4. Major and minor courses must be taken for a letter grade. The student must earn a minimum GPA of 3.33 in each major and minor field.
- STANDARD PROPOSALS: The following pages provide guidelines for composing major and minor proposals in established fields. If the courses in a major or a minor field proposal adhere to these guidelines, it will not require the signature of the corresponding field chair. *Established fields*: Artificial Intelligence, Computational Systems Biology, Computer System Architecture, Computer Science Theory, Information and Data Management, Network Systems, Computer Graphics and Vision, and Software Systems.
- 6. <u>PROPOSALS WITH ONE OR MORE COURSE SUBSTITUTIONS</u>: A major or a minor field proposal in an established field and that deviates from the standard guidelines by one or more course substitutions must be approved by the corresponding field chair (who may consult with faculty in the field). The list of current field chairs is available at the Graduate Student Affairs Office or online at

http://www.cs.ucla.edu/csd/academics/forms/field_chairs.pdf

- 7. <u>COURSE WORK TAKEN AT OTHER INSTITUTIONS</u>: No more than three equivalent or related *graduate* courses taken at other institutions may be applied towards satisfying the major or minor field requirements, subject to the following:
 - If a course taken at another institution is included in a major or minor field proposal, and falls within an established field, the proposal will be considered a deviation from the standard guidelines and must be approved by the corresponding field chair.
 - The graduate course must be taken while a graduate student.
 - The graduate course cannot have been applied towards an undergraduate degree.
- 8. <u>AD-HOC PROPOSALS</u>: A major or minor field proposal that does not fall in one of the established fields is considered an ad-hoc field proposal.

GUIDELINES:

• All proposals for an ad-hoc field must be approved by the department. Students are strongly encouraged to submit their ad-hoc minor proposal for approval <u>BEFORE</u> taking any of the proposed courses.

- The ad-hoc field should be a coherent set of courses in an identifiable area (body of knowledge) that is not a subfield of the area of the major or the minors. The ad-hoc field should provide a perspective that is different from the other fields. It cannot merely be a collection of three useful classes.
- If the ad-hoc field presents some overlap with topics that are generally associated with the other fields, the justification should carefully explain why this overlap does not impinge on the value of the minor to broadening the student's Ph.D. education. (If the Academic Policy Committee [APC] finds such an overlap, the student may be required to provide more information.)

SUBMISSION & APPROVAL PROCEDURE:

- The proposal for an ad-hoc minor must be included in a completed Proposal of Fields and must be submitted together with a detailed, written justification explaining how the proposed ad-hoc minor meets the requirements above and supports the student's research area. Include details on the three proposed classes for the minor (course description and/or course syllabus for each class).
- Email a scanned copy of the completed Proposal of Fields to the Chair of the Academic Policy Committee (APC). (Refer to list of current field chairs, http://www.cs.ucla.edu/csd/academics/forms/field_chairs.pdf). The subject line should read "Proposal for Ad-Hoc Proposal." Copy Craig Jessen (craig@cs.ucla.edu) in your message to the APC Chair.
- Approval of an ad-hoc proposal requires a majority vote of the Academic Policy Committee (APC). The APC Chair, on behalf of the committee, will inform students by email when a decision is reached.

ARTIFICIAL INTELLIGENCE

A major field consists of any five of these courses, and a minor field consists of any two courses:

CS 161	Fundamentals of Al
CS 260	Machine Learning Algorithms
CS 261A	Problem Solving and Search
CS 262A	Reasoning with Partial Beliefs
CS 262Z	Seminar in Causal Reasoning
CS 263A	Language and Thought
CS 263B	Connectionist Natural Language Processing
CS 263C	Introduction to Animat Modeling
CS 264A	Automated Reasoning: Theory and Applications
CS 268	Machine Perception
CS M276A	Pattern Recognition and Machine Learning
CS 279	Visual Recognition

COMPUTER SYSTEM ARCHITECTURE

Major field: Five courses, at least three of which must be graduate courses.

Minor field: Two courses, at least one of which must be a graduate course.

Graduate courses: Any CS 25x or CS M25x course, plus CS M213A (Embedded Systems), unless the instructor explicitly wants to exclude the course from the list (since they judge that their course is not appropriate).

Undergraduate courses: CS M151B, CS 151C, CS M152B, EE 115C

COMPUTATIONAL SYSTEMS BIOLOGY

Major field: Three core courses and a year-long seminar series course (one course credit), plus one additional graduate course, selected from the Bioinformatics or Systems Biology option areas based on the student's focus.

Minor Field: Two of the three core courses listed below.

Core Courses:

- 1. CS M286B Computational Systems Biology: Modeling and Simulation of Biological Systems
- 2. CS M221* (formerly Chemistry 260) Bioinformatics methods
- 3. A molecular and cellular biology course chosen from the following, depending on the student's background in life sciences:

MCDB 100	Introduction to Cell Biology
MCDB C139	Cell, Developmental & Molecular Neurobiology
MCDB 144	Molecular Biology
MCDB 165A	Biology of Cells

Seminars: Regular CSB series (2-3 quarters each year) to be scheduled. Currently can choose from new Bioinformatics Series or Integrative Systems Biology Series in Biomath/Molecular Pharmacology.

COMPUTATIONAL SYSTEMS BIOLOGY (continued)

Course options in Bioinformatics:

CS 222	Bioinformatics Methods II
CS 223	Statistics for Computational Biology
CS 224	Computational Genetics
CS 229	Current Topics in Bioinformatics
CS 270A	Methods of Computational Science
BIOMATH M271	Statistical Methods in Computational Biology

Course Options in Systems Biology:

COMPUTER SCIENCE:

CS 270A	Methods of Computational Science
CS M286B (Biomath M270)	Optimal Parameter Estimation & Experiment Design for Biomedical Systems
CS M286C	Biomodeling Research and Research Communication Workshop
CS 296D	Computational Cardiology

ELECTRICAL ENGINEERING:

EE 131B	Intro to Stochastic Processes
EE 142	Control Systems: State Space Approach

MATHEMATICS:

MATH 151A	Applied Numerical Methods I
MATH 151B	Applied Numerical Methods II
MATH 153	Numerical Methods for Partial Differential Equations
MATH 269B	Advanced Numerical Analysis

MOLECULAR, CELL, AND DEVELOPMENTAL BIOLOGY:

MCDB 165B Molecular Biology of the Cell Nucleus

PHYSIOLOGICAL SCIENCE

PHYSCI 166 Animal Physiology

ECOLOGY & EVOLUTIONARY BIOLOGY

EE BIOL 170 Animal Environmental Physiology

BIOMATHEMATICS

BIOMATH 220	Kinetic and Steady State Models in Pharmacology and Physiology
BIOMATH M230	Computed Tomography: Theory and Applications

COMPUTER SCIENCE THEORY

Major field: Any five courses in the CS 28x series, provided at least two are from CS 280A, CS 280G, CS 281, CS 282A – one CS 18x course may be substituted for a CS 28x course.

Minor field: Any two courses in the CS 28x series taught by theory faculty, provided at least one course from CS 280A, CS 280G; CS 281; CS 282A - one CS 18x course may be substituted for a CS 28x course.

INFORMATION AND DATA MANAGEMENT

A major field is five courses, at least three of which are graduate courses. A minor field is two courses, at least one of which must be a graduate course.

For both major and minor fields, the courses must be from the following <u>"CORE IDM"</u> list:

- CS 143 **Database Systems** CS 144 Web Applications CS 170A Mathematical Models & Methods for Computer Science CS 240A Databases and Knowledge Bases CS 240B Advanced Data and Knowledge Bases CS 241A **Object-Oriented and Semantic Database Systems** CS 241B Pictorial and Multimedia Database Systems CS 244A **Distributed Database Systems** CS 245A Intelligent Informative Systems CS 246 Web Information Systems
- CS 249 Advanced topics in Data Mining

For a major field, at most one undergraduate course and two graduate courses from the above core IDM list can be replaced by any of the courses from the following <u>"ANCILLARY IDM"</u> list. For a minor field only one of the core courses can be replaced by a course from the **ANCILLARY LIST**:

COMPUTER SCIENCE:

- CS 130 Software Engineering
- CS 132 Compiler Construction
- CS 136 Security
- CS 161 Fundamentals of Al
- CS 230 Software Engineering
- CS 261A Problem Solving and Search
- CS 262A Reasoning with Partial Beliefs
- CS 264A Automated Reasoning: Theory and Applications

BIO-MEDICAL PHYSICS:

- BMEDPHY 210 Principles of Medical Image Processing
- BMEDPHY 214 Medical Image Processing Systems

MANAGEMENT INFORMATION SYSTEMS (AGSM):

- MGMT 272A Methods and tools for information systems design, development, and maintenance
- MGMT 273A Managing the enterprise's information systems

COMPUTER NETWORKS

A major field is five courses, at least three of which are graduate courses. A minor field is two courses, at least one of which must be a graduate course. For both major and minor fields, the courses must be from the following lists:

GRADUATE:

CS 211	Network Protocols and Systems Software design for the mobile Internet
CS 212	Queuing Systems Theory
CS 213A/B	Embedded Systems
CS 214	Data Transmission in Computer Communications
CS 215	Computer Communications and networks
CS 216	Distributed Multiaccess Control in Networks
CS 217A/B	Advanced topics in Internet Research
CS 218	Advanced Computer Networks
CS 219*	Current Topics in Network Systems
CS 236	Computer Security
CS 246	Web Information management

*For a major field, at most two of the courses can be CS 219. If a major field proposal has two CS 219's, then they must be given by different professors.

UNDERGRADUATE:

- CS 111 Operating Systems Principles
- CS 112 Computer Systems Modeling Fundamentals Software Engineering
- CS 113 Introduction to Distributed Embedded systems
- CS 117 Computer Networks Physical Layer
- CS 118 Computer Networks Fundamentals

COMPUTER GRAPHICS AND VISION

The requirements for a major field are five courses from the above lists, at least three of which are graduate courses, subject to the following:

At least one course from L2, and Two courses from L3, or At least one course from L4

The requirements for a minor field are two courses from the above lists, both of which are graduate courses:

One course from L2, and One course from L3

Given the following lists:

- L1: CS 161 Introduction to Artificial Intelligence
- CS 174A Introduction to Computer Graphics

COMPUTER GRAPHICS AND VISION (CON'T)

L2:	CS 174C/2 ⁻ CS 268	74C			uter Animation ine Vision	
	CS M276A (Cross liste	d as STATS 231)	Patte	n Recognition and Machine Learning	
L3:	CS 174B CS 269 CS 275	Human	based Modeling ar oid Character Sim	ulatior	1	
	CS 275 CS 279		al Life for Computer Graphics and Vision It Topics in Computer Science Methodology: Advanced Topics in Visual Recognition			
	STATS 232A (to be cross listed as a CS course) STATS 232B (to be cross listed as a CS course) STATS 238		,	Statistical Modeling and Learning for Image Science Statistical Computing and Inference for Image Science Vision as Bayesian Inference		
L4:	MATH 273 Optimization, Calculu		lculus ting fo	artial Differential Equations of Variations and Control Theory or the Visual Effects Industry ODEs and PDEs		

SOFTWARE SYSTEMS

A major field is five courses, at least three of which are graduate courses. A minor field is two courses, at least one must be a graduate course.

For both major and minor fields, the courses must be from the following list:

GRADUATE:

- CS 230 Software Engineering
- CS 231 Types and Programming Languages
- CS 232 Static Program Analysis
- CS 233A Parallel Programming
- CS 233B Verification of Concurrent Programs
- CS 234 Computer-Aided Verification
- CS 235 Advanced Operating Systems
- CS 236 Computer Security
- CS 239* Current Topics in Computer Science: Programming Languages and Systems (Offered by Rajive Bagrodia, Paul Eggert, Eddie Kohler, Rupak Majumdar, Todd Millstein, Jens Palsberg, Peter Reiher.)

*For a major field, at most two of the courses can be CS 239; and if a major field proposal has two CS 239's, they must be taken from different professors. For a minor field, at most one of the courses can be 239.

UNDERGRADUATE:

- CS 111 Operating Systems Principles
- CS 130 Software Engineering
- CS 131 Programming Languages
- CS 132 Compiler Construction
- CS 133 Parallel and Distributed Computing
- CS 136 Security