
ABSTRACT

QuickSet: Multimodal Interaction
for Distributed Applications

Philip R. Cohen, Michael Johnston, David McGee, Sharon Oviatt,

Jay Pittman, Ira Smith, Liang Chen and Josh Glow

Center for Human Computer Communication
Oregon Graduate Institute of Science and Technology

P.O.Box 91000
Portland, OR 97291-1000 USA

Tel: l-503-690-1326
E-mail: pcohen@cse.ogi.edu

http://www.cse.ogi.edu/CHCC _

This paper presents an emerging application of multimodal
interface research to distributed applications. We have
developed the QuickSet prototype, a pen/voice system running
on a hand-held PC, communicating via wireless LAN through an
agent architecture to a number of systems, including NRaD’s’
LeatherNet system, a distributed interactive training simulator
built for the US Marine Corps. The paper describes the overall
system architecture, a novel multimodal integration strategy
offering mutual compensation among modalities, and provides
examples of multimodal simulation setup. Finally, we discuss
our applications experience and evaluation.

KEY WO R D S : multimodal interfaces, agent architecture,
gesture recognition, speech recognition, natural language
processing, distributed interactive simulation.

1. INTRODUCTION

A new generation of multimodal systems is emerging in which
the user will be able to employ natural communication
modalities, including voice, hand and pen-based gesture, eye-
tracking, body-movement, etc. [Koons et al., 1993; Oviatt,
1992, 1996; Waibel et al., 19951 in addition to the usual
graphical user interface technologies. In order to make
progress on building such systems, a principled method of
modality integration, and a general architecture to support it is
needed. Such a framework should provide sufficient flexibility
to enable rapid experimentation with different modality
integration architectures and applications. This
experimentation will allow researchers to discover how each
communication modality can best contribute its strengths yet
compensate for the weaknesses of the others.

Fortunately, a new generation of distributed system frameworks
is now becoming standardized, including the CORBA and
DCOM frameworks for distributed object systems. At a higher
level, multiagent architectures are being developed that allow
integration and interoperation of semi-autonomous knowledge-
based components or “agents”. The advantages of these
architectural frameworks are modularity, distribution, and
asynchrony - a subsystem can request that a certain
functionality be provided without knowing who will provide it,
where it resides, how to invoke it, or how long to wait for it.
In virtue of these qualities, these frameworks provide a
convenient platform for experimenting with new architectures
and applications.

In this paper, we describe QuickSet, a collaborative,
multimodal system that employs such a distributed, multiagent
architecture to integrate not only the various user interface
components, but also a collection of distributed applications.
QuickSet provides a new unification-based mechanism for
fusing partial meaning representation fragments derived from
the input modalities. In so doing, it selects the best joint
interpretation among the alternatives presented by the
underlying spoken language and gestural modalities.
Unification also supports multimodal discourse. The system is
scaleable from haqdheld to wall-sized interfaces, and
interoperates across a number of platforms (PC’s to UNIX
workstations). Finally, QuickSet has been applied to a
collaborative military training system, in which it is used to
control a simulator and a 3-D virtual terrain visualization
system.

This paper describes the “look and feel” of the multimodal
interaction with a variety of back-end applications, and
discusses the unification-based architecture that makes this new
class of interface possible. Finally, the paper discusses the
application of the technology for the Department of Defense.

’ NRaD = US Navy Command and Control Ocean Systems Center
Research Development Test and Evaluation (San Diego).

31

2. QUICKSET

QuickSet is a collaborative, handheld, multimodal system for
interacting with distributed applications. In virtue of its
modular, agent-based design, QuickSet has been applied to a
number of applications in a relatively short Period of time,
including:

l Simulation Set-up and Control - Quickset is used to
control LeatherNet [Clarkson and Yi, 19961, a system
employed in training platoon leaders and company
commanders at the USMC base at Twentynine Palms,
California. LeatherNet simulations are created using the
ModSAP simulator [Courtmanche and i3eranowicz, 19951
and can be visualized in a wall-sized virtual reality CAVE
environment [Cruz-Neira et al., 1993; Zyda et al., 19921
called CommandVu. A QuickSet user can create entities,
give them missions, and control the virtual reality
environment from the handheld PC. QuickSet
communicates over a wireless LAN via the Open Agent
Architecture (OAA) [Cohen et al., 19941 to ModSAP, and
to CommandVu, each of which have been made into agents
in the architecture.

. Force Luyabwn - QuickSet is being used in a second effort
called ExInit (Exercise Initialization), that enables users to
create large-scale (division- and brigade- sized) exercises.
Here, QuickSet interoperates via the agent architecture
with a collection of CORBA servers.

l Medical informatics - Aversion of QuickSet is used in
selecting healthcare in Portland, Oregon. In this
application, QuickSet retrieves data from a database of
2000 records about doctors, specialties, and clinics.

Next, we turn to the primary application of QuickSet
technology.

3. NEW INTERFACES FOR DISTRIBUTED
SIMULATION

Begun as SIGNET in the 1980’s [Thorpe, 19871, distributed,
interactive simulation (DIS) training environments attempt to
provide a high degree of fidelity in simulating combat
equipment, movement, atmospheric effects, etc. One of the
U.S. Government’s goals, which has partially motivated the
present research, is to develop technologies that can aid in
substantially reducing the time and effort needed to create large-
scale scenarios. A recently achieved milestone is the ability to
create and simulate a large-scale exercise, in which there may be
on the order of 60,000 entities (e.g., a vehicle or a person).

QuickSet addresses two phases of user interaction with these
simulations: creating and positioning the entities, and
supplying their initial behavior. In the first phase, a user
“lays down” or places forces on the terrain, which need to be
positioned in realistic ways, given the terrain, mission,
available equipment, etc. In addition to force laydown the user
needs to supply them with behavior, which may involve
complex maneuvering, communication, etc.

Our contribution to this overall effort is to rethink the nature
of the user interaction. As with most modem simulators, DISs
are controlled via graphical user interfaces (GUIs). However,
GUI-based interaction is rapidly losing its benefits, especially
when large numbers of entities need to be created and
controlled, often resulting in enormous menu trees. At the same
time, for reasons of mobility and affordability, there is a strong
user desire to be able to create simulations on small devices
(e.g., PDA’s). This impending collision of trends for smaller

screen size and for more entities requires a different paradigm
for human-computer interaction with simulators.

Amajor design goal for QuickSet is to provide the same user
input capabilities for handheld, desktop, and wall-sized
terminal hardware. We believe that only voice and gesturce
based interaction comfortably span this range. QuickSot
provides both of these modalities because it has been
demonstrated that there exist substantive language, task
performance, and user preference advantages for multimodal
interaction over speech-only and gesture-only interaction with
map-based tasks [Oviatt, 1996; Oviatt, in press]? Specificnlly,
for these tasks, multimodal input results in 36% fewer task
performance errors, 35% fewer spoken disfluencies, 10% faster

“task performance, and 23% fewer words, as comppred to a
speech-only interaction. Multimodal pen/voice interaction is
known to be advantageous for small devices, for mobile users
who may encounter different circumstances, for error avoidance
and correction, and for robustness [Oviatt, 1992; Ovintt 19951,

In summary, a multimodal voice/gesture interface
complements, but also promises to address the limitations of,
cnrrent GUI technologies for controlling simulators, In
addition, it has been shown to have numemus advantages over
voice-only interaction for map-based tasks. These findings had
a direct bearing on the interface design and architecture of
QuickSet.

4. SYSTEM ARCHITECTURE

In order to build QuickSet, distributed agent technologies based
on the Open Agent Architecture’ were employed because of its
flexible asynchronous capabilities, its ability to run the snmo
set of software components in a variety of hardwaro
configurations, ranging from standalone on the handheld PC to
distributed operation across numerous computers, and its easy
connection to legacy applications. Additionally, the
architecture supports user mobility in that less
computationally-intensive agents (e.g., the map interface) can
run on the handheld PC, while more computationolly-intensive
processes (e.g., natural language processing) can opernte
elsewhere on the network. The agents may be written in any
programming language (here, Quintns Prolog, Visual C++,
Visual Basic, and Java), as long as they communicnte via an
interagent communication language. The configuration of
agents used in the QuickSet system is illustrated in Figum 1, A
brief description of each agent follows.

Figure 1: The facilitator, channeling
queries to capable agents.

2 Our prior research [Cohen et al., 1989; Cohen, 19921 has demonstrated
the advantages of a multimodal interface offering natural lnngusge sad
direct manipulation for controlling simulators and reviewing their results.
* Open Agent Architecture. is a trademark of SRI International.

23

5. EXAMPLES

5.1 Leathernet

Holding QuickSet, the user views a map from the ModSAF
simulation. With speech and pen, she then adds entities into
the ModSAF simulation. For example, to create a unit in
QuickSet, the user would hoId the pen at the desired location and
utter: “red T72 platoon” resulting in a new platoon of the
specified type being created. The user then adds a barbed-wire
fence to the simulation by drawing a line at the desired location
while uttering “barbed wire.” A fortified line can be added
multimodally, by drawing a simple line and speaking its label,
or unimodally, by drawing its military symbology. A minefield
of an amorphous shape is drawn and is labeled verbally. Finally
an MlAl platoon is created as above. Then the user can assign
a task to the platoon by saying “MIA1 platoon follow this
route” while drawing the route with the pen.

Figure 4: Quick&t running on a wireless hanchekl PC. The
user has created numerous units, fortifications
and objectives.

The results of these commands are visible on the QuickSet
screen, as seen in Figure 4, as well as on the ModSAF
simulation, which has been executing the user’s QuickSet
commands in the virtual world (Figure 5).

Figure 5: Controlling the CommandVu 3-D visualization
via Quick!% interaction. QuickSet tablets are cm the
desks.

Two specific aspects of QuickSet to be discussed below are its
usage as a collaborative system, and its ability to control a
virtual reality environment.

5.1.1 Collaboration.
In virtue of the facilitated agent architecture, when two or more
user interfaces connected to the same network of facilitators
subscribe to and/or produce common messages, they (and their
users) become part of a collaboration. The agent architecture
offers a framework for heterogeneous collaboration, in that
users can have very different interfaces, operating on different
types of hardware platforms, and yet be part of a collaboration.
For instance, by subscribing to the entity-location database
messages, multiple QuickSet user interfaces can be notified of
changes in the locations of entities, and can then render them
in whatever form is suitable, including 2-D map-based, web-
based, and 3-D virtual reality displays. Likewise, users can
interact with different interfaces (e.g., placing entities on the
2-D map or 3-D VR) and thereby affect the views seen by other
users. To allow for tighter synchronicity, the current
implementation also allows users to decide to couple their
interface to those of the other users connected to a given
network of facilitators. Then, when one interface pans and
zooms, the other coupled ones do as well. Furthermore, coupled
interfaces subscribe to the “ink” messages, meaning one user’s
ink appears on the others’ screens, immediately providing a
shared drawing system. On the other hand, collaborative
systems also require facilities to prevent users from interfering
with one another. QuickSet incorporates authentication of
messages in order that one user’s speech is not accidentally
integrated with another’s gesture.

In the future, we will provide a subgrouping mechanism for
users, such that there can be multiple collaborating groups
using the same facilitator, thereby allowing users to be able
to choose to join collaborations of specific subgroups. Also to
be developed is a method for handling conflicting actions
during a collaboration.

5.1.2 Multimodal Control of Virtual Travel
Most terrain visualization systems allow only for flight
control, either through a joystick (or equivalent), via keyboard
commands, or via mouse movement. Unfortunately, to make
effective use of such interfaces, people need to be pilots, or at
least know where they are going. Believing this to be
unnecessarily restrictive, our virtual reality set-up follows the
approach recommended by Baker and Wickens [unpublished
ms]., Brooks [1996], and StoakIey et al., [1995] in offering
two “linked” displays - a 2-D “birds-eye” map-based display
(QuickSet), and the 3-D CommandVu visualization. In addition
to the existing 3-D controls, the user can issue spoken or
multimodal commands via the handheld PC to be executed by
CommandVu. Sample commands am:

“CommandVu, heads up display on,”

“take me to objective alpha”

“fly me to this platoon <gesture on QuickSet map>” (see Figure
4).

‘Y’ly me along this route <draws route on QuickSet map> at fifty
meters”

Spoken interaction with virtual worlds offers distinct
advantages over direct manipulation, in that users are able to
describe entities and locations that are not in view, can be
teleported to those out-of-view locations and entities, and can

33

QuickSet interface: On the handheld PC is a geo-referenced
map of some region,4 such that entities displayed on the map
are registered to their positions on the actual terrain, and
thereby to their positions on each of the various user interfaces
connected to the simulation. The map interface provides the
usual pan and zoom capabilities, multiple overlays, icons, etc.
Two levels of map are shown at once, with a small rectangle
shown on a miniature version of the larger scale map indicating
the portion of it shown on the main map interface.

Employing pen, speech, or mom frequently, multimod,al input,
the user can annotate the map, creating points, lines, and areas
of various types. The user can also create,entities, give them
behavior, and watch the simulation unfold from the handheld.
When the pen is placed on the screen, the speech recognizer is
activated, thereby allowing users to speak and gesture
simultaneously. The interface offers controls for various
parameters of speech recognition, for loading different maps,
for entering into collaborations ,with other users, for
connecting to different facilitators, and for discovering other
agents who am connected to the facilitator. The QuickSet
system also offers a novel map-labeling algorithm that
attempts to miniie the overlap of map labels as the user
creates more complex scenarios, and as the entities move (cf.
[Christensen et al., 19961).

Speech recognition agent: The speech recognition-, agent
used in QuickSet is built on IBM’s VoiceType Application
Factory and VoiceType 3.0, recognizers, as well as Microsoft
Whisper speech recognizer.

Gesture recognition agent: QuickSet’s pen-based gesture
recognizer consists of both a neural network [Pittman, 1991,
Mar&e et al., 19941 and a set of hidden Markov models. The
digital ink is size-normalized, centered in, a 2D image, and fed
into the neural network as pixels. The ink is also smoothed,
resampled, converted to deltas, and given as input to the HMM
recognizer. The system currently recognizes 68 pen-gestures,
including various military map symbols (platoon, mortar,
fortified line, etc.), editing gestures (deletion, grouping), route
indications, area indications, taps, etc. The probability
estimates from the two recognizers are combined to yield
probabilities for each of the possible interpretations. The
inclusion of route and area indications creates a special problem
for the recognizers, since route and ama indications may have a
variety of shapes. This problem is further compounded by the
fact that the recognizer needs to be robust in the face of sloppy
writing. More typically, sloppy forms of various map
symbols, such as those illustrated in Figure 3, will often take
the same shape as some route and area indications. A solution
for this problem can be found by combining the outputs from
the gesture recognizer with the outputs from the speech
recognizer, as is described in the following section.

Figure 2 Pan drawings of mutes and areas. Floutas and
areas do not have signature shapes that can he
used to lctsnfify them.

4 QuickSet can employ either UTM or I.&udelLongitude coordinate
system.

mortar tank deletion mechanized
platoon company

Figure 3: Typical pen input from real usars. Tha recognizer must
be robust in the face of sloppy input.

Natural language agent: The natural language agent
currently employs a definite clause grammar and produces typed
feature structures as a representation of the utterance meaning,
Currently, for the force laydown and mission assignment tasks,
the language consists of noun phrases that label entities, as
well as a variety of imperative constructs for supplying
behavior.

Text-to-Speech agent: Microsoft’s text-to-speech system
has been incorporated as an agent, residing on each individual
PC.

Multimodal integration agent: The task of tho
integrator agent is to field incoming typed feature structures
representing individual interpretations of speech and of
gesture, and identify the best potential unified interpretation,
multimodal or unimodal. In order for speech and gesture to bo
incorporated into a multimodal interpretation, they need to bo
both semantically and temporally compatible. The output of
this agent is a typed feature structure representing the preferred
interpretation, which is ultimately routed to the bridge agent
for execution. A more detailed description of multimodal
interpretation is in Section 6.

Simulation agent: The simulation agent, devoloped
primarily by SRI International [Moore et al., 19971, but
modiied by us for multimodal interaction, serves as tho
communication channel between the OAA-bmkercd agents and
the ModSAF simulation system. This agent offers an API for
ModSAF that other agents can use.

Web display agent: The Web display agent can be used to
create entities, points, lines, and areas, and posts queries for
updates to the state of the simulation via Java code that
interacts with the blackboard and facilitator. The queries arc
routed to the running ModSAF simulation, and the availablo
entities can be viewed over a WWW connection.

CommandVu agent: Since the CommsndVu virtual reality
system is an agent, the same multimodal interface on tho
handheld PC can be used to create entities and to fly the user
through the 3-D terrain.

Application bridge agent: The bridge agent generalizes
the underlying applications’ API to typed feature structures,
thereby providing an interface to the various applications such
as ModSAF, CommandVu, and Exinit. This allows for a
domain-independent integration architecture in which
constraints on multimodal interpretation are stated in terms of
higher-level constructs such as typed feature structures, greatly
facilitating reuse.

CORBA bridge agent: This agent converts OAA messages
to COBBA IDL (Interface Definition Language) for the Exercise
Initialization project.

To see how QuickSet is used, we present the following
examples.

34

ask questions about entities in the scene. We are currently
engaged in research to allow the user to gesture directly into
the 3-D scene while speaking, a capability that will make these
more sophisticated interactions possible.

5.2 Exercise initialization: Exlnit
QuickSet has been incorporated into the DOD’S new Exercise
Initialization tool, whose job is to create the force laydown and
initial mission assignments for very large-scale simulated
scenarios. Whereas previous manual methods for initializing
scenarios resulted in a large number of people spending more
than a year in order to create a division-sized scenario, a
60,OOOt entity scenario recently took a single ExInit user 63
hours, most of which was computation.

ExInit is distinctive in its use of CORBA technologies as the
interoperation framework, and its use of inexpensive off-the-
shelf personal computers. ExInit’s CORBA servers (written or
integrated by MRJ Corp. and Ascent Technologies) include a
relational database (Microsoft Access or Oracle), a
geographical information system (CARIS), a “deployment”
server that knows how to decompose a high-level unit into
smaller ones and position them in realistic ways with respect to
the terrain, a graphical user interface, and QuickSet for
voice/gesture interaction.

In order for the QuickSet interface to work as part of the larger
ExInit system, a CORBA bridge agent was written for the O&
which communicated via IDL to the CORBA side, and via the
interagent communication language to the OAA agents. Thus,
to the CORBA servers, QuickSet is viewed as a Voice/Gesture
server, whereas to the QuickSet agents, ExInit is simply
another application agent. Users can interact with the QuickSet
map interface (which offers a fluid multimodal interface), and
view ExInit as a “back-end” application similar to ModSAF. A
diagram of the QuickSet-ExInit architecture can be found in
Figure 6. Shown there as well is a connection to DARPA’s
Advanced Logistics Program demonstration system for which
QuickSet is the user interface.

To illustrate the use of QuickSet for ExInit, consider the
example of Figure 7, in which, a user has said: “Multiple
boundaries,” followed in rapid succession by a series of
multimodal utterances such as “Battalion <draws line>,”
“Company <draws line>,” etc. The first utterance tells ExInit
that subsequent input is to be interpreted as a boundary line, if
possible. When the user then names an echelon and draws a
line, the multimodal input is interpreted as a boundary of the
appropriate echelon.

QuickSet

oice/Gcsture
Server

Numerous features describing engineering works, such as a
fortified line, a berm, minefields, etc. have also been added to
the map using speech and gesture. Then the user creates a
number of armored companies facing 45 degrees in defensive
posture; he is now beginning to add armored companies facing
225 degrees, etc. Once the user is finished positioning the
entities, he can ask for them to be deployed to a lower-level
(e.g., platoon).

An informal user test was recently run in which an experienced
ExInit user (who had created the 60,000 entity scenario)
designed his own test scenario involving the creation of 8 units
and 15 control measures (e.g., the lines and areas shown in
Figure 7). The user fiit entered the scenario via the ExInit
graphical user interface, a standard Microsoft Windows mouse-
menu-based GUI. Then, at& a relatively short training
session with QuickSet, he created the same scenario using
speech and gesture. Interaction via QuickSet resulted in a two-
fold to seven-fold speedup, depending on the size of the units
involved (companies or battalions). Although a more
comprehensive user test remains to be conducted, this early data
point indicates the productivity gains that can potentially be
derived from using multimodal interaction.

5.3 Multimodal interaction with Medical
Information: MIMI
The last example a QuickSet-based application is MIMI, which
allows users to find appropriate health care in Portland,
Oregon. Working with the Oregon Health Sciences University,
a prototype was developed that allows users to inquire using
speech and gesture about available health care providers. For
example, a user might say “show me all psychiatrists in this
neighborhood -&rcling gesture on map>“. The system
translates the multimodal input into a query to a database of
doctor records. The query results in a series of icons being
displayed on the map. Each of these icons contains one or
more health care providers meeting the appropriate criterion.
Figure 8 show the map-based interaction supported by MIMI.

Exlnit

35

- .._ _--.- ._.__-_-- T--I--” .__..*,--- -___; .--.P- J

Figure 8: Multimodal InteractIon with Medical
Information’

Users can ask to see details of the providers and clinics, ask
follow-up questions, and inquire about transportation to those
sites.

In summary, QuickSet provides a multimodal interface to a
number of distributed applications, including simulation, force
laydown, virtual reality, and medical informatics. The heart of
the system is its ability to integrate continuous spoken
language and continuous gesture. Section 6 discusses the
unification-based architecture that supports this multimodal
integration.

6. MULTIMODAL INTEGRATION
Given the advantages of multimodal interaction, the problem of
integrating multiple communication modalities is key to future
human-computer interfaces. However, in the sixteen years since
the “Put-That-There” system [Bolt 19801, research on
multimodal integration has yet to yield a reusable scaleable
architecture for the construction of multimodal systems that
integrate gesture and voice. As we reported in Johnston et al.
[1997], we see four major limiting factors in previous
approaches to multimodal integration:

l The majority of approaches only consider simple deictic
pointing gestures made with a mouse [Brison and
Vigouroux (ms.); Cohen 1992; Neal and Shapiro 1991;
Wauchope 19941 or with the hand [Bolt, 1980; Koons et al
19931.

l Most previous approaches have been primarily language-
driven, treating gesture as a secondary dependent mode
[Neal and Shapiro 1991, Cohen 1992; Brison and
Vigouroux (ms.), Koons et al 1993, Wauchope 19941. In
these approaches, integration of gesture is triggered by the
appearance of expressions in the speech stream whose
reference needs to be resolved, such as definite and deictic
noun phrases (e.g. ‘the platoon facing east,’ ‘this one’,
etc.).

l None of the existing approaches provide a well-understood
and generally applicable common meaning representation
for the different modes.

l None of the existing approaches provide a general and
formally-well defined mechanism for multimodal
integration.

6.1 Multimodal Architecture Requirements
In order to create such a mechanism we need:
.

.

.

i

.

.

6.2

Parallel mcognizers and “understanders” that produce a set
of time-stamped meaning fragments for each continuous
input stream

A common framework within which to represent those
meaning fragments
A time-sensitive grouping process that decides whicl~

meaning fragments from each modality stream should be
combined. For example, should the gesture in a sequence of
<speech, gesture, speech> be interpreted with the
preceding speech, the following speech, or by itself?
Meaning “fusion” operations that combine semantically
compatible meaning fragments. The modality
combination operation needs to allow any meaningful ‘part
to be expressed in any of the available modalities
A process that chooses the best &~int interpretation of the
multimodal input. Such a process wlll support mutual
compensation of modes - allowing, for example, speech
to compensate for errors in gesture recognition, and vice-
versa.
A flexible asynchronous architecture that allows
multiprocessing and can keep pace with human input.

Overview Of Quickset’s Approach To
Multimodal Integration
Using a distributed agent architecture, we have developed a
multimodal integration process for QuickSet that meets these
goals.

The system employs continuous speech and continuous
gesture recognizers running in parallel. A wide range of
continuous gestural input is supported, and Integration
may be driven by either mode.

Typed feature structures are used to provide a clearly defined
and well understood common meaning representation for
the modes.

Multimodal integration is accomplished through
unification.

The integration is sensitive to the temporal characteristics
of the input in each mode.

The unification-based integration method allows spoken
language and gesture to compensate for recognition errors
in the other modality.

The agent architecture offers a flexible asynchronous
framework within which to build multimodal systems,

In the remainder of this section, we briefly present the
multimodal integration method. Further information can be
found in [Johnston et al., 19971.

6.3 A Temporally-Sensitive Unification-Based
Architecture for Multimodal Integration

One the most significant challenges facing the development of
effective multimodal interfaces concerns the integration of
input from different modes. In QuickSet, inputs from each mode
need to be both temporally and semantically compatible before
they will be fused into an integrated meaning.

6.3.1 Temporal compatibility
In recent empirical work [Oviatt et al. 19971, it was discovered
that when users speak and gesture in a sequential manner, they

36

gesture fit, then speak within a relatively short time window;
speech rarely precedes gesture. As a consequence, our
multimodal intepreter prefers to integrate gesture with speech
that follows within a short time interval, than with preceding
speech. If speech arrives after that interval, the gesture wiII be
interpreted unimodally. This temporally-sensitive architecture
requires that there at Ieast be time stamps for the beginning and
end of each input stream. However, this strategy may be
difficult to implement for a distributed environment in which
speech recognition and gesture recognition might be performed
by different machines on a network, requiring a
synchronization of clocks. For this reason, it is preferable to
have speech and gestural processing performed on the same
machine.

6.3.2 Semantic compatibility through unification
of typed feature structures
Semantic compatibility is captured via unification over typed
feature structures [Carpenter 1990, 1992; Calder 19871.
Unification is an operation that determines the consistency of
two representational structures, and if they are consistent
combines them into a single result. Feature structure unification
is a generalization of term Unification in logic programming
languages, such as Prolog (and is often implemented using term
unification). Feature structure unification differs from term
unification in logic programming where the features are
positionally encoded in a term, in that they are explicitly
labeled and unordered in a feature structure.
A feature structure consists of a collection of feature-value
pairs. The value of a feature may be an atom, a variable, or
another feature structure. When two features structures are
unified, a composite structure containing all of the feature
specifications from each component structure is formed. Any
feature common to both feature structures must not clash in its
value. If the values of a common feature are atoms they must be
identical. If one is a variable, it becomes bound to the value of
the corresponding feature in the other feature structure. If both
are variables, they become bound together, constraining them
to always receive the same value (ii unified with another
appropriate feature structure). If the values are themselves
feature structures, the unification operation is applied
recursively. Importantly, feature structure unification can result
in a directed acyclic graph structure when more than one value
in the collection of feature/values pairs makes use of the same
variable. Whatever value is ultimately unified with that
variable thus will fill the value slot of all the corresponding
features, resulting in a DAG.
Typed feature structures are an extension of the representation
whereby feature structures and atoms are assigned to
hierarchically ordered types. Typed feature structure unification
requires pairs of feature structures or pairs of atoms which are
being unified to be compatible in type. To be compatible in
type, one must be in the transitive closure of the subtype
relation with respect to the other. The result of a typed
unification is the more specific feature structure or atom in the
type hierarchy.
Typed feature structure unification is ideally suited to the task of
multimodal integration because we want to determine whether a
given piece of gestural input is compatible with a given piece
of spoken input, and if they are compatible, to combine the two
inputs into a single result that can be interpreted by the system.
Unification is appropriate for multimodal integration because it

can combine complementary or redundant input from both
modes ‘but rules out contradictory inputs.

6.3.3 Advantages of typed feature structure
unification
We identify four advantages of using typed feature structure
unification to support multimodal integration - partiality,
mutual compensation, structure sharing, and multimodal
discourse. These are discussed below.

Partial meaning representations. The use of feature
structures as a semantic representation framework facilitates the
specification of partial meanings. Spoken or gestural input
which partially specifies a command can be represented as an
underspecified feature structure in which certain features are not
instantiated, but are given a certain type based on the semantics
of the input. For example, if a given speech input can be
integrated with a line gesture, it can be assigned a feature
structure with an underspecified location feature whose value is
required to be of type line, as in Figure 9 where the spoken
phrase ‘barbed wire’ is assigned the feature structure shown,

ptyle: barbed- wire 11

object:

line

color:red

1abel:“Barbed Wire”

create- line 1
location:li,ze[]

Figure 9: Feature Stwturs for’barbed tire’

Since QuickSet is a task-based system directed toward setting up
a scenario for simulation, this phrase is interpreted as a
partially specified creation command. Before it can be
executed, it needs a location feature indicating where to create
the line, which is provided by the user’s drawing on the screen.
The user’s ink is likely to be assigned a number of
interpretations, for example, both a point interpretation and a
line interpretation, which are represented’ as typed feature
structures (see Figures 10 and 11). Interpretations of gestures
as location features are assigned the more general command
type which unifies with alI of the commands supported by the
system, one of which is create-line (see Figure 9).

Figure 10: Point Interpretationof Gesture

F~um 11: Line Interpretation of Gesture

Multimodal Compensation. In the example case above,
both speech and gesture have only partial interpretations, one
for speech, and two for gesture. Since the speech interpretation
(Figure7) requires its location feature to be of type line, only
unification with the line interpretation of the gesture will

5 Redundant multimodal input occurs infrequently in map-based tasks
[Oviatt and Olsen, 1994; Oviatt et al. 19771.

37

succeed and be passed on as a valid multimodal interpretation
(Figure 12).

object:

location:

create=lin
Figure 12: Feature Structure for Multimodal tine Creation

1’
The ambiguity of interpretation of the gesture was resolved by
integration with speech, which in this case required a location
feature of type line. If the spoken command had instead been
‘MIA1 Platoon’, intending to create an entity at the indicated
location, it would have selected the point interpretation of the
gesture in Figure 10. Similarly, if the spoken command
described an area, for example a swamp, it would only unify
with an interpretation of gesture as an area designation. In each
case the unification-based integration strategy compensates for
errors in gesture recognition through type constraints on the
values of features.

Gesture also compensates for errors in speech recognition. As a
simple example, in the open microphone mode, spurious
speech recognition errors are more common than with click-to-
speak, but are frequently rejected by the system because of the
absence of a compatible gesture for intkgration. For example,
if the system recognizes ‘MlAl platoon’, but there is no
overlapping or immediately preceding gesture to provide the
location, the speech will be ignored. More generally, the
architectme also supports selection among the n-best speech
recognition results on the basis of the preferred gesture
recognition. We obtain the best joint interpretation using the
maximum of the sum of the log probabilities of the spoken and
gestural interpretations among the semantically ,and temporally
compatible joint interpretations. We are currently engaged in
quantifying the benefits observed by this mutually
compensatory recognition process.

Structure Sharing. Another advantage of typed featur.e
structure unification is the use of shared variables among
elements of the feature stmcture. For example, if the tiser says
“MIA1 platoon facing this way <draws arrow>“, in the
resulting feature structure, the orientation feature of the
command is structured-shared with the angle of its location
feature. When it is unified with an arrow gesture feature
structure, the orientation feature is automatically instantiated
with the angle at which the arrow was drawn.

Multimodal Discourse. The user can explicitly enter into a
“‘mode” in which s/he is creating a specific type of entity, for
example, MlAl platoons, by simply saying “multiple MlAl
platoons.” This results in a more specific feature structure that
will subsequently be unified with future input (Figure 13).

creare_unit

type: mlal
echelon: platoon

location: POjnl[]
posture: posfure,d 1

_ orieniation: orjenr-vaJ I 4
Figure 13 Feature structure for the “mode” of creating Ml Al platoons”

For example, the user could then place the pen at a dcsirrd
location and say “whiskey four six,” intending to create an
MlAl platoon named “‘W46” at that location. Any phmso
resulting in a structure that unifies with the type of entity that
is be&g created will result in the creation of that more specific
type of entity. For instance, the subsequent utterances
“whiskey four seven facing southeast.” “whiskey four eight
oriented one hundred and thirty five degrees,” (see Figure 7),
result in the creation of units with those names and
orientations, When there is no interpretation thnt unifies with
the one initially specified, the “mode” is ended.

In summary, we have identified four main advantages to using
unification of typed. feature structures as the core of a
multimodal integration process: partiality, mutual ’
compensation, structure sharing, and multimodal discourse. In
virtue of these capabilities, the QuickSet system is now a
usable testbed for experimenting with multimodal architectures,
and for developing next-generation multimodal systems.

Vo’and Wood [1996] and Waibel et al., [1995] present an
approach to multimodal integration similar in spirit to that
presented here in that it accepts a variety of gestures and is not
solely speech-driven. However, we believe that unification of
typed feature structures provides a more general, formally wall-
understood, and reusable mechanism for multimodal integration
than the frame merging strategy that they describe. In
particular, the unification approach allows for DAG
interpretations and supports multimodal discourse in an elegant
way. Cheyer and Julia [1995] sketch a system based on
Oviatt’s [1996] results and the Open Agent Architecture [Coheb
et al., 19941, but describe neither the integration strategy nor
multimodal compensation.

7. CONCLUDING HEMARKS

QuickSet has been delivered to the US Navy and US Marina
Corps. for use at Twentynine Palms, California, where it is
primarily used to set up trainingrscenarios and to control the
virtual environment. The system was also used by the US
Army’s 82 Airborne Corps. at Ft. Bragg during the Royal
Dragon Exercise. There, QuickSet was deployed in a tent, where
it was subjected to noise from explosions, low-flying jet
aircraft, generators, etc. Not surprisingly, it readily became
apparent that spoken interaction with QuickSet would not bc
feasible. To support usage in such a harsh environment, a
complete overlap in functionality between speech, gesture, and
direct manipulation was desired. The system has been revised to
accommodate these needs. As part of ExInit, QuickSet is being
delivered to STRICOM, the US Army’s Simulation and Training
Command for use in DARPA’s STOW-97 Advanced Concept
Demonstration.

Regarding the multimodal interface itself, QuickSet has
undergone a “proactive” interface evaluation in that high-

38

fidelity “wizard-of-02” studies were performed in advance of
building the system, which predicted the utility of multimodal
over unimodal speech as an input to mapbased systems
[Oviatt, 1996; Oviatt et al., 19971. For example, it was
discovered there that multimodal interaction would lead to
simpler language than unimodal -speech. Such observations
have been confirmed when examining how users would create
linear features with CommandTalk [Moore et al., 1997J, a
unimodal spoken system that also controls LeatherNet.
Whereas to create a “phase lime” between two three-digit <x,y>
grid coordinates, a user would have to say: “create a line from
nine four three nine six one to nine five seven nine six eight
and call it phase line green,” a QuickSet user would say ‘phase
line green” while drawing a line. Given that numerous
difficult-to-process linguistic phenomena (such as utterance
disfluencies) are known to be elevated in lengthy utterances and
also to be elevated when people speak locative constituents
[Oviatt, 1996; Oviatt in press], multimodal interaction that
permits pen input to specify locations offers the possibility of
more robust recognition.

In summary, we have developed a handheld system that
integrates numerous advanced technologies, including speech
recognition, gesture recognition, natural language processing,
multimodal integration, distributed agent technologies, and
reasoning. The multimodal integration strategy allows speech
and gesture to compensate for each other, yielding a more
robust system. We are currently engaged in evaluation
experiments to quantify the benefits of this approach. The
system interoperates with existing military simulators and
virtual reality environments through a distributed agent
architecture. QuickSet has been deployed for the US Navy, US
Marine Corps, and the US Army, and is being integrated into
the DARPA STOW-97 ACTD. We are currently evaluating its
performance in the field.

ACKNOWLEDGMENTS

This work is supported in part by the Information Technology
and Information Systems offices of DARPA under contract
number DABT63-95-C-007, in part by ONR grant number
N00014-95-l-1164, and has been done in collaboration with
the US Navy’s NCCOSC RDT&E Division (NRaD), Ascent
Technologies, MRJ Corp. and SRI International.

REFERENCES

Bolt, R. A. 1980. “Put-That-There”:Voice and gesture at the
graphics interface. Computer Graphics. 14.3, pp. 262-270.
Baker, M. P., and Wickens, C. D. Human factors in virtual
environments for the visual analysis of scientific data.
Unpublished ms., University of Illinois.

Brooks, Frederic. 3-D user interfaces: When results matter,
Invited presentation (unpublished), UIST’96, Seattle, 1996.
Brison, E. and Vigouroux, N. (unpublished ms.). Multimodal
references: A generic fusion process. URlT-URA CNRS.
Universit6 Paul Sabatier, Toulouse, France.

Calder, J. 1987. Typed unification for natural language
processing. In E. Klein and J. van Benthem @is.), Categories,
Polymorphisms, and Unification. Centre for Cognitive
Science, University of Edinburgh, Edinburgh, pp. 65-72.
Cheyer, A., and Julia L. 1995. Multimodal maps: An agent-
based approach. International Conference on Cooperative
Multimodal Communication (CMC/9.5), May 1995. Eindhoven,
The Netherlands. pp. 24-26.
Carpenter, R. 1990. Typed feature structures: Inheritance,
(In)equality, and Extensionality. Jn W. Daelemans and G.

Gazdar (Eds.), Proceedings of the ITK Workshop: Inheritance in
Natural Language Processing, Tilburg University, pp. 9-18.

Carpenter, R. 1992. The logic of typed feature structures.
Cambridge University Press, Cambridge.
Christensen, J., Marks, J.., and Shieber, S. Placing text labels
on maps and diagrams, Graphics Gems ZV, Heckbert, P. (ed.),
Academic Press, Cambridge, Mass., 1994, 497-504.

Clarkson, J. D., and Yii J. LeatherNet: A synthetic forces
tactical training system for the USMC commander.
Proceedings of the Sixth Conference on Computer Generated
Forces and Behavioral Representation. Orlando, Florida, 1996
275-281.

Cohen, P. R. The Role of Natural Language in a Multimodal
Interface. Proceedings of UIST’92, ACM Press, NY, 1992, 143-
149.

Cohen, P. R., Dalrymple, M. , Moran, D. B., Pereira, F. C. N.,
Sullivan, J. W., Gargan, R. A., Schlossberg, J. L., Tyler, S.
W., Synergistics use of direct manipulation and natural
language, Proceedings of Human Factors in Computing
Systems (CHI’89), ACM Press, New York, 1989, 227-234.
Cohen, P. R., Cheyer, A., Wang, M., and Baeg, S.C. An Open
Agent Architecture. Proceedings of the AAAI Spring
Symposium Series on Sofnare Agents (March 21-22,
Stanford), Stanford Univ., CA, 1994, l-8.
Courtemanche, A.J. and Ceranowicz, A. ModSAF Development
status. Proceedings of the Fifsh Conference on Computer
Generated Forces and Behavioral Representation, Univ. Central
Florida, Orlando, 1995, 3-13.
Crux-Neira, C. D. J. Sandm, T. A. DeFanti, “Surround-Screen
Projection-Based Virtual Reality: The Design and
Implementation of the CAVE,” Computer Graphics, ACM
SIGGRAPH, August 1993, pp. 135-142.
Johnston, M., Cohen, P. R., McGee, D., Pittman, J., Oviatt, S.
L., and Smith, I. Unification-based multimodal integration,
Proceedings of the Annual Meeting of the Association for
Computational Linguistics (ACL-97iEACL-97) Conference,
Madrid, Spain, July, 1997.
goons, D.B., C .J. Sparrell and K. R. Thorisson. 1993.
Integrating simultaneous input from speech, gaze, and hand
gestures. In Mark T. Maybury (ed.) Intelligent Multimedia
Interfaces. AAAI Press1 h4K!J Press, Cambridge, MA, pp. 257-
276.

Manke, S., Fit&e, M., and Waibel, A., The use of dynamic
writing information in a connectionist on-line cursive
handwriting recognition system, Advances in Neural
Information processing Systems 7 (NIPS), 1994.

Moore, R. C., Dowding, J, Bratt, H., Gawmn, M., and Cheyer,
A. CommandTalk: A spoken-language interface for battlefield
simulations, Proc. of the 3rd Applied Natural Language
Conference, Wash. DC, 1997.
Neal, J.G. and Shapiro, S.C. Intelligent multi-media interface
technology. In J.W. Sullivan and S.W. Tyler, editors,
Intelligent User Interfaces, chapter 3, pages 45-68. ACM Press
Frontier Series, Addison Wesley Publishing Co., New York,
New York, 1991.
Oviatt, S. L. PenNoice: Complementary multimodal
communication, Proceedings of SpeechTech’92, New York,
February, 1992, 238-241.
Oviatt, S.L. Multimodal interfaces for dynamic interactive
maps. Proceedings of CH1’96 Human Factors in Computing
Systems ACM Press, NY, 1996, 95-102.
Oviatt, S.L. Multimodal interactive maps: Designing for
human performance, Human Computer Interaction, in press.

39

Oviatt, S. L, A. DeAngeli, and K. Kuhn. Integration and
synchronization of input modes during multimodal human-
computer interaction. Proceedings of the Conference on Human
Factors in Computing Systems (CHI ‘97), ACM Press, NY,
1997, 415-422.
Oviatt, S. L., and Olsen, E., Integration themes in multimodal
human-computer interaction, Proceedings of the International
Conference on Spoken Language Processing, Acoustical
Society of Japan, Yokohama, Japan, 1994, 551-554.

Pittman, J. A. Recognizing handwritten text Human Factors in
Computing Systems (CHI’91), 1991, 271-275.

Stoakley, R., Conway, M., and Pausch, R. Virtual reality on a
WIM: Interactive worlds in miniature, Proceedings. of Human
Factors in Computing Systems (CHI’PS), ACM Press, New
York, 1995, 265-272.

Thorpe, J. A. The new technology of large scale simulator
networking: Implications for mastering the art of warfighting,
9’ Interservice Training Systems Conference, 1987, 492-501.
Vo,, M. T. and Wood, C. Building an application framework for
speech and pen input integration in multimodal lenrning
interfaces. International Conference on Acoustics, Speech, and
Signal Processing, Atlanta, GA. 1996.
Waibel, A., Vo, M. T., Duchnowski, P., and Manke, S.
Multimodal interfaces, Artificial Intelligence Review, 1995.
Wauchope, K. 1994. Eucalyptus: Integrating natural language
input with a graphical user interface. Naval Research
Laboratory, Report NRLIFR15510--94-9711,

Zyda, M. J., Pratt, D. R., Monahan, J. G,, and Wilson, ‘K, P.,
NPSNET: Constructing a 3-D virtual world, Proceedings of the
1992 Symposium on Interactive 3-D Graphics, March, 1992,

Pennission to make digital/bard copies ofnll or part oftbis mnlerinl for
personal or clnssroon~ use is grankd witbout lie provided ~bnt Abe copies
nre oat made or distributed for prolit or conunercinl advantage, the copy-
right notice, tbe title ofthe publication and its date appear. nod notice is
given tbnt copyright is by pemlission of the ACM, Inc. To copy otherwise,
to republish, to post on servers or IO redistribute to lists, requires specific
pemksion and/or fee.

ACM Multimedia 97 &‘~Uk ~~~d’hi1lgml i&jj

Copyriglil 1997 ACM O-89791-931-219711 l..s13.50

40

