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Abstract

This paper describes a new method for exact hazard-free logic minimization of Boolean functions.

Given an incompletely-speci�ed Boolean function, the method produces a minimum-cost sum-of-

products implementation which is hazard-free for a given set of multiple-input changes, if such

a solution exists. The method is a constrained version of the Quine-McCluskey algorithm. It

has been automated and applied to a number of examples. Results are compared with results of a

comparable non-hazard-free method (espresso-exact). Overhead due to hazard-elimination is shown

to be negligible.

1 Introduction

There has been renewed interest in asynchronous design because of the potential bene�ts of im-

proved system performance, modular design, and avoidance of clock skew [28, 15, 22, 38, 16, 23, 10,

8, 3, 24, 37, 2]. However, a major obstacle to correct asynchronous design is the problem of hazards,

or undesired glitches in a circuit. The elimination of all hazards from asynchronous designs is an

important and di�cult problem. Many existing design methods do not guarantee freedom from all

hazards; other methods are limited by harsh restrictions on input behavior (single-input changes

only) or implementation style (the use of large, slow inertial delays) to insure correct operation.

The focus in this paper is on a particular class of hazards: hazards in combinational logic. The

design of hazard-free combinational logic is critical to the correctness of most asynchronous designs.

Our goal is the synthesis of combinational logic which avoids all combinational hazards for a given

set of multiple-input changes.

In the following presentation, we are interested in circuits which function correctly assuming

arbitrary gate and wire delays. We do not consider circuits which depend on bounded delay

assumptions for correct operation or which make use of added delay elements to �x or �lter out

glitches.

The contribution of this paper is a solution to an open problem in logic synthesis: Given

an incompletely-speci�ed Boolean function and a set of multiple-input changes, produce an exact

minimized two-level implementation which is hazard-free for every speci�ed multiple-input change, if
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such a solution exists. Our method is a constrained version of the Quine-McCluskey algorithm [19].

The method has been automated and applied to a number of examples. Results are compared with

results of a comparable non-hazard-free method (espresso-exact [33]). Overhead due to hazard-

elimination is shown to be negligible.

Our method solves a general combinational synthesis problem which arises in many asyn-

chronous sequential applications. Indeed, the method has already been incorporated into synthesis

programs for three distinct asynchronous design styles: the locally-clocked [25, 29, 28, 31], 3D [38]

and UCLOCK [26] methods.

1.1 Previous Work.

Much of the original work on combinational hazards was limited to the case of single-input changes.

Methods for detecting and eliminating combinational hazards for single-input changes were devel-

oped by Hu�man, McCluskey and Unger and are described in [35].

Eichelberger [11] considered a particular class of combinational hazards formultiple-input changes:

static hazards. There are two types of static hazards: function and logic hazards (see Section 3

below for de�nitions). Function hazards cannot be removed; logic hazards can be eliminated by

using a sum-of-products implementation containing every prime implicant. Others have developed

improved algorithms for selective static hazard elimination.

Dynamic combinational function and logic hazards for multiple-input changes were identi�ed

in [35, 7, 4]. Unger [35], Bredeson and Hulina [7], Bredeson [6], Beister [4] and Frackowiak [12]

presented conditions to avoid dynamic logic hazards in two-level and multi-level circuits during

multiple-input changes. They also indicate that these conditions cannot always be satis�ed.

No general two-level hazard-free logic minimization method has been proposed for incompletely-

speci�ed functions allowing multiple-input changes. McCluskey [18] presented an exact hazard-free

two-level minimization algorithm for single-input changes. Several methods have been proposed

for the multiple-input change case, but each has limitations. Bredeson and Hulina [7] described an

algorithm which produces hazard-free sum-of-products implementations for multiple-input changes.

However, their algorithm uses sequential storage elements to implement combinational functions,

where storage elements must satisfy special timing constraints.

Bredeson [6] later presented an algorithm for hazard-free multi-level implementations of combi-

national functions with multiple-input changes without storage elements. However, the algorithm

does not demonstrate optimality, assumes a fully-speci�ed function, and attempts to eliminate

hazards even for unspeci�ed transitions; in practice, results may be far from optimal. The algo-

rithm also cannot generate certain minimal two-level implementations (if they include non-prime

implicants; to be discussed later).

Closer to our work, Frackowiak [12] presented two exact hazard-free minimization algorithms

for two-level implementations allowing multiple-input changes in a fully-speci�ed function. Both

algorithms eliminate dynamic hazards in speci�ed transitions. However, the �rst ignores static

hazards while the second attempts to eliminate static hazards even for unspeci�ed transitions.

Therefore, results may be either hazardous or suboptimal.

2 De�nitions.

The following de�nitions are taken from [32, 33] with minor modi�cations (see also [5, 19]). We

consider only single-output functions having binary input and output variables.
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De�ne sets P = f0,1g and B = f0,1,*g. A Boolean function, f, of n variables, x1, x2, : : :, xn, is

de�ned as a mapping: f: Pn ! B. The value \*" in B represents a don't-care value of the function.

Each element in the domain Pn of function f is called a minterm of the function. A minterm is

also called an input state of the function.

The ON-set of a function is the set of minterms for which the function has value 1. The OFF-set

is the set of minterms for which the function has value 0. The DC-set (don't-care set) is the set of

minterms for which the function has value \*".

A literal is a Boolean function of n variables, x1, x2, : : :, xn, de�ned as follows. Each variable,

x
i
, has three corresponding literals: x

i
, x

i
and x

�

i
. Literal x

i
= 1 for a minterm if and only if

variable xi in the minterm has value 1; literal xi = 1 if and only if xi has value 0; and x
�

i
= 1 if xi

has value 0 or 1 (don't-care literal).

A product term is a Boolean product (AND) of literals. If a product term evaluates to 1 for a

given minterm, the product term is said to contain the minterm.

A cube is a set of minterms which can be described by a product term.

A sum-of-products represents a set of products; it is denoted by Boolean sum of product terms.

A sum-of-products is said to contain a minterm if some product in the set contains the minterm.

A product Y contains a product X (X � Y ) if the cube for X is a subset of the cube for Y.

The intersection of products X and Y is the set of minterms contained in the intersection of the

corresponding cubes.

An implicant of a function is a product term which contains no minterm in the function's OFF-

set. A prime implicant of a function is an implicant contained in no other implicant of the function.

An essential prime implicant is a prime implicant containing an ON-set minterm contained in no

other prime implicant.

A cover of a Boolean function is a sum-of-products which contains all of the minterms of the

ON-set of the function and none of the minterms of the OFF-set. A cover may also include minterms

from DC-set. A standard cost function for covers is assumed where each implicant has the same

cost.1

The two-level logic minimization problem is to �nd a minimum-cost cover of a function.

3 Background and Problem Statement.

3.1 Circuit and Delay Model.

This paper considers combinational circuits having arbitrary �nite gate and wire delays [21, 18].

Each wire is modelled as a connection with an attached delay element, describing the total wire

delay. Each gate is modelled as an instantaneous Boolean operator with a delay element attached

to its output wire, describing the total gate delay. The delays may have arbitrary but �nite values.

Since delay elements are attached only to wires, this model has been called the unbounded wire

delay model.

A pure delay model is assumed as well (see [4]). A pure delay can delay the propagation of

a waveform, but does not otherwise alter it. That is, unlike the inertial delay model, this model

conservatively assumes that glitches are not �ltered out by delays on gates and wires [4].

A delay assignment is an assignment of �xed, �nite delay values to every gate and wire in a

circuit.

1The cost function can be generalized for single-output functions to include literal-count as a secondary cost (see

also discussion in [32], page 14).
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3.2 Multiple-Input Changes.

A transition cube (cf. [4, 6]) is a cube with a start point and an end point. Given input states

A and B, the transition cube [A,B] from A to B has start point A and end point B and contains

all minterms that can be reached during a transition from A to B. More formally, if A and B are

described by products, with i-th literals Ai and Bi, respectively, then the i-th literal for the product

of [A,B] is the Boolean function Ai + Bi. Note that the sum of complementary literals x and x is

the don't-care literal, x�.

The open transition cube [A,B) from A to B is de�ned as: [A,B] - B.

A multiple-input change or input transition from input state A to B is described by transition

cube [A,B]. There are three properties which characterize a multiple-input change. First, inputs

change concurrently, in any order and at any time. Equivalently, a simultaneous input change

can be assumed, since inputs may be skewed arbitrarily by wire delays (see above). Second, inputs

change monotonically: each input changes value at most once. And, �nally, the input change occurs

in fundamental mode: once a multiple-input change occurs, no further input changes may occur

until the circuit has stabilized.

An input transition occurs during a transition interval, tI � t � tF , where inputs change at

time tI and the circuit returns to a steady state at time tF [4].

An input transition from input state A to B for a Boolean function f is a static transition

if f(A)=f(B); it is a dynamic transition if f(A) 6=f(B). In this paper, we consider only static and

dynamic transitions where f is fully de�ned; that is, for every X2[A,B], f(X)2f0,1g.

3.3 Function Hazards

A function f which does not change monotonically during an input transition is said to have a

function hazard in the transition. The following de�nitions are from Bredeson and Hulina [7] (see

also [11, 6, 4, 20]).

De�nition. A Boolean function f contains a static function hazard for the input transition

from A to C if and only if:

1. f(A) = f(C), and

2. there exists some input state B 2 [A,C] such that f(A) 6= f(B).

De�nition. A Boolean function f contains a dynamic function hazard for the input transition

from A to D if and only if:

1. f(A) 6= f(D).

2. There exist a pair of input states B and C (A 6= B, C 6= D) such that

(a) B 2 [A,D] and C 2 [B,D] and

(b) f(B) = f(D) and f(A) = f(C).

If a transition has a function hazard, no implementation of the function is guaranteed to avoid

glitches during the transition, assuming arbitrary gate and wire delays [11, 7]. Therefore, we

consider only transitions which are free of function hazards (see [11, 6, 4]).

Example. The function f of �gure 1 has a static function hazard for the multiple-input change

from i to k, since f(i) = f(k) = 1, f(j) = 0, and j 2 [i,k]. The function has a dynamic function

hazard for the transition from g to j, since f(g) = 1, f(j) = 0, h2[g,j], i2[h,j], f(g) = f(i) = 1 and

f(h) = f(j) = 0. The input transition from k to m is free of static function hazards, and the input

transition from n to p is free of dynamic function hazards. 2
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Figure 1: Boolean Function with Function Hazards

3.4 Logic Hazards.

If f is free of function hazards for a transition from input A to B, it may still have hazards due

to possible delays in the actual logic realization [35, 7, 4]. In the following, a signal is called

\monotonic" during a transition interval if it changes at most once (i.e., weakly monotonic).

De�nition. A combinational circuit for a function f contains a static logic hazard for the input

transition from minterm A to minterm B if and only if:

1. f is function-hazard-free for the input transition.

2. f(A) = f(B).

3. For some delay assignment, the circuit's output is not monotonic during the transition interval.

De�nition. A combinational circuit for a function f contains a dynamic logic hazard for the

input transition from minterm A to minterm B if and only if:

1. f is function-hazard-free for the input transition.

2. f(A) 6= f(B).

3. For some delay assignment, the circuit's output is not monotonic during the transition interval.

3.5 Two-Level Hazard-Free Logic Minimization Problem.

The two-level hazard-free logic minimization problem can now be stated as follows:

Given:

A Boolean function f, and a set, T, of speci�ed function-hazard-free (static and dynamic)

input transitions of f.

Find:

A minimum-cost cover of f whose AND-OR implementation is free of logic hazards for

every input transition t 2 T.
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4 Conditions for a Hazard-Free Transition.

We now describe conditions to insure that a sum-of-products implementation is hazard-free for

a given input transition. Assume that [A,B] is the transition cube corresponding to a function-

hazard-free transition from input state A to B for a combinational function f. In the following

discussion, we assume that C is any cover of f implemented in AND-OR logic. (It is assumed that

no product contains a pair of complementary literals, otherwise additional hazards are possible; see

[35].)

The following lemmas present necessary and su�cient conditions to insure that the AND-OR

implementation of f has no logic hazards for the given transition:

Lemma 1. If f has a 0 ! 0 transition in cube [A,B], then the implementation is free of logic

hazards for the input change from A to B.

Lemma 2. If f has a 1 ! 1 transition in cube [A,B], then the implementation is free of logic

hazards for the input change from A to B if and only if [A,B] is contained in some cube of cover C.

The conditions for the 0 ! 1 and 1 ! 0 cases are symmetric. Without loss of generality, we

consider only a dynamic 1! 0 transition, where f(A)=1 and f(B)=0. (A 0! 1 transition from A

to B has the same hazards as a 1! 0 transition from B to A.)

Lemma 3. If f has a 1 ! 0 transition in cube [A,B], then the implementation is free of logic

hazards for the input change from A to B if and only if every cube c2C intersecting [A,B] also

contains A.

Proof. These results follow immediately from pp. 128-9 in [35] and Theorem 3.4 in [12]. See

also, Theorem 4 in [7], Lemmas 2 and 3 in [6], Theorem 4.5 in [35], and [4]. 2

Lemma 2 requires that in a 1! 1 transition, some product holds its value at 1 throughout the

transition. Lemma 3 insures that no product will glitch in the middle of a 1 !0 transition: all

products change value monotonically during the transition. In each case, the implementation will

be free of hazards for the given transition.

An immediate consequence of Lemma 3 is that, if a dynamic transition is free of logic hazards,

then every static sub-transition will be free of logic hazards as well:

Corollary 1. If f has a 1 ! 0 transition from input state A to B which is hazard-free in the

implementation, then, for every input state X2[A,B) where f(X)=1, the transition subcube [A,X]

is contained in some cube of cover C.

Proof. Since C is a cover of function f, there exists some cube c2C which contains X. Since f is

hazard-free in the transition from A to B, then, by Lemma 3, cube c contains A as well; therefore

c contains [A,X]. 2

Corollary 2. If f has a 1 ! 0 transition from input state A to B which is hazard-free in the

implementation, then for every input state X2[A,B) where f(X)=1, the static 1! 1 transition from

input state A to X is free of logic hazards.

Proof. Immediate from Lemma 2 and Corollary 1. 2

Lemma 2 and Corollary 1 are used to de�ne the covering requirement for a hazard-free transition.

The cube [A,B] in Lemma 2 and themaximal subcubes [A,X] in Corollary 1 are called required cubes.

These cubes de�ne the ON-set of the function in a transition. Each required cube must be contained

in some cube of cover C to insure a hazard-free implementation.

Lemma 3 constrains the cubes which may be included in a cover C. Each 1 ! 0 transition

cube is called a privileged cube, since no cube c in the cover may intersect it unless c contains its
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start point. If a cube intersects a privileged cube but does not contain its start point, it illegally

intersects the privileged cube and may not be included in the cover.

4.1 Hazard Example.

Figures 2 and 3 illustrate the conditions of Lemmas 2 and 3 and the two Corollaries. Each �gure

shows a multiple-input change where inputs a and b both change from 0 to 1. The transition is

described by a state graph, which represents a portion of a Karnaugh map for the given transition.

A state graph is used to describe transitions within a Karnaugh map. For example, if the top vertex

in the state graph of Figure 2(a) corresponds to abcd = 0000 in the Karnaugh map of Figure 1, then

the left, right and bottom vertices of the state graph would correspond to abcd = 1000; 0100 and

1100, respectively, in the Karnaugh map. In this case, the state graph indicates an input transition

from abcd = 0000 to 1100.

Figure 2 shows covers for a 1! 1 transition. The cover in �gure 2(a) is hazardous. The cubes

in the cover, M and N, correspond to AND-gates in the �nal AND-OR implementation. Initially,

the M AND-gate is high and the N AND-gate is low. During the transition, the M AND-gate goes

low and the N AND-gate goes high. For certain delays, however, the M AND-gate goes low before

the N AND-gate goes high, and the circuit output glitches (see timing diagram).

The cover in �gure 2(b) is hazard-free. As required by Lemma 2, the cover contains a product,

P, which completely contains the transition cube. This product corresponds to an AND-gate in the

implementation which holds its value at 1 throughout the transition. Therefore, the circuit output

will not glitch (see timing diagram).

Figure 3 shows covers for a 1 ! 0 transition. The cover in �gure 3(a) is hazardous: cubes R

and S both illegally intersect the transition.

First, consider the sub-transition where only input a changes; the output must remain at 1.

Therefore, this sub-transition is a 1 ! 1 transition. However, no single product in the cover

contains this sub-transition cube, so the sub-transition has a static hazard.

Alternatively, consider the case where input b changes �rst. This sub-transition is free of static

hazards, since product Q covers the sub-transition. However, a problem remains for the dynamic

transition: product R intersects the transition cube in the middle. This stray product corresponds

to an AND-gate in the implementation. Initially, this AND-gate is low; it may then go high and

then eventually it will go low. During a 1 ! 0 transition, such a glitch on an AND-gate can

propagate as a glitch to the AND-OR circuit output (see timing diagram).

The cover in �gure 3(b) is hazard-free. Each 1! 1 sub-transition is completely contained in a

product of the cover and there are no stray cubes which intersect the transition in the middle (see

timing diagram).

5 Hazard-Free Covers.

A hazard-free cover of function f is a cover of f whose AND-OR implementation is hazard-free for

a given set of speci�ed input transitions. It is assumed below that the set of input transitions

completely de�nes the function: the circuit must be hazard-free for each speci�ed transition, and

for all other input states the function is unde�ned (i.e., don't-care value).

The following new theorem describes all hazard-free covers for function f for a set of multiple-

input transitions.

Theorem 1: Hazard-Free Covering Theorem. A sum-of-products C is a hazard-free cover

for function f for all speci�ed input transitions if and only if:
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(a) No cube of C intersects the OFF-set of f;

(b) Each required cube of f is contained in some cube of the cover, C; and

(c) No cube of C intersects any privileged cube illegally.

Proof. The result follows immediately from Lemmas 1{3, the Corollary, and the de�nitions of

hazard-free cover, required cubes and privileged cubes. Conditions (a)-(c) insure that the function

is covered correctly and hazard-free covering requirements are met for each speci�ed input transi-

tion. 2

Conditions (a) and (c) in Theorem 1 determine the implicants which may appear in a hazard-

free cover of a Boolean function f. Condition (b) determines the covering requirement for these

implicants in a hazard-free cover. Therefore, Theorem 1 precisely characterizes the covering problem

for hazard-free two-level logic.

In general, the covering conditions of Theorem 1 may not be satis�able for an arbitrary Boolean

function and set of transitions (cf. [35, 4, 12]). This case occurs if conditions (b) and (c) cannot

be satis�ed simultaneously. It is discussed further in Section 8.

6 Exact Hazard-Free Logic Minimization.

Many exact logic minimization algorithms are based on the Quine-McCluskey algorithm [32, 33, 19].

The Quine-McCluskey algorithm solves the two-level logic minimization problem. It has three steps:

1. Generate the prime implicants of a function;

2. Construct a prime implicant table; and

3. Generate a minimal cover of this table.

Our two-level hazard-free logic minimization algorithm is based on a constrained version of the

Quine-McCluskey algorithm. Only certain implicants may be included in a hazard-free cover, and

covering requirements are more restrictive.

We base our approach on the Quine-McCluskey algorithm to demonstrate a simple solution

to the hazard-free minimization problem. There now exist much more e�cient algorithms than

Quine-McCluskey [32, 33]; the hazard-elimination techniques described here can be applied to

these methods as well.

Theorem 1(a) and (c) determine the implicants which may appear in a hazard-free cover of a

Boolean function f. A dynamic-hazard-free implicant (or dhf-implicant) is an implicant which does

not intersect any privileged cube of f illegally (cf. DHA-Implikant [12]). Only dhf-implicants

may appear in a hazard-free cover. A dhf-prime implicant is a dhf-implicant contained in no

other dhf-implicant. An essential dhf-prime implicant is a dhf-prime implicant which contains a

required cube contained in no other dhf-prime implicant.

Interestingly, a prime implicant is not a dhf-prime implicant if it intersects a privileged cube

illegally. A dhf-prime implicant may be a proper subcube of a prime implicant for the same reason.

Theorem 1(b) determines the covering requirement for a hazard-free cover of f: every required

cube of f must be covered, that is, contained in some cube of the cover.

The two-level hazard-free logic minimization problem is therefore to determine a minimum-cost

cover of a function using only dhf-prime implicants where every required cube is covered.

Our hazard-free Quine-McCluskey algorithm has the following steps:

1. Generate the dhf-prime implicants of a function;

2. Construct a dhf-prime implicant table; and

3. Generate a minimal cover of this table.
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Algorithm Make-Sets (set T of input transitions):

req-set = fg; o�-set = fg; priv-set = fg;
for each transition t of T

A = start point of t; B = end point of t;

t-cube = [A,B];

case (t)

0! 0 transition:

add t-cube to o�-set;

1! 1 transition:

add t-cube to req-set;

1! 0 (or 0! 1) transition:

add each maximal ON-set subcube to req-set;

add each maximal OFF-set subcube to o�-set;

add t-cube and its start-point A to priv-set;

return (req-set, o�-set, priv-set).

Table 1: Step 0: Algorithm Make-Sets.

Step 0: Make Sets.

Before generating dhf-prime implicants, three sets must be constructed: the req-set, the o�-set,

and the priv-set. The req-set contains the required cubes for function f; it also de�nes the ON-set

of the function. The o�-set contains cubes precisely covering the OFF-set minterms. The priv-set

is the set of privileged cubes along with their start points.

The sets are generated by a simple iteration through every speci�ed transition of the given

function, using Algorithm Make-Sets (see Table 1). If the function has a 0 ! 0 change for a

transition, the corresponding transition cube is added to the o�-set. If the function has a 1 ! 1

change, the transition cube is added to the req-set.

If the function has a 1! 0 transition (or symmetrically, a 0! 1 transition), then the maximal

ON-set cubes are added to req-set and the maximal OFF-set cubes are added to o�-set. In addition,

the transition cube and its start point are also added to the priv-set, since this transition cube may

not be intersected illegally. (A 0 ! 1 transition from input state x to y is considered a 1 ! 0

transition from input state y to x, so it has \start point" y.)

Step 1: Generate DHF-Prime Implicants.

The dhf-prime implicants for function f are generated in two steps. The �rst step generates the

prime implicants of f from the req-set (which de�nes the on-set) and the o�-set, using standard

techniques [32, 33]. The second step transforms these prime implicants into dhf-prime implicants

using algorithm PI-to-DHF-PI. This algorithm is a simpler version of Algorithm B in [12]. The

algorithm iteratively re�nes the set of prime implicants until it generates the set of dhf-prime impli-

cants. In practice, many prime implicants are also dhf-prime implicants (see Experimental Results).

Also, there are fast existing algorithms to generate the the prime implicants of a function [33, 17].

Pseudo-code for the algorithm is given in Table 2. tmp-set is initialized to the set of prime

implicants. The algorithm iteratively removes each implicant, p, from tmp-set. If p has no illegal

11



Algorithm PI-to-DHF-PI (pi-set, priv-set)

tmp-set = pi-set; dhf-pi-set = fg;

while (not empty (tmp-set))

remove a cube p from tmp-set;

if (p has no illegal intersections with any cube of priv-set)

add p to dhf-pi-set;

else

/* p illegally intersects a priv-set cube; */

/* reduce p to avoid intersection */

c = any cube of priv-set which p intersects illegally;

for (each input variable v which appears as a don't-care

literal in p and as literal v or v0 in c)

p-red = the maximal subcube of p where v is set

to the complement of its value in c;

add p-red to tmp-set;

delete all cubes in dhf-pi-set contained in other cubes;

return (dhf-pi-set).

Table 2: Step 1: Algorithm PI-to-DHF-PI.

intersections with any cube of priv-set, it is a dhf-implicant; it is placed in dhf-pi-set.

If p illegally intersects some privileged cube c in priv-set, then cube p is \split", or reduced, in

every possible way by a single variable to avoid intersecting c. The reduced cubes are returned to

tmp-set. In general, these reduced cubes may have new illegal intersections: a reduced cube, p-red,

may illegally intersect a priv-set cube, c, even if p legally intersects c.

The algorithm terminates when tmp-set is empty. The resulting cubes in dhf-pi-set are all dhf-

implicants. In addition, it is easily proved that the algorithm generates all dhf-prime implicants.

Subcubes of other cubes in dhf-pi-set are removed; the result is the set of dhf-prime implicants.

As an optimization, we eliminate implicants that contain no required cube. If a dhf-implicant

contains no required cubes, it can always be removed from a cover to yield a lower-cost solution.

(Note that a dhf-prime implicant may intersect the ON-set and yet contain no required cube; see

Experimental Results, Section 11.)

Step 2: Generate DHF-Prime Implicant Table.

A dhf-prime implicant table is constructed for the given function. The rows of the table are labelled

with the dhf-prime implicants used to cover the columns. The columns are labelled with the

required cubes which must be covered. The table sets up the two-level hazard-free logic minimization

problem.

Step 3: Generate a Minimal Cover.

The dhf-prime implicant table is solved in three steps, using simple standard techniques. More

sophisticated techniques can also be applied [32, 33, 5, 19].

First, essential dhf-prime implicants are extracted using standard techniques.

12



Second, the ow table is iteratively reduced. Rows and columns of the table may be removed

using row-dominance and column-dominance operations, respectively. These operations may lead

to further opportunities for (secondary) essential dhf-prime implicant removal. The operations are

iterated until there is no further change.

Finally, if the table is still non-empty, a covering problem remains (cyclic covering problem).

It is solved using an exhaustive algorithm called Petrick's method. Each column lists implicants

which cover a required cube. The column is translated into a Boolean sum of rows; the covering

problem for the table can be stated as a Boolean product of these sums. This product is multiplied

out to generate all possible solutions. A minimal solution is then selected.

7 Hazard-Free Minimization Example.

The Karnaugh map from �gure 1 is reproduced in �gure 4 (the function is slightly modi�ed from

ex. 3.4 of [12]). Set T = ft1; t2; t3; t4g contains four speci�ed function-hazard-free input transitions.
Each transition ti is described by a transition cube Ci with start point mi:

t1: m1 = ab
0
c
0
d C1 = ac

0

t2: m2 = ab
0
cd

0
C2 = ab

0
c

t3: m3 = a
0
bc

0
d
0

C3 = a
0
c
0

t4: m4 = a
0
bcd C4 = c

The input transitions are indicated in �gure 4(a). The start point of each transition is described

by a dot, and its transition cube is described by a dotted circle.

Step 0: Make Sets.

The req-set, o�-set and priv-set are generated using Algorithm Make-Sets, as illustrated in �g-

ure 4(b).

t1: req-cube-1 = ac
0

t4: req-cube-4 = a
0
c

t2: o�-cube-1 = ab
0
c req-cube-5 = bcd

t3: req-cube-2 = a
0
c
0
d
0 o�-cube-3 = acd

0

req-cube-3 = a
0
bc

0 o�-cube-4 = ab
0
c

o�-cube-2 = a
0
b
0
c
0
d priv-cube-2 = c

priv-cube-1 = a
0
c
0 priv-start-2 = a

0
bcd

priv-start-1 = a
0
bc

0
d
0

The �nal sets produced by the algorithm are:

req-set = fac0; a0
c
0
d
0
; a

0
bc

0
; a

0
c; bcdg,

o�-set = fab0c; a0
b
0
c
0
d; acd

0
; ab

0
cg,

priv-set = fha0
bc

0
d
0
; a

0
c
0i, ha0

bcd; cig.

Step 1: Generate DHF-Prime Implicants.

First, prime implicants are generated from the req-set and o�-set:

13
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1 1 1 1
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1 1 0 0

t1

t2

t3

t4

00 01 11 10
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01
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a b
c d

1 1 1 1

0 1 1 1

1 1 1 0

1 1 0 0

t1

t2

t3

t4

00 01 11 10

00

01

11

10

a b
c d

1 1 1 1

0 1 1 1

1 1 1 0

1 1 0 0

t1

t2

t3

t4

(c) off−set cubes

(b) req−set cubes

(d) priv−set cubes

(a) Karnaugh map with input transitions

Figure 4: Hazard-Free Minimization Example: Step 0
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p1 = c
0
d
0

p5 = a
0
c

p2 = a
0
b p6 = bd

p3 = bc
0

p7 = a
0
d
0

p4 = ac
0

The dhf-prime implicants are now produced using Algorithm PI-to-DHF-PI. The steps of the

algorithm are illustrated in �gure 5. Prime implicants p1 through p5 do not illegally intersect priv-set

cubes priv-cube-1 or priv-cube-2. As shown in �gure 5(a), prime implicant p1 intersects priv-cube-1

and contains its start point. p2 intersects both priv-cube-1 and priv-cube-2 and contains both start

points. p4 intersects neither priv-set cube. Similarly, p3 and p5 have no illegal intersections. These

prime implicants are therefore dhf-prime implicants.

However, prime implicant p6 illegally intersects priv-cube-1, since it intersects the cube (bd \
a
0
c
0 6= �) but does not contain its start point (a0

bc
0
d
0 62 bd; see Figure 5(b)). The algorithm

splits p6 into two subcubes: p61 = bcd and p62 = abd (see �gure 5(c)). Cube p61 has no illegal

intersections. However, p62 illegally intersects priv-cube-2 (even though p6 legally intersects priv-

cube-2; see �gure 5(b)). Cube p62 is again reduced to p621 = abc
0
d, which has no illegal intersections

(see Figure 5(d)).

Similarly, prime implicant p7 illegally intersects priv-cube-2, since a0
d
0 \ c 6= � and a

0
bcd 62 a

0
d
0

(see Figure 5(e)). Cube p7 is reduced to p71 = a
0
c
0
d
0, which has no illegal intersections (Figure 5(f)).

The resulting set of dhf-implicants is:

fp1; p2; p3; p4; p5; p61; p621; p71g.

After deleting cubes contained in other cubes, the �nal set of dhf-prime implicants is:

fp1; p2; p3; p4; p5; p61g.

Step 2: Generate DHF-Prime Implicant Table.

The dhf-prime implicant table for the example is shown in Table 3. The columns contain the

required cubes generated in Step 0; the rows contain the dhf-prime implicants generated in Step 1.

Step 3: Generate a Minimal Cover.

A minimal cover is generated for the dhf-prime implicant table. The essential dhf-prime implicants

are: p1, p4, p5, and p61. Either p2 or p3 can be selected to cover the remaining uncovered required

cube, a0
bc

0. The function therefore has two minimal hazard-free covers, each containing 5 products:

fp1; p4; p5; p61; p2g and fp1; p4; p5; p61; p3g.
The latter cover is shown in �gure 6(a). This cover is irredundant but non-prime, since it

contains dhf-prime implicant p61 which is a proper subcube of prime implicant p6.

A minimal non-hazard-free cover is shown in �gure 6(b). The cover contains fewer products than

the hazard-free cover, but has a logic hazard: prime implicant p6 illegally intersects priv-cube-1.

As a result, p6 causes a dynamic hazard in the corresponding input transition, t3.

8 Existence of a Solution.

For certain Boolean functions and sets of transitions, the hazard-free covering problem has no

solution [35, 4]. In this case, the dhf-prime implicant table will include at least one required cube

which is not covered by any dhf-prime implicant.
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(e) Prime implicant p7 has illegal intersection (f) Final reduction of p7 (no illegal intersections)

(c) First reduction of p6 (with new illegal intersection)

priv−
 cube−1

priv−
 cube−2

priv−
 cube−1

priv−
 cube−2

priv−
 cube−1

priv−
 cube−2

priv−
 cube−1
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 cube−2
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 cube−1

priv−
 cube−2

priv−
 cube−1

priv−
 cube−2

(b) Prime implicant p6 has illegal intersection

p3

p5

(a) Prime implicants with no illegal intersections

Figure 5: Hazard-Free Minimization Example: Step 1
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required cubes

dhf-prime implicants ac
0

a
0
c
0
d
0

a
0
bc

0
a
0
c bcd

p1=c
0
d
0 X

p2=a
0
b X

p3=bc
0 X

p4=ac
0 X

p5=a
0
c X

p61=bcd X

Table 3: Hazard-Free Minimization Example: Step 2.

00 01 11 10
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11
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a b
c d

1 1 1 1

0 1 1 1

1 1 1 0

1 1 0 0

00 01 11 10

00

01

11

10

a b
c d

1 1 1 1

0 1 1 1

1 1 1 0

1 1 0 0

p61

priv−
 cube−1

p6

(a) Minimal hazard−free cover (5 products) (b) Minimal non−hazard−free cover (4 products)

Figure 6: Hazard-Free Minimization Example: Step 3
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(b) To avoid hazards, req−cube−6 must be covered.

(c) and (d):  Every implicant which covers req−cube−6 has an illegal intersection.

(a) Karnaugh map with new input transition, t5.

Figure 7: Boolean Function with No Hazard-Free Cover

Example. We consider the function used in the previous section, but augment its set T =

ft1; t2; t3; t4g of speci�ed input transitions with a new transition:

t5: m5 = abc
0
d C5 = abd

The input transitions are indicated in the Karnaugh map of �gure 7(a). The req-set now has

an additional required cube: req-cube-6 = abd. The o�-set and priv-set are unchanged from the

example of Section 7, and the function has the same dhf-prime implicants as well.

Figure7(b)-(d) illustrates the covering problem. To insure no static hazard for transition t5,

the required cube req-cube-6 must be covered by some product. However, every product which

contains req-cube-6 also illegally intersects a privileged cube, priv-cube-1 or priv-cube-2. That is,

any attempt to eliminate the static hazard in transition t5 will produce a dynamic hazard in one

of the transitions, t3 or t4.

Table 4 shows the resulting dhf-prime implicant table. This table has no solution: no dhf-prime

implicant contains required cube abd.
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required cubes

dhf-prime implicants ac
0

a
0
c
0
d
0

a
0
bc

0
a
0
c bcd abd

p1=c
0
d
0 X

p2=a
0
b X

p3=bc
0 X

p4=ac
0 X

p5=a
0
c X

p61=bcd X

Table 4: DHF-Prime Implicant Table Having No Solution.

9 Comparison with Frackowiak's Work.

It is useful to compare our approach with the related work of Frackowiak [12]. Frackowiak presents

two hazard-free minimization algorithms for two-level implementations allowing multiple-input

changes. The algorithms assume that functions are fully-speci�ed.

Both algorithms eliminate dynamic hazards in speci�ed transitions. However, the �rst method

(Algorithm A) ignores static hazards. The second method (unnamed, but here called Algorithm

A') attempts to eliminate static hazards for every static transition, even if unspeci�ed. Therefore

results may be either hazardous (Algorithm A) or suboptimal (Algorithm A').

In particular, Algorithm A �rst generates all dhf-prime implicants, then attempts to cover every

ON-set minterm (not required cube) using a dhf-prime implicant. The algorithm �nds a minimal

cover which is hazard-free for a given set of dynamic transitions, if a solution exists. Since required

cubes are not covered, static hazards may occur.

Algorithm A' attempts to eliminate both dynamic and static hazards. The algorithm extends an

earlier result by Eichelberger [11]. Eichelberger proved that, to eliminate all static logic hazards for

a fully-speci�ed function, a cover must include all prime implicants. Frackowiak's goal is di�erent:

�rst, to eliminate hazards for a given set of dynamic transitions and, second, to eliminate as many

static hazards as possible. Therefore, his solution is to include all dhf-prime implicants in the

cover. Since only dhf-primes are used, every speci�ed dynamic transition will be hazard-free (if a

hazard-free solution exists). Furthermore, by using all dhf-prime implicants, as many remaining

static hazards as possible are eliminated.

Algorithm A' and our algorithm are both guaranteed to �nd a hazard-free cover, if one exists.

However, since Algorithm A' includes all dhf-prime implicants in the solution, the resulting cover

may be far from minimal. In fact, judging from the non-hazard-free case [32], the number of primes

for even small examples may be huge; in this case, Algorithm A' will not be practical. In contrast,

our algorithm �nds a minimum-cost hazard-free solution.

Example. The Karnaugh map of �gure 8(a) describes a fully-speci�ed Boolean function. The

function has four speci�ed input transitions. Each transition ti is described by its transition cube

Ci and start point mi:

t1: m1 = a
0
bc

0
d
0

C1 = a
0
c
0

t2: m2 = a
0
b
0
cd

0
C2 = c

t3: m3 = a
0
b
0
cd

0
C3 = a

0
d
0

t4: m4 = ab
0
c
0
d
0

C4 = ac
0
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Figure 8: Comparison with Frackowiak's Method

A minimal cover using Frackowiak's Algorithm A has 4 products (see �gure 8(b)). It is hazard-

free for dynamic transitions t2 and t4, but has a static logic hazard for transition t3.

A minimal hazard-free cover, using our method, is shown in �gure 8(c). The cover has 5 products

and is hazard-free for every speci�ed transition.2

Finally, a minimal cover using Frackowiak's Algorithm A' is shown in �gure 8(d). The cover is

hazard-free for every speci�ed transition but has 6 products; it is therefore suboptimal. 2

A �nal distinction between our work and Frackowiak, is that we allow incompletely-speci�ed

functions:

Example. The Karnaugh map of �gure 9(a) describes an incompletely-speci�ed Boolean func-

tion. The function has six speci�ed input transitions:

2Interestingly, this solution is prime but redundant, since it contains prime implicant a'd'. In contrast, the solution

for the previous example (�gure 6(a)) was non-prime but irredundant.
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Figure 9: Hazard-Free Minimization of an Incompletely-Speci�ed Boolean Function

t1: m1 = a
0
b
0
c
0
d C1 = a

0
c
0

t2: m2 = a
0
b
0
c
0
d C2 = b

0
c
0
d

t3: m3 = a
0
b
0
cd C3 = a

0
c

t4: m4 = abcd
0

C4 = abd
0

t5: m5 = abcd C5 = abc

t6: m6 = abcd
0

C6 = acd
0

A minimal cover, using our method, is shown in �gure 9(b). The cover has 4 products and is

hazard-free for every speci�ed input transition.

10 Program Implementation.

We have implemented the logic minimization algorithms of the Section 6. Our program is written

in Lucid Common Lisp and is run on a DECStation 3100. However, it makes use of espresso [5, 33]

to perform part of its computation: prime implicant generation. The advantage of this approach

is that we can bene�t from highly optimized existing tools.

The program generates sets for a function (Step 0) and writes the ON-set and OFF-set into a

�le in PLA format. We then use espresso -Dprimes to generate all prime implicants. The resulting

PLA �le is read in by the program, which computes the sets of dhf-prime implicants (Step 1). The

program then constructs a dhf-prime implicant table and solves it (Steps 2 and 3).

This logic minimization program has been used as the the �nal component in an existing

synthesis program for asynchronous controllers [25, 28]. It has recently been incorporated into two

other asynchronous synthesis programs as well [38, 26]. All three methods produce combinational

functions which are guaranteed by construction to have hazard-free two-level implementations. In

particular, each method imposes constraints during state minimization to insure that hazard-free

covers will exist for the resulting Boolean functions (for a detailed discussion, see [25]).
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dhf-

prime prime

implicants implicants

% %

name in/out total illegal total non-prime

dean-ctrl 20/19 1676 4 997 7

oscsci-ctrl 14/5 192 3 140 2

scsi-ctrl 12/5 280 1 190 2

pe-send-ifc 7/3 22 5 20 5

chu-ad-opt 4/3 6 0 4 0

vanbek-opt 4/3 7 0 6 0

dme 5/3 9 0 6 0

dme-opt 5/3 7 0 6 0

dme-fast 5/3 10 0 7 0

dme-fast-opt 5/3 15 0 14 0

Table 5: Results of Algorithm PI-to-DHF-PI.

11 Experimental Results.

Our hazard-free logic minimization program was run on a set of examples. The largest example is

a cache controller having 20 inputs and 19 outputs (dean-ctrl) [27]. The program was also run on

two SCSI controller designs (oscsi-ctrl and scsi-ctrl) [31]. The examples were generated from state

machine speci�cations using the locally-clocked synthesis method [25]. Speci�cations were given

in \burst-mode" [29, 25], a notation to describe asynchronous Mealy machines allowing multiple-

input changes. Several examples have appeared previously in the literature using other concurrent

description languages (STGs [10, 36], CSP [9]); reasonable timing assumptions were made when

synthesizing them as multiple-input-change state machines (see [28]).

Table 5 describes the results of Algorithm PI-to-DHF-PI. The algorithm transforms prime

implicants into dhf-prime implicants. Prime implicants which contain only don't-care minterms are

not included, since these implicants will never appear in an exact solution.

Illegal prime implicants are those which are illegally intersect some privileged cube, and therefore

are not dhf-prime implicants. In every case, no more than 5% of the original prime implicants are

illegal and must be further reduced.

After reduction, at most 7% of the dhf-prime implicants are not prime. It is also interesting

that a number of prime implicants are discarded by the algorithm (see dean-ctrl). These implicants

contain ON-set minterms but contain no required cubes. Since these implicants do not contribute

to the hazard-free covering solution, they can be removed.

Table 6 presents the exact hazard-free solutions for the examples. It also gives an indication

of the penalty associated with hazard elimination in our algorithms. In every case, the overhead

for hazard-elimination is no more than a 6% increase in the number of products as compared with

outputs synthesized using espresso-exact.

Runtimes were quite reasonable for all examples tested. Even for the cache controller example,

with 20 inputs and 19 outputs, total runtime was 83 seconds.

22



Total

Products

Hazard-

Hazard- % free

free espresso- Over- Run-

name in/out Method exact head time(s)

dean-ctrl 20/19 215 202 6 83

oscsci-ctrl 14/5 59 58 2 9

scsi-ctrl 12/5 60 59 2 11

pe-send-ifc 7/3 15 15 0 1

chu-ad-opt 4/3 4 4 0 1

vanbek-opt 4/3 6 6 0 1

dme 5/3 4 4 0 1

dme-opt 5/3 4 4 0 1

dme-fast 5/3 5 5 0 1

dme-fast-opt 5/3 8 8 0 1

Table 6: Comparison of Hazard-Free Logic Minimization with espresso-exact.

12 Conclusions.

This paper considers the two-level hazard-free minimization problem for several reasons: the general

problem has not previously been solved; minimal two-level solutions are important for optimal PLA

implementations; and solutions serve as a good starting point for hazard-preserving multi-level

logic transformations. In particular, multi-level transformations which introduce no hazards into

a combinational network are discussed in [35]. This set of transformations has been signi�cantly

extended by Kung [14]. Finally, technology mapping algorithms which introduce no hazards are

described by Siegel et al. [34].

We have described the problem of implementing hazard-free two-level logic as a constrained

covering problem on Karnaugh maps. We presented an automated algorithm for solving the two-

level hazard-free logic minimization problem and showed its e�ectiveness on a set of examples.

An important feature of the algorithms is that they involve only localized changes to existing

algorithms. As a result, we can use existing sophisticated algorithms for prime implicant generation

(Step 1) and for table reduction and solution (Step 3).

Our algorithms have implications for testability, since they may introduce redundant and non-

prime implicants. In this case, the resulting circuits may have non-testable faults. However, recent

methods have been proposed which insure complete testability of hazard-free logic, for both stuck-

at and robust path delay faults, in the presence of redundant [13, 30] and non-prime [30] implicants.

Therefore, testability need not be adversely a�ected when hazards are removed.

With the automation of these exact algorithms, the basic automated synthesis system of [28] is

complete. The algorithms have been incorporated into two other synthesis systems as well [38, 26]

and can be used in a number of other sequential synthesis methods. The algorithms have also been

applied to several substantial asynchronous designs, including a second-level cache controller [27]

and state machines for an infrared communications chip [1].
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