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This paper presents an emerging application of multimodal 
interface research to distributed applications. We have 
developed the QuickSet prototype, a pen/voice system running 
on a hand-held PC, communicating via wireless LAN through an 
agent architecture to a number of systems, including NRaD’s’ 
LeatherNet system, a distributed interactive training simulator 
built for the US Marine Corps. The paper describes the overall 
system architecture, a novel multimodal integration strategy 
offering mutual compensation among modalities, and provides 
examples of multimodal simulation setup. Finally, we discuss 
our applications experience and evaluation. 

KEY WO R D S : multimodal interfaces, agent architecture, 
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1. INTRODUCTION 

A new generation of multimodal systems is emerging in which 
the user will be able to employ natural communication 
modalities, including voice, hand and pen-based gesture, eye- 
tracking, body-movement, etc. [Koons et al., 1993; Oviatt, 
1992, 1996; Waibel et al., 19951 in addition to the usual 
graphical user interface technologies. In order to make 
progress on building such systems, a principled method of 
modality integration, and a general architecture to support it is 
needed. Such a framework should provide sufficient flexibility 
to enable rapid experimentation with different modality 
integration architectures and applications. This 
experimentation will allow researchers to discover how each 
communication modality can best contribute its strengths yet 
compensate for the weaknesses of the others. 

Fortunately, a new generation of distributed system frameworks 
is now becoming standardized, including the CORBA and 
DCOM frameworks for distributed object systems. At a higher 
level, multiagent architectures are being developed that allow 
integration and interoperation of semi-autonomous knowledge- 
based components or “agents”. The advantages of these 
architectural frameworks are modularity, distribution, and 
asynchrony - a subsystem can request that a certain 
functionality be provided without knowing who will provide it, 
where it resides, how to invoke it, or how long to wait for it. 
In virtue of these qualities, these frameworks provide a 
convenient platform for experimenting with new architectures 
and applications. 

In this paper, we describe QuickSet, a collaborative, 
multimodal system that employs such a distributed, multiagent 
architecture to integrate not only the various user interface 
components, but also a collection of distributed applications. 
QuickSet provides a new unification-based mechanism for 
fusing partial meaning representation fragments derived from 
the input modalities. In so doing, it selects the best joint 
interpretation among the alternatives presented by the 
underlying spoken language and gestural modalities. 
Unification also supports multimodal discourse. The system is 
scaleable from haqdheld to wall-sized interfaces, and 
interoperates across a number of platforms (PC’s to UNIX 
workstations). Finally, QuickSet has been applied to a 
collaborative military training system, in which it is used to 
control a simulator and a 3-D virtual terrain visualization 
system. 

This paper describes the “look and feel” of the multimodal 
interaction with a variety of back-end applications, and 
discusses the unification-based architecture that makes this new 
class of interface possible. Finally, the paper discusses the 
application of the technology for the Department of Defense. 

’ NRaD = US Navy Command and Control Ocean Systems Center 
Research Development Test and Evaluation (San Diego). 
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2. QUICKSET 

QuickSet is a collaborative, handheld, multimodal system for 
interacting with distributed applications. In virtue of its 
modular, agent-based design, QuickSet has been applied to a 
number of applications in a relatively short Period of time, 
including: 

l Simulation Set-up and Control - Quickset is used to 
control LeatherNet [Clarkson and Yi, 19961, a system 
employed in training platoon leaders and company 
commanders at the USMC base at Twentynine Palms, 
California. LeatherNet simulations are created using the 
ModSAP simulator [Courtmanche and i3eranowicz, 19951 
and can be visualized in a wall-sized virtual reality CAVE 
environment [Cruz-Neira et al., 1993; Zyda et al., 19921 
called CommandVu. A QuickSet user can create entities, 
give them missions, and control the virtual reality 
environment from the handheld PC. QuickSet 
communicates over a wireless LAN via the Open Agent 
Architecture (OAA) [Cohen et al., 19941 to ModSAP, and 
to CommandVu, each of which have been made into agents 
in the architecture. 

. Force Luyabwn - QuickSet is being used in a second effort 
called ExInit (Exercise Initialization), that enables users to 
create large-scale (division- and brigade- sized) exercises. 
Here, QuickSet interoperates via the agent architecture 
with a collection of CORBA servers. 

l Medical informatics - Aversion of QuickSet is used in 
selecting healthcare in Portland, Oregon. In this 
application, QuickSet retrieves data from a database of 
2000 records about doctors, specialties, and clinics. 

Next, we turn to the primary application of QuickSet 
technology. 

3. NEW INTERFACES FOR DISTRIBUTED 
SIMULATION 

Begun as SIGNET in the 1980’s [Thorpe, 19871, distributed, 
interactive simulation (DIS) training environments attempt to 
provide a high degree of fidelity in simulating combat 
equipment, movement, atmospheric effects, etc. One of the 
U.S. Government’s goals, which has partially motivated the 
present research, is to develop technologies that can aid in 
substantially reducing the time and effort needed to create large- 
scale scenarios. A recently achieved milestone is the ability to 
create and simulate a large-scale exercise, in which there may be 
on the order of 60,000 entities (e.g., a vehicle or a person). 

QuickSet addresses two phases of user interaction with these 
simulations: creating and positioning the entities, and 
supplying their initial behavior. In the first phase, a user 
“lays down” or places forces on the terrain, which need to be 
positioned in realistic ways, given the terrain, mission, 
available equipment, etc. In addition to force laydown the user 
needs to supply them with behavior, which may involve 
complex maneuvering, communication, etc. 

Our contribution to this overall effort is to rethink the nature 
of the user interaction. As with most modem simulators, DISs 
are controlled via graphical user interfaces (GUIs). However, 
GUI-based interaction is rapidly losing its benefits, especially 
when large numbers of entities need to be created and 
controlled, often resulting in enormous menu trees. At the same 
time, for reasons of mobility and affordability, there is a strong 
user desire to be able to create simulations on small devices 
(e.g., PDA’s). This impending collision of trends for smaller 

screen size and for more entities requires a different paradigm 
for human-computer interaction with simulators. 

Amajor design goal for QuickSet is to provide the same user 
input capabilities for handheld, desktop, and wall-sized 
terminal hardware. We believe that only voice and gesturce 
based interaction comfortably span this range. QuickSot 
provides both of these modalities because it has been 
demonstrated that there exist substantive language, task 
performance, and user preference advantages for multimodal 
interaction over speech-only and gesture-only interaction with 
map-based tasks [Oviatt, 1996; Oviatt, in press]? Specificnlly, 
for these tasks, multimodal input results in 36% fewer task 
performance errors, 35% fewer spoken disfluencies, 10% faster 

“task performance, and 23% fewer words, as comppred to a 
speech-only interaction. Multimodal pen/voice interaction is 
known to be advantageous for small devices, for mobile users 
who may encounter different circumstances, for error avoidance 
and correction, and for robustness [Oviatt, 1992; Ovintt 19951, 

In summary, a multimodal voice/gesture interface 
complements, but also promises to address the limitations of, 
cnrrent GUI technologies for controlling simulators, In 
addition, it has been shown to have numemus advantages over 
voice-only interaction for map-based tasks. These findings had 
a direct bearing on the interface design and architecture of 
QuickSet. 

4. SYSTEM ARCHITECTURE 

In order to build QuickSet, distributed agent technologies based 
on the Open Agent Architecture’ were employed because of its 
flexible asynchronous capabilities, its ability to run the snmo 
set of software components in a variety of hardwaro 
configurations, ranging from standalone on the handheld PC to 
distributed operation across numerous computers, and its easy 
connection to legacy applications. Additionally, the 
architecture supports user mobility in that less 
computationally-intensive agents (e.g., the map interface) can 
run on the handheld PC, while more computationolly-intensive 
processes (e.g., natural language processing) can opernte 
elsewhere on the network. The agents may be written in any 
programming language (here, Quintns Prolog, Visual C++, 
Visual Basic, and Java), as long as they communicnte via an 
interagent communication language. The configuration of 
agents used in the QuickSet system is illustrated in Figum 1, A 
brief description of each agent follows. 

Figure 1: The facilitator, channeling 
queries to capable agents. 

2 Our prior research [Cohen et al., 1989; Cohen, 19921 has demonstrated 
the advantages of a multimodal interface offering natural lnngusge sad 
direct manipulation for controlling simulators and reviewing their results. 
* Open Agent Architecture. is a trademark of SRI International. 
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5. EXAMPLES 

5.1 Leathernet 

Holding QuickSet, the user views a map from the ModSAF 
simulation. With speech and pen, she then adds entities into 
the ModSAF simulation. For example, to create a unit in 
QuickSet, the user would hoId the pen at the desired location and 
utter: “red T72 platoon” resulting in a new platoon of the 
specified type being created. The user then adds a barbed-wire 
fence to the simulation by drawing a line at the desired location 
while uttering “barbed wire.” A fortified line can be added 
multimodally, by drawing a simple line and speaking its label, 
or unimodally, by drawing its military symbology. A minefield 
of an amorphous shape is drawn and is labeled verbally. Finally 
an MlAl platoon is created as above. Then the user can assign 
a task to the platoon by saying “MIA1 platoon follow this 
route” while drawing the route with the pen. 

Figure 4: Quick&t running on a wireless hanchekl PC. The 
user has created numerous units, fortifications 
and objectives. 

The results of these commands are visible on the QuickSet 
screen, as seen in Figure 4, as well as on the ModSAF 
simulation, which has been executing the user’s QuickSet 
commands in the virtual world (Figure 5). 

Figure 5: Controlling the CommandVu 3-D visualization 
via Quick!% interaction. QuickSet tablets are cm the 
desks. 

Two specific aspects of QuickSet to be discussed below are its 
usage as a collaborative system, and its ability to control a 
virtual reality environment. 

5.1.1 Collaboration. 
In virtue of the facilitated agent architecture, when two or more 
user interfaces connected to the same network of facilitators 
subscribe to and/or produce common messages, they (and their 
users) become part of a collaboration. The agent architecture 
offers a framework for heterogeneous collaboration, in that 
users can have very different interfaces, operating on different 
types of hardware platforms, and yet be part of a collaboration. 
For instance, by subscribing to the entity-location database 
messages, multiple QuickSet user interfaces can be notified of 
changes in the locations of entities, and can then render them 
in whatever form is suitable, including 2-D map-based, web- 
based, and 3-D virtual reality displays. Likewise, users can 
interact with different interfaces (e.g., placing entities on the 
2-D map or 3-D VR) and thereby affect the views seen by other 
users. To allow for tighter synchronicity, the current 
implementation also allows users to decide to couple their 
interface to those of the other users connected to a given 
network of facilitators. Then, when one interface pans and 
zooms, the other coupled ones do as well. Furthermore, coupled 
interfaces subscribe to the “ink” messages, meaning one user’s 
ink appears on the others’ screens, immediately providing a 
shared drawing system. On the other hand, collaborative 
systems also require facilities to prevent users from interfering 
with one another. QuickSet incorporates authentication of 
messages in order that one user’s speech is not accidentally 
integrated with another’s gesture. 

In the future, we will provide a subgrouping mechanism for 
users, such that there can be multiple collaborating groups 
using the same facilitator, thereby allowing users to be able 
to choose to join collaborations of specific subgroups. Also to 
be developed is a method for handling conflicting actions 
during a collaboration. 

5.1.2 Multimodal Control of Virtual Travel 
Most terrain visualization systems allow only for flight 
control, either through a joystick (or equivalent), via keyboard 
commands, or via mouse movement. Unfortunately, to make 
effective use of such interfaces, people need to be pilots, or at 
least know where they are going. Believing this to be 
unnecessarily restrictive, our virtual reality set-up follows the 
approach recommended by Baker and Wickens [unpublished 
ms]., Brooks [1996], and StoakIey et al., [1995] in offering 
two “linked” displays - a 2-D “birds-eye” map-based display 
(QuickSet), and the 3-D CommandVu visualization. In addition 
to the existing 3-D controls, the user can issue spoken or 
multimodal commands via the handheld PC to be executed by 
CommandVu. Sample commands am: 

“CommandVu, heads up display on,” 

“take me to objective alpha” 

“fly me to this platoon <gesture on QuickSet map>” (see Figure 
4). 

‘Y’ly me along this route <draws route on QuickSet map> at fifty 
meters” 

Spoken interaction with virtual worlds offers distinct 
advantages over direct manipulation, in that users are able to 
describe entities and locations that are not in view, can be 
teleported to those out-of-view locations and entities, and can 
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QuickSet interface: On the handheld PC is a geo-referenced 
map of some region,4 such that entities displayed on the map 
are registered to their positions on the actual terrain, and 
thereby to their positions on each of the various user interfaces 
connected to the simulation. The map interface provides the 
usual pan and zoom capabilities, multiple overlays, icons, etc. 
Two levels of map are shown at once, with a small rectangle 
shown on a miniature version of the larger scale map indicating 
the portion of it shown on the main map interface. 

Employing pen, speech, or mom frequently, multimod,al input, 
the user can annotate the map, creating points, lines, and areas 
of various types. The user can also create,entities, give them 
behavior, and watch the simulation unfold from the handheld. 
When the pen is placed on the screen, the speech recognizer is 
activated, thereby allowing users to speak and gesture 
simultaneously. The interface offers controls for various 
parameters of speech recognition, for loading different maps, 
for entering into collaborations ,with other users, for 
connecting to different facilitators, and for discovering other 
agents who am connected to the facilitator. The QuickSet 
system also offers a novel map-labeling algorithm that 
attempts to miniie the overlap of map labels as the user 
creates more complex scenarios, and as the entities move (cf. 
[Christensen et al., 19961). 

Speech recognition agent: The speech recognition-, agent 
used in QuickSet is built on IBM’s VoiceType Application 
Factory and VoiceType 3.0, recognizers, as well as Microsoft 
Whisper speech recognizer. 

Gesture recognition agent: QuickSet’s pen-based gesture 
recognizer consists of both a neural network [Pittman, 1991, 
Mar&e et al., 19941 and a set of hidden Markov models. The 
digital ink is size-normalized, centered in, a 2D image, and fed 
into the neural network as pixels. The ink is also smoothed, 
resampled, converted to deltas, and given as input to the HMM 
recognizer. The system currently recognizes 68 pen-gestures, 
including various military map symbols (platoon, mortar, 
fortified line, etc.), editing gestures (deletion, grouping), route 
indications, area indications, taps, etc. The probability 
estimates from the two recognizers are combined to yield 
probabilities for each of the possible interpretations. The 
inclusion of route and area indications creates a special problem 
for the recognizers, since route and ama indications may have a 
variety of shapes. This problem is further compounded by the 
fact that the recognizer needs to be robust in the face of sloppy 
writing. More typically, sloppy forms of various map 
symbols, such as those illustrated in Figure 3, will often take 
the same shape as some route and area indications. A solution 
for this problem can be found by combining the outputs from 
the gesture recognizer with the outputs from the speech 
recognizer, as is described in the following section. 

Figure 2 Pan drawings of mutes and areas. Floutas and 
areas do not have signature shapes that can he 
used to lctsnfify them. 

4 QuickSet can employ either UTM or I.&udelLongitude coordinate 
system. 

mortar tank deletion mechanized 
platoon company 

Figure 3: Typical pen input from real usars. Tha recognizer must 
be robust in the face of sloppy input. 

Natural language agent: The natural language agent 
currently employs a definite clause grammar and produces typed 
feature structures as a representation of the utterance meaning, 
Currently, for the force laydown and mission assignment tasks, 
the language consists of noun phrases that label entities, as 
well as a variety of imperative constructs for supplying 
behavior. 

Text-to-Speech agent: Microsoft’s text-to-speech system 
has been incorporated as an agent, residing on each individual 
PC. 

Multimodal integration agent: The task of tho 
integrator agent is to field incoming typed feature structures 
representing individual interpretations of speech and of 
gesture, and identify the best potential unified interpretation, 
multimodal or unimodal. In order for speech and gesture to bo 
incorporated into a multimodal interpretation, they need to bo 
both semantically and temporally compatible. The output of 
this agent is a typed feature structure representing the preferred 
interpretation, which is ultimately routed to the bridge agent 
for execution. A more detailed description of multimodal 
interpretation is in Section 6. 

Simulation agent: The simulation agent, devoloped 
primarily by SRI International [Moore et al., 19971, but 
modiied by us for multimodal interaction, serves as tho 
communication channel between the OAA-bmkercd agents and 
the ModSAF simulation system. This agent offers an API for 
ModSAF that other agents can use. 

Web display agent: The Web display agent can be used to 
create entities, points, lines, and areas, and posts queries for 
updates to the state of the simulation via Java code that 
interacts with the blackboard and facilitator. The queries arc 
routed to the running ModSAF simulation, and the availablo 
entities can be viewed over a WWW connection. 

CommandVu agent: Since the CommsndVu virtual reality 
system is an agent, the same multimodal interface on tho 
handheld PC can be used to create entities and to fly the user 
through the 3-D terrain. 

Application bridge agent: The bridge agent generalizes 
the underlying applications’ API to typed feature structures, 
thereby providing an interface to the various applications such 
as ModSAF, CommandVu, and Exinit. This allows for a 
domain-independent integration architecture in which 
constraints on multimodal interpretation are stated in terms of 
higher-level constructs such as typed feature structures, greatly 
facilitating reuse. 

CORBA bridge agent: This agent converts OAA messages 
to COBBA IDL (Interface Definition Language) for the Exercise 
Initialization project. 

To see how QuickSet is used, we present the following 
examples. 

34 



ask questions about entities in the scene. We are currently 
engaged in research to allow the user to gesture directly into 
the 3-D scene while speaking, a capability that will make these 
more sophisticated interactions possible. 

5.2 Exercise initialization: Exlnit 
QuickSet has been incorporated into the DOD’S new Exercise 
Initialization tool, whose job is to create the force laydown and 
initial mission assignments for very large-scale simulated 
scenarios. Whereas previous manual methods for initializing 
scenarios resulted in a large number of people spending more 
than a year in order to create a division-sized scenario, a 
60,OOOt entity scenario recently took a single ExInit user 63 
hours, most of which was computation. 

ExInit is distinctive in its use of CORBA technologies as the 
interoperation framework, and its use of inexpensive off-the- 
shelf personal computers. ExInit’s CORBA servers (written or 
integrated by MRJ Corp. and Ascent Technologies) include a 
relational database (Microsoft Access or Oracle), a 
geographical information system (CARIS), a “deployment” 
server that knows how to decompose a high-level unit into 
smaller ones and position them in realistic ways with respect to 
the terrain, a graphical user interface, and QuickSet for 
voice/gesture interaction. 

In order for the QuickSet interface to work as part of the larger 
ExInit system, a CORBA bridge agent was written for the O& 
which communicated via IDL to the CORBA side, and via the 
interagent communication language to the OAA agents. Thus, 
to the CORBA servers, QuickSet is viewed as a Voice/Gesture 
server, whereas to the QuickSet agents, ExInit is simply 
another application agent. Users can interact with the QuickSet 
map interface (which offers a fluid multimodal interface), and 
view ExInit as a “back-end” application similar to ModSAF. A 
diagram of the QuickSet-ExInit architecture can be found in 
Figure 6. Shown there as well is a connection to DARPA’s 
Advanced Logistics Program demonstration system for which 
QuickSet is the user interface. 

To illustrate the use of QuickSet for ExInit, consider the 
example of Figure 7, in which, a user has said: “Multiple 
boundaries,” followed in rapid succession by a series of 
multimodal utterances such as “Battalion <draws line>,” 
“Company <draws line>,” etc. The first utterance tells ExInit 
that subsequent input is to be interpreted as a boundary line, if 
possible. When the user then names an echelon and draws a 
line, the multimodal input is interpreted as a boundary of the 
appropriate echelon. 

QuickSet 

oice/Gcsture 
Server 

Numerous features describing engineering works, such as a 
fortified line, a berm, minefields, etc. have also been added to 
the map using speech and gesture. Then the user creates a 
number of armored companies facing 45 degrees in defensive 
posture; he is now beginning to add armored companies facing 
225 degrees, etc. Once the user is finished positioning the 
entities, he can ask for them to be deployed to a lower-level 
(e.g., platoon). 

An informal user test was recently run in which an experienced 
ExInit user (who had created the 60,000 entity scenario) 
designed his own test scenario involving the creation of 8 units 
and 15 control measures (e.g., the lines and areas shown in 
Figure 7). The user fiit entered the scenario via the ExInit 
graphical user interface, a standard Microsoft Windows mouse- 
menu-based GUI. Then, at& a relatively short training 
session with QuickSet, he created the same scenario using 
speech and gesture. Interaction via QuickSet resulted in a two- 
fold to seven-fold speedup, depending on the size of the units 
involved (companies or battalions). Although a more 
comprehensive user test remains to be conducted, this early data 
point indicates the productivity gains that can potentially be 
derived from using multimodal interaction. 

5.3 Multimodal interaction with Medical 
Information: MIMI 
The last example a QuickSet-based application is MIMI, which 
allows users to find appropriate health care in Portland, 
Oregon. Working with the Oregon Health Sciences University, 
a prototype was developed that allows users to inquire using 
speech and gesture about available health care providers. For 
example, a user might say “show me all psychiatrists in this 
neighborhood -&rcling gesture on map>“. The system 
translates the multimodal input into a query to a database of 
doctor records. The query results in a series of icons being 
displayed on the map. Each of these icons contains one or 
more health care providers meeting the appropriate criterion. 
Figure 8 show the map-based interaction supported by MIMI. 

Exlnit 
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Figure 8: Multimodal InteractIon with Medical 
Information’ 

Users can ask to see details of the providers and clinics, ask 
follow-up questions, and inquire about transportation to those 
sites. 

In summary, QuickSet provides a multimodal interface to a 
number of distributed applications, including simulation, force 
laydown, virtual reality, and medical informatics. The heart of 
the system is its ability to integrate continuous spoken 
language and continuous gesture. Section 6 discusses the 
unification-based architecture that supports this multimodal 
integration. 

6. MULTIMODAL INTEGRATION 
Given the advantages of multimodal interaction, the problem of 
integrating multiple communication modalities is key to future 
human-computer interfaces. However, in the sixteen years since 
the “Put-That-There” system [Bolt 19801, research on 
multimodal integration has yet to yield a reusable scaleable 
architecture for the construction of multimodal systems that 
integrate gesture and voice. As we reported in Johnston et al. 
[1997], we see four major limiting factors in previous 
approaches to multimodal integration: 

l The majority of approaches only consider simple deictic 
pointing gestures made with a mouse [Brison and 
Vigouroux (ms.); Cohen 1992; Neal and Shapiro 1991; 
Wauchope 19941 or with the hand [Bolt, 1980; Koons et al 
19931. 

l Most previous approaches have been primarily language- 
driven, treating gesture as a secondary dependent mode 
[Neal and Shapiro 1991, Cohen 1992; Brison and 
Vigouroux (ms.), Koons et al 1993, Wauchope 19941. In 
these approaches, integration of gesture is triggered by the 
appearance of expressions in the speech stream whose 
reference needs to be resolved, such as definite and deictic 
noun phrases (e.g. ‘the platoon facing east,’ ‘this one’, 
etc.). 

l None of the existing approaches provide a well-understood 
and generally applicable common meaning representation 
for the different modes. 

l None of the existing approaches provide a general and 
formally-well defined mechanism for multimodal 
integration. 

6.1 Multimodal Architecture Requirements 
In order to create such a mechanism we need: 
. 

. 

. 

i 

. 

. 

6.2 

Parallel mcognizers and “understanders” that produce a set 
of time-stamped meaning fragments for each continuous 
input stream 

A common framework within which to represent those 
meaning fragments 
A time-sensitive grouping process that decides whicl~ 

meaning fragments from each modality stream should be 
combined. For example, should the gesture in a sequence of 
<speech, gesture, speech> be interpreted with the 
preceding speech, the following speech, or by itself? 
Meaning “fusion” operations that combine semantically 
compatible meaning fragments. The modality 
combination operation needs to allow any meaningful ‘part 
to be expressed in any of the available modalities 
A process that chooses the best &~int interpretation of the 
multimodal input. Such a process wlll support mutual 
compensation of modes - allowing, for example, speech 
to compensate for errors in gesture recognition, and vice- 
versa. 
A flexible asynchronous architecture that allows 
multiprocessing and can keep pace with human input. 

Overview Of Quickset’s Approach To 
Multimodal Integration 
Using a distributed agent architecture, we have developed a 
multimodal integration process for QuickSet that meets these 
goals. 

The system employs continuous speech and continuous 
gesture recognizers running in parallel. A wide range of 
continuous gestural input is supported, and Integration 
may be driven by either mode. 

Typed feature structures are used to provide a clearly defined 
and well understood common meaning representation for 
the modes. 

Multimodal integration is accomplished through 
unification. 

The integration is sensitive to the temporal characteristics 
of the input in each mode. 

The unification-based integration method allows spoken 
language and gesture to compensate for recognition errors 
in the other modality. 

The agent architecture offers a flexible asynchronous 
framework within which to build multimodal systems, 

In the remainder of this section, we briefly present the 
multimodal integration method. Further information can be 
found in [Johnston et al., 19971. 

6.3 A Temporally-Sensitive Unification-Based 
Architecture for Multimodal Integration 

One the most significant challenges facing the development of 
effective multimodal interfaces concerns the integration of 
input from different modes. In QuickSet, inputs from each mode 
need to be both temporally and semantically compatible before 
they will be fused into an integrated meaning. 

6.3.1 Temporal compatibility 
In recent empirical work [Oviatt et al. 19971, it was discovered 
that when users speak and gesture in a sequential manner, they 
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gesture fit, then speak within a relatively short time window; 
speech rarely precedes gesture. As a consequence, our 
multimodal intepreter prefers to integrate gesture with speech 
that follows within a short time interval, than with preceding 
speech. If speech arrives after that interval, the gesture wiII be 
interpreted unimodally. This temporally-sensitive architecture 
requires that there at Ieast be time stamps for the beginning and 
end of each input stream. However, this strategy may be 
difficult to implement for a distributed environment in which 
speech recognition and gesture recognition might be performed 
by different machines on a network, requiring a 
synchronization of clocks. For this reason, it is preferable to 
have speech and gestural processing performed on the same 
machine. 

6.3.2 Semantic compatibility through unification 
of typed feature structures 
Semantic compatibility is captured via unification over typed 
feature structures [Carpenter 1990, 1992; Calder 19871. 
Unification is an operation that determines the consistency of 
two representational structures, and if they are consistent 
combines them into a single result. Feature structure unification 
is a generalization of term Unification in logic programming 
languages, such as Prolog (and is often implemented using term 
unification). Feature structure unification differs from term 
unification in logic programming where the features are 
positionally encoded in a term, in that they are explicitly 
labeled and unordered in a feature structure. 
A feature structure consists of a collection of feature-value 
pairs. The value of a feature may be an atom, a variable, or 
another feature structure. When two features structures are 
unified, a composite structure containing all of the feature 
specifications from each component structure is formed. Any 
feature common to both feature structures must not clash in its 
value. If the values of a common feature are atoms they must be 
identical. If one is a variable, it becomes bound to the value of 
the corresponding feature in the other feature structure. If both 
are variables, they become bound together, constraining them 
to always receive the same value (ii unified with another 
appropriate feature structure). If the values are themselves 
feature structures, the unification operation is applied 
recursively. Importantly, feature structure unification can result 
in a directed acyclic graph structure when more than one value 
in the collection of feature/values pairs makes use of the same 
variable. Whatever value is ultimately unified with that 
variable thus will fill the value slot of all the corresponding 
features, resulting in a DAG. 
Typed feature structures are an extension of the representation 
whereby feature structures and atoms are assigned to 
hierarchically ordered types. Typed feature structure unification 
requires pairs of feature structures or pairs of atoms which are 
being unified to be compatible in type. To be compatible in 
type, one must be in the transitive closure of the subtype 
relation with respect to the other. The result of a typed 
unification is the more specific feature structure or atom in the 
type hierarchy. 
Typed feature structure unification is ideally suited to the task of 
multimodal integration because we want to determine whether a 
given piece of gestural input is compatible with a given piece 
of spoken input, and if they are compatible, to combine the two 
inputs into a single result that can be interpreted by the system. 
Unification is appropriate for multimodal integration because it 

can combine complementary or redundant input from both 
modes ‘but rules out contradictory inputs. 

6.3.3 Advantages of typed feature structure 
unification 
We identify four advantages of using typed feature structure 
unification to support multimodal integration - partiality, 
mutual compensation, structure sharing, and multimodal 
discourse. These are discussed below. 

Partial meaning representations. The use of feature 
structures as a semantic representation framework facilitates the 
specification of partial meanings. Spoken or gestural input 
which partially specifies a command can be represented as an 
underspecified feature structure in which certain features are not 
instantiated, but are given a certain type based on the semantics 
of the input. For example, if a given speech input can be 
integrated with a line gesture, it can be assigned a feature 
structure with an underspecified location feature whose value is 
required to be of type line, as in Figure 9 where the spoken 
phrase ‘barbed wire’ is assigned the feature structure shown, 

ptyle: barbed- wire 11 

object: 

line 

color:red 

1abel:“Barbed Wire” 

create- line 1 
location:li,ze[ ] 

Figure 9: Feature Stwturs for’barbed tire’ 

Since QuickSet is a task-based system directed toward setting up 
a scenario for simulation, this phrase is interpreted as a 
partially specified creation command. Before it can be 
executed, it needs a location feature indicating where to create 
the line, which is provided by the user’s drawing on the screen. 
The user’s ink is likely to be assigned a number of 
interpretations, for example, both a point interpretation and a 
line interpretation, which are represented’ as typed feature 
structures (see Figures 10 and 11). Interpretations of gestures 
as location features are assigned the more general command 
type which unifies with alI of the commands supported by the 
system, one of which is create-line (see Figure 9). 

Figure 10: Point Interpretationof Gesture 

F~um 11: Line Interpretation of Gesture 

Multimodal Compensation. In the example case above, 
both speech and gesture have only partial interpretations, one 
for speech, and two for gesture. Since the speech interpretation 
(Figure7) requires its location feature to be of type line, only 
unification with the line interpretation of the gesture will 

5 Redundant multimodal input occurs infrequently in map-based tasks 
[Oviatt and Olsen, 1994; Oviatt et al. 19771. 
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succeed and be passed on as a valid multimodal interpretation 
(Figure 12). 

object: 

location: 

create=lin 
Figure 12: Feature Structure for Multimodal tine Creation 

1’ 
The ambiguity of interpretation of the gesture was resolved by 
integration with speech, which in this case required a location 
feature of type line. If the spoken command had instead been 
‘MIA1 Platoon’, intending to create an entity at the indicated 
location, it would have selected the point interpretation of the 
gesture in Figure 10. Similarly, if the spoken command 
described an area, for example a swamp, it would only unify 
with an interpretation of gesture as an area designation. In each 
case the unification-based integration strategy compensates for 
errors in gesture recognition through type constraints on the 
values of features. 

Gesture also compensates for errors in speech recognition. As a 
simple example, in the open microphone mode, spurious 
speech recognition errors are more common than with click-to- 
speak, but are frequently rejected by the system because of the 
absence of a compatible gesture for intkgration. For example, 
if the system recognizes ‘MlAl platoon’, but there is no 
overlapping or immediately preceding gesture to provide the 
location, the speech will be ignored. More generally, the 
architectme also supports selection among the n-best speech 
recognition results on the basis of the preferred gesture 
recognition. We obtain the best joint interpretation using the 
maximum of the sum of the log probabilities of the spoken and 
gestural interpretations among the semantically ,and temporally 
compatible joint interpretations. We are currently engaged in 
quantifying the benefits observed by this mutually 
compensatory recognition process. 

Structure Sharing. Another advantage of typed featur.e 
structure unification is the use of shared variables among 
elements of the feature stmcture. For example, if the tiser says 
“MIA1 platoon facing this way <draws arrow>“, in the 
resulting feature structure, the orientation feature of the 
command is structured-shared with the angle of its location 
feature. When it is unified with an arrow gesture feature 
structure, the orientation feature is automatically instantiated 
with the angle at which the arrow was drawn. 

Multimodal Discourse. The user can explicitly enter into a 
“‘mode” in which s/he is creating a specific type of entity, for 
example, MlAl platoons, by simply saying “multiple MlAl 
platoons.” This results in a more specific feature structure that 
will subsequently be unified with future input (Figure 13). 

creare_unit 

type: mlal 
echelon: platoon 

location: POjnl[ ] 
posture: posfure,d 1 

_ orieniation: orjenr-vaJ I 4 
Figure 13 Feature structure for the “mode” of creating Ml Al platoons” 

For example, the user could then place the pen at a dcsirrd 
location and say “whiskey four six,” intending to create an 
MlAl platoon named “‘W46” at that location. Any phmso 
resulting in a structure that unifies with the type of entity that 
is be&g created will result in the creation of that more specific 
type of entity. For instance, the subsequent utterances 
“whiskey four seven facing southeast.” “whiskey four eight 
oriented one hundred and thirty five degrees,” (see Figure 7), 
result in the creation of units with those names and 
orientations, When there is no interpretation thnt unifies with 
the one initially specified, the “mode” is ended. 

In summary, we have identified four main advantages to using 
unification of typed. feature structures as the core of a 
multimodal integration process: partiality, mutual ’ 
compensation, structure sharing, and multimodal discourse. In 
virtue of these capabilities, the QuickSet system is now a 
usable testbed for experimenting with multimodal architectures, 
and for developing next-generation multimodal systems. 

Vo’and Wood [1996] and Waibel et al., [1995] present an 
approach to multimodal integration similar in spirit to that 
presented here in that it accepts a variety of gestures and is not 
solely speech-driven. However, we believe that unification of 
typed feature structures provides a more general, formally wall- 
understood, and reusable mechanism for multimodal integration 
than the frame merging strategy that they describe. In 
particular, the unification approach allows for DAG 
interpretations and supports multimodal discourse in an elegant 
way. Cheyer and Julia [1995] sketch a system based on 
Oviatt’s [1996] results and the Open Agent Architecture [Coheb 
et al., 19941, but describe neither the integration strategy nor 
multimodal compensation. 

7. CONCLUDING HEMARKS 

QuickSet has been delivered to the US Navy and US Marina 
Corps. for use at Twentynine Palms, California, where it is 
primarily used to set up trainingrscenarios and to control the 
virtual environment. The system was also used by the US 
Army’s 82 Airborne Corps. at Ft. Bragg during the Royal 
Dragon Exercise. There, QuickSet was deployed in a tent, where 
it was subjected to noise from explosions, low-flying jet 
aircraft, generators, etc. Not surprisingly, it readily became 
apparent that spoken interaction with QuickSet would not bc 
feasible. To support usage in such a harsh environment, a 
complete overlap in functionality between speech, gesture, and 
direct manipulation was desired. The system has been revised to 
accommodate these needs. As part of ExInit, QuickSet is being 
delivered to STRICOM, the US Army’s Simulation and Training 
Command for use in DARPA’s STOW-97 Advanced Concept 
Demonstration. 

Regarding the multimodal interface itself, QuickSet has 
undergone a “proactive” interface evaluation in that high- 
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fidelity “wizard-of-02” studies were performed in advance of 
building the system, which predicted the utility of multimodal 
over unimodal speech as an input to mapbased systems 
[Oviatt, 1996; Oviatt et al., 19971. For example, it was 
discovered there that multimodal interaction would lead to 
simpler language than unimodal -speech. Such observations 
have been confirmed when examining how users would create 
linear features with CommandTalk [Moore et al., 1997J, a 
unimodal spoken system that also controls LeatherNet. 
Whereas to create a “phase lime” between two three-digit <x,y> 
grid coordinates, a user would have to say: “create a line from 
nine four three nine six one to nine five seven nine six eight 
and call it phase line green,” a QuickSet user would say ‘phase 
line green” while drawing a line. Given that numerous 
difficult-to-process linguistic phenomena (such as utterance 
disfluencies) are known to be elevated in lengthy utterances and 
also to be elevated when people speak locative constituents 
[Oviatt, 1996; Oviatt in press], multimodal interaction that 
permits pen input to specify locations offers the possibility of 
more robust recognition. 

In summary, we have developed a handheld system that 
integrates numerous advanced technologies, including speech 
recognition, gesture recognition, natural language processing, 
multimodal integration, distributed agent technologies, and 
reasoning. The multimodal integration strategy allows speech 
and gesture to compensate for each other, yielding a more 
robust system. We are currently engaged in evaluation 
experiments to quantify the benefits of this approach. The 
system interoperates with existing military simulators and 
virtual reality environments through a distributed agent 
architecture. QuickSet has been deployed for the US Navy, US 
Marine Corps, and the US Army, and is being integrated into 
the DARPA STOW-97 ACTD. We are currently evaluating its 
performance in the field. 
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