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 i 

Abstract 

Motivation: Component-Based Software Engineering (CBSE) is an approach to 

software reuse where software assets or artifacts from multiple sources are reused to 

develop systems faster and cheaper. The main benefit of software reuse in CBSE is the 

enabling of systematic improvement in terms of quality, effort, time-to-market, common 

software platform/architecture, and standards compliance. A key aim of these 

improvements is to enable proper management of CBSE-driven software evolution, i.e. 

helping software engineers become more cost-effective in developing and incorporating 

high-quality, reusable components and other assets.  

Knowing the relevant risks and effective handling strategies in software evolution is 

paramount to achieving improvements in quality, effort and time-to-market. Moreover, 

the architecture of a software system constitutes its fundamental building blocks. 

Continued suitability of the architecture over time is therefore crucial to the continued 

success of the system. Prior investigations on risks and risk management strategies have 

commonly focused on project-level risks and strategies. Similarly, studies on software 

architecture have mainly investigated its design, implementation and maintenance.  

Little prior effort has been made towards studying risks and risk management strategies 

of architectural evolution.  

Approach: This thesis investigates the state of practices and issues of modern 

CBSE, with multi-origin reusable components (in-house software, Commercial Off-

The-Shelf software (COTS), and Open Source Software (OSS)), in the development 

process, based on quantitative and qualitative empirical studies of industrial systems. It 

also explores software evolution impact, elicited through defect and change reports over 

time. Test Driven Development (TDD) as a strategy to handle these impacts is also 

investigated. Finally, surveys are performed on risks and risk management strategies in 

industrial software projects. 

The aims (research questions) in this thesis are: 

RQ1: What is the state of practices and issues with respect to software process 

improvement in CBSE for COTS/OSS and in-house reusable software? This is answered 

by two industrial surveys.  

RQ2: How does software evolution impact individual reusable components, in terms of 

defect and change densities? This is answered by an industrial case study. 

RQ3: What are the impacts of Test Driven Development versus test-last development on 

reusable components? This is answered by an industrial case study. 

RQ4: What are the perceived architectural risks of CBSE-driven software evolution, 

and how can these risks be mitigated? This is answered by two industrial surveys. 

Correspondingly, the contributions of this thesis are (elaborated in articles P1-P6): 

C1. Improved knowledge of modern trends in CBSE and their impacts on software 

development processes (RQ1, articles P1, P2). 

C2. Improved understanding of evolution impact on individual reusable components in 

terms of defect and change densities (RQ2, article P3). 

C3. Improved understanding of the impact and effectiveness of TDD (RQ3, article P4). 

C4a. Identification of perceived risks and related mitigation strategies specifically for 

the evolution of software architecture (RQ4, articles P5, P6).   

C4b. An adapted operational matrix as a tool to support risk management in software 

architecture evolution (RQ4, article P6).  
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1 Introduction 

 

 

 

 

 

 

 

 

 

This chapter summarizes the research background and context for this thesis.  

Additionally, it includes a description of the research questions, research design and 

corresponding contributions.  Finally, it presents a list of the publications included and 

an outline of the remainder of the thesis.  

1.1 Problem Outline 

The SEVO (Software EVOlution) research project, funded by the Research Council of 

Norway from 2004 – 2008, defined the following goals that function as overall aims for 

this thesis: 

 

 G1.  Better understanding of software evolution, especially for Component-Based 

Software Engineering (CBSE). 

o To understand the state-of-practice and issues of CBSE in individual 

companies as well as in the IT-industry at large: 

 Modern trends in CBSE technology enable main advantages of 

software reuse. These advantages include improvements in quality, 

effort (cost) and time-to-market, and standards [Sommerville 2010]. 

 Software evolution is inevitable in any software system since 

changes in society and technology will require subsequent changes to 

software systems to keep them up to date [vanVliet 2008]. Moreover, 

efficiency in the software process is paramount due to the ever-

increasing demand on available development capacity. The 

cooperation necessary in software engineering impacts e.g. the 

distribution of work, communication, standards and procedures. 

 A related theme is the increased usage of Commercial Off-The-Shelf 

components and Open Source Software (OSS) in new development. 

These have different characteristics than in-house developed non-

reusable components due to e.g. vendor control, selection and 

integration issues [Li 2004]. Their impact on the development and 

maintenance processes is therefore also different. 

 G2. Better methods to predict the risks, costs, and profile of software evolution in 

CBSE. 

o To understand CBSE in detail on the software component/software system 

and software process levels in order to develop solutions to these issues: 
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 Software Process Improvement (SPI) [Aaen 2001], i.e. systematically 

incorporating these solutions as part of revised development 

practices, is key. This will enable software engineers, software 

designers, software architects and the like to improve their cost-

effectiveness in developing quality software based on reusable 

components. It will also enable them to improve their ability to 

develop and use reusable assets, such as code and process models.   

 Risks and risk management strategies are closely related to the 

above-mentioned (G1) issues in CBSE [Boehm 1991]. Knowledge of 

the impact and effectiveness of both risks and risk management 

strategies in CBSE-driven software evolution is paramount to the 

success of the key points mentioned above.  

 Software architecture constitutes a central part of any software 

system [Bass 2004], and is also an important concern seen in our 

investigation [P1]. We must therefore pay close attention to the 

design, maintenance and evolution of the architecture, to secure the 

continued success of the system. Awareness of potential architectural 

evolution risks is important as architectural changes can permeate a 

software system. 

 On the one hand, earlier investigations in risk management have 

commonly focused on risks and risk management strategies on the 

project level.  On the other hand, software architecture investigations 

commonly study the design, implementation and maintenance of the 

architecture [P5]. Little prior effort has been made in the direction of 

studying risks and risk management strategies in direct relation to 

software architecture and its evolution. Moreover, earlier studies in 

this area have focused on output from structured evaluations of the 

architecture, while the actual methods used to evaluate architecture in 

industry can range quite widely [Babar 2007a]. Context-specific 

factors such as the physical size of the personnel groups used in 

architecture evaluation may also have an influence [Babar 2007b]. 

Further improvements are also needed with respect to the integration 

of architectural activities, notations and artifacts into software 

processes and tools [Buchgeber 2008]. 

 G3.  Contributing to a national competence base in empirical software engineering. 

o There is the need for validated evidence to support or reject existing and 

revised hypotheses, models, design decisions, and the like within software 

engineering. Experience from empirical studies in the field can be 

incorporated into a living, experience-based knowledge base for use by the 

software engineering community.   

 G4.  Dissemination and exchange of the knowledge gained. 

o Active participation in, and publication to, peer reviewed venues (e.g. 

workshops, conferences and journals) are key not only to disseminate and 

exchange knowledge, but also to obtain knowledge on related work. 

 

In this thesis, we first investigate the state-of-practice in CBSE, and thereafter use 

the knowledge gained towards investigating CBSE issues on a more detailed level. 
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Concretely, we investigate how modern trends in CBSE influence the software 

development and maintenance processes for COTS, Open Source and in-house reusable 

components (RQ1). Secondly, we use the results from the first investigation towards 

investigating the evolutionary trends of defect and change densities specifically for 

individual reusable components (RQ2).  Finally, we investigate Test Driven 

Development (TDD) as a concrete example of software process improvement to handle 

risks in a specific company (RQ3), as well as perceived architectural risks pertaining to 

CBSE-driven software evolution in the IT-industry at large (RQ4).  

1.2 Research Context 

At the start of the project, we explored a number of different venues to obtain 

empirical data from the Norwegian IT-industry. Using contacts already established by 

our research group, we became involved with several software development projects 

that unfortunately did not yield usable research results. This was either due to lack of 

commitment or internal turmoil on the part of the industrial organizations in question, or 

lack of completeness in the data available. Nevertheless, after an upstart of half a year 

we were allowed to successfully follow two industrial projects for this thesis work.  

Problems with respect to sample selection and response rates for the industrial 

surveys were also encountered. These issues are discussed in detail in the secondary 

article SP5 (Appendix B). In general, the software industry appears busy and without 

much time for participating in research efforts.  

This thesis utilizes the results from quantitative as well as qualitative studies, using 

empirical data accumulated from software systems at StatoilHydro at two locations in 

Norway: Trondheim (Rotvoll) and Stavanger (Forus). In 2003, StatoilHydro started its 

own reuse program.  Since 2004, this has become based on an in-house customized 

framework of reusable components, called the ―JEF framework‖ (the name ‗JEF‘ 

signifies that it is based on Java Enterprise Framework components).  The aim of 

StatoilHydro was to explore the potential benefits of reusing software in a systematic 

manner.  The framework is based on J2EE, and is a Java technical framework for 

developing Enterprise Applications [JEF 2006].  This initiative was started, as a 

response to changing business and market trends, by providing a shared platform for 

further in-house development and integration. The strategy is also being propagated 

throughout the company. Upper management has mandated that the JEF components 

are to be reused in all new development where applicable. There is also a training 

program in place for developers to gain knowledge of these components, their 

functionalities and their interfaces. The framework itself, and the corresponding 

applications that are using the framework, have been further developed in several 

releases over four years (2004 – 2008), with the latter releases being developed using 

Test Driven Development. Our research group was allowed to participate in the process 

to potentially verify some of the benefits of reuse sought by the company.  The majority 

of the quantitative data comes from the ClearCase/ClearQuest software change 

management system, which is commonly in use at StatoilHydro.  This system allows 

reporting of both Change Requests (for non-corrective changes) and Trouble Reports 

(for corrective changes or defects).  

Empirical research is the result of thorough collaboration, and likewise so are the 

investigations leading up to this thesis. Thus, the results pertaining to overall defect and 
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change profiles for the various releases of the reusable and non-reusable software have 

been reported in the secondary articles SP8 and SP9, as well as in [Gupta 2009b]. The 

major difference is that the results from this investigation that are reported in this thesis 

pertain to the individual reusable components, rather than the overall releases of 

reusable software. Furthermore, the results from article P1 have previously been 

presented in [Gupta 2009b] with the aim to investigate possible improvements to the 

actual reuse practice at StatoilHydro ASA. This is also different from the work in this 

thesis, where we use the results from article P1 to investigate the impact of modern 

trends in CBSE on the development process for in-house reusable components, in 

comparison with the related impact for COTS/OSS components. 

Additionally, this thesis uses both qualitative and quantitative data from other IT-

companies. These data complement and further explore the results obtained from the 

above-mentioned data. In particular, data were elicited from a broad range of companies 

to obtain information on modern trends, evolution and software architectures in relation 

to CBSE. All these companies wish to remain anonymous, and are therefore not 

mentioned by name in this thesis.  

1.3 Research Questions and Research Design 

The thesis encompasses several empirical studies on the software-intensive industry, 

on both in-house and COTS/OSS-based development, all aimed at the main goals of the 

SEVO project as outlined above. The main focus is on CBSE as an overall umbrella; the 

need for upgrading development processes based on  

1) modern trends in CBSE (RQ1),  

2) metrics of change (RQ2), 

3) impact of a specific SPI (i.e. TDD) (RQ3), 

4) perceived architectural risks (RQ4). 

Modern trends within CBSE have influenced development processes to evolve from 

the simple waterfall model towards more agile and flexible processes [Sommerville 

2010], including development of COTS/OSS components. These new processes have 

become widely adopted, presenting new opportunities but also new risks [SP1, 

Appendix B], such as inaccurate effort estimation in project planning, and negative 

effects of component integration. There is also a lack of empirical validation of current 

methods for risk management issues in COTS/OSS development [SP1, Appendix B].  

As an example, six commonly held facts about COTS development were debunked by 

Torchiano et al. [Torchiano 2004]. While results from P1 were also reported in [Gupta 

2009b] to investigate possible improvements to the actual reuse practice at StatoilHydro 

ASA, it is therefore also important to study modernized processes and process changes 

for COTS/OSS and in-house reusable components. RQ1 is therefore defined as:  

What is the state of practices and issues with respect to software process 

improvement in CBSE for COTS/OSS and in-house reusable software? 

When it comes to change metrics, we consider defect density (towards reliability) 

and change density (towards maintainability or evolution) to be important indicators of 

evolution in relation to the overall focus on CBSE. Earlier research on defect density 

showed that reusable components have lower defect densities across releases 

[Mohagheghi & Conradi 2004b]. Changes have previously been studied in terms of type 

and number rather than density [Mohagheghi & Conradi 2004a].  Further investigations 
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of these metrics with respect to overall releases of non-reusable versus reusable 

software have been explored by us in [SP8] [SP9], and are also reported in [Gupta 

2009b]. However, gaining knowledge of software evolution impact on the level of 

individual reusable components is also important, and will allow us to propose further 

targeted handling of development issues in evolving industrial software components and 

CBSE systems. So RQ2 becomes:  

How does software evolution impact individual reusable components, in terms of 

defect and change densities? 

Test Driven Development is an example of a software process improvement 

introduced to manage risks associated with CBSE-driven software evolution. Prior 

industrial studies on TDD, although few in number, have shown quality improvements 

(i.e. fewer corrective changes) but also a decrease in productivity compared to test-last 

development – for non-reusable components [Janzen 2005]. Prior studies appear to have 

neither investigated TDD‘s effect on non-corrective changes, nor its effect on reusable 

components. Reusable components may need to be more predictable, stable and 

maintainable [Mohagheghi & Conradi 2004a].  Thus, investigating TDD‘s impacts on 

reusable components is important to determine its effectiveness. So RQ3 becomes: 

What are the impacts of Test Driven Development versus test-last development on 

reusable components? 
Finally, the continued operative success of the software architecture is paramount to 

the successful evolution of the corresponding software system. Bass et al. define 

software architecture as “the structure(s) of the system, which comprise(s) software 

elements, the externally visible properties of those elements, and the relationships 

among them” [Bass 2004, p.21].  Software architecture is further discussed in Chapter 

2.4 in this thesis. Investigating perceived architectural risks among actual software 

architects will allow identification of relevant problems and provide a basis for 

proposing systematic solutions towards handling these problems. We hence define RQ4 

as:  

What are the perceived architectural risks of CBSE-driven software evolution, and 

how can these risks be mitigated? 
These four research questions express the overall goals of this thesis, and are further 

presented and motivated in Chapter 3. 

Furthermore, empirical software engineering, which focuses on analyzing actual data 

(to validate results and propose new or revised models/abstractions), has become an 

important research arena.  The aim of empirical software engineering is thus to move 

the field from merely analyzing and validating theoretical concepts towards a more 

scientific-based field [Tichy 1998] [Zelkowitz 1998] [Glass 2004] [Dybå 2005] [Wong 

2008] [Basili 2008] [Kampenes 2009].  

This research applies a combined set of methods, using qualitative methods to follow 

up studies performed quantitatively, as well as quantitative methods to follow up studies 

performed qualitatively (i.e. to explore related information in more detail).  

The chosen study method will influence the collection and subsequent analysis of 

relevant data, as well as the eventual considerations regarding validity and 

generalization. In general terms, we can say that  

 quantitative studies (e.g. experiments) are more concerned with the ―what‖ 

and the ―when‖ of an occurring trend, while  
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 qualitative studies (e.g. surveys) are more concerned with ―why‖ this trend 

appears the way it is.  

Empirical studies in software engineering are commonly performed through 

qualitative studies, quantitative studies, or a combination of these two. Combining the 

two types of studies provides the benefits of both, allowing them to complement each 

other in terms of study results towards a given study goal.  

Our research is set in three major phases, numbered 1 – 3 (Figure 1), and combines 

quantitative and qualitative aspects. These phases were performed with some activities 

overlapping in time.  

In phase 1 (comprising two studies), we investigated the state of practices and issues 

of modern trends within CBSE on the development process for reusable in-house 

(article P1) and COTS/OSS (article P2) reusable components. The studies in this phase 

are comprised of qualitative surveys, combined with semi-structured interviews, of 

developers. We then combined the results from these two studies to answer RQ1. 

In phase 2, we investigated software evolution specifically for individual reusable 

components on the basis of defect density (defined as the number of Trouble Reports 

(TRs) divided by the number of non-commented Source Lines of Code (NSLOC)) and 

change density (defined as the number of Change Requests (CRs) divided by NSLOC) 

(article P3). The research method used in this phase is quantitative case study, and it is 

geared towards answering RQ2. 

The two aforementioned phases provided input in terms of general background, 

results and experience for phase 3, which totals three studies. Here, we investigated 

Test Driven Development in the context of software evolution (article P4), contributing 

to answering RQ3.  We also investigated perceived risk and risk management aspects of 

software architecture evolution, based on qualitative surveys among software architects 

in the Norwegian software industry (articles P5 and P6). These latter two studies 

provide results towards answering RQ4. 

Figure 1 below shows the different phases of this research, indicating selected 

articles (Px, full articles in Appendix A), contributions (Cx) and secondary articles 

(SPx, abstracts in Appendix B). 
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Figure 1: Phases, contributions and papers 

 

Due to the availability of data sources, there is some overlap between the phases (as 

indicated by the timelines for each phase shown in Figure 1). A further outline of our 

work in terms of papers/studies vs. focus, context, research questions and contributions 

can be found in Table 1. Papers P1, P2 and P3 contribute to SEVO goal G1; papers P4, 

P5, and P6 contribute to SEVO goal G2; while all of the studies contribute to SEVO 

goals G3 and G4. We have used a combination of quantitative and qualitative methods.   
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Table 1: Research overview 

 

Paper/ 

Study 

Focus Context Direct 

Study 

Objects 

Research 

Question 

Contri-

butions 

Research 

Method 

P1 Developers‘ 

attitudes to 

software 

reuse 

Reuse-based 

development, 

IT-department 

of a large Oil 

and Gas 

company 

(StatoilHydro) 

Software 

developers 

RQ1 C1 Survey 

P2 COTS/OSS 

impact on 

development 

processes 

Software 

industry in 

Norway, Italy 

and Germany 

Software 

developers 

RQ1 C1 Survey 

P3 Defect 

density and 

change 

density in 

CBSE-driven 

software 

evolution 

Reuse-based 

development, 

IT-department 

of a large Oil 

and Gas 

company 

(StatoilHydro) 

Reusable 

framework 

of 

components 

RQ2 C2 Case 

study 

P4 Test Driven 

Development 

and software 

evolution 

Reuse-based 

development, 

IT-department 

of a large Oil 

and Gas 

company 

(StatoilHydro) 

Reusable 

framework 

of 

components 

RQ3 C3 Case 

study 

P5 Perceived 

risks in 

software 

architecture 

evolution 

Norwegian 

software 

industry, 

perceived 

architectural 

evolution 

Software 

architects 

RQ4 C4a Survey 

P6 Software 

architecture 

risk 

management 

Norwegian 

software 

industry, 

perceived 

architectural 

evolution 

Software 

architects 

RQ4 C4a, 

C4b 

Survey 

 

The following section presents a brief outline of the papers included in this thesis, 

along with related contributions.  
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1.4 Selected Articles (P1 – P6) 

The selected papers are listed below, together with an outline of my own contributions: 

 

 [P1] Odd Petter N. Slyngstad, Anita Gupta, Reidar Conradi, Parastoo Mohagheghi, 

Harald Rønneberg, and Einar Landre: ―An Empirical Study of Developers Views on 

Software Reuse in Statoil ASA‖, In Jose Carlos Maldonado and Claes Wohlin 

(Eds.): Proc. 5th ACM-IEEE Int'l Symposium on Empirical Software Engineering 

(ISESE'06), Rio de Janeiro, 21-22 September 2006, IEEE CS Press, ISBN 1-59593-

218-6, pp. 242-251. 

 Relevance: This article encompasses a study of attitudes towards software reuse 

among developers, allowing us to attain more detailed information on benefits of 

reuse as well as success factors for software reuse, all in a CBSE context. This 

article contributes results from in-house development about the impact on the 

development process for reusable components (RQ1 and C1). 

 Contribution: I was one of the main contributors towards the study design, 

execution and data collection, as well as the analysis and writing of the article.  I 

was the leading author of this article, where the work tasks were mainly divided 

between me and Anita Gupta. We furthermore worked on the tasks individually, 

while reviewing each other‘s work and providing major and minor comments 

towards the completed article. The remaining co-authors gave us their feedback 

towards the finalized article submitted for publication.  

[P2] Jingyue Li, Reidar Conradi, Christian Bunse, Marco Torchiano, Odd Petter N. 

Slyngstad, and Maurizio Morisio: ―Development with Off-The-Shelf Components: 

10 Facts‖, In IEEE Software, 26(2):80-87, March/April 2009.  

 Relevance: This article summarizes our results and experiences from a large survey 

of COTS/OSS development in Europe. To this thesis, this article contributes results 

about impact on the development process for COTS/OSS components (RQ1 and 

C1). 

 Contribution: I contributed towards the research design, data collection and 

analysis, as well as the writing of articles resulting from this study on COTS/OSS 

development, which also encompasses a majority of the secondary papers (SP1-SP7, 

SP10) the abstracts of which are included in this thesis. 

[P3]  Odd Petter N. Slyngstad, Anita Gupta, Reidar Conradi, Parastoo Mohagheghi, 

Thea Christine Steen, and Mari Haug: ―Preliminary results from an investigation of 

software evolution in industry‖, In Tom Mens, Maja D'Hondt, and Laurence 

Duchien (Eds.): Proc. ERCIM Workshop on Software Evolution, 6-7 April 2006, 

Lille, France, pp. 187-193. 

 Relevance: This article presents the results from an investigation on defect and 

change densities for individual components in a framework of reusable components. 

This study contributes towards our investigation of software evolution impact on 

individual reusable components (RQ2 and C2).  
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 Contribution: I was one of the main contributors to this study, and was the leading 

author of this article. In summary, I contributed 50% of the work in terms of 

research design, data collection, analysis, and the writing of this article. The work 

towards writing the article was divided between me and Anita Gupta, then jointly 

reviewed by all the authors (who provided major and minor comments) as the 

individual parts were completed.  

 

[P4] Odd Petter N. Slyngstad, Jingyue Li, Reidar Conradi, Harald Rønneberg, Einar 

Landre, Harald Wesenberg: ―An Empirical Study of Test Driven Development in 

the evolution of a framework of reusable components‖, In Herwig Mannaert, 

Tadashi Ohta, Cosmin Dini, and Robert Pellerin (Eds.): Proc. The Third 

International Conference on Software Engineering Advances (ICSEA'08), 26-31 

October 2008, Sliema, Malta, IEEE CS Press, ISBN 978-1-4244-3218-9, pp. 214-

223.  

 Relevance: In this article, we investigate the relation between defect and change 

densities for traditional development versus Test Driven Development. The findings 

contribute towards a more detailed understanding of the impact and effectiveness of 

TDD for the development of reusable components in an industrial setting (RQ3 and 

C3). 

 Contribution: I was the main contributor (80%) to this study with regards to 

research design, data collection and analysis, and the writing of this article. 

Therefore, I was the leading author of this article, while the co-authors reviewed the 

work underway, giving useful comments and feedback. 

 [P5] Odd Petter N. Slyngstad, Jingyue Li, Reidar Conradi, M. Ali Babar: ―Identifying 

and Understanding Architectural Risks in Software Evolution: An Empirical Study‖, 

In A. Jedlitschka and O. Salo (Eds.): Proc. 9th International Conference on Product 

Focused Software Development and Process Improvement (PROFES'2008), 23-25 

June 2008, Frascati - Monteporzio Catone, Rome, Italy. Springer Verlag LNCS 

5089, 448 pages, pp. 400-414. 

 Relevance: This article explores perceived risks and corresponding risk 

management strategies encountered and employed by actual software architects in 

the Norwegian software industry. The contribution towards this thesis is an 

investigation of risks and corresponding risk management strategies in software 

architecture evolution (RQ4 and C4a). 

 Contribution: I led the design of this study, and also performed the data collection 

and the main work of the analysis, mainly receiving useful input from Dr. Jingyue 

Li and my PhD advisor Dr. Reidar Conradi.  I was also the leading author of this 

article, while the co-authors gave major and minor comments on the final article. 

 

[P6] Odd Petter N. Slyngstad, Jingyue Li, Reidar Conradi, M. Ali Babar, Viktor Clerc, 

Hans van Vliet: ―Risks and Risk Management in Software Architecture Evolution: 

An Industrial Study‖, In Huimin Lin, Wenhui Zhang and Shamsul Sahibuddin 
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(Eds.): Proc. 15th Asia-Pacific Software Engineering Conference (APSEC'08), 3-5 

December 2008, Beijing, P.R. China, IEEE CS Press, pp. 101-108.  

 Relevance: This article further explores risks and risk management strategies 

relevant for the evolution of software architecture, based in part on our findings in 

[P5].  The contribution to this thesis is in terms of an expanded set of perceived risks 

and corresponding risk management strategies, towards an adapted operational 

matrix for risk management in software architecture evolution (RQ4, C4a and 

C4b). 

 Contribution: I led the design of this study, and also performed the data collection 

and the main work of the analysis. I also received many useful inputs from the co-

authors during the course of the study. I was the leading author of this article, while 

the co-authors gave major and minor comments on the individual parts as they were 

completed, including a review round of the finalized article. 

1.5 Secondary Articles (SP1 – SP10) 

The remaining articles presented below were also published during the course of the 

thesis work. They further add background information and scope towards this thesis. 

The articles are listed here with a brief discussion of their outlines and my contributions, 

since they are not directly part of this thesis. The abstracts of these articles are included 

in appendix B of this thesis. 

 

[SP1] Jingyue Li, Reidar Conradi, Odd Petter N. Slyngstad, Marco Torchiano, 

Maurizio Morisio, and Christian Bunse: ―Preliminary Results from a State-of-

Practice Survey on Risk Management in Off-The-Shelf Component-Based 

Development‖, In Xavier Franch and Daniel Port (Eds.): Proc. 4th International 

Conference on Component-Based Software Systems (ICCBSS'05), 7-11 February 

2005, Bilbao, Spain, Springer LNCS 3412, pp. 278-288. 

Outline/Contribution: This is the first presentation of results from a large 

industrial survey on risk management for COTS/OSS components.  I participated in 

the research design, data collection and analysis here, and contributed towards 30% 

of the work. 

[SP2] Jingyue Li, Reidar Conradi, Odd Petter N. Slyngstad, Christian Bunse, Umair 

Khan, Maurizio Morisio, and Marco Torchiano: ―Barriers to Disseminating Off-

The-Shelf Based Development Theories to IT Industry‖, position paper, In 

Abdallah Mohamed, Guenther Ruhe, and Armin Eberlein (Eds.): Proc. the 

International Workshop on Models and Processes for the Evaluation of COTS 

Components (MPEC'05), 21 May 2005, 4 p, ACM Press. Arranged in co-location 

with ICSE'05, St Louis, Missouri, USA, 15-19 May 2005. 

Outline/Contribution: This article entails a follow-up study on risk management 

issues related to COTS/OSS components. I contributed 40% of the research design 

and data collection for this article. 
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[SP3] Jingyue Li, Reidar Conradi, Odd Petter N. Slyngstad, Christian Bunse, Umair 

Khan, Marco Torchiano, and Maurizio Morisio: ―An Empirical Study on Off-the-

Shelf Component Usage in Industrial Projects‖, In Frank Bomarius and Seija 

Komi-Sirviö (Eds.): Proc. the 6
th

 International Conference on Product Focused 

Software Process Improvement (PROFES‘05), 13-16 June 2005, Oulu, Finland, pp. 

54-68, Springer LNCS 3547. 

Outline/Contribution: This article describes an empirical study on the specific 

reasons for choosing to use either COTS or OSS components, respectively. My 

contribution here was towards 30% of the total work.  

[SP4] Jingyue Li, Reidar Conradi, Odd Petter N. Slyngstad, Christian Bunse, Umair 

Khan, Marco Torchiano, and Maurizio Morisio: ―Validation of New Theses on 

OTS-Based Development‖, In Filippo Lanubile and Carolyn Seaman (Eds.): Proc. 

the 11th IEEE International Software Metrics Symposium (Metrics'05), Como, 

Italy, 19-22 Sept. 2005, IEEE CS press, pp. 26-26 (abstract), 10 p. 

Outline/Contribution: This article entails a further report on the results from a 

large industrial survey on risk and risk management issues for COTS/OSS-based 

development.  I participated in questionnaire design and setup, as well as data 

collection in Norway, and contributed towards 40% of the total work. 

[SP5] Reidar Conradi, Jingyue Li, Odd Petter N. Slyngstad, Vigdis By Kampenes, 

Christian Bunse, Maurizio Morisio, and Marco Torchiano: ―Reflections on 

conducting an international survey of Software Engineering‖, In June Verner and 

Guilherme H. Travassos (Eds.): Proc. the International Symposium on Empirical 

Software Engineering (ISESE'05), Noosa Heads (Brisbane), Australia, 17-18 

November 2005, IEEE CS Press, pp. 214-223. 

Outline/Contribution: This article reports on the challenges, approaches, and 

experiences we encountered during our planning, execution, analysis and 

aggregation of results in the large industrial survey on risk management issues 

related to COTS/OSS components. My contribution here was towards 30% of the 

total work.  

[SP6] Jingyue Li, Reidar Conradi, Odd Petter N. Slyngstad, Christian Bunse, Marco 

Torchiano, and Maurizio Morisio: ―An Empirical Study on the Decision Making 

Process in Off-The-Shelf Component Based Development‖, In Leon J. Osterweil, 

H. Dieter Rombach, and Mary Lou Soffa (Eds.): Proc. the Emerging Results track 

at the 28th International Conference on Software Engineering (ICSE 2006), 20-28 

May 2006, Shanghai, P.R. China, ACM Press, pp. 897-900. 

Outline/Contribution: This study is on the commonalities and differences in 

integrating COTS and OSS components in new development, from the large 

industrial survey on risk management issues related to such components.  My 

contribution was towards 30% of the total work here.   

[SP7] Jingyue Li, Marco Torchiano, Reidar Conradi, Odd Petter N. Slyngstad, and 

Christian Bunse: ―A State-of-the-Practice Survey of Off-the-Shelf Component-

Based Development Processes‖, In Maurizio Morisio (Ed.): Proc. 9th International 
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Conference on Software Reuse (ICSR'06), Torino, 12-15 June 2006, Springer 

LNCS 4039, pp. 16-28. 

Outline/Contribution: This article entails a more thorough report of the larger 

study on risk management issues for COTS/OSS components. I participated in the 

research design, data collection and analysis here, and contributed towards 30% of 

the work. 

[SP8] Anita Gupta, Odd Petter N. Slyngstad, Reidar Conradi, Parastoo Mohagheghi, 

Harald Rønneberg, and Einar Landre: ―An Empirical Study of Software Changes in 

Statoil ASA - Origin, Priority Level and Relation to Component Size‖, Proc. the 

International Conference on Software Engineering Advances (ICSEA 2006), 29 

October – 3 November 2006, Tahiti, French Polynesia, IEEE CS Press, 7 p. (due to 

conference format requirements).  Republished in Arne Løkketangen et al. (Eds.): 

Proc. Norwegian Informatics Conference (NIK'06), 20-22 November 2006, Molde, 

Norge, Tapir Akademisk Forlag. 

Outline/Contribution: This article explored the relation between component size 

and change profiles for reusable vs. non-reusable components.  We also 

investigated the change type distribution (perfective, adaptive, preventive and 

corrective). This article entails a contrast and comparison study of reusable vs. non-

reusable components. I participated in the data collection, as well as the analysis for 

this study.  I was the second author of this article, and contributed towards 

approximately 50% of the work required. 

[SP9] Anita Gupta, Odd Petter N. Slyngstad, Reidar Conradi, Parastoo Mohagheghi, 

Harald Rønneberg, and Einar Landre: ―An Empirical Study of Defect-Density and 

Change-Density and their Progress over Time in Statoil ASA‖, In René L. 

Krikhaar, Chris Verhoef, and Giuseppe A. Di Lucca (Eds.): Proc. the 11th 

European Conference on Software Maintenance and Reengineering, Software 

Evolution in Complex Software Intensive Systems (CSMR 2007), 21-23 March 

2007, Amsterdam, The Netherlands, IEEE Computer Society 2007, pp. 7-16. 

Outline/Contribution: This article offers a more detailed view of the contrast 

between reusable and non-reusable components in terms of defect density and 

change density.  It provides a quantitative view of some of the benefits of software 

evolution management through software reuse. My main contributions in this study 

were towards the analysis of the data.  I also participated in the data collection, and 

I was the second author of this article. I performed approximately 50% of the work 

required for this article. 

 [SP10] Jingyue Li, Reidar Conradi, Christian Bunse, Marco Torchiano, Odd Petter N. 

Slyngstad, and Maurizio Morisio: ―A State-of-the-Practice Survey on Risk 

Management in Development with Off-The-Shelf Software Components‖, IEEE 

Transactions on Software Engineering (TSE), 34(2):271-286 (Feb. 2008). 

Outline/Contribution: This article entails a more detailed analysis and discussion 

of the international industrial survey on risk and risk management for COTS/OSS 

components development. I participated in questionnaire design and setup, as well 
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as data collection in Norway, and contributed towards 40% of the total work for 

this survey. 

1.6 Contributions of this thesis 

This section summarizes the contributions of this thesis, which are discussed in more 

detail in Chapters 5.1 – 5.4. 

 

C1. Improved knowledge of modern trends in CBSE and their impacts on 

software development processes (RQ1, articles P1 and P2). We investigated how the 

development process for in-house and COTS/OSS-based development is impacted 

through modern trends in CBSE. This yielded a detailed identification of impacts, 

explaining the similarities and differences for in-house reusable and COTS/OSS 

components. From our results, these impacts include: 

 

 Impact for in-house reusable components (P1):  

 A defined / standardized architecture is seen as key 

 Training and knowledge sharing remain important 

 

 Impact for external COTS/OSS components (P2):  

 Traditional processes, enriched with OTS-specific activities, can be and are 

being used to select and integrate OTS components  

 

The identification of these impacts is important in order to set the stage for 

improvements in the processes used towards developing software. 

 

C2. Improved understanding of evolution impact on individual reusable 

components in terms of defect and change densities (RQ2, article P3). Through a 

study of the evolution of individual reusable components, characteristics in terms of 

defect and change densities were elicited. We hereby gained a more detailed 

understanding of software evolution impact on individual reusable components.   

 

C3. Improved understanding of the impact and effectiveness of TDD (RQ3, 

article P4) By carrying out a quantitative investigation on TDD, versus traditional test-

last development approaches, we gained insight into impacts of software evolution for 

this process improvement approach. 

 

C4a. Identification of perceived risks and related mitigation strategies 

specifically for the evolution of software architecture (RQ4, articles P5 and P6). 

Related studies have discovered that formal, documented methods are not commonly 

used to evaluate software architectures in industry. Moreover, the existing methods are 

geared towards architectural design, not evolution. We therefore performed a qualitative 

study of industrial software architects. A set of risks and corresponding risk 

management strategies were identified from this study. 
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C4b. An adapted operational matrix as a tool to support risk management in 

software architecture evolution (RQ4, article P6). We have developed an adapted 

operational matrix to aid risk mitigation in software architecture evolution, exploring 

the results from contribution C4a. This adapted operational matrix represents a first step 

towards structured mitigation of perceived risks in software architecture evolution.   

1.7 Thesis Structure 

The following paragraphs outline the remaining chapters of this thesis:  

 

Chapter 2 State-of-the-art: Here we discuss the current state of the software 

engineering field, with focus on Component-Based Software Engineering, Software 

Process Improvement, as well as Software Reuse and Evolution. Furthermore, we 

discuss Software Architecture and Software Risk Management in more detail, as they 

are of particular interest for this thesis. The chapter concludes with a summary of 

research methods in software engineering along with their suitability towards our 

studies. 

 

Chapter 3 Research Questions, Design and Implementation: We discuss our 

research focus and the motivation behind our research questions here.  The design and 

implementation of our research process is also discussed in this chapter.  

 

Chapter 4 Results: This chapter presents our results from the individual articles P1-

P6, bringing them together towards the contributions of this thesis. 

 

Chapter 5 Evaluation and Discussion: Our findings are evaluated and discussed 

with focus on our contributions, and also in relation to the state-of-the-art. Additionally, 

we have included recommendations to practitioners and a discussion of how our results 

fit with the overall SEVO research project goals. This chapter also contains reflections 

on the research context, and general recommendations to practitioners, as well as 

general and specific considerations regarding the validity of the contributions of this 

thesis. 

 

Chapter 6 Conclusion: The main findings of this thesis are revisited, and further 

specific recommendations for researchers and practitioners in CBSE are outlined.  

Directions for possible future work are also identified in this chapter. 

 

Appendix A: This thesis is based upon six articles (P1-P6) that have been published.  

These are presented in their entirety in this chapter. 

 

Appendix B: This includes the abstracts of the ten secondary articles (SP1-SP10) in 

this thesis. 
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2 State-of-the-art 

 

 

 

 

 

 

 

 

 

We here provide a general description of the scientific context surrounding the work 

in this thesis. This includes definitions of the central research areas in software 

engineering, and their challenges and opportunities.  We also provide a more detailed 

description of prior work in software reuse, CBSE, software evolution, software 

architecture, and software risk management, as these are areas that pertain more closely 

to our research focus. The chapter concludes with a tally of the research methods we 

have applied, as well as their strengths and weaknesses.   

2.1 Software Engineering 

According to Finkelstein et al. [Finkelstein 2000], system engineering encompasses 

software engineering as a sub-area, together with hardware and mechanical engineering. 

Also along the same lines, the IEEE Standard Glossary of Software Engineering 

Terminology gives the following definition [IEEE 90a, p. 67]:  

 

Software Engineering is the application of a systematic, disciplined, quantifiable 

approach to the development, operation and maintenance of software; that is, 

the application of engineering to software.  

 

While system engineering refers to the overall task of developing systems, Software 

Engineering specifically has to do with enabling construction of large, complex and 

long-lived software systems with ever-changing requirements and surrounding 

infrastructure (executable platforms). As such, it entails important inherent implications 

on the processes, methods and tools (i.e. relevant technologies) surrounding the 

development of these larger and more complex systems.  

In particular, software development incurs problems not otherwise seen in production 

organizations: According to Griss et al. [Griss 1993], these problems and challenges 

surrounding the development and maintenance of software were first described as ―the 

software crisis‖ in 1968.  The term ‗software engineering‘ was first used at a NATO 

conference in Garmisch-Partenkirchen [Naur 1968].  Commonly referenced reports still 

point towards these problems and challenges resulting in frequent cancellations, gross 

budget and/or schedule overruns, missing or wrong functionality, or other serious 

deficiencies in software projects [CACM‘s Inside Risks 2010].  

van Vliet [vanVliet 2008, p.6-8, adapted] outlines eight characteristics of software 

engineering: 
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 Software engineering concerns the development of large programs – present-

day software development projects result in systems containing a large 

number of (interrelated) programs or components. 

 The central theme is mastering complexity (related to the vast number of 

details rather than the intrinsic complexity of the software problem) – by 

splitting the given software problem into smaller, more manageable pieces. 

 Software evolves – as reality evolves. This evolution has to be kept in mind 

during development. 

 The efficiency with which software is developed is of crucial importance – 

software projects have a high total cost and development time (this also holds 

for maintenance). Enabling better and more efficient methods and tools for 

the development and maintenance of software, especially those enabling the 

use and reuse of components, is an important theme within software 

engineering. 

 Regular cooperation between people is an integral part of programming-in-

the-large – relying on clear work distribution, communication, 

responsibilities, as well as enforcement e.g. through standards and 

procedures. 

 The software has to support its users effectively – through fulfilling the right 

quality and functional requirements. 

 Software engineering is a field in which members of one culture create 

artifacts on behalf of members of another culture – software engineers have 

to rely on knowledge of domain experts from non-software fields. 

 Software engineering is a balancing act – most requirements are negotiable, 

while numerous business, technical and political constraints may influence a 

software development project. 

In particular, Component Based Software Engineering focuses on development of 

components with reuse.  Components can be considered to be units of composition (e.g. 

a class library or a package in some programming language), specified such that their 

interfaces are separate from their implementation [Crnkovic 2002]. These components 

are, per definition, of independent development and deployment. This allows – ideally – 

improvement and change of individual components, without requiring changes in the 

client software (e.g. other components) that use such components, assuming the 

interfaces remain stable. CBSE emphasizes reuse with components, in connection with 

a given architectural framework and with code-level interoperability [vanVliet 2008]. 

The ultimate aim of CBSE is hence to provide and integrate software components that 

function very much like plug-in hardware components. 

 

Research Challenges in Software Engineering 
 

Based on the above characteristics of software engineering, some current challenges 

include: 

 Exploiting new software processes and value chains due to COTS and OSS. 

 Validating the applicability of agile methods (XP, Scrum) with respect to 

software architecture, quality and maintenance concerns. 



State-of-the-art 

 

 18 

 Improving the balance between rigor and relevance in empirical studies 

[Glass 1994]. 

 More systematic collection and synthesis of empirical evidence world-wide 

[Basili 2008]. 

 Combining existing and revised software methods with respect to ―global‖ 

software development, i.e. supporting distributed teams.  

 

More specifically, [Sommerville 2010] further outlines increasing diversity, 

reduction of time-to-market while maintaining quality, and provable trustworthy 

computing as key challenges. Software process improvement is inherently related to 

challenges in software engineering. 

2.2 Software Quality and Process Improvement 

The IEEE Standard Glossary of Software Engineering Terminology [IEEE 90a], 

focusing on a satisfied customer, defines software quality as follows: 

 

The degree to which a system, component, or process meets specified 

requirements. 

 

The software-intensive industry is, and always has been, looking for ways to develop 

software faster, cheaper, more predictably, with requested functionality and quality (e.g. 

correctness and reliability), and with sufficient maintainability. Central to making 

―better‖ software-intensive systems is improving the work process(es) for developing 

and maintaining the appropriate software. That is, only if there is a well-defined and 

well-suited software process in current use can the quality of a software product become 

properly established [Sommerville 2010].  

 

Software Process Improvement (SPI) encompasses the understanding and changing 

of existing processes to improve software product quality, as well as to reduce costs 

and development time [Sommerville 2010, p. 706, adapted].  

 

According to Aaen [Aaen 2001], SPI is one of the most commonly used ways to 

achieve these benefits.  Sommerville [Sommerville 2010, p. 710-721, adapted] outlines 

the following stages for SPI, in a cyclical process: 

 Process measurement – Measure current project or product, aiming for 

improvement of measures according to set goals.  Also forms a baseline for 

measuring improvement effectiveness. 

o The time taken for a particular process to be completed – e.g. total 

process time, calendar time, time per resource. 

o The resources required for a particular process – e.g. total effort in 

person-months and other costs such as travel and computer 

resources. 

o The number of occurrences of a particular event – monitoring events, 

e.g. number of defects, number of requirements changes, average 

lines of code changed. 
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 Process analysis – Assessing the current process for weaknesses and 

bottlenecks.  Development of process models. 

o Questionnaires and interviews – questioning engineers and managers 

to obtain relevant information. 

o Ethnographic studies – observing process resources in their work 

environment (more aimed at revealing subtleties and complexities not 

discovered through questionnaires and interviews). 

 Process change – Proposing and introducing process changes to address 

identified weaknesses and bottlenecks.  Cycle continues with Process 

measurement to determine the effectiveness of the changes. 

o Improvement identification – identifying ways to tackle weaknesses 

and bottlenecks identified in analysis. 

o Improvement prioritization – assessing e.g. importance, cost, and 

potential impact of possible process changes. 

o Process change introduction – integrating new process changes (e.g. 

procedures, methods and tools) with existing processes, allowing 

sufficient time to ensure compatibility. 

o Process training – introducing training to ensure full benefits of the 

process changes can be gained.  

o Change tuning – full effectiveness of the changes introduced can only 

be ensured after adjusting for minor problems which may arise once 

the new changes are in place.  

Management commitment at all levels is also important throughout SPI. This latter 

point of change tuning is also emphasized to best be an ongoing and continuous activity 

by Fuggetta [Fuggetta 2000]. 

Similar to the key stages outlined by Sommerville above, Zahran [Zahran 1998, p. 

68-69, adapted] proposed a combined set of methods for SPI.  This includes: 

 a software process infrastructure, i.e. organization, management and 

technical,  

 a software process improvement roadmap, i.e. a model specification (such as 

a software capability maturity model [CMM] , ISO/IEC 15504 [ISO 2010], 

SPICE [SPICE] or a SWOT analysis), or results from company-specific gap 

analysis of current vs. future state,  

 a software process assessment method, i.e. for assessing e.g. current process 

and methods, and  

 a software process improvement plan to map assessment findings towards 

specific SPI initiatives.  

In SPI, as in other areas of software engineering, there is a need for empirical 

evaluation of proposed technologies, as well as a proper verification of potential 

benefits [Glass 1999].  This is because there is currently too little empirical evidence to 

verify these benefits, and the claims of benefits from introducing new technologies 

often do not match reality (i.e. currently available empirical evidence) in SPI [Glass 

1999]. 

An example of software process improvement is Test Driven Development, a 

practice related to agile software development that focuses on writing unit tests prior to 

the actual code [George 2004]. The process of writing formalized tests for the smallest 

functionality increments, and then developing that functionality, is performed in a 
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cyclical manner until the system is built [Erdogmus 2005].  TDD tests focus on low-

level unit-like testing, rather than cross-cutting or combining testing concerns.  

Additionally, the roles of test writer and software developer are commonly filled by the 

same person. 

Using TDD has several advantages, as follows: 

 TDD aids in code comprehension since developers explain their code through 

test cases and code itself, rather than more formal documentation [George 2004].  

 TDD makes determining the problem source when encountering new defects 

more efficient (i.e. during development) [George 2004].  

 The test cases developed using TDD comprise important assets towards further 

testing as well as the identification of newly found defects (as noted above) 

[George 2004]. 

 Software maintenance and debugging in traditional test-last development is 

commonly considered a low-cost activity where the code is patched, but the 

design and the specifications are neither examined nor changed accordingly 

[Hamlet 2001]. These small code changes can be up to 40 times more likely to 

cause further errors, meaning that new faults are commonly injected during 

debugging and maintenance. As TDD encourages the inclusion of new test cases 

to counter newly found defects, it can reduce defect injection caused by e.g. 

code maintenance. 

Some disadvantages can also be seen in using TDD: 

 TDD commonly includes no or little design.  This works well only for well-

written and well-understood code, and enables the possibility of lacking 

conceptual integrity.  This means that when defects are found, there is no 

―backup‖ in terms of formal design and documentation [vanDeursen 2001a]. 

One may then miss the ―big‖ picture [Foote 1997][Perry 1992], and thereby 

incur problems related to the architecture. 

 The amount of effort used in writing test cases is considerable, and may be 

context-dependent [George 2004]. 

 Refactoring is used extensively to manage complexity when utilizing TDD 

[George 2004].  

 A high level of experience and knowledge is needed in order to develop and 

maintain the test assets in TDD [vanDeursen 2001a] [vanDeursen 2001b]. 

 

 

Research Challenges in Software Quality and Process 

Improvement 
 

 Aaen et al. [Aaen 2001] comment that although SPI has received much 

attention in later years, there is still the need for additional focus on specific 

sub-areas within SPI.  Classifying SPI approaches according to management 

methods, improvement approaches, and perspectives, they outline underlying 

issues as becoming the more important challenges towards future efforts in 

SPI research.   
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 Challenging SPI issues [Conradi 2002] include context, commitment, and the 

actual improvement process, as well as the establishment of a knowledge 

base on experiences with SPI. 

 According to Hansen et al. [Hansen 2004], SPI research is still too focused on 

describing possible improvement approaches, rather than evaluating these in 

practice and learning from the experience gained. Having reviewed 322 

published articles on SPI, they conclude that more practical evaluation is 

needed to draw valuable conclusions, and that the research thus far has been 

centered on the Capability Maturity Model [CMM].   

 More specific challenges thus include further empirical studies on methods 

and models for SPI, as well as building a knowledge base of combined best 

practices. An example here would be TDD, as discussed above. 

2.3 Software Reuse (in-house software, COTS, and OSS) 

and CBSE 

Software reuse relies on CBSE to provide a potent way to manage functionality, 

quality, schedule, and cost issues in software development. The CBSE research area has 

a history since 1968 [McIlroy 1968] [Sommerville 2010], focusing on enabling 

common/shared components for in-house reuse between projects or departments of an 

organization.  

 

The modern view does not restrict the notion of software reuse to component reuse. 

Design information can be reused also, as can other forms of knowledge gathered 

during software construction [vanVliet 2008, p.573] 

 

In relation to the software lifecycle, software reuse can be divided into two main 

process models; development for reuse and development with reuse [vanVliet 2008].  

The former refers to the development and generalization (often by reengineering) of 

components specifically for future reuse. The latter means incorporating such reusable 

components when developing new software systems.  

In CBSE, development can be performed using components from in-house, or 

provided by third parties.  Third party software components are commonly categorized 

as either Commercial Off-The-Shelf software (i.e. commercial and often closed source, 

but 1/3 actually come with the source [Li 2004]), or Open Source Software components 

(where the source is more or less freely available). 

Johnson and Foote [Johnson 1998] claim that abstractions that are useful towards 

future reuse are ―discovered rather than designed‖. This means that components 

developed for standardized reuse are commonly based on already acquired components 

or insights (often by reengineering), rather than being designed and implemented from 

scratch. However, there is little empirical evidence to support this and similar claims 

[Jacobson 1997]. Furthermore, reuse projects can incur additional reengineering or 

refactoring costs (up to twice the original development cost), in order to prepare for 

later, assumed reuse. A common break-even point seems to occur after one to two cases 

of reuse [Lim 1994]. Also, effective reuse through CBSE assumes a relatively stable 

system architecture and application domain.   
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As an example of development for reuse, an overview by Basili and Boehm [Basili 

2001] shows that COTS components (which are meant for use in new development) 

appear to be released on a three-quarter yearly basis, with backward compatibility only 

guaranteed for the three latest releases of a given component. Again, the empirical 

evidence base is weak, as there are few validated and efficient methods to integrate 

components in new development, or to analyze the consequences and benefits of using 

such components [Boehm 1998] [Morisio 2000].   

Reuse entails six main dimensions, according to van Vliet [vanVliet 2008, p. 574]: 

 Substance: the reuse of components, concepts and procedures. 

 Scope: the reuse of generic components across domains, or specific 

components within a particular domain. 

 Approach: planned, systematic or ad-hoc, opportunistic reuse. 

 Technique: composing systems from existing reusable components, or 

reusing domain knowledge to generate components (e.g. with application 

generators). 

 Usage: components reused “as is”, or modified slightly to fit new 

applications.     

 Resulting Product: e.g the source code, object, design, architecture, 

knowledge. 

When it comes to possible differences in reuse dimensions, Li et al. [Li 2004] found 

that the issues were the same when using components built in-house and when using 

COTS.  Also, their results indicated that special system repositories or portals do not 

contribute much towards successful software reuse, as also indicated by [Frakes 1995] 

[Morisio 2000]. An empirical evaluation of the potential impact of software reuse was 

shown in Mohagheghi and Conradi [Mohagheghi & Conradi 2004b] [Mohagheghi & 

Conradi 2008]. As aforementioned, they found that reused components generally have 

lower defect density and lower code-change density than non-reused ones. They also 

indicated that industrial reuse has implicit advantages that can improve software quality. 

These advantages include reusable components‘ independence of a specific 

programming language. 

Software testing has moved from mere error discovery towards prevention [Bertolino 

2007].  While CBSE components need to be retested when being reused, their interfaces 

are defined by component models whose information is insufficient for functional 

testing. To remedy this, co-packaging with additional information, built-in testing (i.e. 

test-cases), and verification means have been proposed.  

 

COTS 
Commercial Off-The-Shelf software components are defined in several different 

ways by different authors.  Oberndorf [Oberndorf 1997] defines them as existing, ready-

to-use pieces of software, that are publicly available for purchase. Similarly, Vidger et 

al. [Vidger 1996][Vidger 1997] describe COTS components as pre-existing software, 

commercially produced with the vendor usually retaining control over requirements, 

release schedule, and evolution. Artifacts such as source code, documentation, and 

complete specifications, commonly remain out of reach for the customer, although, as 

mentioned, research reveals that 1/3 of COTS components actually come with source 

code [Li 2004] anyway. 
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 Basili and Boehm [Basili 2001] outline the following three key characteristics of 

COTS components: 

1. They‘re closed source, i.e. normally, no access to the source code is given. 

2. Their development and evolution is controlled by the respective vendor. 

3. Their installed base is individually non-trivial. 

 

Classification of COTS software [Morisio 2002] can be based on e.g. cost models, 

selection methods, architectures, and testing/validation techniques. Also, using COTS 

components leads to reduced time-to-market and cost, due to improved productivity 

[Voas 1998a]. However, COTS components also present considerable risks to 

development projects [Voas 1998b]. These include unknown quality properties and 

vendor stability towards maintenance support. A thorough summary of the pros and 

cons of using COTS components is provided by Boehm and Basili [Boehm 1999]. 

 

OTS: COTS and OSS 

Other authors blur the line between COTS and OSS components. For instance, based 

on an empirically modest study of 7 companies, Torchiano and Morisio [Torchiano 

2004] define OTS components as either commercially available or open source, 

specifying that regardless of type they are usually treated as closed source. They further 

describe such components as procured externally by the development project, and 

provided independently from any operating system, development environment, or 

platform, but integrated into the final system.  Furthermore, the acquirer controls neither 

their features nor their evolution. 

 

OSS 

The development and evolution of Open Source Software components is based on 

the ability of programmers to freely use the source code to enable adaptations and 

improvements of the original software [OSI 1998-2010]. Concerning OSS, the 

following definition is used in this thesis: 

 

Open Source Software is software being developed under a license compatible with 

FSF [FSF 1985-2010] or OSI [OSI 1998-2010] licenses.  

 

Open Source Software differs slightly from ―Free Software‖, a term coined in 1985 

by Stallmann [Stallmann 2005]. The latter is meant as in free speech – focusing on 

abstract principles, while the former puts more emphasis on the concrete advantages and 

disadvantages of OSS components.  

Madanmohan et al. [Madanmohan2004], Ruffin et al. [Ruffin 2004] and Fitzgerald et 

al. [Fitzgerald 2004] together outline the following advantages of OSS: 

1. OSS is publicly available, and the parallel distribution enables faster 

development.  

2. OSS components can be as reliable, efficient and robust as their conventional 

cousins, if not more so. 

3. OSS holds the potential to avoid the threat of vendor instability or ―lock-in‖ on 

support of maintenance and further evolution (although this problem can be more 

technology than cost-dependent). 
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4. The parallel development efforts towards OSS allow for faster updates and bug 

fixes. 

5. No additional licensing is required towards additional installations of the same 

software.  

Additionally, the generous cooperation in communities, which accompanies OSS, 

can also be advantageous [Ayala 2007]. Community-centered development of OSS 

components and systems can aid in incrementally populating available components, as 

well as in synchronizing the efforts required towards OSS component selection.  This 

community approach also enables systematic support for component selection and 

evaluation. Examples of communities include the multitude of components available 

through portals such as http://www.SourceForge.net, which currently number more than 

half a million. However, establishing or attracting a community can be a major 

challenge (as summarized by Hauge et al. [Hauge 2009b]), involving considerable 

investment, effort and support within the developing organization. An example showing 

that industrial participation in OSS communities is rare was found by Chen et al. [Chen 

2008].  Their results indicated that only 9% of investigated projects participated actively 

in such communities. 

Nevertheless, OSS has been widely adopted by industry [Hauge 2009c], with about 

50% of companies reporting that they use OSS components in their software 

development.  Additionally, over 15% of the companies receive more than 40% of their 

income through providing OSS software and/or services. Adoption of OSS has several 

perceived benefits, such as lowered costs, attractive and future-oriented technology, and 

ease of use (information plus source code) [Hauge 2010]. However, adopting OSS is 

also not seen as risk-free. Rather, obtaining support and expertise, OSS component 

selection, potentially hidden costs of changes, unclear liabilities/responsibilities, and 

possibly uncontrolled adoption/modification due to availability are perceived problems 

in industry. The authors in [Hauge 2010] therefore also outline risk mitigation 

strategies, focusing on increasing employees‘ skills and awareness, ensuring top 

management commitment, and avoiding technology ―lock-in‖ (whether OSS or 

proprietary) altogether.  

 

Research Challenges in Software Reuse (in-house, COTS, and 

OSS) and CBSE 
 

 The main challenges in future research on software reuse and CBSE deal with 

the specification, implementation and deployment of components. Key issues 

include definition inaccuracies, unclear relationships between quality 

requirements of system vs. component(s), and insufficient technology support 

within CBSE to properly specify quality properties [Crnkovic 2002]. 

 Bass et al. [Bass 2001, p. 25] outline the following important challenges, in 

order of importance: 

o lack of available components, 

o lack of stable component technology standards, 

o lack of component certification, and 

o lack of quality methodologies for building component systems. 
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 When developing with reusable components, the ability to match new and pre-

stated requirements to a portfolio of reusable components is important. 

Obtaining sufficient knowledge of these components, as well as being able to 

reuse them with little or no modification, are paramount issues [Mili 1995]. 

Component understanding, validation and integration are also important 

challenges in in-house software reuse [Pooley 2008]. 

 Another issue is the impact of the increased use of COTS and OSS components, 

on e.g. requirements negotiation [Li 2004]. It is therefore important to re-

evaluate software reuse issues from a developer‘s perspective.  In particular, we 

need to investigate the possible benefits, disadvantages and advantages 

regarding successful reuse of software components.  It is also important to 

involve the documentation and quality specifications of reusable components 

that are available to the developers, who reuse them in new development.  

 Another concern in future research on software reuse and CBSE is the 

combination of quality attributes with respect to component reuse, as developers 

may not know the complete specification or dependencies of a given component. 

It is therefore difficult to know how these components can be supported by the 

integrating system [Voas 2001].  

 A related issue is that, while solutions have been proposed for the technical 

testing of CBSE components [Bertolino 2007], theoretical testing of these 

components remains a challenge.  That is, how can the characteristics of a 

completed system be determined from individual components‘ testing? 

Bertolino [Bertolino 2007] discusses the following directions for challenges 

related to compositional testing (i.e. how to reuse individual units‘, components‘ 

or subsystems‘ test results in combination towards determining conclusions and 

further testing with respect to the overall system): 

o Component-based software reliability – foundational theory [Hamlet 

2006]. 

o Assume-guarantee reasoning – conclude global behaviors from single 

component test traces [Blundell 2005]. 

o Ioco-test correctness – single, parallel components vs. their integration 

[vanderBijl 2003]. 

o Fault model and test case selection procedure for integration glue code 

[Gotzhein 2006]. 

 

COTS and OSS 
 Ruffin et al. [Ruffin 2004] and Fitzgerald et al. [Fitzgerald 2004] describe 

challenges related to OSS components: 

o OSS increases the risk that low-performing developers will get involved. 

o Tasks other than plain development are often below par in OSS projects. 

These include documentation, testing, and maintenance support. 

o Including OSS in the source code of another product may require 

licensing permission – otherwise, adverse consequences include damage 

claims and resulting termination of e.g. support and distribution. 

o Technical support in OSS is based on community participation. The 

successful development of OSS software and the corresponding 

developer community are thus codependent [Scacchi 2006a]. Moreover, 
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a stable core developer team is required to secure the continuity of an 

OSS project [Järvensivu 2008], as it can be difficult for OSS providers to 

perform support through a community. Even so, a shift from the less 

structured email lists and bulletin board support of yesterday towards 

more professional, end-to-end support is seen within OSS, as customers 

are becoming willing to pay for such support [Fitzgerald 2006].  

 Some studies have investigated the organization and management of OSS 

projects [Feller 2002]. Other studies have attempted to capture successful 

recipes for including OSS in commercial development [Madanmohan 2004], as 

the professionalization of OSS development (i.e. the involvement of regular 

developers rather than volunteers) may be a step in the right direction to mitigate 

inherent OSS challenges. However, in comparison with COTS components, 

there‘s yet no clear empirical evidence showing claimed advantages of OSS, 

such as faster development and evolution of the system [Paulson 2004].   

 Furthermore, COTS and OSS development may not fit with traditional 

development methods and processes. Boehm and Basili [Boehm 1999] consider 

the waterfall and evolutionary development models unsuitable for development 

of COTS-based systems.  Nevertheless, Li et al. [Li 2006] show that standard 

lifecycle methods, already being used in companies, are indeed adaptable to 

development of systems based on COTS components. 

2.4 Software Architecture 

Paramount to the continued successful maintenance and evolution of a software 

system, especially one relying on CBSE, is its software architecture, constituting its 

central structure. This structure is made up of software parts (components), detailing 

their externally visible properties (―interface(s)‖ of both in-going and out-going calls), 

as well as how they interrelate. A well-defined software architecture is one of the key 

factors in successfully developing and evolving a non-trivial system or a family of 

systems. It also functions as a framework for early design decisions to achieve 

functional and quality requirements. In addition, it has an important influence on the 

composition and work coordination of a software project. Poor architecture often 

contributes to project inefficiencies, poor communication and documentation, and 

inaccurate decision making. The below definition of software architecture refers to 

software elements, which we will interpret as components in a CBSE context [Bass 

2004, p. 21]:  

 

Software architecture can be defined as the structure(s) of the system, which 

comprise(s) software elements, the externally visible properties of those elements, 

and the relationships among them. 

 

According to van Vliet [vanVliet 2008, p. 290-291], there are three main purposes of 

software architecture: 

 It is an important vehicle for stakeholder communication; a description which 

can easily be communicated to customers etc. to highlight the main 

characteristics of a software system. 
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 It helps capture early design decisions; specific functionality is explicitly 

assigned to particular components in the architecture and also yields a basis 

for analysis. 

 It constitutes a transferable software system abstraction, yielding a basis for 

software reuse. 

A well-documented, semi-formal system architecture description also aids in the 

analysis of various system qualities [Bass 2004]. The specific role of a system architect 

has been established to define and evolve such descriptions.  

The architecture is influenced by the environment or context, including stakeholders, 

the developing organization, the architect‘s knowledge and experience, and the 

technical and organizational environment [vanVliet 2008]. The software architecture in 

turn influences its environment, e.g. by adding to the developing organization‘s 

experience base or becoming an asset for reuse. This cycle of mutual influence has been 

termed the ―Architecture Business Cycle‖ [Bass 2004]. 

The software architecture of a non-trivial software system strongly influences its 

quality attributes, such as reliability, availability, modifiability, performance, testability, 

usability and security [Bass 2004]. Nevertheless, we should keep in mind that several 

taxonomies of software quality exist. A thorough discussion of these taxonomies is 

beyond the scope of this thesis, but can be found in [vanVliet 2008].  

Considering interoperability between systems with different architectures, Service-

Oriented Architectures (SOA) aim to provide for seamless operation between various 

entities, e.g. through Web Services, thus offering platform and language independence 

[Haller 2005]. Web services thus allow software systems to expose their capabilities as 

services for mutual use, with minimum overhead and maximum flexibility [Booth 

2004].  

Linking architecture and software evolution, architectural evolution is the result 

when evolutionary changes to the software (as defined for software evolution in Chapter 

2.5) cause the architecture to be altered.   

 

Research Challenges in Software Architecture 
 

 Better knowledge and understanding about architectural evolution risks may 

help the development of improved strategies to mitigate these risks and make 

sure the project is delivered on budget and schedule (failure of the software 

architecture can permeate the entire project and cause it to fail, e.g. due to 

missing or incorrect architectural information [Buchgeber 2008]). 

 Similarly, changes to the software architecture can cause subsequent changes 

in many components of a CBSE-driven software system [Bass 2004].  It is 

therefore imperative to be aware of the possible risks incurred on the software 

architecture through software evolution. 

 Software architecture imposes structure and order [Bass 2004], taking the 

long-term perspective over many software releases. This can in some ways be 

seen as opposite to the short-term focus of agile development methods such 

as SCRUM [Schwaber & Sutherland 2010] on short e.g. 24 hour daily cycles 

and e.g. monthly development sprints. Uniting these two aspects to provide 

the benefits of both short-term and long-term perspectives is an important 

research challenge.  
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 So far, investigations on software architecture risks for CBSE-driven systems 

have focused on structured output from e.g. ATAM/SAAM/ALMA reports 

[Babar 2007b], and evolutionary aspects have not been taken specifically into 

account [P5]. Including these aspects (and investigating the evaluation 

methods actually used in industry) in future studies, is paramount towards 

capturing empirical data for comparative studies, as well as towards 

suggesting effective process improvements. 

2.5 Software Maintenance and Evolution 

Software maintenance is the updating performed on already released software in 

order to keep the system running and up-to-date. It is reported to consume upwards of 

50% of the total software costs [Sommerville 2010]. Maintenance can be corrective 

(fixing defects), preventive (improving future maintainability e.g. by refactoring), 

adaptive (alterations related to platform or environment), or perfective (requirements 

being modified, extended or reduced, and performance enhancements).  It is closely 

related to software evolution.  

There is little agreement on a definition for software evolution in the research 

literature, and different views currently exist on the topic: 

 One as part of the other: 

o Evolution as part of maintenance: Some researchers see it as activity 

that fits under the maintenance ―umbrella‖ [Sommerville 2010].   

o Evolution as encompassing maintenance: Belady and Lehman [Belady 

1976] first used the following definition of software evolution: ―….the 

dynamic behaviour of programming systems as they are maintained 

and enhanced over their lifetimes…” 

 Evolution as non-corrective (i.e. perfective, preventive, adaptive) changes, 

maintenance as corrective changes:  Referring to the accumulated non-

corrective changes on software between system versions [Mohagheghi & 

Conradi 2004a], as opposed to corrective changes termed as maintenance.  

 Evolution as a lifecycle step: Yet others are of the opinion that evolution 

describes the part of the software lifecycle where requirements are still 

changing and the software is in production, following the initial release 

[Bennett 2000].  Software then enters maintenance once the ability to 

undertake changes without compromising the soundness of the architecture 

has been lost.  This view represents a focus on the time aspect of changes, 

rather than the type.  

We consider maintenance as having to do with maintaining the status quo, that is, 

correcting defects, while software evolution encompasses preventive, adaptive and 

perfective changes (as described above). Thus, in attempting to define software 

evolution, we choose to build on the view that evolution encompasses non-corrective 

changes; i.e. the process of improving and adapting a system‘s functionality and 

performance between releases. This process occurs through absorption of new and 

revised requirements from developers and users, and through adaptations to a 

continuously changing environment.  
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Software evolution, then, is the systematic and dynamic updating in new/current 

development or reengineering from past development of component(s) (source code) 

or other artifact(s) to 

a) accommodate new functionality,  

b) improve the existing functionality, or  

c) enhance the performance or other quality attribute(s) of  

such artifact(s) between different releases [P5, p. 3]. 

 

The first systematic studies on software evolution were undertaken by Manny 

Lehman on the OS360 system at IBM [Lehman 1997].  An initial set of Lehman‘s ―laws 

of evolution” were proposed, and later revised, refined and validated through the 

FEAST/1 [Lehman 1985] and FEAST/2 [Lehman 1995] research projects. These ―laws‖ 

function as a guide to the evolutionary software development process and the 

construction of software tools.  They describe the behavior of E-type software, defined 

as ―software used for problem-solving or application-addressing in a real-world 

domain‖.  This type of evolving software is accepted based on its quality, performance 

and usability, and hence cannot be proven correct [Lehman 2001]. In contrast, there is 

the less general S-type software, which by definition can be accepted based on 

satisfying its specification. In summary, most software systems undergo evolution 

perennially, potentially affecting all aspects of the system. This leads to changes in the 

design and objectives of the system, i.e. forming a feedback cycle.  The change process 

eventually reaches a point where it is no longer feasible to maintain the given software, 

in terms of required resources.    

Evaluations of Lehman‘s laws based on empirical evidence have also recently been 

undertaken by Mens et al. [Mens 2008] (on seven releases of Eclipse at approximately 2 

million NSLOC) and Xie et al. [Xie 2009] (on 653 combined releases of seven different 

OSS applications, ranging from 5000 NSLOC to over 1 million NSLOC).  The laws of 

continuous change and growth were readily supported by both of these studies.  The law 

of increasing complexity was confirmed by [Xie 2009], while the outcomes of the 

evaluation for the remaining laws were found to depend on operational definitions.  

A successful example of software system evolution is described in a study by 

Townsend [Townsend 1997]. The central factor to incorporating reuse in their study 

was the ability to maintain and share an enterprise-wide object model. This made it 

possible to access information per customer and per account.   

Mockus et al. [Mockus 2000] performed a large scale, empirical software 

maintenance study at Lucent labs on a multi-million line telecommunications system. 

They investigated over one million change and error requests/reports, focusing on the 

type, frequency and size of changes incurred. They found component change 

frequencies of one change every 10 days, and an average change size of roughly 10 

lines of code. Another study on defects in six releases of a large legacy software system 

(each of approximately 20 million NSLOC) was performed by Li et al. [Li 2009], 

investigating the pervasive multiple-component defects.  Their findings showed that 6-

8% of all defects per release are pervasive, and that over 70% of these pervasive defects 

were located to 20% of the studied components. Further, they found that the pervasive 

defects required 20-30 times the average number of changes to fix versus non-pervasive 

defects. Finally, more than 80% of components affected by pervasive defects in one 

release remained prone to this type of defect in subsequent releases.  
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Stability and reliability of a component is related to its change density (number of 

changes per NSLOC), caused by change requests and defect reports. Studies indicate 

that reusable components have a lower defect density than non-reusable ones [Mockus 

2000] [Townsend 1997]. Additionally, reusable components have been shown to have a 

lower change density (being more stable) than non-reusable components [Mohagheghi 

& Conradi 2004b].   

An alternative to NSLOC for measuring system size is to use the number of classes 

and methods. These metrics can then serve as a basis for determining the complexity of 

a software system and its components in order to provide for more fine-grained 

measurements [Gupta 2010], but does require access to the actual source code.  

Yet another approach to measuring system size is to use Function Points [Albrecht 

1979] [Umholtz 1994], where a point-based weight is assigned each method based on 

function type and complexity. One problem with this approach is that it tends to focus 

on user-oriented requirements, while hiding internal (e.g. algorithmic) functionality.  

Also, the number of different Function Point metrics currently exceeds 22 variants, and 

conversion between these is generally problematic [Jones 2008]. There is currently no 

standard method for counting Function Points that includes algorithmic complexity 

recognized by the ISO [ISO 2010].  

The impact of evolution on a software project has many dimensions.  These include:  

 Additional costs in terms of effort, delays, and external resources,  

 Incorporating lessons-learned from evolving reusable components, and 

 Impact on quality attributes, such as reliability, availability, modifiability, 

performance, testability, usability, security, etc.  

Furthermore, over the last decades major efforts have been made towards 

understanding the issues involved in reuse and to discover the benefits and 

disadvantages of different approaches within the field. A core point of software reuse by 

CBSE is the ability to manage software evolution through reusing ―pluggable‖ and 

independent components systematically, while taking new requirements into account.   

 

Research Challenges in Software Maintenance and Evolution 
 

 Sommerville [Sommerville 2010, p. 428, adapted] lists the following challenges 

with respect to CBSE-driven software evolution management programs, 

focusing on software reuse:  

o Increased maintenance costs – if the source code of the reused 

component or system is unavailable. 

o Lack of tool support – some tools may not support development with 

reuse. 

o Not-invented-here syndrome – engineers may prefer to rewrite rather 

than reuse, based on trust and challenge. 

o Creating, maintaining and using a component library – can be 

expensive, and development processes also have to be adapted. 

o Finding, understanding and adapting reusable components – engineers 

have to have a certain level of confidence before development process 

adaptation is possible. 

More targeted process improvements towards existing development processes 

used in industry are needed to allow for incorporation of e.g. lessons-learned.   
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 The different definitions of software maintenance, in comparison with software 

evolution, continue to be a challenge towards systematic comparative studies. 

Another related challenge is the extensive duration (15-20 years) needed to 

properly study software evolution. 

 Bennett and Rajlich [Bennett 2000] mention lost business opportunities due to 

the inability to change the software reliably enough to meet new requirements. 

Studies have explored issues related to densities or frequencies of changes 

and/or defects [Mockus 2000] [Mohagheghi & Conradi 2004b]. An important 

challenge is to research new ways to reduce the effort required for handling 

maintenance activities associated with the current frequency/density levels.  

2.6 Software Risk Management 

According to Boehm, a risk is any issue that can affect a project adversely if not 

handled correctly [Boehm 1991]. That is, each risk can be considered as a set of 

conditions (i.e. what can potentially go wrong) and consequences (i.e. how do the 

conditions affect a given software project).  

A common trend in software engineering is to take the naïve view of either ignoring 

or underestimating the impact of risks, assuming success from the start without making 

explicit efforts towards handling potential problem issues [vanVliet 2008, p. 198-199, 

adapted]; According to van Vliet, a risk management strategy should entail the 

following steps in a cyclical manner: 

 Identify the risks. 

 Determine the risk exposure. 

 Develop strategies to mitigate the risks: 

o Avoidance through precautions. 

o Transfer through developing alternative solutions. 

o Acceptance through enabling a contingency plan. 

 Handle risks through monitoring the risk factors and learning from the 

experience gained. 

Top risk factors for a software development project were identified by Boehm 

[Boehm 1991, p. 35] and Jones [Jones 2008, p. 415] (adapted and combined): 

 Personnel shortfalls (inexperience with domain, tools, personnel turnover 

etc.) 

 Unrealistic schedule or budget estimates due to inaccurate estimation and 

schedule planning 

 Incorrect functionality caused by e.g. misinterpretation of customer needs 

 Incorrect user interface 

 Implementing “nice” features not requested by the customer 

 Requirements volatility/unstable requirements – requirements changes 

increase rework 

 Quality or functionality problems with external components 

 Subcontractor problems – inadequate quality in the work/skills 

delivered/provided 

 Real-time performance or quality shortfalls of (parts of) the software system 

 Straining computer science capabilities 
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 Absolute failure or cancellation 

 Excessive schedule pressure 

 Inadequate staff or inadequate skills 

Boehm has also presented a framework for risk management [Boehm 1991], shown 

in Figure 2. The first step in this framework includes risk assessment, dealing with risk 

identification, analysis, and prioritization.  The second step in Boehm‘s framework 

encompasses risk control, dealing with risk management planning, resolution and 

monitoring. This second step focuses on problem mitigation, i.e. handling problems to 

minimize their impact.  

 

 

 

 
 

Figure 2: Overview of Boehm’s framework [Boehm 1991, p. 34] 

 

An additional risk item classification can be found in Barki et al. [Barki 1993], where 

the authors developed a tool for assessing project risks based on 35 risk variables. 

Another is the Software Engineering Institute‘s (SEI) Taxonomy-based tool [Carr 

1993], which uses 194 questions in total to assess the risks of a project. These and other 

taxonomies cover large areas of software risk and risk mitigation issues.  Nevertheless, 

there is a need for context-based risk management [Moynihan 1997].  

In the research literature, risks and risk management strategies are commonly studied 

in relation to general software development [Boehm 1988] [Gemmer 1997] [Hecht 
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2004].  That is, risks are identified on the project level [Ropponen 2000] [Boehm 1991] 

[Keil 1998]. Similarly, software architecture studies often focus on the design, 

implementation and maintenance of the architecture.  While these results are important 

as a basis for further research, there has been little effort to study risk management in 

the context of software architecture [Bass 2007] [O‘Connell 2006].  

Software architecture evaluation is widely known as an important and effective way 

to assess architectural risks [Bass 2004] [Babar 2007a]. In order to identify, analyze and 

prioritize risks [Boehm 1991], we need effective methods or mechanisms for software 

architecture evaluation. Such mechanisms are intended to help validate architecture 

design decisions with respect to required quality attributes (such as those mentioned for 

Software Architecture in Chapter 2.4).   

We use the following definition for architectural evolution risks: 

 

The issues or problems that can potentially have negative effects on the software 

architecture of a system as it evolves over time, hence compromising the continued 

success of the architecture [P5, p. 3].   

 

This definition is based on the research performed (on general software risk 

management) by Boehm [Boehm 1991], Ropponen [Ropponen 2000], and Gemmer 

[Gemmer 1997]. Here, continued success of the architecture refers to the ability of 

software architects to update the architecture description e.g. to accommodate new or 

altered requirements. 

In this thesis, we want to obtain insight into the perceived risks and related risk 

management strategies in relation to software architecture evolution, as they are 

encountered and employed in industry. That is, we investigate the steps of risk 

identification, analysis and prioritization, as well as risk planning and resolution 

[Boehm 1991]. The issues pertaining to risk assurance or monitoring [Boehm 1991] are 

left for future work and not explored here.  

As mentioned in Chapter 2.4, software architecture constitutes the central part of a 

software system [Bass 2004].  Therefore, a proper focus on the software architecture is 

required for the project to remain on budget and schedule. Changes to the software 

architecture can also cause subsequent changes in many components of a software 

system [Bass 2004].  It is therefore crucial to be aware of the possible risks incurred on 

the software architecture through software evolution.  

 

Research Challenges in Software Risk Management 
 

 Although several possible concepts and related activities towards effective 

risk management in CBSE have been proposed, there is a lack of actual 

empirical studies in the area [Glass 2001].  That is, the actual value and 

effectiveness of the proposed activities and tools remain largely unknown.  

 Risk management activities (particularly related to identification and 

monitoring of risks) are commonly assumed to have a high cost and 

comparatively low return value [Odzaly 2009]. Reducing the perceived costs 

and improving the perceived benefits of risk management may aid towards 

increasing the adoption of proper risk management methods [Bannerman 

2008].  
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 Project managers commonly lack practical techniques and tools for risk 

management in software processes [Liu 2009], as these are often either too 

general or too limited in their applicability. Developing tools and techniques 

that are easily combinable with existing software engineering processes and 

practices is an important research focus. 

 Prior architecture analysis studies [Bass 2007] [O‘Connell 2006] have 

focused on structured analysis outputs as a method to discover risks. 

However, the analysis methods actually used in industry are widely 

distributed [Babar 2007a].  Investigating a broader range of analysis methods 

may help to discover risk issues potentially overlooked by earlier studies. 

 Proper management on the technical, process and organization level [Boehm 

1988] [Gemmer 1994] [Hecht 2004] makes it possible to minimize the 

potentially far-reaching impacts of these risks [Boehm 1991]. In this thesis, 

we investigate perceived risks in, and actual mitigation strategies towards, 

software architecture evolution.   

2.7 Research Methods in Software Engineering 

We now provide a general overview of research methods pertaining to Software 

Engineering, outlining strengths and weaknesses of each of those used in the work in 

this thesis. 

Empirical software engineering has risen to fulfill the need for systematic evaluation 

of e.g. proposed methods and tools in software engineering. Researchers in software 

engineering have mainly put forth new technologies [Glass 2004] i.e. a rapid 

development and oversell of such technologies, assuming ―the sky is always blue‖ (i.e. 

new technologies will always work). Systematic empirical studies with validation of 

their potential benefits are grossly lacking. 

Research in empirical software engineering involves applying the scientific method 

to consolidate knowledge in the field.  This occurs by observing, reflecting and 

experimenting in a systematic manner [Endres 2003]. The research can be aimed 

towards exploring one or several (possibly unknown) parameters, describing a 

distribution or characteristic, or reasoning about and exploring the specific methods and 

applications.    

There are three main types of empirical studies: quantitative, qualitative, and mixed-

method [Wohlin 2000][Creswell 2003].  

In quantitative studies, researchers aim to show a cause-effect relationship, verify 

hypotheses or test theories. This is performed through the investigation of one or more 

study objects in combination, while attempting to minimize contextual effects (i.e. 

―noise‖).  

When it comes to qualitative studies, the purpose is rather to draw information from 

a natural environment or social context [Denzin 1994]. Here, the results in the given 

context are commonly obtained and interpreted through secondary levels, e.g. 

developers working with the study objects in their social environment (i.e. context is 

essential and not ―noise‖).  

Finally, the mixed-method approach implies that the combination of quantitative 

and qualitative methods complement each other with respect to individual scopes, 
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strengths, limitations and biases, e.g. to combine data mining with structured interviews. 

Also, the mixed-method approach can be used for triangulation of data [Yin 2003], 

performing multiple or alternating collections of data from different sources to address 

the same issue(s). The mixed-method approach is commonly more effective than using 

either quantitative or qualitative studies in isolation [Seaman 1999]. These should 

therefore be considered as complementary and not competitive study types.  Basili et al. 

[Basili 1986] and Seaman et al. [Seaman 1999] discuss how to best perform this type of 

combination study. As the boundaries are flexible, qualitative and quantitative methods 

can e.g. be combined in surveys.  

Empirical research strategies can also be classified into different categories, based on 

evaluation purpose, type of strategy (e.g. technique, method or tool), and investigation 

conditions. Zelkowitz et al. [Zelkowitz 1998] classified twelve technology validation 

models by three data collection methods (called observational, historical and 

controlled). These twelve classified models include project-oriented ones, such as case 

study and project monitoring, as well as product-oriented ones, such as static analysis 

and simulation. Interestingly, the following three research methods: survey [Robson 

2002][Fowler 2001], action research [Davison 2004] and grounded theory [Creswell 

2003] appear not to be investigated by Zelkowitz et al. [Zelkowitz 1998].  

The following principal types of investigations are commonly used in software 

engineering: 

 Experiment – where the study is performed in a controlled setting (―in vitro‖). 

A randomization process is used for assigning subjects to so-called treatments, 

that details the tasks to be repeated by each subject on some relevant objects.  

One or more variables are then manipulated while controlling all the others, and 

the impact is measured. This then provides the basis for statistical analysis. 

Experiment subtypes range from true experiments (i.e. with randomized design) 

to quasi- (i.e. with non-randomized design) and single-subject experiments. 

Experiments in a university setting are more common, while industrial or 

professional experiments are less common. To illustrate the state of practice, a 

survey in software engineering showed that only 1.9% of the scientific articles 

published between 1993 and 2002 in the 12 leading software engineering 

conferences and journals were in fact on controlled experiments [Sjøberg 2005]. 

An example of an experiment using professionals as test subjects is a controlled 

experiment on the effect of a delegated vs. centralized control style on 

maintainability of object-oriented software [Arisholm 2004]. Here, 99 

professionals from several consulting companies and 59 students took part in an 

experiment decentralized via the web. 

 Case study – where the aim is to investigate the effect of some new 

method/activity in the development process or a new technology in a software 

system over a given period of time (―in vivo‖). Commonly, the objective is to 

track or establish a relationship between particular attributes [Yin 2003], for 

instance defect density in Java vs. C++ software.  

 Survey – where the data is gathered from a sample of subjects through 

interviews or questionnaires, which in turn are analyzed to describe and explain 

the observed effects. They can be e.g. cross-sectional or longitudinal in nature, 

and generalization is usually to the population from which the sample was taken 

[Robson 2002] [Fowler 2001] [Conradi 2005].  
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 Action research – where the researchers are proactively involved in the 

operations of and changes made to the study object during the investigation, 

while still performing investigations based on these operations and changes 

[Baskerville 1999] [Davison 2004]. In action research, research and practice are 

allowed to inform and influence each other continuously during the study. 

 Grounded theory – where a general, abstract theory is extracted (―grounded‖) 

based on empirical data. Grounded theory can be characterized by a constant 

comparison of data to emerging categories. It also entails theoretical sampling 

over varying groups to maximize similarities and differences in the information 

[Creswell 2003]. Textual analysis is a commonly used technique in connection 

with grounded theory. 

Empirical studies are, unfortunately, not plentiful in software engineering. Glass et 

al. [Glass 2004] claim in a review that a mere 14% of the published studies in Software 

Engineering actually evaluate some phenomenon or relationship empirically. Another 

review by Ramesh et al. [Ramesh 2004] found that only 11% of the considered studies 

applied empirical analysis. In contrast, both reviews found that the majority (70-80%) 

of the studies were concerned with formulating a theory or implementing a concept. 

Furthermore, the most commonly used research method was conceptual analysis 

[Ramesh 2004] (i.e where the creator of some new technology makes a demo example 

in a suitable ―native‖ context for that technology). In comparison, lab experiments 

represented less than 2% of the total, while case studies, data meta-analyses and field 

studies (covering a part of the software-intensive industry) each only represented 

0.16%. Also, field experiments and surveys do not appear to be represented at all in the 

study by Ramesh et al. [Ramesh 2004]. Effort should therefore be made towards 

establishing a baseline for evaluation of new processes, technologies, platforms etc., and 

with standardized textual formats and guidelines for describing all relevant empirical 

artifacts, including subjects and objects. This could be achieved e.g. through 

accumulating experiences and lessons learned.   

In our research we have used case study and survey as the principal research 

methods. The strengths and weaknesses of these two methods are therefore explored 

below. 

 

Further discussion of Case study: 

Utilizing a case study enables the researcher to prevent problems of scale and scope 

seen in small experiments [Kitchenham 1995]. It can thus be advantageous when the 

researcher has little or no control over the variables being investigated [Yin 2003].  

Analytical generalization can be performed on the basis of case studies, i.e. 

generalization to a wider theory or application of theory, based on results from a set of 

several case studies [Yin 2003]. Furthermore, a case study implies no larger bias than 

any other research method [Flyvbjerg 2006]. 

The characteristics of case studies can furthermore be summarized [Flyvbjerg 2006] 

as: 

 General theoretical knowledge is commonly seen as more valuable than context-

bound knowledge. 

 A single case study can be argued to contain one data point, hence it does not 

contribute to scientific advancement. However, sometimes even such studies 

have a large impact; consider the ―Stanford Prison Experiment‖ [Haney 1973], 
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which had to be aborted after just a few days. Despite N (i.e. the number of such 

completed experiments) being less than 1 at the time, validity was still judged as 

satisfactory, since the outcome was in line with a 10,000 year-old history of 

master-slave relations. 

 Nevertheless, developing or confirming general theories based on single case 

studies (i.e. external validation) is usually considered not possible, not even 

through multi-cases in the same company. 

 Case studies are seen as more suitable for hypotheses generation, rather than 

testing hypotheses and building theory.  

 Case studies are considered more easily biased towards validation of the results 

in support of the assumptions previously made by the researcher, e.g. during the 

design of the case study.  

Also, industrial case studies are not so common due to the following [Kitchenham 

1995] issues: 

 Lack of access to critical information (insight or permission vs. confidentiality 

or interference conflicts).  

 Duration of the study (vs. industrial commitment required). 

 Instability impact (changes to the project during the study in duration, scope, 

personnel, environment). 

 Context impact (obtaining permissions, effective communication). 

 

Further discussion of Survey: 
In a survey, generalization is commonly limited to the sample population [Robson 

2002] [Fowler 2001] [Conradi 2005], thus sampling correctly from the target population 

is paramount (i.e. selecting a representative subset of the population). Important aspects 

of sample selection include the relevant population and parameters, as well as the 

sampling frame, method, size and cost [Cooper 2008]. The type of sampling can either 

be probability (i.e. each element in the population is given a non-zero chance of being 

selected) or non-probability (i.e. non-random and subjective selection of sample 

elements). 

Surveys hold the promise of obtaining a large number of data points from a 

potentially well-defined population. They also allow combining qualitative and 

quantitative data collection. Furthermore, surveys also have a relatively low intervention 

cost while the study is on-going.  

However, the cost in terms of time and effort to carry out the data collection process 

in a survey may prove very high compared to the response rate obtained [Conradi 

2005]. This is partly due to the many levels of communication one may have to go 

through before actually reaching a potential respondent, in addition to several reminders 

and the fact that surveys are not being prioritized by the IT-industry. Furthermore, 

avoiding population-specific variations in the total process is also difficult, and may 

lead to uncontrollable biases in method.  

Large-scale surveys also commonly yield a low response rate. As an example, the 

SEI carried out a survey on the state of practice for product family development, but 

only ended up with a response rate of merely 20% [Cohen 2002].  Furthermore, survey 

results reflect the opinions of the respondents regarding the phenomenon being 

investigated. These opinions may be biased, and also different from the actual 

population distribution [Kitchenham 2002].  
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A summary of strengths and weaknesses for the two research methods Case Study 

and Survey can be found in Table 2. 

 

Table 2: Summary of Strengths and Weaknesses: Case Study and Survey 

 

Research method Strengths  Weaknesses 

Case study  Sum of cases encountered can be 

used towards context-

independent knowledge (multi-

case) 

 Multiple cases increases validity 

 Atypical or extreme cases are 

useful towards testing theories 

 Context-bound 

knowledge commonly 

seen as less valuable 

 More suited towards 

generating than 

testing/building theory 

 Can be biased towards 

validation of results 

 Generalization to a 

wider theory / 

application is often 

difficult 

Survey  Large number of potential data 

points 

 Allows combination of 

quantitative and qualitative 

methods 

 Relative low cost of intervention 

 Data collection 

time/effort may be high 

 Low response rate 

 Possible subjective bias 

 

We chose case study as one of our research methods as this enabled us to directly 

contact specific companies in order to study industrial systems. At the same time, we 

were able to show that a study could be conducted in a structured manner and with 

specific benefits to the individual company. The knowledge gained was context-bound 

(which is generally a weakness of case studies), but is seen as a benefit here, yielding 

specific insights on the systems we were allowed to study. We were also able to tailor 

the research design towards industrial systems in a manner that was conducive to joint 

collaboration, thereby gaining easier access to the relevant data.   

When investigating the evolutionary impact on development processes for in-house 

reusable and COTS/OSS components, as well as for our investigations on architectural 

risks and strategies, we chose to use survey as the research method. This was necessary 

to provide as large base for the data collection as possible; since information on nuances 

and larger differences in development processes is best obtained directly from the 

developers who use these processes. Surveys allowed us to use a relatively low amount 

of effort on collecting a high number of data points, while obtaining both qualitative and 

quantitative data.  

2.8 Summary and the Challenges of this Thesis 

Chapter 2 of this thesis has so far presented state-of-the-art and research challenges 

in Software Engineering, related to Software Quality and Process Improvement, CBSE 
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and Software Reuse, CBSE based on COTS and OSS components, Software 

Architecture, Software Maintenance and Evolution, and Software Risk Management. 

We have also discussed Research Methods in Software Engineering. 

In this section, we further focus on those challenges that are directly relevant for the 

work in this thesis.  These challenges are presented below as follows (called Research 

Challenges – RCs): 

RC1: The impact of CBSE evolution on the development process: Challenges 

related to the development processes e.g. in terms of cross-dependencies, risks and ad-

hoc tradeoffs are discussed earlier in this chapter. Although results from article P1 have 

also been reported in [Gupta 2009b] towards studying possible improvements to the 

actual reuse practice at StatoilHydro ASA, it is nevertheless important to investigate 

modernized processes and process changes for COTS/OSS and in-house reusable 

components. It is, for example, common to treat development involving reusable (in-

house and external COTS/OSS) and non-reusable components in the same way. We 

would nevertheless expect distinct impacts on the development process when exploiting 

(in-house and external COTS/OSS) reusable components. This challenge is investigated 

by research question RQ1: What is the state of practices and issues with respect to 

software process improvement in CBSE for COTS/OSS and in-house reusable software? 

RC2: The impact of CBSE evolution on software components: Defect density (as 

an indicator of reliability) and change density (as an indicator of maintainability) are 

important towards investigating the impact of CBSE-driven software evolution. Prior 

research has indicated that reusable components incur fewer defects than non-reusable 

components [Mohagheghi & Conradi 2004b]. Prior research on non-corrective changes 

has focused on number and type (i.e. preventive, perfective, adaptive) [Mohagheghi & 

Conradi 2004a]. While the results of these metrics on overall releases of reusable and 

non-reusable components were investigated by our research group and reported in [SP8] 

[SP9] [Gupta 2009b], investigating these metrics on the individual reusable 

components‘ level is also important.  This allows for comparative analysis and provides 

a basis for SPI towards handling defects and changes in evolving CBSE systems. This 

challenge is addressed by research question RQ2: How does software evolution impact 

individual reusable components, in terms of defect and change densities? 

RC3: Impact of Test Driven Development as an improvement to the software 

process: Earlier studies on the usage of TDD in industrial settings have shown, as a 

result, fewer defects (i.e. corrective changes) for non-reusable components [Janzen 

2005]. Lower productivity has also been shown.  However, neither TDD‘s effects on 

reusable components nor non-corrective changes with respect to TDD appear to have 

been explicitly considered in earlier empirical studies. Earlier research has indicated 

that predictability, stability and maintainability are more paramount for reusable 

components than for non-reusable components. It is therefore important to determine 

the effectiveness of Test Driven Development as an SPI to manage the risks associated 

with CBSE development of such components. This challenge is addressed by research 

question RQ3: What are the impacts of Test Driven Development versus test-last 

development on reusable components? 

RC4: Architectural Software Evolution risks: Risks related to software evolution 

have previously been investigated by focussing on diagnosis results from structured 

evaluations, without taking software evolution or industrial adaptations specifically into 

account [Babar 2007a]. We expect that architectural risks caused by software evolution 
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in CBSE-driven systems will require specific management techniques. These techniques 

must be elicited and improved through alternative means (other than structured 

architecture evaluation outputs). We investigate this challenge in this thesis through 

research question RQ4: What are the perceived architectural risks of CBSE-driven 

software evolution, and how can these risks be mitigated? 
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3 Research Questions, Design and 

Implementation 

 

 

 

 

 

 

 

 

 

We discuss here the research questions and their motivation based on the state-of-

the-art. We also outline the context of the research questions, and further discuss how 

these were applied in practice. The research design and implementation, detailing the 

progression of the research, is also included.   

3.1 Introduction 

As mentioned in Chapter 1, we were involved with StatoilHydro ASA towards 

industrial case studies (P3 and P4).  StatoilHydro ASA is a large Oil & Gas company 

with huge amounts of data available and in active pursuit of university collaboration on 

relevant research topics, as evidenced in part by one of their key IT managers also 

holding an adjunct associate professor position at NTNU. Our collaboration with 

StatoilHydro ASA was thus achieved through mutual research interests, but required 

considerable attention to context detail to obtain the necessary data.  

We used a survey in our collaboration with StatoilHydro to obtain additional 

qualitative information from the developers (P1), in order to complement and provide a 

qualitative base for the case study on reusable components in the company. We also 

used industrial surveys in our investigation on COTS/OSS in the European IT-industry 

(P2).    

In investigating perceived architectural risks and corresponding management 

strategies in the Norwegian IT-industry, we first performed a pilot survey to elicit a set 

of relevant risks and strategies to be used as the starting point for a larger, more focused 

survey on these issues. Here too, survey as a research method was chosen since the 

information we sought could only be obtained directly from respondents, rather than 

from accumulated technical data. The surveys in articles P2 and P6 investigated larger 

samples than the other two (P1 and P5). Nevertheless, we found that our practices and 

designs scaled up quite well, possibly influenced by prior survey experience. 

3.2 Research Questions and their Motivation 

In CBSE, software evolution/maintenance is an important research area of concern, 

because it encompasses changes that account for a large part of all software costs. These 

changes are necessary to modify CBSE components in a fast and reliable manner. They 
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cannot be avoided, but must be properly managed.  Indeed, these changes provide the 

basis that allows software companies to take advantage of new opportunities and 

thereby stay competitive [Sommerville 2010]. The research questions defined for this 

thesis are described in the following sections. 

3.2.1 RQ1: What is the state of practices and issues with respect to 

software process improvement in CBSE for COTS/OSS and 

in-house reusable software? 

The first issue we investigate is the impact of ―modern‖ CBSE on software 

development processes in CBSE, whether in-house or external (COTS/OSS). These 

impacts imply substantial alterations to existing software processes, shifts in focus 

during individual development process phases, or new techniques and tools being 

introduced.  Additional empirical studies in industry are needed to validate the potential 

benefits of these new process changes, techniques and tools, especially as they also 

mean introducing new risks such as vendor control and integration issues. The possible 

advantages of using reusable components in software development are related to this. 

Furthermore, development of reusable components leads to a more complex 

development process, and requires additional organizational support [Crnkovic 2000].  

Although reusable components also require alterations to the development process, 

they generally provide substantial benefits e.g. in terms of shorter time-to-market and 

lowered costs. Particular factors include whether reuse increases rework (problems 

caused by e.g. misunderstood or ambiguous requirements), and whether the reusable 

component information and quality specification is sufficient and trustable. 

Investigating these benefits and factors through industrial empirical investigations will 

contribute towards more targeted resource allocation, and improved handling of 

software evolution for reusable CBSE components. Our results from article P1 have 

been reported in [Gupta 2009b] as a basis for studying possible improvements to the 

actual reuse practice within StatoilHydro ASA. In this thesis, we use the results from 

article P1 to investigate the impact of modernized processes and process changes for in-

house reusable components. 

Here, we focus on obtaining qualitative data from developers by using survey 

interviews to explore these issues. Research question RQ1 is explored through articles 

P1 and P2 in this thesis. 

3.2.2 RQ2: How does software evolution impact individual 

reusable components, in terms of defect and change 

densities? 

Here, we investigate the evolution impact in terms of occurrences and appearance of 

changes/defects in individual reusable software components. The number of change 

requests and defect reports returned from end-users and customers back to developers 

per time unit marks the most intensive periods of further development. This knowledge 

will also help to predict when peak resources are needed for future projects. These 

issues are related to RQ1 in that they encompass resulting impacts at the level of 

individual components.  

As aforementioned, earlier research has shown that reusable components incur fewer 

defects than non-reusable components [Mohagheghi 2004b]. Changes and defects on 
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the release level for both reusable and non-reusable software have been investigated by 

us in other investigations, which are reported in [Gupta 2009b]. Additionally, improving 

our knowledge and understanding of how software evolution impacts individual 

reusable components is important towards enabling targeted handling of these impacts 

and related issues. 

The study of RQ2 thus identifies how defects and changes evolve in individual 

reusable components. Relevant metrics are defect and change density, defined as 

number of defects or changes divided by NSLOC, respectively. RQ2 is investigated 

through article P3 in this thesis.  

3.2.3 RQ3: What are the impacts of Test Driven Development 

versus test-last development on reusable components? 

We further investigate traditional versus Test Driven Development with respect to 

the evolution impact on reusable components. Few empirical studies have investigated 

industrial systems developed using TDD methodology. These earlier investigations 

have often focused on defect reduction in relation to general software development 

[Janzen 2005], showing a decreasing defect density of 40-50% over non-TDD 

development, but for non-reusable software. They also show a change in development 

productivity, ranging from none or minimal to a 16% decrease, because of the added 

focus on writing tests prior to implementation. We are studying TDD in a software 

architecture restructuring/refactoring context, to discover whether improvements can be 

shown through empirical data on corrective and non-corrective changes.  

Another earlier investigation on changes in reusable components in traditional test-

last development [vanDeursen 2001a] showed that these components already exhibit a 

lower code modification density than non-reusable components (possibly due to their 

inherent higher maturity). Because of this, they may be less affected by changes than 

non-reusable components.  

RQ3 focuses on determining the effectiveness of TDD in terms of defect and change 

densities (as defined in the previous section 3.2.2) to see impacts for reusable 

components. It is thereby related to RQ2, also through TDD‘s potentially beneficial 

impacts. RQ3 is also connected to RQ1 through the focus on TDD as an SPI practice. 

RQ3 is explored through article P4 in this thesis. 

3.2.4 RQ4: What are the perceived architectural risks of CBSE-

driven software evolution, and how can these risks be 

mitigated? 

Our overall aim here is to investigate the possible perceived risks that affect the very 

architecture of a system, and how to manage and mitigate these risks. We then aim to 

suggest possible improvements by enabling a systematic approach towards architectural 

risk management in software evolution. This question is related to RQ2, in that it 

encompasses changes that require alterations to existing individual components and the 

architecture. It is also related to RQ1 and RQ3, in that it focuses on the details 

surrounding the use of SPI towards the handling of CBSE risks in the IT-industry. 

However, RQ4 more explicitly focuses on issues that can be perceived as risks to the 

continued success of the architecture. Furthermore, risks have potential impacts.   
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It is important to have strategies in place to handle possible risks up-front, so that 

these strategies are ready to be employed when the risks occur. The architectural 

properties of a system are commonly used towards predicting its resulting quality 

attributes (such as availability, performance, usability etc.) [Bass 2004]. These quality 

attributes are essential to the success of a software project, and can potentially be 

affected when the software architecture evolves. Also, the specific system attributes that 

provide evidence towards assessing these quality attributes are commonly left implicit 

[Bouwers 2009]. 

To explore research question RQ4, we have utilized surveys (published in articles 

P5 and P6), as explained in the following Chapter 3.3. These aim to investigate the 

knowledge and experience of software architects through specific questions regarding 

perceived architectural risks.  

3.3 Research Process Design and Implementation 

The investigations in this thesis have been divided into three phases, grouping their 

contributions, as initially explained in Chapter 1 and mentioned later on in Chapter 5.  

Contributing to each other, these phases have been carried out with some overlap, due 

to the availability of data. We have chosen to use a mix of case studies and surveys. 

While case studies allow us to investigate detailed data on the company level, the 

practice of one company is limited and not suitable for generalization. Surveys were 

thus performed to investigate data on the industrial level. All of these have been 

conducted in the IT-industry. Data collection was performed on-site for the studies at 

StatoilHydro, while data collection on the surveys of the Norwegian and European 

industry was performed via web-enabled questionnaires and follow-up interviews.  

The results and experience gained have been shared with the parties involved, to 

show clear benefits of the collaborations and to encourage future cooperative work. The 

investigations arranged by study type are as follows: 

 

o Phase 1 (RQ 1) – industrial surveys (StatoilHydro and European IT-

industry): 

 P1: A survey on developers‘ views on in-house software reuse 

(StatoilHydro) 

 P2: A survey of modern trends in development practices with 

COTS/OSS components (European IT-industry) 

 

o Phase 2 (RQ 2) – industrial case study (at StatoilHydro): 

 P3: A case study on defect density and change density in 

individual reusable components 

 

o Phase 3 (RQ 3) – industrial case study (at StatoilHydro): 

 P4: A case study of Test Driven Development in software 

evolution 

 

o Phase 3 (RQ 4) – industrial surveys (both in the Norwegian IT-

industry): 
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 P5: An exploratory survey on perceived risks and risk mitigation 

strategies regarding software architecture evolution 

 P6: A full-scale survey on perceived risks and risk mitigation 

strategies regarding software architecture evolution, as well as 

proposing a tool (operational matrix) for software architecture 

risk management. 

 

3.3.1 Industrial surveys in Phase 1: Developers’ Attitudes (P1) and 

Development Practices (P2) 

 

In phase 1, we first report on a survey at StatoilHydro, regarding in-house software 

reuse in the company. The company is a large, Norwegian company in the Oil & Gas 

industry. It is represented in 25 countries, has a total of 28,000 employees, and is 

headquartered in Europe. The company‘s central IT-department is responsible for 

developing, delivering and operating software to flexibly aid key business areas. There 

are approximately 100 developers and consultants in this department, most of them 

located in Norway.  

Information in terms of e.g. benefits experienced, problems encountered, and 

possible improvements towards future reuse are not easily obtained from studying 

technical data alone. The first survey in Phase 1 was thus performed specifically to elicit 

developers‘ views on software reuse. The survey counted only 16 respondents (all at 

StatoilHydro), but nevertheless all the relevant developers and roles were involved.  Our 

survey at StatoilHydro led to the publication of P1.  

 We have carried out a second much larger survey study externally in the IT-

industry.  It was performed to investigate development practices regarding COTS and 

OSS components.  The aim was to investigate the IT-industry state-of-practice by 

obtaining information directly from developers with relevant experience and 

knowledge. This survey counted 133 respondents from 127 companies, spanning the IT-

industry in Norway, Germany and Italy.  It was followed up by semi-structured 

interviews with 28 of the respondents. A full review of the context in this survey is 

published in [SP5]. Article P2 summarizes our results and experiences from this second 

study, and a more detailed discussion of the individual results can be found in the 

secondary articles.  

Articles P1 and P2 were selected towards answering RQ1: What is the state of 

practices and issues with respect to software process improvement in CBSE for 

COTS/OSS and in-house reusable software? 

3.3.2 Industrial case studies: Phase 2 – Defect and Change 

Densities (P3) and Phase 3 – Test Driven Development (P4) 

 

The IT strategy within StatoilHydro on reuse was initiated in response to changing 

business and market trends, to provide a consistent and resilient technical platform for 

software development and integration [O&S 2006]. It is now being expanded towards 

other divisions within Statoil ASA.  
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For our first investigation, in phase 2, the actual JEF framework consisted of seven 

separate components (ranging in size from 181 to 8885 NSLOC of Java code, with a 

total of three releases), which can be applied separately or collectively towards 

application development. 

Later, in phase 3, we studied two additional releases of the JEF framework. These 

two releases were developed using Test Driven Development, and comprise only five 

components due to a refactoring; it was determined that a shift of focus was needed to 

improve reusability of the architecture, in terms of components used and services 

provided.  

All work on JEF prior to release 1 was for department-internal development and 

testing only, while release 1 was the first to be used in other development projects in 

Statoil ASA. In our investigations of the framework, we have used applications reusing 

it in new development for comparison.  

Two of the most important data sources were change requests (CRs) and trouble 

reports (TRs) in StatoilHydro ASA, as they are part of the stated quality focus for their 

reuse program. We now briefly discuss how these two are handled within the company. 

 

Change requests in StatoilHydro ASA: 

When a change (in a requirement) is identified, a CR is established and registered in 

the Rational ClearQuest tool. Examples of change requests are: 

 adding new or modifying existing functionalities, or enhancing performance 

(perfective changes) 

 improving maintainability for the future (preventive changes) 

 adapting to changes in environment or platform, e.g. related to other JEF 

component interfaces (adaptive changes) 

 (corrective changes are dealt with through trouble reports, described below) 

A change request normally impacts only one of the JEF components, but may impact 

several. If a change request impacts several components, it is related to the category 

General to indicate that this change request impacts the JEF framework as a whole (or 

that it cannot be assigned to one specific component alone). All registered change 

requests can be exported as Microsoft Excel files.  

Each change request contains an ID, headline description, priority (of the change 

request) given by both the customer and the developer (Critical, High, Medium or 

Low), estimated duration to solve, remaining duration to solve, subsystem location (one 

of the seven JEF components), system location (i.e. JEF framework, non-reusable 

application, etc.), as well as an updated action and timestamp record for each new state 

the change request goes through.  

StatoilHydro ASA does not register release numbers for changes, but a change 

request is always marked with a timestamp at registration. This timestamp is consistent 

with the release that was currently under development at the time. Also, effort is not 

explicitly registered in the system, not even as ―small, medium or large‖. Only 

‗remaining duration‘ vs. team size is sporadically used for rough estimates of effort 

required. 

 

Trouble reports in StatoilHydro ASA: 

The process for handling defects is very similar to that for changes. When an 

assumed defect (i.e. an assumed execution failure) is found during integration/system 
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testing or execution (in post-release operation), a TR is established and registered in the 

Rational ClearQuest tool. A defect also usually impacts only one of the JEF 

components, but as with CRs, it may impact more than one. When this is the case, it is 

similarly named General. All registered trouble reports can likewise be exported as 

Microsoft Excel files.  

Each trouble report record contains an ID, headline description, priority (regarding 

the technical aspects and given by the developer as Critical, High, Medium or Low), 

severity of the problem (given by the customer or end user as Critical, High, Medium or 

Low), state classification (Error, Error in other system, Duplicate, Rejected or 

Postponed), estimated duration to fix, remaining duration to fix, subsystem location 

(one of the JEF components), system location (e.g. JEF, DCF), as well as an updated 

action and timestamp record for each new workflow state. As with CRs, TRs do not 

include release numbers, but contain timestamps for time of registration. They also do 

not include effort information, but include an estimate for the duration to fix a given 

defect.  

An advantage of the close similarities between trouble reports and change requests 

is that Statoil personnel can easily switch from working with one to the other without 

extra training. This saves effort and resources when the reshuffling of responsibilities 

becomes necessary. 

 

Metrics in StatoilHydro ASA: 
To initiate the collaboration with StatoilHydro ASA, we started with approaching the 

questions of ―what‖ and ―how‖ to measure. Through this approach, we were able to 

combine the quality foci of the company, in terms of defect and change density, with 

our research goals towards software evolution within CBSE (RQ2).  We chose to use a 

case study approach to investigate these data, since they were of a longitudinal nature 

and therefore well suited towards studying software evolution in an industrial (case) 

setting.  

Our investigations on software evolution started with a study on reusable 

components. The results from this investigation are presented in article P3.  We then 

further studied software changes made to these components in more detail. These 

reusable components were (and are) still being refined and further developed.  This 

made it possible for us to establish another more longitudinal case study on the possible 

advantages and disadvantages of TDD versus traditional ―test-last‖ development 

methodology on these reusable components. The results of this case study are presented 

in P4.  

P3 was selected towards answering RQ2: How does software evolution impact 

individual reusable components, in terms of defect and change densities?  

P4 was selected towards answering RQ3: What are the impacts of Test Driven 

Development versus test-last development on reusable components? Further results 

from our case studies with StatoilHydro ASA can be found in the secondary articles 

SP8 and SP9.  

In investigating RQ2 and RQ3, we used the following metrics: 

 defect density, defined as the number of defects (TRs) divided by NSLOC, and  

 change density, defined as the number of changes (CRs) divided by NSLOC. 
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3.3.3 Industrial surveys in Phase 3: Perceived Software 

Architecture Evolution Risks (P5, P6) 

 

Our aim was to investigate perceived risks and risk management strategies 

specifically for software architecture evolution.  Earlier studies in this area have focused 

on quantitative outputs from software architecture evaluation methods accumulated over 

time.  However, use of such evaluation methods is uncommon in the industry. Rather, 

practiced evaluation methods range from fully structured to completely ad-hoc and 

informal [Babar 2007a]. To obtain the full spectrum of information, and gain risks and 

strategies possibly missed by earlier studies, we chose to use a survey approach here 

also, so that we could involve actual software architects.  

 We performed a pilot survey to obtain initial data collection and calibration. Here, 

we used a convenience sample of 16 IT-professionals in different Norwegian companies 

with prior knowledge and experience with software architecture, employing semi-

structured interviews for data collection (published in P5). 

Based on the outcome and experience gained from this pilot survey, the full-scale 

survey was then run in the software-intensive IT-industry in Norway, and published in 

P6.  In this survey, the sample size was expanded towards a larger portion of the 

software-intensive IT-industry in Norway (resulting in a total of 82 completed responses 

from 511 potential respondents). In anticipation of the larger amounts of data, the 

survey data collection was also altered to use a questionnaire by web-interface. 

The systems studied in these two investigations in phase 3 deal with software 

systems that have two major characteristics:  

 use of CBSE, and  

 changes in the systems' software architectures during their lifetimes.  

This entails development projects that have at least delivered the first production 

release, i.e. can be said to be in the ‗maintenance / evolution‘ phase. 

Articles P5 and P6 contribute towards answering RQ4: What are the perceived 

architectural risks of CBSE-driven software evolution, and how can these risks be 

mitigated? 

Research question RQ4 was therefore (like RQ1) explored through two successive 

surveys, in order to obtain answers based on the skills, knowledge and experience of 

software architects, focusing on perceived architectural risks related to software 

evolution (where all respondents have done related implementation work). 
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4 Results 

 

 

 

 

 

 

 

 

We here outline our results from the viewpoint of research phases, as outlined in the 

earlier Figure 1 (Chapter 1), presenting each study individually. Thereafter, we 

summarize the contributions of this thesis in connection with the individual studies. 

4.1 Results from the individual research phases  

Our phases are here summarized by investigation results pertaining to the respective 

research questions, connection to contributions, and overall theme for this thesis. The 

investigations entailed in each phase are further presented in terms of contributions.  

4.1.1 Phase 1 contributions to C1 from article P1: An Empirical 

Study of Developers Views on Software Reuse in Statoil ASA 

C1: Improved knowledge of modern trends in CBSE and their impacts on software 

development processes 

 

Phase 1 entailed studying old non-reuse vs. new reuse-centric development 

processes. In article P1, we studied a reuse program in the IT-department of a large 

industrial company (StatoilHydro ASA), with their reusable Java framework (JEF) and 

surrounding processes. 

We wanted to obtain qualitative information related to our results from investigating 

the company‘s reuse program. To accomplish this, we surveyed issues related to 

software reuse, from the viewpoint of developers who are involved in the reuse 

program. We focused on exploring the possible benefits, disadvantages, and 

contributing factors that characterize successful reuse of software components. The 

investigation also encompasses the documentation and quality specifications for 

reusable components, and this material is available to developers when they employ 

reusable components in new development. Our results from this investigation convey 

the opinions of developers regarding software reuse, in the following five main areas:  

 The benefits of reuse are viewed as lower costs, shorter development time, 

higher quality of the reusable JEF components, and a more standardized 

architecture.  This is in keeping with results from literature [Lim 1994]. 

 On factors contributing towards reuse, no link to level of education or 

experience was seen. The findings on formal processes appear to support prior 

research [Frakes 1995]; a formal process for general software development 

may have an implicit positive effect. Also, the results show that improvement 
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of the documentation of the reusable components would be very 

advantageous towards achieving successful reuse. 

 No statistically significant relations between reuse and increased rework were 

found, and so no conclusion can be reached on this issue.  A possible cause is 

the mandate of reuse in the company (i.e. reuse of JEF components is required 

in all new development, as decided by upper level management), as well as the 

existence of multiple responsibility roles that commonly cross project- and team-

lines. Due to these issues, there is no clear-cut division between development 

for/with reuse in the company.  

 Most developers have adequate understanding of the components. However, it 

is mainly the JEF team and prior experience (not training) that is being used 

by the developers to achieve this level of understanding.   

 Quality attribute specifications for the development projects developing with 

reuse are trusted, whereas for the reusable components they are insufficient.   

 

4.1.2 Phase 1 contributions to C1 from article P2: Development 

with Off-The-Shelf Components: 10 Facts 

C1: Improved knowledge of modern trends in CBSE and their impacts on software 

development processes 

 

In article P2, we investigated the state-of-the-practice in the European IT-industry 

concerning development based on COTS and OSS components, using a large multi-

national survey in Norway, Germany and Italy.  

Here, we also investigated COTS/OSS in the IT-industry.  The results from this 

study are presented as a set of findings regarding industrial practices with development 

based on Off-The-Shelf (OTS, i.e. COTS and OSS) components.  The findings are taken 

verbatim from P2 and numbered as Fact 1 – 10, with corresponding complementary 

summaries: 
“Fact 1 – Development process: Companies use traditional processes enriched with OTS-

specific activities to integrate OTS components.” Familiarity with OTS candidate 

components is an important factor to consider in customizing the entire development 

process. Sufficient knowledge of OTS candidate components may make the use of 

already adapted development processes (e.g. adapted evolutionary) unnecessary. 

 

“Fact 2 – Component selection: Integrators select OTS components informally. They 

rarely use formal selection procedures.” Benefits of and pre-conditions for using a 

formal component selection process are unclear due to the lack of clear empirical 

evidence. Lacking such evidence leaves integrators reluctant towards using such a 

formal process since it is also presumed complex and time-consuming. 

 

“Fact 3 – Component selection: There is no specific phase of the development process in 

which integrators select OTS components. Selecting components in early phases has 

both benefits and challenges.” We have identified possible problems that component 

integrators must consider when selecting OTS components in the early phases of a 

software development project. 
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“Fact 4 – Component integration: Estimators use personal experience when they estimate 

the effort required to integrate components and most of the time they do not estimate 

accurately. Stakeholder-related factors will affect dramatically the accuracy of 

estimates.” Some estimation tools, e.g. COCOTS [Abts 2000], consider both the 

technical nature of the components, and e.g. component understandability and vendor 

response time. Estimation tools should also take into account possible requirement 

changes and the evolution of components, especially for large, long-lived projects. 

 

“Fact 5 – Quality of the integrated system: Negative effects of OTS components on the 

quality of the overall system are rare.” For reasons such as low costs, component 

integrators sometimes select OTS components of a lower quality. It is thus the quality 

assurance efforts during selection and integration that ensure the quality of the OTS 

component in the finished system. 

 

“Fact 6 – OSS and COTS components: Integrators usually used OSS components in the 

same way as commercial components, i.e. without modification.” Alterations to the 

source code of an OSS component may be infeasible, in particular for long-lived 

commercial systems with many evolutionary iterations over their lifetimes, due to the 

possible internal support required. The context of the application must therefore be 

considered when deciding whether to use OTS components. 

 

“Fact 7 – Locating defects is difficult: Although problems with OTS components are rare, 

the cost of locating (i.e. within or outside OTS components) and debugging defects in 

OTS-based systems is substantial.” The deployment environments and configurations of 

OTS components come in a wide variety.  This variety represents an obstacle towards 

reproducing reported errors, and irreproducible errors will commonly not be prioritized 

to be fixed by the component provider. 

 

“Fact 8 – Relationship with the provider: The relationship with the OTS component 

provider involves much more than defect fixing during the maintenance phase.” 

Different persons within an OSS community may be involved in separate tasks 

supporting the use (e.g. evaluation, selection, integration) of a component. 

 

“Fact 9 – Relationship with the client: Involving clients in OTS component decisions is 

rare and sometimes unfeasible.” It is often the case that the application client has no 

interest in implementation technicalities, due to lack of relevant competencies.  It is thus 

important that clients‘ interests and technical competences are clarified at the start of a 

project to determine possible strategies for requirements (re)negotiation. 

 

“Fact 10 – Knowledge management: Knowledge that goes beyond the functional features 

of OTS components must be managed.” External channels for sharing knowledge and 

experience on the use of COTS/OSS are few and uncommon. This kind of information 

is spread across e.g. portals and bulletin boards, or managed internally by a ‗component 

responsible‘. It is therefore essential to manage knowledge beyond mere component 

functionality. 
 

Furthermore, we have found that there is a mismatch between academic theory 

(which is often based on incorrect assumptions) and industrial practice when it comes to 

components usage, due to the lack of empirical evidence, the lack of studies involving 

industry, and the lack of industrial adoption of research results. Examples include: 
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 While academia has deemed traditional development models unsuitable for 

COTS/OSS development and calls for adapted models, companies simply 

enrich these with COTS/OSS-relevant activities since they have sufficient 

knowledge of relevant COTS/OSS components. 

 Researchers suggest selecting COTS/OSS components early in the 

development cycle, but there is no specific phase for this activity in industry.  

Moreover, selecting components early has both benefits and challenges. 

4.1.3 Phase 2 contributions to C2 from article P3: Preliminary 

results from an investigation of software evolution in 

industry 

C2: Improved understanding of evolution impact on individual reusable 

components in terms of defect and change densities 

 

Our case study here was on the evolutionary behavior of the quality attributes defect 

density and change density for individual reusable components (defined as units of 

composition, specified such that their interfaces are separate from their implementation 

[Crnkovic 2002]). Prior research had shown that reusable components were more stable 

(i.e. that they have a lower rate per NSLOC of code modification) over several releases 

[Mohagheghi & Conradi 2004b].   

Our results on individual reusable components showed that the components 

investigated had lower defect densities over several releases. Moreover, although the 

larger components had higher defect densities in the first release, this trend did not 

continue over several releases.  Five of the six reusable components had a higher change 

density in the first release than in subsequent releases. However, in subsequent releases 

the larger components no longer had the higher change densities.  

In summary, we verified findings on defect and change density for individual 

reusable components that were part of software development at a large industrial 

company in Norway (StatoilHydro), while they experienced new and changed 

requirements through software evolution. These components have a decreasing defect 

density over several releases, but for change density the results remain inconclusive. 

4.1.4 Phase 3 contributions to C3 from article P4: The Impact of 

Test Driven Development on the Evolution of a Reusable 

Framework of Components – An Industrial Case Study 

C3. Improved understanding of the impact and effectiveness of TDD 

 

The investigation on development method compares defect and change densities for 

traditional test-last development with that of TDD, and also investigates the relation 

between the two metrics as well as the distribution of changes for the TDD approach. 

The new approach was introduced for the development of the latest two releases of the 

reusable framework of components in the company, in order to facilitate improvements 

in the architecture of the reusable components framework. Our results show that the 

mean defect density and the mean change density per release were both reduced when 

using the TDD approach; the former by 35.86% and the latter by 76.19%. However, 
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these effects appear to change drastically over several releases; the defect density 

exhibiting the most substantial changes. We also did not see any indication that the 

architecture was negatively impacted, though this is mentioned as a possible 

disadvantage in other research [Foote 1997] [Perry 1992] [George 2004]. Finally, the 

distribution of changes was heavily skewed towards preventive changes, showing the 

effects of the refactoring inherent to TDD.  

 In summary, the evolution of reusable components was further explored in relation to 

the impact of development approach. TDD was shown to lead to lower mean defect 

density and mean change density for reusable components over traditional test-last 

development.  

4.1.5 Phase 3 contributions to C4a from article P5: Identifying and 

Understanding Architectural Risks in Software Evolution: 

An Empirical Study 

C4a: Identification of perceived risks and related mitigation strategies specifically 

for the evolution of software architecture 

 

To investigate issues directly related to risk management in software architecture 

evolution, we first elicited actually experienced risks and employed mitigation strategies 

from software architects in industry. This was performed through a pilot survey 

entailing a series of semi-structured interviews, and the results are presented in article 

P5.  

The risks and management strategies we discovered in our pilot study were 

summarized and used as input towards the questionnaire-based full-scale survey. We 

investigated risks and strategies on the technical, process and organizational levels. 

Technical issues (e.g. in terms of existing or new technologies) can affect the 

architecture of a system to a large extent. Also, organizational and process issues are 

important because they are central to the success of operative reuse programs in 

industry.  

Our results from this first software architecture study show that the most influential 

risk was that “lack of stakeholder communication influenced the implementation of new 

and changed architectural requirements in a negative way”. This was also the most 

frequent risk encountered by the respondents. Secondly, “poor functionality clustering 

causing disadvantages towards performance” was also seen among the most frequent 

risks. Additionally, we found that there is little effort among software architects to 

evaluate and document the architecture, as they attempt to meet challenges as they are 

encountered during development.  

4.1.6 Phase 3 contributions to C4a from article P6: An Empirical 

Study of Architects’ Views on Risk Management Issues for 

Software Evolution 

C4a: Identification of perceived risks and related mitigation strategies specifically 

for the evolution of software architecture 

 

A larger investigation was warranted to further investigate risks and management 

strategies towards software architecture evolution, versus our initial study of perceived 
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architectural risks in article P5. Our results from this full-scale survey (article P6) 

showed that:  

 The overall most influential risk dealt with poor functionality clustering 

causing performance problems.  

 The corresponding most successful mitigation strategies were to refactor the 

architecture, and to design with a high focus on modifiability.  

 The second most influential risk was that insufficient stakeholder 

communication affected requirements negotiation and implementation of 

new / changed architectural requirements in a negative way.  

 The most successful strategies towards this risk were to increase team 

communication efforts and to arrange stakeholder plenary meetings.  

Therefore, the risks that were identified as the two overall most influential in the pilot 

survey were also identified in the full-scale survey.  

Most of the risks we identified were placed into the following categories, considered 

in related work: Requirements risks, Architecture Team risks, and Stakeholder risks 

(from the subcontractors‘ viewpoint) from Ropponen et al. [Ropponen 2000], as well as 

Quality Attribute risks, Integration risks, Requirements risks, Documentation risks, 

Process and Tools risks, Allocation risks, and Coordination risks from Bass et al. [Bass 

2007].  Nevertheless, the following three risks we identified (listed below as <risk - 

consequence>) do not appear to fit these categories from literature: 

 Extensive focus on streamlining of the architecture - affected modifiability 

negatively (technical risk TR 4) 

 Lack of business context analysis - affected stakeholder relationships 

negatively (process risk PR 7) 

 Prior architecture maintenance/evolution pushed to other projects due to lack 

of personnel - influenced knowledge on the architecture negatively 

(organizational risk OR 5) 

4.1.7 Phase 3 Contributions to C4b from article P6: An Empirical 

Study of Architects’ Views on Risk Management Issues for 

Software Evolution 

C4b: An adapted operational matrix as a tool to support risk management in 

software architecture evolution 

 

We further developed a three-part operational matrix of risks and corresponding 

mitigation strategies as a tool to support risk management in software architecture 

evolution, based on the identified risks and strategies under contribution C4a. This 

matrix is based on the levels of technical, process and organizational risks, and includes 

an aggregated rating of outcome towards successful risk mitigation for each strategy.  

The matrix is presented here in three parts for technical (Table 3), process (Table 4) 

and organizational risks (Table 5), over the following pages. This matrix shows 

identified risks based on indicated level of influence, and corresponding management 

strategies along with a relative ranking of outcome towards successful mitigation, and 

can be expanded as needed. Risk influence is indicated as the number of respondents 

who replied that the corresponding risk had a ―Very High‖ (VH) or ―High‖ (H) 

influence on the architecture.   
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Table 3: Adapted operational matrix for the most influential Technical Risks (VH 

> 1) and corresponding management strategies in software architecture evolution 

 
Technical (identified in planning), 

ID: Risk  

Risk 

Influence 

ID:Strategy:Outcome rating = Number of {―Not at all‖, 

―Somewhat‖, ―Medium‖, ―Mostly‖, and ―Completely‖} 

successful instances. 

TR 1: Poor clustering of 

functionality affected performance 

negatively * 

VH: 7,  

H: 23 
TS 1 Refactoring of the architecture  {0, 8, 2, 5, 3} 

TS 2 Redesign within constraints  {0, 0, 1, 4, 0} 

TS 3 Design with high focus on 

modifiability 

{0, 1, 2, 6, 1} 

TS 4 Finalize modifiability design 

considerations early 

{0, 1, 0, 0, 0} 

TR 2: Requirements from other 

system(s) affected performance 

negatively  

VH: 5,  

H: 10 
TS 2 Redesign within constraints {0, 1, 4, 4, 0} 

TS 5 Employ separate agents for 

external communication, 

protocol for information 

sharing  

{0, 1, 2, 2, 0} 

TS 3 Design with high focus on 

modifiability  

{0, 1, 4, 3, 0} 

TR 3: Undefined variation points in 

requirements affected performance 

negatively, caused increased focus on 

modifiability 

VH: 3, 

H: 10 
TS 3 Design with high focus on 

modifiability 

{0, 0, 3, 5, 1} 

TS 4 Finalize modifiability design 

considerations early 

{0, 3, 2, 3, 0} 

TR 4: Extensive focus on 

streamlining of the architecture 

affected modifiability negatively 

VH: 2, 

H: 10 
TS 3 Design with high focus on 

modifiability 

{0, 0, 3, 3, 1} 

TS 4 Finalize modifiability design 

considerations early 

{0, 2, 3, 3, 0} 

TR 5: Architectural mismatch caused 

redesign of part of the architecture 

VH: 2, 

H: 2 
TS 1 Refactoring of the architecture {0, 1, 1, 0, 0} 

TS 3 Design with high focus on 

modifiability 

{0, 0, 0, 1, 0} 

TS 4 Finalize modifiability design 

considerations early 

{0, 0, 1, 0, 0} 

Experienced during 

TR 6: Increased focus on 

modifiability contributed negatively 

towards system performance * 

VH: 6, 

H: 10 
TS 6 Implementation of changes 

towards improved modifiability 

{0, 0, 2, 1, 0} 

TS 7 Minor implementation changes {0, 1, 6, 7, 0} 

TR 7: Poor original core design 

prolonged the duration of the 

maintenance/ evolution cycle * 

VH: 3, 

H: 11 
TS 6 Implementation of changes 

towards improved modifiability 

{0, 0, 3, 4, 0} 

TS 8 Informal review of the 

architecture 

{0, 0, 3, 3, 0} 

TS 7 Minor implementation changes {0, 0, 1, 2, 0} 

TS 1 Refactoring the architecture {0, 0, 3, 0, 0} 

TR 8: Varying release cycles for 

COTS/OSS components made it 

difficult to implement required 

changes * 

VH: 2, 

H: 16 
TS 9 Use own development as 

potential backup solution 

{0, 4, 5, 8, 0} 

TS 10 Implement extra architecture 

add-ons 

{0, 1, 2, 0, 0} 
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Table 4: Adapted operational matrix for the most influential Process Risks (VH > 

1) and corresponding management strategies in software architecture evolution 

 
Process (identified in planning), 

ID: Risk 

Risk 

Influence 

ID:Strategy:Outcome rating = Number of {―Not at all‖, 

―Somewhat‖, ―Medium‖, ―Mostly‖, and ―Completely‖} successful 

instances. 

PR 1: Lack of architecture 

documentation required more 

effort to be spent on planning 

during maintenance/evolution * 

VH:  6, 

H: 25 
PS 1 Recover needed architecture 

documentation using current 

architecture design and other artefacts 

as a basis 

{0, 3, 2, 5, 1} 

PS 2 Thorough planning before 

implementing maintenance/evolution 

changes 

{0, 1, 8, 7, 1} 

PS 3 Recover architecture evaluation 

artefacts where needed 

{0, 0, 4, 2, 0} 

PS 4 Alter process to capture important 

architecture details 

{0, 1, 3, 3, 0} 

PS 5 Explicit training on architecture 

documentation 

{0, 0, 1, 3, 0} 

PR 2: Lack of architecture 

evaluation contributed to 

discovering potential problems 

later in planning of 

maintenance/evolution 

VH: 5, 

H: 13 
PS 1 Recover needed architecture 

documentation using current 

architecture design and other artefacts 

as a basis 

{0, 0, 3, 4, 1} 

PS 3 Recover architecture evaluation 

artefacts where needed 

{0, 1, 2, 4, 0} 

PS 4 Alter process to capture important 

architecture details 

{0, 0, 2, 3, 0} 

PR 3: Lack of business context 

analysis affected stakeholder 

relationships negatively 

VH: 4, 

H: 13 
PS 6 Integrate business context in planning 

of the maintenance/evolution 

{0, 2, 5, 3, 1} 

PS 7 Include business context informally {0, 1, 1, 4, 0} 

PR 4: Insufficient requirements 

negotiation postponed important 

architecture decisions 

VH: 4, 

H: 9 
PS 8 Negotiate requirements early {0, 0, 2, 2, 1} 

PS 9 More explicit communication {0, 2, 3, 0, 0} 

PS 10 Allow additional time for 

communication and feedback 

{0, 1, 1, 3, 0} 

Experienced during     

PR 5: Insufficient stakeholder 

communication contributed to 

insufficient requirements 

negotiation and affected 

implementation of new/changed 

architectural requirements 

negatively 

VH: 7, 

H: 13 
PS 13 Extra communication effort {0, 1, 7, 3, 0} 

PS 14 Postpone some requirements to next 

maintenance/evolution cycle 

{0, 0, 1, 2, 0} 

PS 15 Arrange plenary meetings for all 

stakeholders 

{0, 0, 3, 4, 0} 

PS 16 Negotiate project extension {0, 1, 2, 2, 0} 

PR 6: Poor integration of 

architecture changes into 

implementation process affected 

implementation process and the 

architecture design negatively * 

VH: 2, 

H: 20 
PS 17 Overlay architecture change process 

onto implementation of 

maintenance/evolution 

{0, 0, 4, 7, 1} 

PS 18 Integrate architecture considerations 

into implementation process 

{0, 1, 9, 2, 0} 
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Table 5: Adapted operational matrix for the most influential Organizational Risks 

(VH > 1) and corresponding management strategies in software architecture 

evolution 

 
Organization (identified in 

planning), ID: Risk 

Risk 

Influence  

ID:Strategy:Outcome rating = Number of {―Not at all‖, 

―Somewhat‖, ―Medium‖, ―Mostly‖, and ―Completely‖} successful 

instances. 

OR 1: Not allowed to change 

OSS as decision mandate 

external to architecture team, 

affecting performance and 

modifiability negatively * 

VH: 6, 

H: 22 
OS 1 Frequent, interactive, scheduled 

meetings to keep up to date 

{0, 1, 4, 5, 0} 

OS 2 Involve all "layers" of customer 

organization as stakeholders, allow 

extra time for proper 

communication 

{0, 0, 1, 0, 0} 

OS 3 Ensure compliance with external 

mandate holder 

{0, 0, 4, 1, 0} 

OS 4 Involve mandate holder early as 

stakeholder in planning 

{0, 2, 4, 9, 1} 

OR 2: Separate architecture 

team per 

maintenance/evolution cycle 

basis contributed to loss of 

and insufficient knowledge 

about the existing 

architectural design * 

VH: 4, 

H: 29 
OS 5 Dedicate personnel to "retrieve" 

architecture knowledge 

{0, 2, 11, 6, 0} 

OS 6 Increased focus on proper 

documentation, to allow bringing 

new personnel up to speed quickly 

{0, 1, 8, 6, 0} 

OR 3: Cooperative 

maintenance/evolution with 

architects from customer 

organization required extra 

training and communication 

efforts * 

VH: 3, 

H: 10 
OS 1 Frequent, interactive, scheduled 

meetings to keep up to date 

{0, 0, 1, 1, 0} 

OS 7 Perform maintenance/evolution 

incrementally 

{0, 0, 2, 0, 0} 

OS 8 Allot extra time for proper 

communication with all 

stakeholders 

{0, 0, 1, 0, 0} 

OS 9 Include other project's architects in 

planning, implementation 

{0, 1, 4, 5 0} 

OR 4: Lack of clear point of 

contact from customer 

organization contributed to 

inconsistencies in 

communication of the 

architecture and requirements 

* 

VH: 2, 

H: 27 
OS 5 Dedicate personnel to "retrieve" 

architecture knowledge 

{0, 0, 1, 0, 0} 

OS 1 Frequent, interactive, scheduled 

meetings to keep up to date 

{0, 0, 4, 5, 0} 

OS 2 

 

Involve all "layers" of customer 

organization as stakeholders, allow 

extra time for proper 

communication 

{0, 3, 6, 4, 1} 

OS 6 Increased focus on proper 

documentation, to allow bringing 

new personnel up to speed quickly 

{0, 1, 5, 6, 0} 

Experienced during 

OR 5: Prior architecture 

maintenance/evolution 

pushed to other projects due 

to lack of personnel 

influenced knowledge on the 

architecture negatively * 

VH: 3, 

H: 11 
OS 10 Regain architecture details from 

remaining upper management 

personnel 

{0, 0, 2, 1, 0} 

OS 11 Keep architecture documentation 

centralized 

{0, 0, 5, 8, 0} 

OR 2: Separate architecture 

team per 

maintenance/evolution cycle 

contributed to loss of and 

insufficient knowledge about 

the existing architectural 

design * 

VH: 2, 

H: 13 
OS 10 Regain architecture details from 

remaining upper management 

personnel 

{0, 2, 6, 6, 0} 

OS 11 Keep architecture documentation 

centralized 

{0, 0, 0, 1, 0} 

OS 12 Set up standard procedure for 

distribution of architecture 

documentation and knowledge 

{0, 2, 0, 0, 0} 
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4.2 Summary of research phases 

Tables 6 and 7 below summarize the findings of this thesis from the preceding 

chapters, relating research questions, articles, contributions, research methods, validity 

observations, aftermath reflections and phases to each other. 

 

Table 6: Relations between SEVO goals, research phases, research questions and 

articles 

 

SEVO Goals G1: Better understanding of 

software evolution, especially for 

CBSE.  (G3+G4) 

G2: Better methods to predict the 

risks, costs, and profile of 

software evolution in CBSE. 
(G3+G4) 

Research 

Phase 

Research Phase 1 Research 

Phase 2 

Research Phase 3 

Research 

Question  

(RQ) 

RQ1: What is the 

state of practices 

and issues with 

respect to 

software process 

improvement in 

CBSE for 

COTS/OSS and 

in-house reusable 

software? 

RQ2: How 

does software 

evolution 

impact 

individual 

reusable 

components, 

in terms of 

defect and 

change 

densities? 

RQ3: What are 

the impacts of 

Test Driven 

Development 

versus test-last 

development on 

reusable 

components?  

RQ4: What are 

the perceived 

architectural 

risks of CBSE-

driven software 

evolution, and 

how can these 

risks be 

mitigated? 

Articles P1, P2 P3 P4 P5, P6 
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Table 7: Relations between articles, contributions, research methods, validity 

observations, and aftermath reflections 

 

Articles P1, P2 P3 P4 P5, P6 

Contributions To C1: 

Identification of 

major impacts of 

modern trends in 

CBSE on the 

development 

process for in-

house reusable and 

COTS/OSS 

components. 

To C2: 

Individual 

reusable 

components 

were shown to 

have a 

decreasing 

defect density 

over several 

releases.  

To C3: Test 

Driven 

Development led 

to lower mean 

defect density 

and mean change 

density for 

reusable 

components over 

traditional test-

last development. 

To C4a: 

Identification of 

a set of actual 

risks 

experienced, and 

corresponding 

mitigation 

strategies used, 

by software 

architects. 

 

 

To C1: 

Discrepancies 

between academic 

theory and 

industrial practice 

were identified. 

To C2: 

Decreasing 

change 

densities were 

shown for five 

of six 

components 

over several 

releases. 

To C4b: 

Development of 

a three-part 

adapted 

operational 

matrix as a tool 

to support risk 

management in 

software 

architecture 

evolution. 

Research 

Methods 

Survey, followed 

up by semi-

structured 

interviews 

Case study Case study Survey 

Validity 

Observations 

(Chapter 5 of 

this thesis) 

The questionnaire 

questions are based 

on the research 

literature. 

Both defect and 

change density 

are described 

and used in the 

research 

literature. 

Both defect and 

change density 

are described and 

used in the 

research 

literature. 

The 

questionnaire 

questions are 

based on the 

research 

literature. 

Aftermath 

reflections 

Surveys in industry 

require close 

follow-up, and 

large amounts of 

resources, while 

returning a 

relatively low 

response rate. 

Studying 

industrial 

systems 

requires close 

connections 

with the 

developing 

organization. 

Studying 

industrial systems 

requires close 

connections with 

the developing 

organization. 

Surveys in 

industry require 

close follow-up, 

and large 

amounts of 

resources, while 

returning a 

relatively low 

response rate. 
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5 Evaluation and Discussion 

 

 

 

 

 

 

 

 

 

 

This chapter discusses our four research questions (RQ1, RQ2, RQ3 and RQ4), based 

on the results presented in Chapter 4. We also discuss the relationships between the 

contributions, research questions and results, together with a more in-depth discussion 

of the observed results.  The relationships between our contributions and the state-of-

the-art, as well as the overall SEVO project research goals, are then considered, together 

with general contributions to StatoilHydro. We further summarize the validity of the 

individual studies behind our contributions. Finally, we also include a reflection on the 

context of our research project in this chapter. 

5.1 RQ1: What is the state of practices and issues with 

respect to software process improvement in CBSE for 

COTS/OSS and in-house reusable software?  

Contribution C1: Improved knowledge of modern trends in CBSE and their 

impacts on software development processes; articles P1, P2 

 

Impact for in-house reusable components: We interviewed the developers involved 

in the reuse program at StatoilHydro ASA to identify and analyze the possible impacts 

on the development process.   

- A defined / standardized architecture is seen as key: It is likely, however, that 

the benefits of such standardization may be short-lived, as the architecture will 

probably also need to be evolved in order to accommodate future changes. This 

also provides a starting point for investigating architectural risks in CBSE-

driven software evolution.  

 

- Organization of knowledge sharing remains important: Improved 

organization of knowledge sharing is needed; senior personnel in the company 

indicated that some external consultants were added to the project after regular 

training activities were carried out. These consultants therefore experienced a 

lack of knowledge with regards to the reuse practices of the company. This 

could be helped through improvement of documentation of the reusable 

components (as the results show that a managed collection of information 
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would be beneficial). Qualitative data from developers on related benefits 

includes improved information sharing and learning, higher documentation 

quality, better overview of functionality, and access to FAQ (frequently asked 

questions) answers. Improved organization of training and knowledge sharing 

would also aid in a better understanding of the quality specifications of the 

reusable components – indicated as a problem potentially caused by rapid 

changes in requirements, resources and personnel. Nevertheless, the developers 

appear to have a good understanding of the reusable components themselves, 

obtained through informal knowledge sharing.  

 

Impact for external COTS/OSS components: When it comes to external COTS/OSS 

(both called OTS – Off-The-Shelf) components, impacts in several dimensions can be 

seen in that traditional processes, enriched with OTS-specific activities, are being used 

to select and integrate OTS components as follows: 

- Selection: Selection of OTS components is done informally, without specific 

focus on a particular lifecycle phase. More systematic management of OTS 

components knowledge beyond functional features is, however, necessary. 

- Integration and testing: It becomes costly to debug defects in the borderland 

between in-house and external components, where the latter are mainly treated 

as ―black boxes‖ (closed source).  Moreover, since a multitude of test criteria for 

both functional (―black box‖) and structural now exist, the focus is more on 

determining the right combination of criteria towards efficient testing [Bertolino 

2007]. 

- Effort Estimation: Such estimation is performed using personal experience, 

commonly inaccurate, and largely affected by stakeholders.  

- Traditional Quality: Negative quality effects are rare, and the trust in external 

components high.  

- Management complexity: There is a complex relationship between an 

application developer and an OTS provider, while customers (new software 

owners) are commonly not involved in decisions about use of certain OTS 

components. (Re)negotiation of requirements is therefore nonexistent, as stated 

in P2.  

5.2 RQ2: How does software evolution impact individual 

reusable components, in terms of defect and change 

densities? 

Contribution C2: Improved understanding of evolution impact on individual 

reusable components in terms of defect and change densities; article P3 
 

- Evolution impact from defect density: A decreasing defect density indicates that 

fewer corrections are gradually needed (as the code matures), and thereby a 

higher quality level is achieved for these reusable components individually. The 

findings support the results from literature.  
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- Evolution impact from change density: A decreasing change density for the 

reusable components could indicate that they become more mature as they are 

being adapted to accommodate new and altered requirements in relation to new 

and existing ―client‖ software components. It could also be a natural result of 

improved reliability due to operational testing through usage (which is 

inherently higher for the reusable components). 

5.3 RQ3: What are the impacts of Test Driven Development 

versus test-last development on reusable components? 

Contribution C3: Improved understanding of the impact and effectiveness of 

TDD; article P4 
 

- Impact on defect density: There is a reduction in mean defect density for TDD 

compared to traditional development methodology. The discovery of more new 

defects means that additional test cases (or validation/verification cases) are 

included into the test suites over several releases. In this way, the developed 

tests in TDD remain a valuable asset towards reuse. The refactoring practices 

inherent to TDD also aid in this direction.  

 

- Impact on change density: There is a higher mean change density for TDD 

compared to traditional development methods, indicating that the reusable 

components are more adaptable (rather than having lower quality). In this 

regard, an underlying well-defined architecture allows a high level of 

modification. The introduction of new requirements from other systems (as the 

reusable components are being adopted by new divisions and departments), 

along with context factors such as prior knowledge of and experience with TDD, 

also plays a role here. 

 

- Additional factors: 

o Context: The inherent characteristics of reusable components include:  

 potentially higher change density,  

 increasing abstraction level,  

 higher number of effective users and middleware-like position, 

 stable application domain and APIs. 

These should be considered as part of the context for writing new test 

cases. 

 

o Refactoring: The associated overhead is a worthwhile investment 

towards future reuse and adaptability.  

 

o Lack of Design: Shortcomings with respect to design for reusable 

components can be handled by implementing and using additional design 

and documentation practices. 
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5.4 RQ4: What are the perceived architectural risks of 

CBSE-driven software evolution, and how can these 

risks be mitigated?   

Contribution C4a: Identification of perceived risks and related mitigation 

strategies specifically for the evolution of software architecture; articles P5, P6.  

Contribution C4b: An adapted operational matrix for risk management in 

software architecture evolution; article P6 

 

- Identification of the most influential architectural risks: We have explored 

planning and development risks in projects, on the technical, process and 

organizational levels. These risks indicate that while some efforts towards 

proper risk management have already been made, further improvements are 

warranted in terms of learning and reflection. Furthermore, the identified risks 

span many different issues, showing that architectural risk management in 

software evolution must consider a wide range of factors.  

 

- Identification of the most successful risk mitigation strategies: The risk 

mitigation strategies were also identified according to technical, process and 

organizational levels, as matched to the identified risks. The low complexity 

level of some of these strategies indicates that risk management adoption does 

not necessarily require a large investment up front. 

 

- An operational matrix tool for risk management in software architecture 

evolution: This tool is intended for use in risk management within software 

projects, where evolution of the software architecture is an issue in one or more 

forms. Existing perceived risks are matched with corresponding strategies, 

which can be used ―as is‖ or as basis for further elaboration.  

5.5 Overall summarized Discussion of research results 

Our research aims to investigate the impact of modern trends in CBSE regarding the 

development process, defects and changes to individual reusable software components, 

and risk management of software architecture evolution.  

Impacts of evolution on development processes are different for in-house 

development vs. OTS-based development, as outlined in Chapter 4.  Nevertheless, 

rather than using radically different lifecycle processes when reusing OTS components, 

developers utilize and extend established development practices to accommodate 

specific aspects of external components.  Possible explanations for this include: 

- Cost factors: To limit costs (i.e. budget and schedule) of software development 

remains important.  Building on already established processes seems to support 

this focus. 

- Convenience and stability: It appears that chosen development processes in a 

company can be revised sufficiently for adoption and evolution of OTS 

components. 
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Our investigation further focused on the evolution impact on individual reusable 

software components in terms of defect and change densities. Lower defect densities 

were shown for these components over several releases, while for five of six 

components decreasing change densities were shown over several releases. A drop in 

defect density was also shown after the introduction of TDD on the development of the 

reusable components.  Influencing factors include:  

- Broader range of impacts: The reusable components are intended for use with 

many other (reusable as well as non-reusable) software components, and have a 

higher number of potentially diverse requirements to accommodate. 

- Higher inherent maturity of the reusable components: Changes to the reusable 

JEF framework appear to become fewer and less complex as the framework 

matures, and hence becomes better suited to the various systems that it must 

serve. This indicates that the reusable components reflect well-considered 

abstractions.  This also indicates that the growth in reliability due to operational 

testing helps in further enhancing the maturity of reusable components. 

- Process impact on components for TDD: The tests developed with TDD remain 

a valuable asset towards reuse, as are the refactoring practices inherent to TDD 

(as indicated by the reduction in the average defect density for the investigated 

components). A lower change density is desired towards component maturity, 

while the higher change density shown for development of reusable components 

with TDD indicates that a higher level of adaptation (i.e. the amount of new and 

altered requirements) was incurred here.  

Perceived risks and corresponding risk management strategies in software 

architecture evolution are important, as they provide a starting point for further 

improvement of relevant practices. They also enable structured process adaptations 

towards an ultimate goal of improved software quality. Important points include: 

- Planned vs. encountered risks: The larger number of identified risks appears 

during project planning, rather than being encountered later during evolution. 

Thus, there is already a basis for implementation of improved risk management 

practices.   

- Risk management strategies currently in use: Defined and documented 

evaluation of software architectures enables system architects to discover design 

errors and conflicting requirements early in the process, potentially saving a 

project from more significant problems later.  In this thesis investigation, we 

find risks that mirror this concern, such as PR 2 (Table 4). Nevertheless, only 

about 21% of the respondents indicate this risk‘s influence as ―Very High‖ or 

―High‖. Also, the corresponding mitigation strategies we identified (Table 4: PS 

1, PS 3, PS 4) merely express recovery from missing evaluation output. 

5.6 Discussion of Contributions in relation to State-of-the-

art 

The impact of introducing software reuse (in-house or COTS/OSS), from the 

viewpoint of developers working with software integration, was studied in articles P1 

and P2.  In article P1, the key positive impacts found match those described in the 

literature [Lim 1994]. Reuse training was shown to be useful towards facilitating reuse, 
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which also supports earlier work [Frakes 1995]. Our results on developers‘ 

understanding of reusable components also support the findings from [Li 2004].  

The investigation on OTS components in article P2 was initially inspired by an 

investigation on the usage of COTS components performed by Torchiano et al. 

[Torchiano 2004]. They proposed six new ―theses‖ that challenged previous research. In 

our investigation, we were able to support four of the six new ―theses‖.  The 

unsupported theses were:  

- ―standard mismatches were more frequent than architecture mismatches‖;  

- ―OTS components were mainly selected based on architecture compliance 

instead of function completeness‖ (see article SP4).   

Our findings on OTS were further elaborated to provide the ten ―facts‖ in P2. Among 

these facts, related work on risks and risk mitigation in OSS emphasizes the importance 

of the relationship between the developing organization and the component provider 

[Hauge 2010]. Also, component selection is commonly constrained by project-specific 

properties [Hauge 2009a]; developers often select the first working component instead 

of evaluating options and then making a selection based on the best fit.  

With respect to our research on defect and change density in article P3, a later related 

study investigated the overall combined defect density of reusable components vs. client 

applications (i.e. complete combined releases) over their respective current lifetimes 

(i.e. releases thus far) [Gupta 2009a]. They found that the overall defect density of the 

reusable components was lower than that of one application and marginally higher than 

that of another application, partly contributing this latter ―imbalance‖ to defects due to 

poorly implemented functionality parts.  

In article P4, neither software evolution nor reusable components appear to have 

been explicitly investigated in earlier work on Test Driven Development. The reduction 

in mean defect density we found (36%) is similar to that found for non-reusable 

components in prior studies [George 2004] [Maximilien 2003] [Janzen 2005].  Also, 

non-corrective changes do not appear to have been explicitly considered in earlier work 

on TDD. 

George et al. [George 1994] indicate that context (e.g. TDD training) exerts an 

important influence on writing new test cases.  Our results indicate that characteristics 

of reusable components (e.g. potentially higher change density, increasing abstraction 

level, higher number of effective users and middleware-like position) should be part of 

this context consideration when developing such components. The refactoring inherent 

in TDD is also seen as a disadvantage due to the added overhead [George 1994].  

However, our results indicate that for reusable components this overhead may be 

worthwhile regarding future reuse and adaptability. We also did not see any indication 

that lack of design was a problem, though this was reported for non-reusable 

components in [George 1994]. 

In articles P5 and P6, in relation to Boehm‘s framework [Boehm 1991], we 

investigated issues related to identification, analysis, prioritization, assessment, 

planning and resolution of risks and strategies towards software architecture evolution. 

The 15 most influential risks (of 21) in our pilot survey fit into corresponding risk 

categories identified in work by Bass et al. [Bass 2007] (Table 9) and Ropponen et al. 

[Ropponen 2000] (Table 8). The same holds for 16 out of the 19 most influential risks 

in article P6 (Table 10). This clearly shows the industrial relevance of our initial results. 

For Tables 8-10, duplicate identifiers are marked as #x, where x is the sequence 
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number.  Also, while the identifiers in Tables 8 and 9 refer to article P5, the identifiers 

in Table 10 can be found both in Tables 3-5 as well as in article P6. We have also 

identified corresponding mitigation strategies (that appear not to have been investigated 

earlier) towards handling these risks. 

 

Table 8: Relations between risk categories in the pilot risk survey (P5) and 

Ropponen et al. [Ropponen 2000] 

 

ID Ropponen et al. [Ropponen 2000] 

 Requirements risks:  

PR 4 ―Insufficient requirements negotiation contributed to requirement 

incompatibilities‖ 

TR 3 ―Increased focus on modifiability contributed negatively towards system 

performance‖ 

 Architecture Team risks: 

OR 5 

 

―Separate architecture team per maintenance/evolution cycle contributed to 

insufficient knowledge about the existing architectural design‖ 

OR 7 

 

―Large architecture team affected division of duties and subsequently 

implementation of maintenance/evolution cycle negatively‖ 

OR 8 

 

―Lack of clear lead architect affected implementation progress negatively and 

contributed to extra effort needed‖ 

  Stakeholder risks (from the subcontractor viewpoint):  

PR 3 ―Lack of stakeholder communication affected implementation of 

maintenance/evolution cycle negatively‖ 

OR 2 

  

―Cooperative maintenance/evolution with architects from customer 

organization required extra training and communication efforts‖ 

OR 3 

 

―Lack of clear point of contact from customer organization contributed to 

inconsistencies in communication of the architecture and requirements‖ 

PR 8 ―Customer architects being unfamiliar with architecture change process 

affected maintenance/evolution cycle schedule negatively‖ 
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Table 9: Relations between risk categories in the pilot risk survey (P5) and Bass et 

al. [Bass 2007]  
 

ID Bass et al. [Bass 2007] 

 Quality Attribute risk: 

TR 3 

(#2) 

 ―Increased focus on modifiability contributed negatively towards system 

performance‖ 

 Integration risks:  

TR 4 ―Varying release cycles for COTS/OSS components made it difficult to 

implement required changes‖ 

OR 4 ―Not allowed to change OSS as decision mandate external to architecture team, 

affecting performance and modifiability negatively― 

 Requirements risks:  

PR 4 

(#2) 

―Insufficient requirements negotiation contributed to requirement 

incompatibilities on the architecture‖ 

TR 3 

(#3) 

―Increased focus on modifiability contributed negatively towards system 

performance‖ 

 Documentation risks:  

PR 1 ―Lack of architecture documentation contributed to more effort being used on 

planning the maintenance/evolution‖ 

PR 6 ―Using Software Change Management system without explicit software 

architecture description contributed to inaccuracies in communicating the 

architecture‖ 

 Process and Tools risks:  

PR 2 ―Lack of architecture evaluation delayed important maintenance/evolution 

decisions‖ 

PR 6 

(#2) 

―Using Software Change Management system without explicit software 

architecture description contributed to inaccuracies in communicating the 

architecture‖ 

 Allocation risks:  

TR 1 ―Poor clustering of functionality affected performance negatively‖ 

TR 4 

(#2) 

―Varying release cycles for COTS/OSS components made it difficult to 

implement required changes‖ 

 Coordination risks:  

PR 3 ―Lack of stakeholder communication affected implementation of 

maintenance/evolution cycle negatively‖ 

PR 8 ―Customer architects being unfamiliar with architecture change process 

affected maintenance/evolution cycle schedule negatively‖ 

OR 2 ―Cooperative maintenance/evolution with architects from customer 

organization required extra training and communication efforts‖ 

OR 3 ―Lack of clear point of contact from customer organization contributed to 

inconsistencies in communication of the architecture and requirements‖ 

OR 4 ―Not allowed to change OSS as decision mandate external to architecture team, 

affecting performance and modifiability negatively‖ 
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Table 10: Relations between risk categories in the main risk survey (article P6), 

Ropponen et al. [Ropponen 2000] and Bass et al. [Bass 2007]  
 

Ropponen et al. [Ropponen 

2000] 

Technical 

risks (TR) 

Process 

risks (PR) 

Organizational 

risks (OR) 

Requirements risks:  TR 2, TR 3, 

TR 6, 

PR 4  

Architecture Team risks:    OR 2 

Stakeholder risks (from the 

subcontractor viewpoint):  

 PR 5 OR 3, OR 4 

Bass et al. [Bass 2007]    

Quality Attribute risk:  TR 6 (#2)   

Integration risks:  TR 5, TR 8 PR 6 OR 1 

Requirements risks:  TR 3 (#2) PR 4 (#2)  

Documentation risks:   PR 1  

Process and Tools risks:   PR 2  

Allocation risks:  TR 1, TR 7,  

TR 8 (#2) 

  

Coordination risks:   PR 5 (#2) OR 1 (#2), OR 2 

(#2), OR 3 (#2), OR 

4 (#2) 

 

5.7 General Recommendations to Practitioners 

In terms of recommendations for general practitioners of software engineering, 

including those at StatoilHydro ASA, we would like to highlight the following: 

 

- Improvements of components and processes for handling of software evolution: 

o Standardized architecture: In our results, a defined / standardized 

software architecture is seen as beneficial. Such an architecture should be 

evolved to accommodate future changes. An explicitly defined / 

standardized architecture could provide a proper basis for making such 

wide-reaching changes. 

 

o Integration of management tools:  It is imperative that the project 

management tools, used for internal reporting in a company, are properly 

integrated with each other to enable proper data collection and analysis. 

In our case, Rational ClearCase (for SCM) and Rational ClearQuest (for 

handling TRs and CRs) tools were used for version control and 

defect/change reporting, respectively.  Even though these two tools came 

from the same manufacturer, there was a lack of tool integration that 

made it difficult to obtain direct information on defects and changes (e.g. 

their ―size‖) incurred on specific versions. Rather, the company had to 

rely on complementary sources to provide this information. 
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o Reporting efforts: There has to be commitment in the development 

organization to properly report data (defects, changes, effort, etc.) being 

collected for later analysis in the company. Our experience is that unless 

such data are directly related to their everyday work tasks, many 

developers see their reporting as unnecessary and even a target for 

cheating. Even the name of an affected component or effort usage 

(simplified just as small, medium, large) is frequently missing. The same 

―state-of-affairs‖ has been seen in dozens of companies according to 

[Mohagheghi 2006], thus enabling large changes may prove very 

difficult. Nevertheless, developers‘ input is crucial in providing relevant 

data for proper analysis towards product and process improvement. 

 

o Reuse training programs: Our results indicate that although company 

reuse programs do exist, knowledge of these programs may be variable 

among developers. Organization and scheduling of such programs and 

related activities should hence be improved, especially to account for the 

needs of external personnel that may be added to a given project during 

its lifetime. 

 

o Knowledge sharing: Rapid changes of personnel, requirements and 

resources can affect the quality specifications and related knowledge of 

reusable components negatively, as indicated in our results. It is 

therefore important that practitioners maintain knowledge sharing, 

regarding tacit and explicit knowledge, with their peers, and participate 

in the use and implementation of relevant collaboration tools (concrete 

examples include Microsoft SharePoint [Microsoft 2010] and open 

source suites such as Trac [Trac 2010]).  

 

- Improvements in risk management of software architecture: 

o Software architecture evaluation: Software architecture evaluation 

should be implemented more explicitly as a complete end-to-end 

process. As aforementioned, the current focus is merely on recovering 

artifacts, rather than hindsight reflection and learning. 

 

o Risk management strategies: The median outcome rating for the 

strategies from our results for all three risk categories (technical, process, 

and organizational) was ―Medium‖. So, there is still need for 

improvements in implementing risk management.  

 

o Risk mitigation and training: The focus of system architects‘ mitigation 

efforts appears currently to be on recovering needed architecture details 

and improving communication, while producing the system according to 

specification. Effort should therefore be made towards improving regular 

documentation and evaluation of the architecture, integrated with the 

maintenance / evolution process. Proper training of both architects and 

organizational management are means to achieve these improvements. 
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5.8 Relationships between contributions and overall SEVO 

goals  

The relationships between the contributions in this thesis and the overall SEVO goals 

are as follows: 

G1. Better understanding of software evolution, focusing on CBSE.  We claim 

that this thesis advances the state-of-the-art within the field of software engineering, 

specifically in the context of the contributions C1 and C2. These contributions address 

process and component aspects towards a profiling of software evolution.   

G2. Better methods to predict the risks, costs and profile of software evolution 

in CBSE. Contribution C3 addresses the effectiveness of Test Driven Development as a 

strategy to manage software evolution impact in terms of defects and changes. 

Contributions C4a and C4b specifically address the risk aspect of software evolution, 

investigating perceived risks and corresponding risk management strategies. Through 

these contributions, we have achieved a better understanding of impact in terms of 

perceived risks and management strategies related to software architecture evolution. 

G3. Contributing to a national competence based around these themes.  

The work reported in this thesis has been published in refereed international 

conferences and journals (totaling 40 articles). All publications and related results have 

been reported to the FRIDA national database of research results. SEVO results have 

also been integrated in NTNU courses.  

G4. Disseminating and exchanging the knowledge gained. We have established 

regular contact, and have several joint future publications, with other researchers with 

similar research interests. We have also presented our work at international conferences 

(e.g. ISESE, ICSEA), and arranged workshops (e.g. at Simula Labs in Oslo) to 

disseminate and further build on the knowledge we have gained through our 

investigations.  

5.9 Reflections on research context: the role of our main 

industrial partner StatoilHydro ASA, and the software 

industry 

An up-to-date research agenda is the cornerstone of any software engineering 

research project. Such a research agenda is best identified and further investigated 

through studying actual products and processes. This is best done in an industrial 

setting, constituting an ―in-vivo‖ environment for software engineers, their work 

processes and produced software.  Unfortunately, because of the nature of software and 

a dynamic marketplace, foci and activities are commonly diverse and vary widely 

between academia and industry.  While academic researchers tend to favor a more long-

lived perspective, industry is often more concerned with getting the right product to the 

right market at the right time. In this respect, we are very thankful to have had a stable, 

patient, large industrial partner, namely StatoilHydro ASA, which was willing to let us 

study their systems for almost four years towards some of the investigations in this 

thesis.  
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When trying to involve ourselves as academic researchers in industrial studies, it is 

important to regularly show industry short-term benefits of the proposed investigations.  

All the while we should still keep our own research agendas in mind and allow them to 

be as modifiable as possible when looking for new or altered opportunities. That is to 

say, we should “have the serenity to accept the things we cannot change, the courage to 

change the things we can, and the wisdom to know the difference” [Niebuhr 1934]. 

In our case, we were fortunate to have strong industrial contacts who partially 

shared research interests similar to ours, and who were willing to see them in light of a 

longer perspective. This made it possible to carry out industrial case studies as reported 

in this thesis, with results interesting both to us as researchers, and for the company. We 

also commonly got additional feedback upon informal requests. Thus, our research 

questions were formulated both through literary review and by inputs from developers 

and data collected at the company. Also, upper management was involved in giving 

feedback prior to article submissions to conferences, showing the company‘s level of 

interest in, and the relevance of, our research. It also ―helped‖ that the main 

StatoilHydro IT manager and principal contact (H. Rønneberg) had a PhD from NTNU 

and a position as an adjunct associate professor at NTNU, and was acquainted with Dr. 

R. Conradi. 

As mentioned, our experience is that missing, incomplete or inconsistent data is 

quite common at most companies [Mohagheghi 2006], and this was also found at 

StatoilHydro ASA.  This indicates the lack of prior data analysis of available data, 

pointing towards a lack of systematic metrics, properly defined quality goals, and/or 

relevant resources towards this end.  

It should also be mentioned that in parallel with these working contacts, we also had 

several attempts in establishing new contacts with other companies. These attempts 

proved much more difficult, and none worked out to yield relevant and long-term data 

for our research. This was also noted as an issue in carrying out the survey investigation 

in P2, where we involved respondents from companies in the European IT-industry.  

We can hence echo the comments made in SP5 and related papers: That the IT-industry 

overall seems quite busy and with little time for joint research these days. 

5.10 Threats to Validity in Software Engineering and 

towards the contributions of this thesis 

An essential discussion regarding the study results relates to their validity. Empirical 

research in software engineering commonly draws on definitions of threats to validity 

that originate from the field of statistics.  Not all the threats are relevant for all types of 

studies. Wohlin et al. [Wohlin 2000] define the following four categories of threats to 

validity (originally for experiments, but commonly used and found applicable for most 

types of empirical studies in software engineering): 

 Conclusion validity: Concerning the ―correct analysis‖, i.e. the relationship 

between the treatment or independent variable(s), and the outcome or dependent 

variable(s) in a study. A central question is whether the results are statistically 

significant in terms of statistical tests, considering p-value, statistical power and 

sample size.  
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 Internal validity: Concerning the data correctness, i.e. whether there is a causal 

relationship between the treatment and the outcome. The main threat is possible 

effects caused by factors not explicitly considered, e.g. unknown bias, and 

reporting wrong or misunderstood data.  

 Construct validity: Concerning the ―correct or relevant metrics‖, i.e. that the 

design of the study is correctly constructed to reveal something about the 

relationship(s) being studied. Threats here include mono-operation bias (i.e. 

single study program not reflecting the constructs), and mono-method bias (i.e. 

single measure type may be misleading). 

 External validity: Concerning the ―correct context‖, i.e. generalizability of 

results outside the study scope. The main threats here include having non-

representative subjects, location or time in carrying out the study. 

 

In this context, a treatment is the (collective) methods that the study object(s) are 

subjected to so that measurements can be made. In a simplified way, we can say that the 

outcome is the result produced, and obtained through these measurements. 

Different threats have different priorities based on the research method. For 

example, when testing a formal theory, internal validity is most important. One major 

issue affecting validity in software engineering is that there is much ―unused‖ data of 

poor quality. Yin et al. [Yin 2003] outline three tactics for improving the validity in case 

studies: 

 Construct validity: Employ multiple data collection sources (triangulation) and 

use knowledgeable persons to review the report during composition. 

 Internal validity: Employ matching of patterns (i.e. between empirically-based 

patterns and predicted patterns, in particular when it comes to explanatory 

studies), and incorporate competing explanations in the data analysis. 

 External validity: Use theory towards research design when it comes to single 

case studies. 

 

Validity determines the trust that can be placed in the obtained results, and thus 

shows the value of an investigation. Threats to validity for all the studies in this thesis 

are discussed below, and are further explained in each article in Appendix A. 

 

Validity of the industrial case studies (P3, P4): 

 Construct validity: The analysis constructs we have used (defect density, 

change density) are based on well-founded concepts in the software evolution 

field.  Our research questions similarly have their basis in the research literature.  

All our data on change requests and trouble reports is pre-delivery, from the 

development phases of each new subsequent release. Also, all our data is based 

on complete and stable releases, and we have used all the releases available at 

the time of the individual studies.  

 

 External validity: The data set for each of the two industrial case studies is 

taken from one single company, StatoilHydro. The case studies are of individual 

industrial systems, an issue that nevertheless remains a threat. Our results should 

be relevant and valid for other releases of these components. Generalization to 
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similar contexts in other organizations should be discussed on a case-by-case 

basis. 

 

 Internal validity: All of the data has been extracted directly from StatoilHydro 

by us.  Incorrect or missing data details may exist, but those records with 

missing details that are related to our analysis have been excluded. All of the 

data comes from complete and stable releases. We have performed the analysis 

in a cooperative manner, allowing cross-checking to ensure compliance, 

consensus and correctness. Also, the tools used for data extraction and data 

analysis (Rational ClearQuest, SPSS and Excel) are well-known. The actual 

defect and change reporting procedures nevertheless represent a threat (although 

we have made an effort to exclude any invalid or incomplete data), since there 

may be uncertainty related to whether a particular issue is classified through a 

trouble report or change request. Another threat is the close interaction between 

the reusable and non-reusable components that may have led to issues being 

incorrectly assigned to the different system parts (non-reusable DCF vs. reusable 

JEF).  

 

 Conclusion validity: The analyses are based on relatively small data sets. We 

did collect complete sets of data, which thus should be sufficient to draw 

relevant and valid conclusions. Confounding factors, such as differences in 

developer experience between teams, can represent threats, but since the studied 

systems were developed within the same organizational unit we do not consider 

this a threat in our studies. Roughly 1/3 of the developers worked across the 

systems, while the remaining personnel had common experience, skill and 

educational levels.   

 

Validity of the surveys (P1, P2, P5, and P6): 

 Construct validity: Our research questions are firmly rooted in the research 

literature, and the actual questions in the questionnaires and interview guides are 

directly related to the research questions. The research and questionnaire / 

interview guide questions were further adapted towards our use, and pre-tested 

among local colleagues and industrial panels to allow refinement. All 

terminology used has been defined in the questionnaires / interview guides to 

provide clear definitions and avoid misinterpretations. 

 

 External validity: The fact that three of our surveys use variants of convenience 

sampling (P1, P5) and constrained snowball sampling (P6) presents a threat. It 

should be noted that obtaining a random sample is almost unachievable in 

software engineering studies due to the lack of reliable and comprehensive 

demographic background data about the relevant populations of projects and 

companies. Nevertheless, we managed to use stratified-random sampling in our 

largest survey (P2) encompassing the IT-industries in Norway, Germany and 

Italy, at the cost of circa two person-weeks per filled-in questionnaire [Conradi 

2005] (mostly caused by unknown gatekeepers). We also ensured that the 

respondents had relevant background and experience. All of the respondents of 
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the three smaller surveys P1, P5 and P6 are nevertheless from the Norwegian 

software-intensive IT-industry, an issue that remains a limitation.    

 

 Internal validity: The respondents were all well-qualified professionals from 

the software-intensive IT-industry, and had expressed a definite interest in the 

study. All of them had the required knowledge and background to provide 

relevant answers. We therefore believe that they answered the given questions to 

the best of their ability, truthfully, and drawing on their own experiences and 

knowledge.  We also clarified any ambiguities in the questions and the 

accompanying definitions during actual interviews, in addition to the definitions 

provided in the questionnaires / interview guides themselves. Minor issues that 

arose in the larger survey (P2) were a few linguistic errors in the actual 

questionnaire, and in the translation of the questionnaire from English to the 

national languages. Overall though, the questionnaire proved to be very robust in 

this regard. 

 

 Conclusion validity: The relatively small sample size in P1 and P5 remains a 

threat, but still yields interesting and valuable insights. In P5 we initially 

identified several issues that may constitute architectural risks for evolving 

systems. These insights also functioned as a background for refining the 

interview guide for an expanded sampling base for the larger survey in P6. In 

summary, this means that the larger survey (P6) relied heavily on the findings 

from the survey in P5.  
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6 Conclusion 

 

 

 

 

 

 

 

 

 

The research in this thesis investigates and reports on the impact of modern trends in 

CBSE on software processes.  It also investigates the impact of CBSE-driven software 

evolution (as defect density and change density) on individual reusable components. 

Finally, it investigates risk and risk management related to the CBSE-driven evolution 

of software architecture.  Our research has yielded valuable insights and resulted in four 

contributions. This last chapter sums up our findings and recommendations, and also 

outlines possible directions for future work.  

6.1 Overall Summary of Findings 

We first revisit the main investigation themes of this thesis as a prelude:  

 the influence of modern trends in CBSE on software processes (since there is 

a lack of large-scale empirical studies on the adoption of new processes, to 

study their characteristics and impacts),  

 evolution and its impact on CBSE (as an empirical basis for more targeted 

handling of software evolution), and  

 perceived architectural risks and corresponding risk mitigation strategies in 

CBSE-driven software evolution (to support improved systematic handling of 

risks and mitigation strategies in software architecture evolution).  

 

Findings: 

- The focus in response to the impact of modern trends in CBSE on the 

development process was found to be on keeping budgets and schedules, 

which is important in most software organizations.  This is a reason why new 

concerns around CBSE-driven evolution are met by integrating light-weight 

changes into already existing company processes, rather than implementing new 

alternative processes from scratch.  The ability to efficiently adopt these new 

mechanisms is also important. 

- CBSE-driven evolution impacts reusable software components in terms of a 

never-stopping stream of potentially diverging requirements from various 

―clients‖ (i.e. non-reusable components). These different types of components 

will thus be impacted in different ways, also since reusable software components 

are used by non-reusable components in new development. 
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- Reusable components have a higher maturity, due to being based on well-

considered abstractions as well as the perpetual fixing of post-delivery defects 

and changes in subsequent new releases.  

- Our results on TDD of reusable components show that the test cases and 

inherent refactoring in TDD are beneficial for software reuse, as well as the 

ability of the reusable components to adapt to new contexts and requirements. 

- On actual perceived architectural risks in CBSE, we found that the majority 

of identified risks were included in planning, with a smaller number being 

encountered later when the actual changes were implemented.  

- Software architecture evaluation, which is an effective technique towards 

discovering architectural design problems and conflicts early, is commonly only 

partially employed (i.e. the focus is only on attaining the evaluation output 

rather than properly implementing the full process).   

 

Finally, we have also used our results to propose improvements towards both general 

practitioners and practitioners at StatoilHydro ASA (Chapter 5). 

6.2 Recommendations for CBSE Researchers 

We have provided an updated definition of software evolution [P5], building on the 

one found in [Mohagheghi & Conradi 2004a]. This definition will aid in facilitating 

further studies of software evolution, as it specifically includes both code and other 

software artifacts, as well as quality aspects of software architecture evolution. 

The table-driven tool we have proposed for effective handling of architectural risks 

in software evolution (Tables 3, 4, and 5) can serve as a base to incorporate future 

insight on architectural risks in software evolution.  

The two metrics used, defect density and change density, are well-known in the 

literature as measures of software evolution [Mohagheghi 2004a] [Mohagheghi & 

Conradi 2004b]. However, these metrics give only a limited view of software evolution, 

without taking aspects such as component complexity into account. We would therefore 

encourage researchers to work towards improved and more detailed metrics for 

assessing component reliability and modifiability in software evolution.  

6.3 Recommendations for Practitioners regarding Modern 

Trends in CBSE 

Our recommendations to general practitioners are also applicable for practitioners at 

StatoilHydro ASA, and vice versa. Our results show that improvements can be made as 

follows: 

 A standardized architecture in the company should function as a platform for 

adapting the JEF framework of reusable components towards new 

requirements and further evolution at StatoilHydro ASA. To follow up such a 

goal, the company should: 

o Keep the architectural design and related assets as ‗live‘ artifacts, 

allowing updates dynamically as the architecture is evolved.  
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o Ensure and maintain long-lasting commitment to empirical studies at 

all levels of the developing organization.  Developers in our context 

are inherently skeptical towards tasks (read: ―extra work‖) that could 

not explicitly be related to their daily work. 

 

 Knowledge sharing to counter frequent changes of  

o personnel,  

o requirements, and  

o resources  

can affect the combined collective knowledge of a team or even an entire 

software development organization. This means that maintaining and 

encouraging continuous knowledge sharing and exchange is important, in 

order to allow the organization to retain relevant knowledge once a developer 

leaves. A related recommendation appears in [Chen 2007], where the authors 

urged organizations to appoint a ―component uncle‖ to follow up the 

evolution of each adopted OSS component, or a component in a certain area 

or from (a) certain provider(s). 

 

 Training can, depending on an individual‘s prior knowledge and experience, 

be an important precursor to effective knowledge sharing. Our results show 

that proper knowledge of a reuse training program was not present among all 

developers and hired-in consultants at StatoilHydro ASA. It is therefore 

important that such programs be properly promoted and carried out. 

 

 Test Driven Development can help promote reuse due to the higher inherent 

focus on testing and refactoring. While our results show that TDD can help 

reduce the number of defects in comparison to test-last development for 

reusable components, effort measurements should also be a part of 

introducing TDD.  This is because lower productivity has been shown in 

other industrial studies [Janzen 2005], albeit for non-reusable components.  

 

 Risk management: system architects are currently focusing on obtaining and 

recovering evaluation artifacts and improving communication. At the same 

time, our results show that the median of the outcome ratings for the 

strategies was ―Medium‖.  We thus need to improve architectural 

documentation artifacts, and evaluate the architecture on a regular basis. 

Furthermore, these aspects should be integrated seamlessly into the evolution 

process. Implementing a training program that covers both architects and 

organizational management seems to be a sensible way to achieve this. 

6.4 Future Work 

The described case studies provide a basis for further studies in Component-Based 

Software Engineering, software evolution and software architecture as follows: 
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With respect to the impact of defects and changes in software evolution (and 

related to SEVO goal G1): 
 

- A study of cost estimation related to OTS software: StatoilHydro uses a large 

amount of OTS software, requiring a certain amount of integration and tailoring 

for such components. Personal experience as the basis for estimating integration 

effort appears to be common in industry, and although it often leads to 

inaccurate estimates [P2], expert estimates are usually better than formal-model 

ones. The question remains how to define who is an expert. StatoilHydro aims to 

determine the total costs associated with integration and tailoring, as well as 

their distribution over change types for OTS components. Additionally, to 

investigate possible differences with respect to reuse of in-house components is 

of interest. 

 

- A study on complexity:  Data on defect density and change density [Mohagheghi 

2004a] [Mohagheghi & Conradi 2004b] [Mohagheghi & Conradi 2008] is 

commonly used towards investigating reliability and maintainability of software 

components. Nevertheless, these metrics do not include any weighting of 

complexity of individual components. Function points is a method that has been 

proposed to include software complexity in the size measure [Umholtz 1994], 

but as noted, no standard method for counting function points that includes 

algorithmic complexity is currently supported by ISO [ISO 2010]. This would 

be a study towards improved metrics for providing a more detailed view of 

component quality and reliability in software evolution.  

 

With respect to the impact of modern trends in CBSE on the development process 

(and related to SEVO goal G2): 

 

- A study of knowledge sharing: Certain teams at StatoilHydro ASA (indeed in 

most ICT companies) undergo fast changes with respect to personnel, 

requirements and resources [Gupta 2009a]. The company is concerned with how 

to best maintain knowledge which would otherwise be lost. There is some 

knowledge sharing technology in place, but this may not fulfill the needs of the 

company. Further studies are necessary to investigate the potential role of 

collaboration tools (e.g. Wikis, networks, ecosystem) in the company. 

 

- COTS/OSS and communities: Earlier investigations of OSS and communities 

have focused on the current state-of-practice within industry with respect to 

component selection and integration [Ayala 2007] [Scacchi 2006b]. Future 

research on current best practices within OSS selection should have a more 

detailed focus on evaluating benefits versus disadvantages to get the full picture 

about efficiency, and allow researchers to propose relevant improvements where 

needed. 

 

- Improvements to a company’s software processes: We have made several 

recommendations for process improvements towards general practitioners and at 
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StatoilHydro ASA (see Chapter 5).  Additional investigations are needed to 

study the implementation and effects of these recommendations.  

 

- Agile Architecture: As noted in Chapter 2.4, the long-term perspectives involved 

in software architecture and short-term foci of agile software development 

should be combined to allow the benefits of both to prevail.  Additional studies 

are necessary to explore how these two paradigms can best be combined. 

 

- Further study of the approach to TDD at StatoilHydro: The company aims to 

investigate the effort used towards handling defects and changes, and to 

investigate other potential facets of benefits related to TDD. 

 

With respect to architectural risks in software evolution (and related to SEVO goal 

G2): 

 

- Study of code-level and other artifact data for software architecture evolution: 

We want to couple the risks and corresponding risk management strategies we 

have identified with an investigation of empirical data related to architecture 

evolution. This can, in the future, facilitate a method framework for better 

handling of these issues, also on the code-level. 

 

- Expand our knowledge on architecture risk management in software evolution: 

Though several possible concepts and related activities towards effective risk 

management in CBSE have been proposed, there is a lack of actual empirical 

studies in the area [Glass 2001]. This means that the actual value and 

effectiveness of proposed activities and tools remain largely unknown.  Our 

studies represent a start to investigate certain software architecture risk issues in 

connection with software evolution. We would nevertheless like to expand our 

survey base to possibly confirm and/or add to our findings thus far. Performing 

hands-on investigations (e.g. case studies) of actual evolution of software 

architecture also remains a priority issue. 

 

- Thorough investigation of software architecture evaluation methods: Earlier 

investigations on software architecture analysis [Bass 2007][O‘Connell 2006] 

have focused on structured analysis outputs as a basis for determining risks.  

However, the actual methods used for analyzing the software architecture can 

vary quite a lot [Babar 2007a].  Investigating a wider range of analysis methods 

will help to discover risk issues possibly missed by earlier studies.  

 

- A study of architectural versus non-architectural changes: Failure of the 

software architecture can cause failure of an entire development project. Better 

knowledge and understanding about architectural evolution can potentially 

improve handling of actual software architecture changes, which can cause 

subsequent changes in many components of a software system [Bass 2004].  

Such an investigation should study architectural versus non-architectural 

changes, with respect to their distribution and possible handling. 
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Glossary 

Change density: Number of Change Requests (CRs - perfective, adaptive and 

preventive (but not corrective) changes) per Non-commented Source Lines of Code 

[Mohagheghi & Conradi 2004a, p. 1] (defined as ―change-proneness‖ in the reference). 

 

Component-Based Software Engineering: The process of defining, implementing, and 

integrating or composing loosely coupled, independent components into software 

systems [Sommerville 2010, p. 453]. 

 

Defect density: Number of corrective changes (defects) per Non-commented Source 

Lines of Code [Mohagheghi & Conradi 2004b, p. 1]. 

 

Software architecture: defined as the structure(s) of the system, which comprise(s) 

software elements, the externally visible properties of those elements, and the 

relationships among them [Bass 2004, p. 21]. 

 

Software evolution:  the systematic and dynamic updating in new/current development 

or reengineering from past development of component(s) (source code) or other 

artifact(s) to accommodate new functionality, improve the existing functionality, or 

enhance the performance or other quality attribute(s) of such artifact(s) between 

different releases [P5, p. 3].  

 

Software maintenance : the general process of changing a system after delivery 

[Sommerville 2010, p. 242].  

 

Software Process Improvement: encompasses the understanding and changing of 

existing processes to improve software product quality, as well as to reduce costs and 

development time [Sommerville 2010, p. 706, adapted]. 

 

Software reuse : the systematic reuse of components and other artifacts (e.g. 

abstractions, objects, or even applications) [Sommerville 2010, p. 194]. 

 

Software Risk:  An issue that can potentially result in an unsatisfactory outcome, if not 

handled correctly, can be considered a risk [Boehm 1991, p. 33]. 
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In this appendix, the 6 articles that contribute the most towards the work in this thesis 

are presented.  They are presented in the same order as already discussed earlier in this 

thesis.  The articles are titled as follows: 

 

 P1: An Empirical Study of Developers Views on Software Reuse in Statoil 

ASA. 

 P2: Development with Off-The-Shelf Components: 10 Facts. 

 P3: Preliminary results from an investigation of software evolution in industry. 

 P4: The Impact of Test Driven Development on the Evolution of a Reusable 

Framework of Components – An Industrial Case Study. 

 P5: Identifying and Understanding Architectural Risks in Software Evolution: 

An Empirical Study. 

 P6: Risks and Risk Management in Software Architecture Evolution: an 

Industrial Survey. 

 

The original formatting of the articles has been kept where possible. 
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Published in proceedings of ISESE‘2006. 
 
Odd Petter N. Slyngstad, Anita Gupta, Reidar Conradi, Parastoo Mohagheghi 

Dept. of Computer and Information Science (IDI) Norwegian University of Science and 
Technology (NTNU) 
Trondheim, Norway 

+4773593440 

{oslyngst, anitaash, conradi, parastoo} at idi.ntnu.no 

 

Harald Rønneberg, Einar Landre 

Statoil KTJ/IT 
Forus, Stavanger, Norway 

+4751990000 

{haro, einla} at statoil.com 

 

ABSTRACT 
In this article, we describe the results from our survey in the IT-department of a large Oil and Gas company in 

Norway (Statoil ASA), in order to characterize developers‘ views on software reuse. We have used a survey followed 

by semi-structured interviews, investigating software reuse in relation to requirements (re)negotiation, value of 

component information repository, component understanding and quality attribute specifications. All 16 developers 

participated in the survey and filled in the questionnaire based on their experience and views on software reuse.  Our 

study focuses on components built and reused in-house.  The results show that reuse benefits from the developers 

view include lower costs, shorter development time, higher quality of the reusable components and a standardized 

architecture. Component information repositories can contribute to successful software reuse.  However, we found no 

relation between reuse and increased rework. Component understanding was generally sufficient, but documentation 

could be improved.  A key point here is dynamic and interactive documents.  Finally, quality attribute specifications 

were trusted for the applications using reusable components in new development, but not for the reusable components 

themselves.   

Categories and Subject Descriptors 
D.2.13 [Software Engineering]: Reusable Software- reusable libraries. 

General Terms 
Measurement, Verification. 

Keywords 
Empirical Study, Software reuse, CBSE. 

1. INTRODUCTION 

Software reuse can be specified in two 

directions [14], namely development for 

reuse and development with reuse. The 

former refers to systematic generalization 

of software components for later reuse, 

while the latter deals with how existing 

components can be reused in existing and 

 

ISESE’06, September 21-22, 2006, Rio de Janeiro, Brazil. 
Copyright 2006 ACM 1-59593-218-6/06/0009…$5.00. 

 



Appendix A 

 

 96 

new applications and systems. However, when it comes to reusing in-house built 

components, these two processes are tightly related. 

Currently, we are studying the reuse process in the IT-department of a large 

Norwegian Oil & Gas company named Statoil ASA
1
 and collecting quantitative data on 

reused components.  To improve our understanding and collect evidence from several 

sources, we also performed a survey followed by semi-structured interviews in the 

organization.  The research interests are obtained from the extant literature, and include 

the major benefits and factors contributing towards reuse, the effect of reuse on rework, 

as well as understanding and trust of component and quality specifications.  Based on 

these issues, we have defined and explored several research questions through a survey 

questionnaire.   

The results support some conclusions from earlier studies, while contradicting others. 

The sample size is rather small, and further studies will be used to refine and further 

investigate the research questions presented here.  This study can therefore be seen as a 

pre-study.  This paper is structured as follows: Section 2 discusses software reuse and 

CBSE, Section 3 has related work, and Section 4 discusses research background and 

motivation.  Furthermore, Section 5 contains the results of our survey, Section 6 

discusses these results, while Section 7 concludes. 

2. SOFTWARE REUSE AND CBSE 

Software reuse can have varying degrees of application, ranging from case-by-case 

basis (ad-hoc) to fully systematic approaches [6].  The most-inclusive definition of the 

term encompasses reuse of any and all assets, that is, from design and code through 

established procedures to documentation and knowledge.   Benefits include easier 

understanding of the functionality, a potential shorter time-to-market, as well as 

possibly less effort spent on maintenance and future adoption of new requirements [17].   

However, over the past decade, several attempts have been made at improving 

software development practices by design techniques, developing more expressive 

notations for capturing a system‘s intended functionality, and encouraging reuse of pre-

developed system pieces rather than building from scratch [2].  Already in 1972, Davis 

Parnas wrote about the advantages of decomposing a system into modules. He mentions 

benefits such as [12]: 

 shorter time-to-market (development time) because modules can be developed 

by separate groups,  

 increased product flexibility,  

 ease of change, and finally  

 increased comprehensibility as modules can be studied separately.  

A new style of software development based on the principles of Parnas, and 

emphasizing component reuse, is CBSE; This involves the practices needed to perform 

component-based development in a repeatable way to build systems that have 

predictable properties [1]. Component-Based Software Engineering (CBSE) and 

Component-Based Development (CBD) are approaches to the old problem of handling 

the complexity of a system by decomposition, and these two concepts are often used 

indistinguishably [10]. Although, much effort has been devoted to define and describe 

                                                 
1
 ASA stands for “allmennaksjeselskap”, meaning Incorporated. 
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the terms and concepts involved, there is some literature that distinguishes between 

these two concepts. According to Bass [1], CBD involves the technical steps for 

designing and implementing software components, assembling systems from pre-built 

software components, and deploying assembled systems into their target environment. 

CBSE, however involves the practices necessary to perform CBD in a repeatable way to 

build systems that have predictable properties [1]. An important goal of CBSE is that 

components provide services that can be integrated into larger, complete applications. 

CBSE allows the reuse of common functionality between applications, as well as 

organization-wide distribution of best practices.  This functionality is embodied in 

components, which provide services that can then be included in new development, 

hence reused.  Research has long investigated the connections between reuse and CBSE 

in terms of experience accumulated by practitioners on issues related to software reuse.  

CBSE provides the means to flexibly upgrade or replace parts of a system in order to 

satisfy the increasing requirements for agility and speed in new development.  Another 

key feature of CBSE is the focus on quality attributes and corresponding testing. 

3. RELATED WORK 

Lim [8] have conducted a study of the effect reuse have on quality, productivity and 

economics in Hewlett-Packard. Data was collected from two reuse programs in this 

company. The results of this study revealed that reuse can provide a substantial return 

on investment. HP reuse programs documented improved quality, increased 

productivity, shortened time-to-market, and enhanced economics resulting from reuse. 

Frakes & Fox [4] conducted a survey in 1991-1992, where they answered 16 

commonly asked questions about reuse. A total of 113 people from 28 U.S 

organizations and one European organization, with a median size of 25,000 employees, 

participated in this survey. Some of the results that the study revealed were that 

education influences reuse, developers actually prefer to reuse instead of building 

components from scratch, reuse is more common in telecommunications compared to 

aerospace, and that having a reuse repository does not improve software reuse.  

Additionally, they found that a common software process may be advantageous.   

A large reuse project was the REBOOT (Reuse Based on Object-Oriented 

Techniques) project [14], where the focus was on the importance of the organizational 

aspects of reuse in addition to the traditional technical perspective.  These issues include 

organization and processes, as well as business drivers and human factors.  The 

availability of more experience with industrial reuse may show the importance of these 

non-technical factors to be at least equal to that of the technological aspects [5] [9]. 

Another interesting survey is one performed by Morisio, Ezran and Tully [11]. They 

analyzed 24 projects in both large and small companies in Europe performed in 1994-

1997 involving reuse. Their results revealed that successful component reuse was 

achieved when the organizations had a potential for reuse because of commonality 

among applications, management committed to introducing reuse process, modifying 

non-reuse processes, and addressing human factors.     

Although the aforementioned studies cannot be directly compared to our survey, they 

are important to see the general trends in software reuse, and provide some of the 
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motivation for our research questions.  We will also compare with these studies where 

applicable, as shown in section 6 where we discuss our results.    

In [7], Li et al. investigated developer attitude towards reuse of in-house components, 

collecting data from 26 respondents in 3 companies.  They found that the concerns were 

the same among those reusing components built in-house, as among those using 

Components-Off-The-Shelf (COTS), when it comes to (re)negotiation of requirements, 

documentation and the specification of quality attributes for components.  Also, their 

results lend support to the claim that repositories do not contribute towards success in 

software reuse, and show that informal communication between developers can be very 

valuable, due to shortcomings in the component documentation. This is the work which 

is most applicable to our research in this survey, and a number of the questions in the 

questionnaire have been adapted to our use, as seen in section 4. Our contribution is 

hence to confirm or decline the results from the aforementioned studies, in addition to 

possibly reveal new results. 

4. RESEARCH BACKGROUND AND MOTIVATION 

Over the last decades a large push has been towards understanding the issues involved 

in reuse and discover the benefits and disadvantages of different approaches within the 

field.  In CBSE, a key point of utilizing software reuse is to be able to manage software 

evolution through reusing components systematically, to take into account new 

requirements when they appear.  Successful introduction and propagation of a software 

reuse program can be characterized by three overall points [11]:  

 Commitment from management at all levels, 

 Process modifications in the following manner: 

 Starting reuse processes, 

 Altering non-reuse processes, 

 Taking human factors into account, and 

 Awareness of the organization‘s context. 

When it comes to development with reuse, being able to match the requirements to 

existing reusable components is important. Also, being able to obtain sufficient 

knowledge of these components, as well as being able to reuse them with little or no 

modification, are paramount issues [9].  

Our motivation is to reevaluate the issues surrounding software reuse from the 

perspective of developers involved in a reuse program.  In particular, we want to 

explore the possible benefits, disadvantages and contributors towards successful reuse 

of software components.  We also want to look at the documentation and quality 

specifications of reusable components that is available to the developers, who reuse 

them in new development. In the following section, our research questions for the 

survey are presented. 

4.1 RESEARCH QUESTIONS 

RQ1: What are the key benefits of reuse? The existing literature on software reuse 

claims that reuse has a positive effect on quality, productivity and time-to-market [8].  

These benefits appear to be present from the second reuse occurrence; hence a positive 

return on investment can easily be seen over a relatively short period of time. The 



Appendix A 

 

 99 

purpose in our case is to confirm whether these positive effects can be seen in the same 

way from the perspective of the developers.   

RQ2: Which factors contribute to facilitate reuse? As aforementioned, key factors 

towards facilitating reuse in industry are management commitment, necessary process 

modifications, and organization context awareness [11].  These are factors on a higher 

level, which developers may not have a large amount of influence on, although they 

affect developers directly.  It may therefore be interesting and beneficial to investigate 

developer‘s opinions on this question, while still extracting extra qualitative 

information.    

RQ3: Does reuse increase rework? Statoil ASA has it as a goal to keep rework as 

low as possible. Rework in the company is concerned with fixing problems (due to 

changes in requirements or misunderstood/ambiguous requirements), and may be more 

for reused components if extra effort is needed to analyze and fix such problems for 

components developed earlier or by other teams. It is therefore important for them to be 

aware of the causes and possible remedies surrounding this issue. 

RQ4: Do developers have sufficient information to understand the relevant 

components? If the answer is no, how can they solve this problem? Component 

information for developers should at least encompass requirements and functional 

specifications.  In addition, lower level details such as use cases, tests and the like can 

be valuable, but depending on the individual area of responsibility the needs may be 

different between developers.  A key issue noted in literature is the need for the 

developers to have enough relevant information available.  A noted problem within this 

issue is the inability to express quality attribute information on a per component basis 

[3].  

RQ5: Do developers trust the relevant quality specification of the components? 

If the answer is no, how can they solve this problem? Trust is paramount in CBSE in 

the sense of developing trustable systems from components for which the developers 

may only have partial information.  While CBSE allows the construction of systems 

from individual components, there is only a low focus on integration and quality 

attribute issues [18].  Here, we want to check the current status, and obtain the 

developers opinions about what can be done to remedy the situation, if problems exist. 

The questionnaire used in this study is extended and adapted from that of an earlier 

study, also on reuse [7].  Some of the questions and sections have been modified and 

added due to different research questions. 
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Table 1. The questions in our questionnaire 

General on software reuse
2
 Comments 

Q6. What is your highest level of education? 

Q7. How many years of experience do you have with software 

development after completed education? 

Q8. How many years of experience do you have with reusing 

components after completed education? 

Q9. How important do you consider software reuse for achieving the 

following benefits? (5 point scale; answer alternatives: Lower 

development costs, Shorter development time, Higher JEF
3
 

component quality, A more standardized architecture, Lower 

maintenance costs (including technology updates), Increased 

knowledge/knowledge sharing, Other (please specify)) 

Q10. What software artifacts are most important to be reused? 

(Requirements, Use Cases, Design, Code, Test data/documentation 

ranked 1 to 5) 

Q11. Does Statoil ASA have a training program about software 

reuse? 

Q12. If ―Yes‖ in Q11, have you attended this training program? 

Q13. Do you use a formal software reuse process for developing JEF 

components? 

Q13b. If ―No‖ in Q13, would the availability of such a formal 

software reuse process be beneficial for you? 

Q14. Do you use a formal software reuse process for reusing JEF 

components?  

Q14b. If ―No‖ in Q14, would the availability of such a formal 

software reuse process be beneficial for you? 

All 

questions on 

general 

software reuse 

are customized 

specifically for 

Statoil ASA. 

Requirements (re)negotiation  

Q15. Are requirements changed/(re)negotiated due the development 

process (DCF and S&A
4
)? (5 point scale) 

Q16. Are requirements misunderstood / ambiguous? (5 point scale) 

Q16b. If ―Very often‖ or ―Often‖ in Q16, what are the consequences 

(e.g. excessive effort)? 

Q17. Are requirements flexible (by flexible we mean that 

requirements are easy to change, modify, etc.) in the development 

projects? (5 point scale) 

Q18. The requirements (re)negotiation processes related to the JEF 

components work efficiently in the projects (DCF and S&A)? (5 

point scale) 

Q19. Rework (by rework we mean extra effort to fix problems due to 

changes in requirements or misunderstood/ambiguous requirements) 

Q15, Q17, 

and Q18 are 

adapted from 

[7], while the 

remainders are 

customized 

specifically for 

Statoil ASA. 

                                                 
2
 Questions Q1-Q5 deal with the general respondent information, and the results from these 

questions are used towards characterizing the respondents.  
3
 JEF is the name used to refer collectively to the reusable components in use at Statoil 

ASA. 
4
 DCF and S&A are two development projects at Statoil ASA, which utilize reuse in new 

development. 
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has increased after introducing JEF components? (5 point scale) 

Value of component information repository  

Q20. Availability of a JEF repository (e.g. for storing information 

about JEF components) would be beneficial for me? (5 point scale) 

Q20b. If ―Agree‖ or ―Strongly agree‖ in Q20, please specify why: 

Q20c. If ―Strongly disagree‖ or ―Disagree‖ in Q20, please specify 

why: 

Q20 is 

adapted from 

[7]. 

Component understanding  

Q21. Which of the following JEF components do you find the most 

difficult to develop and / or reuse? (The JEF components are listed, 

respondent is asked to rank them for both cases in terms of difficulty) 

Q22. How well do you know the SJEF
5
 architecture? 

Q23. How well do you know the interface of the components? (5 

point scale) 

Q24. How well is the design / code of the reusable components 

documented? (5 point scale) 

Q24a. If the answer of Q24 is ―Poorly‖ or ―Very poorly‖, is this a 

problem (please specify why)? 

Q24b. If the answer of Q24 is ―Poorly‖ or ―Very poorly‖, what are 

the problems with the documentation? 

Q24c. If the answer of Q24 is ―Poorly‖ or ―Very poorly‖, how would 

you prefer the documentation? 

Q25. What is your main source of documentation about JEF 

components during implementation (e.g. documentation, ask the JEF 

team)? 

Q26. Please specify if there are any other problems with 

understanding JEF components 

Q27. How do you usually reuse a JEF component? (alternatives: as 

is, with modifications, with modifications performed by the JEF 

team, Other (please specify), No relevance) 

Q22, Q23, 

Q24, Q25, 

Q27 are 

adapted from 

[7], while the 

remainder are 

customized 

specifically for 

Statoil ASA. 

Specification of components quality attributes (non-functional 

requirements) 

 

Q28. How are the specifications for JEF components‘ quality 

attributes defined? (5 point scale) 

Q29. How are the specifications for the (developed) system quality 

attributes defined? 

Q29b. If ―Poorly‖ or ―Very poorly‖ in Q28 and / or Q29, what can be 

done to improve the situation? 

Q30. Are the components tested for their quality attributes before 

integrating them with other components? 

Q28, Q29, 

Q30 are 

adapted from 

[7]. 

 

Table 2. Research questions vs. questionnaire questions 

Questions RQ1 RQ2 RQ3 RQ4 RQ5 

Q9-Q10 X     

Q6-Q8, Q11-  X    

                                                 
5
 SJEF is the name given to the architecture which the reusable components are built on. 
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Q14, and Q20. 

Q15-Q19   X   

Q21-Q27    X  

Q28-Q30     X 

Questions Q1-Q5 deal with general respondent information, and the results from 

these questions are used towards characterizing the respondents. 

 

4.2 THE QUESTIONNAIRE 

Based on our aforementioned research questions we have decided to use a 

quantitative survey, supplemented with a semi-structured interview. Our questionnaire 

consists mainly of check boxes, but gives also the individual respondent to contribute 

their own qualitative input. From the respondents own personal qualitative data we hope 

to obtain information, which can be supplemented with the rest of the data material. 

Due to our research questions, we think that a standardized survey with semi-structured 

interviews seems most appropriate for our data collection. This is because this research 

method gives us the opportunity to obtain satisfactory amount of information from each 

respondent with the help of a structured survey. A quantitative survey also gives us the 

possibility to sort out the collected data in a least time-consuming way. It gives us the 

opportunity to analyze data with statistical tools and analysis techniques.   

Once the questionnaire was formed, it was first pre-tested on two separate occasions 

among 6 academic colleagues to obtain comments and to ensure that we were asking the 

questions understandably and would obtain the desired information.  The final 

questionnaire is 11 pages long and contains 30 questions, which are grouped in five 

parts. These parts are General on software reuse, Requirements (re)negotiation, Value of 

component information repository, Component understanding and Specification of 

components quality attributes (non-functional requirements). Each question in the 

questionnaire has been used to study one of the research questions. Table 1 describes 

the questions in more detail, and the correspondence between research questions and the 

questions in the questionnaire is in Table 2.  

4.3 THE CONTEXT 

Statoil ASA is a major oil and gas operator on the Norwegian continental shelf.  

They are headquartered in Europe, present in 28 countries, and have 24 000 employees 

worldwide.  Within the company, the central IT-department is responsible for 

developing and delivering software which is meant to give key business areas better 

flexibility in their operation.  This department consists of approximately 100 developers 

worldwide, located mainly in Norway and Sweden.  The 16 developers we selected are 

located in Norway, specifically in Stavanger, Trondheim and Oslo.  Since 2004, a 

central IT strategy of the O&S (Oil Sales, Trading and Supply) business area has been 

to explore the potential benefits of reusing software systematically, in the form of a 

framework based on Java Enterprise Framework components. The actual JEF 

framework (Java Enterprise Framework) consists of seven separate components (these 

are: JEF Client, JEF Workbench, JEF Util, JEF Dataaccess, JEF SessionManagement, 

JEF Security and JEF Integration), which can be applied separately or together when 

developing applications. This strategy is now being propagated to other divisions within 
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Statoil ASA. Reuse in Statoil ASA is component-based, with a foundation in an in-

house developed architecture and with a related component framework based on Java 

Enterprise Framework technology. 

We are currently studying two projects at Statoil ASA, namely DCF (Digital Cargo 

Files) and S&A (Shipment & Allocation). The DCF application is mainly a document 

storage application. It imposes a certain structure to the documents stored in the 

application, and is based on the assumption that the core part of the documents is based 

on cargo (load) and deal (contract agreement) data as well as auxiliary documents 

pertaining to these information entities. DCF is meant to replace the current practice of 

cargo files, which are physical folders containing printouts of documents pertaining to a 

particular cargo or deal. A ―cargo file‖ is a container for working documents related to a 

deal or cargo, within operational processes, used by all parties in the O&S strategy plan 

at Statoil ASA. The DCF application consists of 21459 LOC, and has a current used 

budget to date of 15.7 million Norwegian Kroner (about 2 million Euros). The S&A 

application aims to allow operators to carry out risk analysis on shipments from loading 

at terminals and offshore, as the current application is not able to take care of complex 

agreements (i.e. mixing of oil qualities within the same shipment). The S&A application 

consists of 64319 LOC, and has a current used budget to date of 17 million Norwegian 

Kroner (about 2.12 million Euros). 

4.4 DATA COLLECTION 

Data collection was carried out by two NTNU PhD students, the first and second 

author of this paper. We selected Statoil ASA, since they are cooperating with us in our 

SEVO (Software EVOlution) project and throughout our PhD research. The respondents 

are developers in Statoil ASA.  This survey is, therefore, a non-probability sampling, 

based on convenience as described in Section 4.5. The developers that participated in 

the survey currently work with the DCF and S&A projects, reusing the JEF components 

developed by the JEF Team. Also, some of these developers are part of the JEF Team, 

that is, they both develop and reuse the JEF components. The survey was distributed 

among the developers, who were then allowed a few hours within which to complete it.  

We had contacted and agreed upon the date with the relevant department and project 

managers beforehand, to ensure that enough time was allotted for this purpose. The 

developers answered the questionnaires separately, and they were filled out by hand. 

Filling out the questionnaire took 12-14 minutes, as estimated from the test runs. None 

of the actual respondents used more time than the allotted time to finish answering the 

questions.  After the developers had completed the questionnaire we performed short 

semi-structured, one-on-one interviews with each of the developers for 10-15 minutes. 

This was done for providing support with possible misunderstandings in answering the 

questionnaire, as well as obtaining more thoroughly qualitative information around the 

issues presented in the questionnaire. 

4.5 RESPONDENTS 

All respondents in our survey are developers that are involved in the DCF and S&A 

projects, and the JEF team.  They all belong to the central IT-department at Statoil ASA 

which utilizes development for/with reuse in their own development projects.  The 

software is developed mainly for other units within Statoil ASA as customers, and aims 

to be at the forefront of what technology can offer.  In total, there are 16 developers 
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working with the DCF project, the S&A project and the JEF Team at Statoil ASA in 

Stavanger, Trondheim and Oslo. We asked all these developers to participate in the 

survey, and got 16 filled-out questionnaires back. These 16 developers were selected, 

since their work is related to JEF component reuse. There are a total of 100 developers 

in the IT-department, as aforementioned. However, these 16 developers are the only 

one‘s currently specifically involved with software reuse at Statoil ASA, and the 

remainders would therefore be less relevant for us in this survey. 

All of the respondents have an IT background and education, seven of them have a 

Master of Science degree, while the other nine have education on the Bachelor degree 

level. A total of 22 roles were identified; 14 had a role as developer, 4 had a role as 

designer, 2 had a role as an architect and 1 had a role as a test manager.  In addition, 

there was 1 respondent who filled the responsibility roles of maintenance and support. 

Therefore, several of the respondents had multiple roles within and also between the 

projects / teams.  Seven of them had been working in software development between 

five and ten years, while the majority of the remaining respondents had more than ten 

years of experience.  Only three respondents had less than five years overall experience.  

The majority expressed having less than ten years of experience in working with reuse.  

5. PRESENTATION OF RESULTS 

In this section, we summarize the survey results. All the statistical data presented in 

this study are based on valid answers, and no relevance answers are not included in the 

analysis. The statistical analysis tool we used is SPSS version 1.0 and Microsoft Excel 

2003.  

5.1 RQ1: What are the Key Benefits of Reuse? 

First, we wanted some general information about software reuse in Statoil ASA, and 

questions Q6-Q14 were asked to get this information. However, Q9 and Q10 were 

asked to provide answer to RQ1 and are based on developers‘ subjective opinion related 

to this issue. The result of Q9 is shown in Figure 1, and the result of Q10 is shown in 

Figure 2.  These figures are boxplots, showing the upper and lower 25% and 75 % 

quartiles, as well as the median, and outliers where applicable [15][16]. 

The numbering along the vertical axis in Figure 1 is the individual ranking; where 

2=Low, 3=Medium, 4=High and 5=Very high. None of the respondents gave very low 

to the benefits. The abbreviations cq, ik, ldc, lmc, sa and sdt along the horizontal axis in 

Figure 1 are subsequently higher JEF component quality, increased 

knowledge/knowledge sharing, lower development cost, lower maintenance cost 

(including technology updates), a more standardized architecture and shorter 

development time. From Figure 1, we can see that most developers think that the 

component quality, lower development costs, a more standardized architecture, and 

shorter development time are seen as equally important benefits of software reuse, while 

increased knowledge/knowledge sharing is less important. 
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Figure 1. Benefits of software reuse 

 

The numbering along the vertical axis in Figure 2 is the priority given by each 

developer; where 1=most important and 5=least important. The abbreviations co, ds, rq, 

te, uc along the horizontal axis in this figure are subsequently code, design, 

requirements, test data/documentation and use cases.  From Figure 2 below, we can see 

that most developers think that design/code is the most important to be reused, while 

requirements and use cases are less important to be reused.  

 

 
Figure 2. Software artefacts important to be reused 
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In summary, most of the developers think that lower development cost, shorter 

development time, higher JEF component quality, and a more standardized architecture 

are the most important benefits of reuse, while the artefacts that are important to be 

reused are design/code in order to achieve the benefits. 

5.2 RQ2: Which Factors Contribute to Facilitate Reuse? 

The questions used to evaluate this research question were Q6-Q8, Q11-Q14 and 

Q20.  The results from Q6-Q8 (level of education and experience) are briefly presented 

in Section 4.5 above. From this, we can see that mean experience with software 

development is 8.6 years, while mean experience with software reuse is 6.9 years. Q11-

Q14 revealed that 12/16 of the developers don’t know whether Statoil ASA has a 

training program on software reuse.  We know from communication with upper level 

management that Statoil ASA does not have a formal process for developing and/or 

reusing reusable components.  Nevertheless, the questionnaire revealed some 

disagreement between developers on this issue, as 3/16 answered Yes and 5/16 

answered No to question Q13.  Likewise, in Q14, 5/16 answered Yes while 6/16 

answered No.    

It has already been shown thoroughly in other studies that a component repository for 

storing the reusable components themselves is not a contributor for reuse.  We therefore 

decided to explore the value of a repository of information about the components.  From 

Q20, we see that the vast majority of the respondents think that such a repository would 

be beneficial for them; none of them disagree, and only two said they were neutral on 

this issue. This may be partly due to the poor documentation of reusable components as 

discussed in RQ4. It should be noted that the main function of a traditional reuse 

repository is search and retrieval of reusable components, which is not relevant here. 

The factors that contribute towards facilitating reuse can hence be summarized as 

follows.  With education, the slight majority have a bachelor‘s degree, while the rest 

have a higher education, but we have seen no evidence that this contributes towards 

reuse. The same is true for experience (with software development as well as with 

software reuse) – here too, we have seen no indication that experience promotes reuse. 

Also, the majority of the developers have no knowledge of possible training programs at 

Statoil ASA on software reuse, and there is confusion surrounding the issue of whether 

formal process(es) for developing and/or reusing software is actually in use.   Finally, a 

repository for information about the reusable components would be advantageous.   

5.3 RQ3: Does Reuse Increase Rework? 

Questions Q15-Q19 were used to investigate whether reuse leads to increased rework 

levels.  We found that for Q15, 11/16 developers feel that the requirements are 

changed/(re)negotiated somewhat in the development projects (DCF and S&A).  

Further, regarding Q16, 5/16 think that the requirements are often or very often 

misunderstood/ambiguous, and the same amount think that this is seldom the case, 

while another 6/16 think is somewhat true.  10/16 of the developers think that 

requirements are somewhat flexible in Q17 (while the remainders said this was only 

seldom the case), and 7/16 agree that the process of (re)negotiation of requirements 

towards the reusable components works efficiently for Q18 (Here, another two 
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developers disagree, while the rest are neutral).  A plausible reason for this may be that 

requirements naturally change often in typical development projects. 

Finally, when asked directly in Q19, 3/16 think that the introduction of reuse has not 

caused increasing rework, while 3/16 are of the opposite opinion, and the remaining are 

neutral. In summary, we have not found any significant evidence that reuse leads to an 

increase in rework, hence our results remain inconclusive. 

5.4 RQ4: Do Developers Have Sufficient Information to Understand the Relevant 

Components? If the Answer is No, How can they Solve this Problem? 

Questions Q21-Q27 were used to investigate this research question.  From Q21, the 

most difficult components appear to be JEF Client and JEF Integration, while the easier 

one‘s are JEF Util and JEF Dataaccess.   

Q22 revealed that 8/16 know the architecture well or very well, while 7/16 know it 

somewhat, and only 1/16 replied knowing it poorly.  Q23 shows that 5/16 know the 

component interfaces well or very well, while 8/16 know it somewhat, and only 2/16 

answered that they know it poorly.   

In Q24, 2/16 think that the design/code is well documented, while 9/16 wrote 

somewhat and, again, 3/16 wrote poorly.  In Q25, developers answered that their main 

sources of information on the JEF components are typically the JEF team, 

javadoc/source code, colleagues and the JEF homepage.  Furthermore, in Q26, when 

asked about other problems with component understanding, the answers were that the 

reusable components are immature/unstable as they are changing, and that 

documentation is insufficient, as well as that it is unclear how different components 

cooperate and the dependencies between them.  Finally, Q27 shows that 8/16 of the 

developers reuse the JEF components “as-is”, while 3/16 reuse with modifications by 

the JEF Team.  Only 2/16 replied that they “reuse with modifications” (performed by 

themselves). 

The most difficult components are JEF Client and JEF Integration, and about half of 

the developers have a good understanding of the architecture.  However, 50% of the 

developers only know the component interfaces somewhat, and 56% think that the 

design/code is somewhat well documented.  Another 50% reuse the JEF components 

“as-is”. 

It hence appears that while the majority of the developers have knowledge of the 

component architecture as well as the component interfaces, they‘re still unhappy with 

the documentation that is available.  Currently, the qualitative answers from the 

questionnaire and the semi-structured interviews reveal that developers would like a 

website with overview, tutorial, sample code and good javadoc of the component code, 

which is as interactive as possible for the developers. 

5.5 RQ5: Do Developers Trust the Relevant Quality Specification of the 

Component? If the Answer is No, How can they Solve this Problem? 

In this research question, we used Q28-Q30 to elicit the answers.  Q28 reveals that 

while 8/16 developers think that the quality attributes for the JEF components are 

poorly or very poorly defined, 3/16 think that they are well or very well defined.  

However, Q29 shows that when it comes to the projects DCF and S&A, 12/16 think that 

the respective quality attributes are well or very well defined, while only 2/16 think 
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they‘re poorly or very poorly defined.  Lastly, in Q30, 6/16 developers do not know 

whether the components are tested for fulfilment of their quality attributes before 

integrating them with other components, while 5/16 think that this is only sometimes 

done.  4/16 also think that this is always done, while 1/16 think that this is not done at 

all. 

In summary, 75% of the developers say that the quality attributes (non-functional 

requirements) for the development projects (DCF and S&A) are well defined, while 

50% think that these quality attributes are not well defined for the reusable JEF 

components.  Hence, the developers trust the quality specifications for the development 

projects, but not for the reusable JEF components.  In order to remedy this problem, the 

qualitative answers from the questionnaire and the semi-structured interviews show that 

the specification and publication of quality attributes for the reusable components 

should be improved in terms of realism and clarity.  Additionally, more consistent 

component testing was also suggested as a way to handle this problem.   

 

6. DISCUSSION OF THE RESULTS 

We now discuss our research questions based on the results from our survey, as well 

as the inherent limitations and validity threats. 

6.1 RQ1: What are the Key Benefits of Reuse? 

Lim [8] showed that key benefits of reuse can be seen in terms of higher quality, 

higher productivity, and shorter time-to-market as well as economic benefits.  Our 

results confirm that in the view of the developers, lower development costs (economic 

benefit), shorter development time (productivity – hence shorter time-to-market), higher 

JEF component quality (quality), are perceived as the key benefits of reuse.  

Additionally, a standardized architecture is also seen as a benefit.  

6.2 RQ2: Which Factors Contribute to Facilitate Reuse? 

Frakes & Fox [4] asked about whether reuse education both in academia and in 

industry, influences reuse.  They found that though reuse education in academia and 

industry helps towards reuse, it is still uncommon in academia, as well as in industry.  

Our results show that many of the developers do not know about the existence of a 

reuse training program, so Statoil ASA must become better at promoting such training 

programs where they exist.   

They [4] also wrote that although their respondents say that a common software 

process does not promote reuse, it may nevertheless contribute indirectly.  Our results 

show that though Statoil ASA does not have a formal process specifically for 

developing/reusing reusable components, they do have one for general software 

development, which can implicitly affect reuse positively.  Here too they must also 

become better at informing their developers about this.   

When it comes to a repository, literature has concluded that a reuse repository does 

not increase levels of code reuse [4] [11].  We investigated the question of whether the 

availability of an JEF repository (e.g. for storing information regarding JEF 

components, rather than the components themselves) would be beneficial.  On this 

issue, our results show an overwhelming agreement from the developers.  The 

qualitative reasons given include easier information sharing, easier learning, improved 
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level of documentation, better overview of the documentation and functionality, as well 

as of typical existing problems and troubleshooting.  

We would like to emphasize again here that we have investigated the issue of 

documentation through an information repository, not for ―finding‖ reusable 

components. 

6.3 RQ3: Does Reuse Increase Rework? 

The theoretical foundation behind this research question is that because extra effort 

may be needed towards analyzing and fixing problems with reusable components, reuse 

could potentially increase rework (as discussed in section 4.1).  The analysis here is 

inconclusive, as we cannot show any link between reuse and increased rework.  Possible 

reasons for this are as follows.  The development projects DCF and S&A are meant to 

reuse the JEF components developed by the JEF team, however, our results show that 

developers often have multiple responsibility roles that often cross project and team 

lines.  This means that there is no clear division between development for/with reuse in 

Statoil ASA.  Reused components are developed internally and the organizational 

flexibility improves knowledge and compensates for the lack of a specific reuse process.   

As aforementioned in Section 5.3, we have not seen any indications that reuse leads 

to an increase in rework, and our results here are therefore inconclusive. 

6.4 RQ4: Do Developers Have Sufficient Information to Understand the Relevant 

Components? If the Answer is No, How can they Solve this Problem? 

Li [7] found that developers understood the components well, despite a lack of 

related documentation, and that the knowledge was instead gotten through prior 

experience and local experts.  Our results support these findings, in that the majority of 

the developers have sufficient understanding about the relevant components.  They too 

think that the documentation could be better (see section 5.4), and use the JEF team or 

previous experience to achieve the necessary component understanding.  

6.5 RQ5: Do Developers Trust the Relevant Quality Specification of the 

Component? If the Answer is No, How can they Solve this Problem? 

Here, literature reports that most developers are unhappy with the quality 

specification of the components [7], and therefore cannot use this information.  Our 

results, however, show that the relevant quality specification for the development 

projects DCF and S&A are well-defined, while that for the JEF components are not.  

This could be caused by more rapidly changing requirements, resources, personnel 

involved in the JEF team, and poor documentation. It may also be difficult to define 

quality specifications on the component level.  

6.6 Threats to Validity 

We here discuss the possible threats to validity in our survey, using the definitions 

provided by Wohlin [19]: 

Construct Validity: Most of the research questions and the actual questions in the 

questionnaire have their origin from the research literature.  From these, 12 of the 

survey questions were adapted towards our survey.  Further, through pre-testing among 

local colleagues, most of the questions were refined additionally.  Also, terms that may 

be unfamiliar to the respondents have been defined in the questionnaire handout. 
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External Validity: Another threat is that our survey is done completely by 

convenience sampling. That is, we chose this group of developers specifically because 

they are working with software reuse in the two projects DCF and S&A, as well as the 

JEF Team, which we are already involved in studying. It should be noted that the 

company‘s IT-department has a total of 100 developers, and that we have only sought 

answers from 16 of these.  Nevertheless, these 16 are all the developers that are 

currently involved with software reuse at Statoil ASA. Also, the applications (DCF and 

S&A), with JEF development included, are representative of typical applications 

developed in-house at Statoil ASA in terms of size and allocated resources.  

Nevertheless, our limited sample size should be kept in mind. This means at least that 

we cannot generalize outside the context. 

Internal Validity: The respondents were asked to answer the questionnaire by their 

project leader, and a contact relationship with them as well as with upper level 

management already existed at the time the questionnaire was carried out.  The 

company itself has an expressed interest in gaining knowledge from the answers to the 

survey.  We therefore are of the opinion that the respondents have answered truthfully 

to the best of their ability. In addition, we also provided support for possible ambiguities 

of the questions in the questionnaire.   

Conclusion Validity: This analysis is performed based on an initial collection of 

data.  Though too small a sample to be statistically significant, it still yields interesting 

and valuable insights for us and for Statoil ASA.  

7. CONCLUSION AND FUTURE WORK 

We have investigated the opinions of developers on software reuse, related to the five 

main areas: benefits of reuse, factors contributing towards reuse, possible relations 

between reuse and increased rework, component understanding and quality attribute 

specification.  Overall, our results can be summarized as follows: 

 When it comes to the benefits of reuse, the results of RQ1 show that the benefits of 

reuse can be seen in terms of lower costs, shorter development time, higher quality 

of the JEF components and a standardized architecture.  These results support those 

found in literature [8]. 

 In terms of factors contributing towards reuse (RQ2), we found no link to 

education. We also found no evidence that experience contributes towards reuse.  

When it comes to formal processes, our findings support the literature [4] in that 

though the formal process in use is only for software development in general (not 

specifically for software reuse), this may still have an implicit positive effect.  The 

results also show improving documentation of the reusable components would have 

been largely beneficial towards achieving successful reuse. 

 On RQ3, we found no relation between reuse and increased rework, hence we 

cannot come to a conclusion.  This is possibly caused by the mandate of reuse in the 

company, along with the multiple responsibility roles that often cross project and 

team lines, and that there hence is no clear division between development for reuse 

and development with reuse in the company. 

 The results of RQ4 showed most developers have sufficient understanding of the 

components, but the documentation could be improved, as they largely use the JEF 

team or prior experience to achieve the required component understanding.  A key 

point here is dynamic and interactive documents. 
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 Quality attribute specification (RQ5) was shown to be trusted for the development 

projects developing with reuse, but insufficient for the reusable components.  This 

may be caused, in our case, by the rapid changes in the team that develop the 

reusable components, in terms of requirements, resources and personnel.   

Our investigation is dependent on the subjective opinions of the developers as 

respondents.  The results are presented to Statoil ASA and contribute to improving their 

processes.  One interesting question raised from their side is whether the results of this 

work can be used as input to future larger reuse programs. The results will be combined 

with other research in the company to explain findings regarding reuse.  We also plan to 

expand our dataset with more respondents, to refine the research questions based on our 

initial findings, and to compare our survey results with the actual results of the 

company.   
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Abstract  

The paper summarizes the results of several industrial surveys on issues related to the 

development of systems using Commercial-Off-The-Shelf and Open Source Software 

components. The results demonstrate the following. (1) There is a discrepancy between 

academic theory and industrial practices regarding the use of components. One reason is that 

researchers have empirically evaluated only a few theoretical methods; hence, industrial 

practitioners currently have no reason to adopt them. Another reason might be that researchers 

have specified the contexts of application of only a small number of theories in sufficient detail 

to avoid misleading users. (2) Academic researchers often hold false assumptions about 

industry. For example, research on requirement negotiations often assumes that a client will be 

interested in, and be capable of, discussing the technical details of a project. However, in 

practice this is usually not true. In addition, the quality of a component in the final system is 

often attributed solely to component quality before integration, ignoring quality improvements 

by integrators during component integration.  

 

Keywords: COTS-based development, OSS-based development, empirical studies.  

 

0. INTRODUCTION  

 

A software component (henceforth, component) is a unit of code that integrators can 

combine with other components and integrate into a system in a predictable way. Software 

developers build components on the principle of ―build once, reuse often‖. Hence, the use of 

components promises to reduce development time and cost while increasing software quality. 

An IDC survey in early 2007 illustrates that more than 50% software developers have used 

software components for development in the most recent projects [1].  

Components from third parties (so called Off-The-Shelf (OTS) components) are of different 

types, i.e. Commercial-Off-The-Shelf (COTS) and Open Source Software (OSS), which makes 

composition a complicated task that requires risk-management techniques. In principle, OTS 

component-based development involves three stakeholders: component provider (i.e. COTS 

vendor or OSS community), application integrator, and application client. Different 

stakeholders face different issues and challenges. Application integrators must manage 

processes and knowledge well to ensure successful component selection, component integration, 

and component maintenance. To meet such goals, integrators need to communicate with 

component providers to get information and support. They also need to coordinate with clients 

to determine requirements as well as to get the OTS-based system accepted. Figure 1 

summarizes software development with OTS components from the integrators‘ perspective.  
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 Figure 1. Development with OTS components: actors and activities  

Researchers have proposed several methods for improving processes and managing risks to 

facilitate the integration of OTS components [2] [3]. However, they have evaluated few of these 

by industrial case studies [4]. This makes it difficult for project managers to evaluate the 

effectiveness of proposed methods and to make the right decisions on the basis of empirical 

evidence.  

With these problems in mind, we performed a series of studies (see the side bar) to 

investigate the state of the practice in OTS-based development and the reasons for applying 

these practices. We here report the results of the last two steps of our studies: (i) an industrial 

survey with 133 completed projects from 127 companies, and (ii) 28 follow-up telephone 

interviews. Detailed information of the participated companies and projects is in [5].  

 

1. Ten facts about industrial practices on OTS component-based development  

 

Our findings illustrate that there are discrepancies between the proposals of academic 

researchers and industrial practice.  

 
1.1 FACT 1  

Development process: Companies use traditional processes enriched with OTS-

specific activities to integrate OTS components.  

Boehm et al. regard neither the waterfall model nor the evolutionary development model as 

suitable for COTS-based development [2]. When using the waterfall model, integrators identify 

requirements at an early stage and choose COTS components at a later stage. This increases the 

likelihood that COTS components will not offer certain features that are required. Evolutionary 

development assumes that additional features can be added quickly if required. However, 
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developers find it difficult to upgrade COTS components: the vendor will not change the 

product upon the request of a single client, and the absence of source code prevents the 

development team from adjusting or adapting the COTS components. This would suggest that 

companies need to adapt their development processes in response to using OTS components.  

In fact, out of 75% (100/133) of the projects we investigated in the main study, developers 

chose their main development processes before they even started to think about using OTS-

components.  

Why do not companies adapt the development process? Four out of the 28 companies 

interviewed in the follow-up study are immature and have no well-documented development 

processes. They insisted on their ad-hoc development processes without considering any 

changes due to the use of OTS components. They regarded the introduction of formal and 

heavyweight development techniques proposed in the literature as useless, because OTS 

components either have been integrated several times in previous projects, or do not constitute 

important parts of the overall system. Surprisingly, five interviewees in the follow-up study 

thought that there was no difference between selecting/integrating OTS components and 

selecting/integrating software classes from an internal library. Two participants using agile 

processes believed that adaptation was not necessary, because agile means lightweight and 

depends solely on developers‘ experience.  

 

Side bar: Genesis of the study  

Our studies were inspired by a qualitative study [6] of COTS usage in seven IT 

companies in Norway and Italy, done in 2002. The study identified six “theses” on 

COTS usage, partly challenging commonly held beliefs. To build upon this study, we 

first conducted a qualitative prestudy [7] in 2003, using a structured interview. We 

interviewed project managers of 16 projects from 13 Norwegian IT companies to 

summarize their lessons learned from COTS-based development. To verify the 

conclusions of our prestudy, we then developed a quantitative main study [5], which 

we performed as a survey in 2004 and 2005 to address IT companies in Norway, Italy 

and Germany. In this survey, we investigated the process improvement and risk 

management issues in 133 (47 from Norway, 48 from Germany, and 38 from Italy) 

completed COTS or OSS component-based projects that we selected using a stratified-

random sampling strategy [8]. The response rate of this study shows that 53% of 

investigated software development companies had already completed OTS component-

based projects by 2005. Results of this survey illustrate the state of the practice of OTS 

component-based development. To determine the reasons for phenomena discovered 

in the main study, we conducted a follow-up study, using telephone interviews with 28 
participants (six in Norway, 12 in Germany, and 10 in Italy) selected by convenience.  

If companies adapt processes, how do they do so? They typically added a prototyping 

phase during OTS selection to evaluate and learn about OTS components. One of them uses the 

RCPEP process proposed in [9]. Two others are moving toward the new version of the V-model, 

i.e. V-model XT, which has been explicitly adapted for use with OTS components.  

Our insights: Familiarity with the OTS component is proposed as a leading factor to be 

considered when selecting OTS component [6]. Our results show that the familiarity with OTS 

candidates is also an important factor to be evaluated for customizing the whole development 

process. Although companies are using adapted evolutionary (e.g. RCPEP) and waterfall (e.g. 

V-model XT) processes to integrate OTS components, sufficient knowledge with OTS 

candidates may make the usage of these adapted processes unnecessary.  

1.2 FACT 2  



Appendix A 

 

 116 

Component selection: Integrators select OTS components informally. They 

rarely use formal selection procedures.  

Researchers have proposed several procedures for formally selecting COTS components 

that promise ‗fail-safe‘ decisions (see, for example, [3] for a summary). However, when we 

analysed the data from our main study, we found that, in practice, integrators habitually select 

components in an ad-hoc manner, using in-house expertise and/or web-based search engines.  

Why do not companies use formal selection processes? We found that in some cases, 

integrators had simply neglected steps for searching and evaluating OTS components. The 

interviewees gave two reasons: (i) only a limited number of OTS candidates were available in 

the market, and (ii) the integrators‘ company already had a long-term partnership with a specific 

provider. However, about 20% of interviewees in the follow-up study were unaware of the 

formal selection processes proposed by academia. Most interviewees were sceptical about the 

cost-effectiveness of using a formal process, especially under time-to-market pressure. They 

would rather trust the experience of in-house expertise than any formal process, as discovered in 

[6]. In agile projects, integrators did not consider formal OTS selection processes at all, because 

they believed that adopting any kind of formal procedure would undermine the agile nature of 

the development process.  

If a formal selection process was applied, what was done? Only one of the 28 

interviewees stated that his company had used a formal process for selecting OTS components. 

The project on which this interviewee worked was safety- and performance-critical. A candidate 

component had to fulfil several quality requirements and had to follow strict industrial standards. 

Integrators adopted candidates on the basis of either client recommendation or a search of other 

sources. They then narrowed down the number of candidates by reading the literature and 

scanning discussion boards. After that, they purchased and installed the remaining candidates 

and used them in a small prototype project, in order to evaluate both non-functional properties 

and functionalities against requirements. Integrators also evaluated the components‘ compliance 

with the given industrial standard.  

Our insights: Researchers have evaluated few formal processes for selecting OTS 

components empirically, with the aims of measuring their cost-effectiveness and determining 

their applicability in certain contexts. Thus, the pre-conditions and benefits of using a formal 

process are unclear. Without evidence on the possible benefits, integrators are reluctant to use 

formal processes, which are supposed to be complex and time-consuming.  

1.3 FACT 3  

Component selection: There is no specific phase of the development process in 

which integrators select OTS components. Selecting components in early 

phases has both benefits and challenges.  

Researchers usually suggest that integrators select components in an early phase of 

development, so that they can identify possible problems early. The data from our main study 

showed that most integrators did select OTS components in the early phases of a project, e.g. 

prestudy (38%), requirement specification (30%), and overall design (16%). However, some 

integrators selected OTS components in later phases, i.e. detailed design (6%), and even coding 

(7%). (Three percent of participants did not know when the component was selected).  

Reasons for, and issues pertaining to, selecting OTS components in the prestudy phase: 

One reason is that the component will drive the definition of the architecture of the whole 

system, as discovered in [6]. Several interviewees had bad experiences of system architecture 

restructuring when they had selected components in later phases. Furthermore, integrators often 

decide to (re)use familiar components in the prestudy phase. However, some interviewees 

recognized that if they select a component from a set of unknown OTS components in such an 
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early phase, they must use comprehensive documentation and the results of trials. Yet 

documentation is often absent and, when it exists, often does not describe the actual component 

accurately. This, in turn, requires unexpected extra effort in later phases. Moreover, at the 

beginning of a project, integrators do not know all the required functions of a system. Thus, they 

may have to write adapters or change OTS components later.  

Reasons for, and issues pertaining to, selecting OTS components in the requirements 

or design phase: Most integrators selected OTS components during the requirements or overall 

design phase. The interviewees identified benefits of selecting OTS components in these phases 

as follows:  

 The integrators know the system architecture and the functional requirements for a 

possible component.  

 They thus have a solid basis on selecting OTS components.  

 Integrators can readily adapt the system to the specific needs of the component, thus 

enabling integration to proceed seamlessly.  

 Once the integrators have defined the architecture and have selected the OTS candidates, 

they can easily define test-cases and make systematic plans for quality assurance.  

 Once the integrators have defined the requirements and have selected the OTS 

candidates, they can estimate the cost of the project more accurately.  

However, selecting OTS components in these phases carries certain recognized risks and 

challenges, as follows:  

 Integrators usually do not care enough about technical details in an early stage. This 

may subsequently lead to problems of implementation and integration.  

 During the course of a long project, the providers of an OTS component may release a 

new version during the detailed design or coding phases. Consequently, the integrators 

may need to re-evaluate the component and redesign the system.  

 In projects using agile development processes, integrators typically identify and 

document requirements by means of ―user stories‖, and set up the entire process in such 

a way that they can make changes easily. Therefore, the earliest possible phases at 

which integrators should think about components are either the detailed architectural 

design or the development iterations. However, this may require integrators to expend 

extra effort on refactoring the system.  

Our insights: Most approaches assume that selecting components in the early phases of a 

project will yield benefits [10]. However, we have identified pitfalls that integrators must 

consider if they wish to select OTS components in the early phases of a project.  

1.4 FACT 4  

Component integration: Estimators use personal experience when they 

estimate the effort required to integrate components and most of the time they 

do not estimate accurately. Stakeholder-related factors will affect dramatically 

the accuracy of estimates.  

In 83% of the 133 projects that we examined in the main study, the estimations of the effort 

required for integration were unsatisfactorily estimated. Only four out of the 28 interviewees 

used a formal effort estimation tool, e.g. COCOTS [11]. The remaining interviewees estimated 

the integration effort solely on the basis of personal experience.  

Reasons for inaccurate effort estimation. In addition to the usual factors that may affect 

the accuracy of effort estimation, the following factors also contributed to inaccurate effort 

estimations of projects examined in the follow-up study:  
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 It takes time to understand how to use the components correctly, because technical 

details of OTS components are not described explicitly in their documentation.  

 The clients changed their requirements significantly. It is difficult to satisfy changed 

requirements due to the inflexibility of OTS components.  

 The OTS provider did not respond quickly to required changes. Integrators waste a lot 

of time waiting for the providers to respond.  

 The OTS provider released new versions of OTS components during the project. The 

integrators then had to expend extra effort on adapting the system to the new versions or 

on evaluating and integrating them.  

Our insight: Some estimation tools, e.g. COCOTS [11], take into account both the 

technical nature of the components and a number of issues mentioned above, e.g. component 

understandability and vendor response time. Our data show that estimation tools should also 

take into account possible changes in requirements and the evolution of components, especially 

for large projects with long durations.  

1.5 FACT 5  

Quality of the integrated system: Negative effects of OTS components on the 

quality of the overall system are rare.  

The quality of OTS components is expected to be at least as good as that of in-house built 

components [12]. Our data support these expectations. The traditional qualities (reliability, 

performance, and security) of OTS components were a problem in the final system for few of 

the projects that we investigated.  

Reasons for positive feedback on the quality of OTS components. Some interviewees in 

the follow-up study stated that their system was of high quality because the integrators 

evaluated and tested the OTS components carefully in the selection phase. Others stated that 

their experience with specific OTS components and the strategy of only using mature OTS 

components were helpful. However, another very important reason for the integrator‘s positive 

feedback on the quality of OTS components is that their expectations are not very high, either 

because the OTS components play only a minor role in the composed system, or because the 

integrators accept ―minor problems‖ with free or low-cost components.  

Our insight: In traditional software development, the quality of software is measured by 

how well it satisfies the client‘s requirements. For OTS components, there are two clients: a 

direct client (i.e. the application client) and an indirect client (i.e. the application integrator). 

When measuring the quality of components, people still refer to how well the component 

satisfies application client requirements after it has been integrated [12]. Our findings illustrate 

that, for various reasons, for example, low cost, application integrators sometimes accept OTS 

components that are of less than perfect quality. It is the integrator‘s quality assurance effort 

during selection and integration that ensures the quality of the OTS component in the final 

system.  

1.6 FACT 6  

OSS and COTS components: Integrators usually used OSS components in the 

same way as commercial components, i.e. without modification.  

People often assume that the commercial vendors of COTS components sell a copyright 

license with agreed specific support and do not make the source code available, while the open 

source communities that provide OSS components offer freely accessible source code yet 

promise no specific support. The study [6] illustrates that COTS component debates should 

include open source component. Results of our study supported observations of [6] and found 

that one third of the companies we investigated in the main study do have access to the source 
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code of COTS components. However, only 15% of the COTS component integrators and 36% 

of the OSS component integrators changed the source code. In most cases, they used the OTS 

component ―as-is‖. 

Reasons for changing the source code in the projects investigated in the follow-up 

study. Integrators have to wait too long for providers to update their components.  

Reasons for not changing the source code in the projects investigated in the follow-up 

study:  

 Source code is unavailable.  

 The fast and effective OTS component support renders change unnecessary.  

 Developers lack the deep knowledge and thorough documentation that is required to change 

the source code.  

 It is difficult to get changes accepted into OTS component in later releases. Integrators do 

not want to change the source code, so that they can ―drop-in‖ replacements when the next 

version of component is released. In-house changes run the risk that the system will be 

incompatible with later component updates and that maintenance will become too difficult.  

 Changing source code may generate legal issues. For example, the integrators have to take 

responsibility for any problems caused by the changed components.  

 

Our insights: Changing the source code of OSS components may not be feasible, 

especially for a long-term commercial system with a possibly long evolution path ahead. Thus, 

application contexts, e.g. commercial vs. non-commercial application and long-term vs. short-

term application need to be considered when deciding to use OSS or COTS components.  

1.7 FACT 7  

Locating defects is difficult: Although problems with OTS components are rare, 

the cost of locating (i.e. within or outside OTS components) and debugging 

defects in OTS-based systems is substantial.  

Although integrators are, in general, satisfied with the quality of OTS components (see fact 

5), in 80% of the projects that we investigated integrators experienced difficulty in locating 

defects when they occurred.  

Reasons for inefficient defect location: The following factors can cause failures within an 

OTS-based system: defects in OTS components, misuse, or defects in the code to integrate OTS 

components with other parts of the system (besides defects in the subsystems built in-house). If 

the documentation is incomplete or imprecise, or the source code is inaccessible, unfamiliar, 

insufficiently commented, or messy, application integrators find it difficult to locate the defects 

by themselves. Asking the provider for help may create new problems. Component providers 

are usually reluctant to read the code from application integrators to locate defects; especially 

when components from different providers are mixed. One interviewee tried test-driven 

development to mitigate this problem. He was unsuccessful because it is difficult to write test 

cases for an OSS component without in-depth knowledge of its code.  

Our insight: The variety of deployment environment and configuration of OTS 

components hinders OTS providers to reproduce the reported errors. The irreproducible errors 

usually will not be prioritized and fixed by OTS providers. To improve the debugging efficiency 

of OTS-based systems, integrators need to work collectively with OTS providers by engaging in 

a process of constructing a context where the OTS provider can reproduce the reported error 

[13]. Moreover, integrators need to investigate relevant descriptions with the reported error from 

mailing list, web forums, and bulletin board in order to provide more information to and 

convince OTS provider that the error may potentially affect many systems.  
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1.8 FACT 8  

Relationship with the provider: The relationship with the OTS component 

provider involves much more than defect fixing during the maintenance phase.  

Researchers have claimed that a good relationship with the provider is essential for a 

successful OTS component-based project [14]. However, most previous studies emphasize only 

the technical support from providers in the maintenance phase, e.g. fixing defects. Data from 

our study show that additional issues related to providers need to be considered.  

Issues related to component providers. In the component selection phase, integrators need 

to both evaluate component candidates and to evaluate and consult with their providers. This 

evaluation includes not only the reputation of a provider, but also such matters as technical 

support, market share, and company size. Several interviewees stated that, in their experience, 

OSS communities that have large user groups usually provide better support than those with 

smaller ones. In addition, the integrator and provider must consider legal and licensing issues 

and specify them in the contract. Typical example are the response times of COTS vendors (e.g. 

on problem reports) and the responsibility for returning code changes of OSS components. In 

the component integration phase, OTS providers need to be contacted to ease debugging, to 

provide extra functionalities, and to fix defects. Integrators believe that knowing a specific 

person at the COTS vendor company or in the OSS community is essential for reducing 

integration costs. The readability, accuracy, and completeness of the component documentation 

made available by the provider also affect the efficiency of integration. In the maintenance 

phase, integrators need the provider‘s help for debugging defects and for suggestions/hints on 

component evolution or on reusing the component in the future.  

Our insights: Different people in OSS communities may be involved in different tasks to 

support the use of a component. For example, some senior OSS community members, who have 

better views on the similarities and differences between their components and others, may help 

OSS users to make the right evaluation and selection. Other community members, who have 

solid experience of fixing bugs and customizing software features, may help to ease integration. 

It is therefore important for integrators to know the right persons for a specific task in an OSS 

project, to share detailed experiences with them regularly, and to build partnership with them 

[4]. Hence, OSS projects need to specify contact persons on the basis of possible user needs.  

1.9 FACT 9  

Relationship with the client: Involving clients in OTS component decisions is 

rare and sometimes infeasible. 

OTS components seldom satisfy all of a client‘s requirements; hence, researchers regard the 

(re)negotiation of requirements with the client as an important strategy in OTS-based 

development. However, our data from the main study show that integrators rarely involve 

clients in the ―build vs. acquire‖ decision, or in selecting OTS components.  

Reasons for not involving clients: Half of the companies that we investigated in the 

follow-up study are software houses, which produce software for the general market. Thus, they 

have no direct client with whom to confer when developing their products. The others develop 

software for a dedicated client, but most of their clients have either no interest in discussing, or 

insufficient technical capabilities to discuss, such issues. Only two out of 28 interviewees had 

involved their clients in discussing the outcome of selecting OTS components. In one project, 

the client was mainly interested issues pertaining to reselling and licensing, cost, or compliance 

with given industry standards. In the other project, the client had to be involved because the 

project included cooperative and distributed development. The client had to centralize OTS 

component selection to ensure that all the subcontractors could understand and use the selected 

OTS components.  
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Our insight: Application clients usually only care about the final products and typically are 

not interested in the technical details of the implementation. Most approaches to the 

(re)negotiation of requirements that researchers have proposed simply assume that application 

clients have enough background competence to discuss technical details [14]. We encourage 

companies to clarify, at the start of the project, the clients‘ interests and technical capabilities so 

that they can decide on possible strategies for (re)negotiation.  

1.10 FACT 10  

Knowledge management: Knowledge that goes beyond the functional features 

of OTS components must be managed.  

The success of OTS-based development projects requires that companies manage the 

implicit and explicit knowledge about OTS components. More than half of the companies that 

we investigated in the main study already have dedicated staff (so-called ―component uncles‖) 

to keep the OTS component-related knowledge. Most of them are experienced software 

architects and senior developers.  

Which knowledge needs to be kept and shared? (1) Companies need to capture 

knowledge about a component itself, e.g. basic functionality, standards conformance, side-

effects, undocumented issues, and non-functional properties. (2) Companies need to manage 

knowledge about how to facilitate component integration: licensing and reselling obligations, 

examples of the code that is used to connect the OTS component to the system (gluecode), and 

descriptions of possibilities for optimization. (3) Companies need to acquire and store 

information about the stakeholders. This will include client preferences, with whom to negotiate 

at the client side, whom to contact at the provider side, and who knows which components at the 

integrators‘ organization.  

Which knowledge management mechanisms to choose? The software market changes 

quickly and OTS components have short release cycles. Hence, the knowledge that developers 

need to acquire and share will change quickly as well. In order to accommodate this changing 

demand, some of the interviewees advocated storing and sharing tacit knowledge through 

personal communications, e.g. coffee-meetings, internal seminars, informal discussion forums, 

or regular meetings in (agile) development groups. Other interviewees preferred more formal 

and recordable approaches to mitigate the problem of losing experience when a key person 

leaves. Some of them even claim that every project should have a touchdown meeting where 

they can share their collective experience. Several of the companies that we investigated in our 

follow-up study have set up a small Wiki site to share knowledge. Companies have also used a 

central authority (i.e. an OTS team or ―component uncle‖) to manage OTS-related knowledge 

and yellow pages to record ―who knows what‖. Integrators regard these as effective mechanisms 

for managing knowledge.  

Our insight: Our results show that implicit and explicit knowledge about OTS components 

has been partly managed within the organization by ―component uncles‖. However, there are 

very few centralized external channels for OTS users to share and communicate experience 

between organizations. External experiences of using certain OTS components are scattered in 

several COTS or OSS portals, bulletin boards, or mailing lists. Searches in search engines 

usually yield huge, unwieldy sets of results. A centralized experience portal for sharing OTS 

component-related knowledge between organizations, probably using a global OTS Wiki [15] 

could be a solution.  

  

2. Conclusion  
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The results of our industrial surveys have revealed gaps between theory and practice 

regarding the use of OTS components. We suggest that researchers need to be more precise 

about the assumptions and contexts of the application of their proposals regarding the revision 

of OTS-based development processes, the processes by which companies should select their 

components, and the processes by which integrators and providers negotiate requirements. We 

further suggest that researchers conduct more empirical case studies, to investigate cost-

effectiveness of proposed theories. We suggest integrator to collaborate more actively with OTS 

providers to facilitate debugging the defect. We also suggest integrators to investigate the 

strategies for (re)negotiating requirements with clients at the early stage of the OTS-based 

project.  

Our surveys also reveal several issues that researchers need to address. By what means can 

providers and integrators share knowledge of OTS components on a global scale? How can 

people working on the field establish the ―who to contact‖ yellow pages for each OSS project, 

to facilitate support from OSS communities?  

As an important caveat, note that we have, thus far, collected only a small amount of data. 

We were the first to perform such an empirical study using a random sample of IT companies. 

Researchers need to perform further studies, both to validate our results and to align them with 

the latest progress in the field.  
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Abstract 

In the SEVO (Software EVOlution) project, we explore the field of software evolution in 

terms of software quality attributes, their characteristics and possible relations between 

them.  Currently, we have explored preliminary data from a software engineering 

program in a Norwegian company (Statoil ASA), on the frequency of defects and 

changes of reused components.  These measures are the stated quality foci of the 

program, and our results indicate that while defect-density evolves decreasingly over 

time, change-density does not exhibit a conclusive behavior.  This is part of on-going 

research, and the results will be expanded and verified in later following publications.  

Overall, we aim to use the collected data towards discovering and explaining 

characteristics related to software evolution.   

 

Keywords: CBSE, software evolution, quality attributes 

 

 

1. Introduction 

 

The purpose of the SEVO (Software EVOlution) project [SEVO, 2004] is to explore 

software evolution in Component-Based Software Engineering (CBSE) through 

empirical research.  Aiming to increase our knowledge and understanding of underlying 

issues and challenges in software evolution, one long-term purpose of the project is to 

provide possible solutions to these problems.  Another goal is to help industrial software 

engineers to improve their efficiency and cost-effectiveness in developing software 

based on reusable components, as well as in their ability to develop and use reusable 

assets.  Underlying all this is the need for evidence to support or reject existing and 

proposed hypotheses, models, design decisions, and the like.  Such evidence is best 

obtained through performing empirical studies in the field, and experience from such 

studies will be possible to incorporate into a knowledge base for use by the community.   
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Currently, we are studying the reuse process in the IT-department of a large Norwegian 

Oil & Gas company named Statoil ASA
6
 and collecting quantitative data on reused 

components.  The research questions are obtained from the existing literature, and 

include how the defect-density in reusable components evolves over time, as well as 

how the number of changes per reusable component evolves over time. Based on these 

issues, we have defined and explored several research questions and hypotheses through 

an empirical study. Here, we perform a preliminary analysis of data on defect-density 

and change-density of reusable components from a software engineering program in 

Statoil ASA, a major international petroleum company. We have chosen these two 

attributes for measuring software quality as they are part of the stated quality focus for 

the program in Statoil ASA.  The purpose of this study is to gain initial understanding of 

software evolution from the viewpoint of these quality attributes.  

 

The number of change requests and trouble reports is to some extent small, and future 

studies will be used to refine and further investigate the research questions and 

hypotheses presented here. This study is therefore a pre-study. This paper is structured 

as follows: Section 2 introduces terminology, Section 3 discusses our contribution to 

Statoil ASA, as well as the research context at the company. Furthermore, Section 4 

introduces our research questions and preliminary data analysis, and Section 5 

summarizes and discusses these preliminary results. Section 6 contains planning for 

further data collection and future work, while Section 7 concludes. 

 

2. Terminology   
 

CBSE is a new style of software development, emphasizing component reuse, which 

involves the practices needed to perform component-based development in a repeatable 

way to build systems that have predictable properties [Bass et al., 2001]. An important 

goal of CBSE is that components provide services that can be integrated into larger, 

complete applications.  

 

Software evolution can be defined as: ―….the dynamic behaviour of programming 

systems as they are maintained and enhanced over their life times….‖ [Kemerer & 

Slaughter, 1999]. The first studies found in literature on software evolution, were 

undertaken by Lehman on an OS360 system at IBM [Lehman et al., 1985].  Software 

evolution is closely related to software reuse, since reuse is often employed to achieve 

the aforementioned positive effects when evolving a system.  It should be noted that 

several alternative uses of the term software evolution exist; some use the term to 

encompass both the initial development of the system and its subsequent maintenance, 

while others use it exclusively about the events after initial implementation, in 

concurrence with its original focus [Kemerer & Slaughter, 1999]. Lastly, there is some 

work on software evolution taxonomy [Verhoef, 2004], the author sees software 

maintenance as subpart of software evolution.   

 

Software maintenance is the updating incurred on already existing software in order to 

keep the system running and up to date. During their lifetime software systems usually 

                                                 
6
 ASA stands for “allmennaksjeselskap”, meaning Incorporated. 
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need to be changed to reflect changing business, user and customer needs [Lehman, 

1974].  Other changes occurring in a software system‘s environment may emerge from 

undiscovered errors during system validation, requiring repair or when new hardware is 

introduced.  

 

Software maintenance can hence be:   

 corrective (correcting faults),  

 preventive (to improve future maintainability),  

 adaptive (to accommodate alterations related to platform or environment), or  

 perfective in response to requirements changes or additions, as well as 

enhancing the performance of a system  

[Sommerville, 2001] [Pressman, 2000].  

 

In summary, some see the perfective and adaptive parts of software maintenance as part 

of software evolution [Sommerville 2001].  That is, that it encompasses both aspects of 

modified and added scope, as well as environmental adaptations.  This does not include 

platform changes, which are commonly referred to as porting, instead of software 

evolution [Frakes & Fox, 1995]. There is, hence, no clear agreement on the definition of 

software evolution.  Although there seems to be more agreement on the definition of the 

different types of software maintenance, a clear distinction between software 

maintenance and software evolution remains elusive.  

 

Statoil ASA [Statoil ASA O&S Masterplan, 2006] has chosen to use defect-density and 

change-density (stability) as indicators of software quality.  A lowered defect-density 

shows an increased quality, while stability in terms of change-density means a stable 

level of resources are needed towards adaptation and perfection of the software.  In this 

study, it is these two measures (defect-density and change-density) we will be focusing 

on, in order to show how the reusable components evolve over time.      

 

3. Our contribution to Statoil ASA, and The context 
 

Our direct contribution is helping Statoil ASA central software development unit in 

Norway with defining metrics, collecting data and analyzing it.  We will also be 

contributing towards reaching a better understanding and management of software 

evolution, by exploring whether that employment of reusable components can lead to 

better system quality
7
.  Finally, we expect that our results will be possible to use as a 

baseline for comparison in future studies on software evolution. 

 

Statoil ASA is a large, multinational company, in the oil & gas industry. It is 

represented in 28 countries, has a total of about 24,000 employees, and is headquartered 

in Europe. The central IT-department in the company is responsible for developing and 

delivering software, which is meant to give key business areas better flexibility in their 

operation. They are also responsible for operation and support of IT-systems at Statoil 

ASA.  This department consists of approximately 100 developers worldwide, located 

mainly in Norway.  Since 2003, a central IT strategy of the O&S (Oil Sales, Trading 

and Supply) business area has been to explore the potential benefits of reusing software 

                                                 
7
 The quality focus at Statoil ASA is defect density and change-density (stability).  
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systematically, in the form of a framework based on JEF (Java Enterprise Framework) 

components. This IT strategy was started as a response to the changing business and 

market trends, and in order to provide a consistent and resilient technical platform for 

development and integration [14]. The strategy is now being propagated to other 

divisions within Statoil ASA.  The JEF framework itself consists of seven different 

components. Table 1 gives an overview of the three JEF releases, and the size of each 

component in the three releases. 

 

Table 1: Size of JEF components, in #LOC 

 

Component Release 2.9  Release 3.0 Release 3.1 

JEF Client 7871 8400 8885 

JEF Dataaccess 181 181 268 

JEF Integration 958 958 958 

JEF Security 1588 1593 2374 

JEF Util 1312 1359 1647 

JEF Workbench 4187 4515 4748 

 

Release 2.9 spanned the time between 09.11.2004 - 14.06.2005, while Release 3.0 

spanned the time between 15.06.2005 - 09.09.2005 and Release 3.1 spanned the time 

between 10.09.2005 - 18.11.2005. 

 

These JEF components can either be applied separately or together when developing 

applications. In total, we will be studying the architectural framework components, as 

well as two projects which use this framework.  Here, we present a pre-analysis, 

reporting on preliminary results of studying defect-density and stability (change 

density) of 6 of the 7 reusable architectural framework components, over three releases.  

These three releases exist concurrently, and the data is mainly from system/integration 

tests.  The limited dataset used in this preliminary analysis is due to current data 

availability. 

 

4. Research questions and Preliminary data analysis 

 

All the statistical data presented in this study are based on valid data, as none were 

missing data. The statistical analysis tools we used were SPSS version 14.0 and 

Microsoft Excel 2003. Our preliminary research questions are regarding defect-density 

and stability, and are formulated as follows: 

 

RQ1: How does the defect-density in reusable components evolve over time? 
Defect-density (number of Trouble Reports/KLOC) may be seen as belonging to the 

corrective maintenance category by some researchers, but maintenance can also be seen 

as part of evolution [Verhoef, 2004].  Therefore, measuring defect-density may help 

characterize the evolution of the different JEF components over time. The following are 

the related hypotheses for RQ1: 

 H10: The defect-density in JEF components do not change with time. 

 H1A: There is a difference in defect-density for JEF components over time. 
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RQ2: How does the number of changes per reusable component (stability) evolve 

over time? 

Research has demonstrated that reusable components are more stable (has a lower 

change-density) and that this does improve with time [Mohagheghi et al., 2004]. We 

have chosen to use change-density (number of Change Requests/ KLOC) as an 

indication of the stability, as this is the defined quality focus of Statoil ASA. The 

following are the related hypotheses for RQ2: 

 H20: The change-density in JEF components does not change with time. 

 H2A: There is a difference in change-density for JEF components over time. 

 

4.1. RQ1: How does the defect-density in reusable components evolve over time? 

 

For RQ1 we want to see how the defect-density in JEF components evolves over time, 

so we decided to use ANOVA test, as this is suitable for comparing the mean defect-

density between the three releases. With this test, we wanted to investigate whether 

there is a difference in defect-density for JEF components. To investigate this research 

question, all submitted defects for each component were counted, per release.  We then 

calculated the defect-density, as the number of trouble reports (TR‘s) divided by kilo 

lines of code (KLOC) for each component.  Table 2 shows the results of this calculation 

for three releases, all involving major changes to the software components. 

 

 

Table 2: Defect-density per JEF component, in #TR/KLOC 

 

Component Release 2.9 Release 3.0 Release 3.1 

JEF Client 17.1516 1.5476 0.1190 

JEF Dataaccess 11.0497 0.0000 0.0000 

JEF Integration 3.1315 0.0000 0.0000 

JEF Security 5.6675 0.6277 0.0000 

JEF Util 1.5244 0.0000 0.0000 

JEF Workbench 3.8214 0.8859 0.2106 

 

 

Here, we want to test if there is a significant difference in the mean-values of the 

different releases, which we are using as groups in the analysis.  Table 3 shows that the 

average defect-density decreases with time. The significance level is 0.05, and the data 

was checked for normality. 

 

Table 3: Average defect-density per release 

 

Groups Mean 

Release 2.9 7.058 

Release 3.0 0.510 

Release 3.1 0.055 

 

The ANOVA test we performed yielded a F0 value of 7.749, and the critical value was 

computed to be F0.005, 2, 15= 3.682, with a P-value of 0.0049.   Since 7.749 > 3.682, it is 
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possible to reject the null hypothesis. In summary, we can reject H10 in favour of our 

alternative hypothesis H1A, and hence support the notion that the defect-density 

decreases with time.  

 

The data trend for RQ1 reveals a declining defect-density, possibly caused by a 

corresponding decrease in change-density.  We will, however, be expanding and 

verifying our hypothesis on defect-density with more empirical data in future work.  

 

4.2. RQ2: How does the number of changes per reusable component (stability) 

evolve over time? 

 

For RQ2 we want to see how the number of changes per JEF component evolves over 

time, so we again decided to use ANOVA test, as this is suitable to compare the mean 

change-density between the three releases. With this test, we wanted to investigate 

whether there is a difference in change-density for JEF components. To investigate this 

research question, all change requests were sorted according to JEF component and then 

counted, per release. We then calculated the change-density, as the number of change 

requests (CR) divided by kilo lines of code (KLOC) for each component. Change 

requests in this context mean new or changed requirements.  Table 4 shows the results 

of this calculation. 

 

Table 4: Change-density per JEF component in #CR/KLOC 

 

Component Release 2.9 Release 3.0 Release 3.1 

JEF Client 13.4672 0.8333 0.2251 

JEF Dataaccess 0.0000 0.0000 11.1940 

JEF Integration 3.1315 1.0438 0.0000 

JEF Security 9.4458 1.8832 0.6072 

JEF Util 4.5732 0.7358 0.0000 

JEF Workbench 8.3592 1.1074 0.0000 

 

Here too, we decided to use an ANOVA test, to see if there was a significant difference 

in the mean-values of the different releases. Table 5 shows the variation in mean 

change-density over time. The significance level is 0.055, and the data were checked for 

normality. 

 

Table 5: Average change-density per release 

 

Groups Mean 

Release 2.9 6.496 

Release 3.0 0.934 

Release 3.1 2.004 

 

As seen from Table 5, Release 3.0 has a lower change density than Release 3.1, 

indicating that the change-density may not simply decrease with time. The ANOVA test 

we performed yielded gave a F0 value of 3.540, and the critical value was computed to 

be F0.055, 2, 15= 3.682, with a P-value of 0.055. Since 3.540 < 3.682, it is not possible to 
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reject the null hypothesis. In summary, we cannot reject H20 in favour of our alternative 

hypothesis H2A.  

 

Nevertheless, upon inspection of the data from Table 4, we see that for all components 

the change-density is lower in the following release, except for JEFdataaccess. In fact, 

the value JEFdataaccess has in Release 3.1 differs considerably compared to the other 

results. This may have specific explanation(s), which will be explored in later analysis. 

 

5. Summary and Discussion of preliminary results 

 

In Table 6, we have summarized our analysis results, along with corresponding research 

questions and hypotheses. 

 

Table 6: Summary of the results 

 

Research 

Questions 

Hypotheses Results 

RQ1 H10: The defect-density in JEF components 

do not change with time. 

 

H1A: There is a difference in defect-density 

for JEF components over time. 

H10: Rejected 

 

 

H1A: Not rejected 

 

RQ2 H20: The change-density in JEF components 

does not change with time. 

 

H2A: There is a difference in change-density 

for JEF components over time. 

H20: Not rejected 

 

 

H2A: Not rejected 

 

 

On change-density, the data indicate that a decrease over time for five of the six 

components investigated.  However, we are unable to conclude without further 

empirical data and analysis.  When it comes to defect-density, our results indicate a 

distinct difference over subsequent releases of the JEF components.  The data trend here 

is towards a sharp decrease.  Additional trends in the size data vs. the data on change-

density and defect-density exist (e.g. that some of the components have zero change 

density while their code size still shows an increase, or that some have high change-

density while still zero defect-density) will be investigated further with more empirical 

data in future work.  An additional possible relationship to be explored is whether large 

increases in change-density affect defect-density negatively, though such an effect is not 

indicated in the data from our preliminary analysis.  

 

Lower defect-density means less correction are needed, and thereby a higher quality 

level is achieved for the reusable JEF components.  When it comes to change-density, 

stability is important to achieve stable evolution and hence allowing for stable resources 

being assigned to adapt and perfect the reusable JEF components.  In this way, these 

quality attributes can be used to partially model evolution, as they show how the quality 

of the reusable JEF components evolves over time. 
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5.1. Threats to validity 

 

We here discuss the possible threats to validity in our study, using the definitions 

provided by [Wohlin, 2002]: 

 

Construct Validity: The metrics we have used (defect-density and change-density) are 

thoroughly described and used in literature.  Nevertheless, our definition and use of the 

term change-density is different from that in other studies.  All our data are of pre-

delivery change requests and trouble reports from the development phases for the three 

releases of the reusable components.   

 

External Validity: The object of study is a framework consisting of only seven 

components, and the data has been collected for 3 releases of these components.  Our 

results should be relevant and valid for other releases of these components, as well as 

for similar contexts in other organizations.   

 

Internal Validity: All of the change requests and trouble reports for the JEF components 

have been extracted from Statoil ASA by us.  Incorrect or missing data details may 

exist, but these are not related to our analysis of defect-density and change-density.  We 

have performed the analysis jointly with the Microsoft Excel and SPSS tools. 

 

Conclusion Validity: This analysis is performed based on an initial collection of data. 

This data set of change requests and trouble reports should nevertheless be sufficient to 

draw relevant and valid conclusions.     

 

6. Planning for further data collection and Future work 
 

So far, Statoil ASA has collected data on Trouble Reports (TR‘s) and Change Requests 

(CR‘s) for the reusable JEF components over several releases.  They are also going to 

collect data on TR‘s and CR‘s for systems developed with the JEF components – so far 

two systems are reusing JEF components in development.  Further releases of JEF 

components will also follow, and data will be collected on these. 

 

In this article we have seen that there are differences in defect-density and change-

density over subsequent releases, without further analysis on the differences or their 

causes.  In further work we will be exploring these issues in more detail, as well as the 

possible cause-effect relation between defect-density and change-density, as well as the 

relation to other quality attributes.  The focus may also change to encompass towards 

reuse and maintenance, in addition to evolution. 
 

 

7. Conclusions 
 

We have performed a preliminary investigation of how the quality attributes defect-

density and change-density evolves over time for reusable components. While prior 

research has shown reusable components to be more stable (having a lower code 

modification rate) across releases [Mohagheghi et al., 2004], change density as defined 

in this context has not been studied before.   
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The overall results from our study are: 

 For RQ1, “How does the defect-density in reusable components evolve over 

time?”, our results show a clear difference over releases of the JEF components.  

The data trend here shows a sharp decline.      

 

 On RQ2, “How does the number of changes per reusable component evolve 

over time?”, our investigation on change-density shows that we cannot conclude 

without further data and analysis.  However, the general trends in the data indicate 

that the change-density does decrease with time for five of the six components 

investigated.   

 

In particular, lower defect-density results in less corrections being needed, hence 

yielding a higher level of quality of the reusable components.  Such a reduction is 

expected if components undergo few changes between releases, e.g. in our dataset, some 

components have zero change-density between releases.  A stable change-density is a 

factor towards allowing a stable evolution, hence resources used in adapting and 

perfecting the reusable components can be better allocated.  Hence, we see that 

evolution can be partially modelled by looking at defect-density and change-density, as 

they show how the quality of the reusable components evolves over time.  Our results 

cannot currently support these thoughts to the full extent, as the results of studying 

defect-density shows a decline, but the results from studying the change-density so far 

cannot be used to conclude, despite the apparent trends in the data.  We presume that 

more empirical data will remedy this problem. 

 

The SEVO project is ongoing research and this paper is meant to present preliminary 

results, while results will come later.  We ultimately aim to look at how to reach higher 

quality, by demonstrating that understanding and managing software evolution can lead 

to better system quality. 
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Abstract 
Test Driven Development (TDD) is a software engineering technique to promote fast feedback, task-

oriented development, improved quality assurance and more comprehensible low-level software design. 

Benefits have been shown for non-reusable software development in terms of improved quality (e.g. lower 

defect density). We have carried out an empirical study of a framework of reusable components, to see 

whether these benefits can be shown for reusable components. The framework is used in building new 

applications and provides services to these applications during runtime. The three first versions of this 

framework were developed using traditional test-last development, while for the two latest versions TDD 

was used. Our results show benefits in terms of reduced mean defect density (35.86%), when using TDD, 

over two releases. Mean change density was 76.19% lower for TDD than for test-last development. 

Finally, the change distribution for the TDD approach was 33.3% perfective, 5.6% adaptive and 61.1% 

preventive.  

 

1. Introduction 

 

In this study, we are connecting Test Driven Development (TDD) together with 

corrective (i.e. defects) and non-corrective software changes. That is, this study is an 

investigation of the change characteristics of this approach for reusable components. 

There are but a few case studies on the effect of TDD on defects (i.e. corrective 

changes) in an industrial setting [3]. Also, the effect of TDD on changes (here meaning 

non-corrective changes) appears not to have been explicitly investigated earlier. TDD is 

expected to promote software reuse, since a higher focus on testing and refactoring of 

the code is inherent to the practice of TDD. Improved quality (i.e. lower defect density), 

but lower productivity has been shown in other industrial investigations [3] for TDD 

over test-last development, for non-reusable components. Furthermore, earlier 

investigations have not explicitly investigated reusable components, which may have 

higher requirements towards predictability, stability and maintainability [14]. Our goal 

in this study is to see whether these benefits can be shown for reusable components. 

More specifically, we investigate the effects of TDD in terms of number and type of 

defects, changes and the relation between these two in a framework comprised of 

reusable components.  
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Our object of study is a framework of reusable components in place in the IT-

department of a large Norwegian Oil & Gas company (StatoilHydro ASA
8
). In 2003 the 

company defined a reuse strategy towards new development, and has since followed 

this strategy successfully. This strategy entails employing a framework of reusable 

components. The latest development in connection with this reuse strategy is the 

application of TDD as an integral part of their development methodology. The 

framework is called JEF, and has been used in the development of several new systems 

since its inception. Towards the end of 2005 it became apparent that a new focus was 

needed in order to facilitate improvement of the framework‘s architecture and make it 

more reusable, both in terms of the services provided and the components used. In 

response to this need, TDD was employed in new development on the framework, for 

versions 4 and 5. We measure defect density in terms of Trouble Reports per non-

commented Source Lines of Code, and change density in terms of Change Requests per 

non-commented Source Lines of Code.  

Earlier industrial studies on TDD for non-reusable components have shown benefits 

e.g. in terms of lower defect density. These studies indicate a higher software quality 

over traditional development [3], but also up to 16 % decrease in productivity (i.e the 

TDD approach required more effort). Our results show that the mean defect density was 

reduced by 35.86%, and mean change density to be reduced by 76.19%, for TDD in 

comparison to test-last development. Also, on the relationship between defect density 

and change density, the relationship appears near-linear related for both development 

methods. 

This paper is structured as follows: Section 2 discusses background and related work, 

Section 3 has research design. Furthermore, Section 4 contains the results, Section 5 the 

discussion and Section 6 concludes. 

 

2. Background and Related Work 

 

Test Driven Development is a practice related to agile software development which 

entails composing unit testing prior to the actual implementation of the code [2]. All test 

cases must successfully pass prior to considering the implementation of new code to be 

complete. Also, new test cases are always added to encompass recent defects found 

prior to correcting such defects.  The focus is on writing formalized tests for the 

smallest increments of functionality, then implementing that functionality, and repeating 

the process until the system is built [1]. TDD tests generally focus on low-level unit-like 

testing, rather than cross-cutting or combining testing concerns.  Also, the same person 

fills the roles of test writer and software developer. 

Several advantages of using TDD can be outlined [2]: 

 Code comprehension: TDD aids in comprehending the code since, developers 

explain their code through test cases and code itself instead of more formal 

documentation.  

 Efficiency: TDD makes it easier to determine the problem source when 

encountering new defects (i.e. during development).  

                                                 
8
 ASA stands for “allmennaksjeselskap”, meaning Incorporated. Statoil merged with Hydro 

creating StatoilHydro in 2007. 
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 Testing: The test cases developed using TDD comprises important assets 

towards further testing as well as the identification of newly found defects (as 

noted above). 

 Reduces defect injection: According to Hamlet and Maybee [12], software 

maintenance and debugging in traditional test-last development is commonly 

considered a low-cost activity where the code is patched, but the design and the 

specifications are neither examined nor changed accordingly.  Such small code 

changes [12] can be up to 40 times more likely to cause further errors, and new 

faults are commonly injected during debugging and maintenance. As TDD 

encourages the inclusion of new test cases to counter newly found defects, the 

amount of defects caused by e.g. code maintenance can be reduced. 

There are also some disadvantages seen in using TDD: 

 Design: TDD commonly includes no or little design.  This works well only for 

well-written and –understood code, and enables the possibility of lacking 

conceptual integrity.  This means that when defects are found, there is no 

―backup‖ in terms of formal design and documentation [7], and one may miss 

the ―big‖ picture [9][10] and thereby incur problems related to the architecture. 

 Context: The amount of effort used in writing test cases is considerable, and 

may be context-dependent [2]. 

 Refactoring: Refactoring is used extensively to manage complexity when 

utilizing TDD [2].  

 Level of skill required: A high level of experience and knowledge is needed in 

order to develop and maintain the test assets in TDD [7] [8]. 

George and Williams [2] carried out a set of controlled experiments using 24 

professional pair programmers.  Using a small Java program as test object, they found 

that the code developed using TDD allowed passing of 18% more functional black-box 

test cases.  The authors claim this shows the code is of higher quality when using TDD.  

On the other hand, using TDD required about 16% more time than for the control group 

using a water-fall like approach.  

Maximilien et al [Maximilien 2003] performed a case study at IBM, where TDD was 

put in use as development methodology.  They report reduced defect densitys of about 

50% compared to ad-hoc testing, as well as minimal impact on development 

productivity as the project completed on time. Furthermore, the automated test case 

suite that was created during the project functioned as a reusable and extendable asset 

towards future quality improvements.  Another case study at IBM using TDD was 

reported by Williams et al. [6], where TDD was employed to reduce defects. They 

found that there were 40% fewer defects, and that the team‘s productivity was not 

affected by the additional test-first focus. Furthermore, they also comment that TDD 

provides improvements towards more robust code and smoother code integration. Also, 

they comment that the test suite developed helps towards future enhancements and 

maintenance.  

Müller et al. [5] executed a controlled experiment to compare test-first programming 

(i.e. TDD) with test-last programming.  They found that TDD did not increase 

productivity, and that there was no change in program reliability. However, they did 

discover that TDD appears to support improved understanding of the code. 

In general, research literature divides changes to software into four classes – namely 

corrective, adaptive, perfective, and preventive. In general, corrective refers to fixing 
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bugs, and adaptive has to do with new environments or platforms (i.e. evolution). 

Implementing altered, additional or new requirements, as well as improving 

performance, can be classified as perfective.  Finally, refactoring changes made to 

improve future maintainability or reuse can be thought of as preventive [12]. Corrective 

changes can be thought of as software maintenance (i.e. what we here consider defects), 

while adaptive, perfective and preventive changes can be classified as encompassing 

software evolution (i.e. which we here call ―changes‖).  

Both corrective and non-corrective software changes are a natural part of software 

maintenance and evolution, respectively. The IEEE definition [16] of software 

maintenance is as follows: ―Software maintenance is the process of modifying a 

component after delivery to correct faults, to improve performances or other attributes, 

or adapt to a changed environment‖.  On the contrary, there is little agreement on a 

definition for software evolution in the research literature.  Some view software 

evolution as part of maintenance [12], others view it as a lifecycle step [11]. Belady and 

Lehman [17] first used the following definition of software evolution: ‖….the dynamic 

behaviour of programming systems as they are maintained and enhanced over their life 

times.“. Yet another view is that evolution is enhancement regarding functionality and 

performance between releases [13]. Based on these descriptions, we define software 

evolution for this study as:  

the systematic and dynamic updating in new/current development or reengineering 

from past development of component(s) (source code) or other artifact(s) to a) 

accommodate new functionality, b) improve the existing functionality, or c) enhance the 

performance or other quality attribute(s) of such artifact(s) between different releases 

[18]. 

 

3. Research Design: Motivation, Research Questions and Context 

 

3.1 Motivation 

 

Software evolution and maintenance issues are important research foci, as the 

changes they encompass comprise a large majority of software development costs 

(~70%).  Nevertheless, these changes cannot be anticipated and thus avoided, since they 

are required for the ability to modify software towards future needs in a fast and reliable 

manner.  This is the very ability that allows software companies to take advantage of 

new opportunities and thereby stay competitive [11]. 

As mentioned, there are few empirical studies on industrial systems using TDD, most 

of them on the techniques potential for quality improvements. This means that prior 

investigations have commonly focused on detection and elimination of defects, in 

relation to general software development [3].  We are studying TDD in a software reuse 

setting to see whether improvements can be shown by empirical data on Trouble 

Reports and Change Requests.  In comparison with earlier studies we also investigate 

the relation between defect density and change density to discover potential 

improvements for the TDD releases, compared to traditional test-last development.   

Our aim in this study is to investigate how TDD performs in comparison with prior 

traditional development of the JEF framework, with respect amount and type of defects 

and changes, as well as the relation between the two. 
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3.2 Research Questions 

 

The following research questions have been obtained through a literature survey, and 

have been adapted towards our use in this investigation: 

RQ1: How does defect density for the reusable framework evolve using test-last 

approach vs. TDD over several releases? Earlier studies on TDD in the software 

industry have shown decreasing defect density of 40-50 % compared to non-TDD 

development, but until now only for non-reusable software. Our aim is to investigate 

whether similar benefits can be seen for reusable components to indicate the relative 

level of reliability. This is important because such defect reduction has the potential to 

significantly impact future maintainability in a positive direction. According to 

Mohagheghi et al. [22] reused components have fewer defects and their requirements 

are more stable, possibly because they have tougher requirements in terms of 

predictability, reliability, stability and maintainability.  Defects and changes in reusable 

components also affect the applications reusing them. In this investigation we are 

comparing the reusable components developed using test-last versus test-driven/test-

first development.  The aim is to see whether TDD may provide additional 

improvement towards software reuse, together with these benefits of systematic reuse 

mentioned in [22].  

RQ2: How does change density for the reusable framework evolve using test-last 

approach vs. TDD over several releases? The change density indicates the degree of 

enhancements (evolution) the reusable components are subjected to between releases. 

We here want to see whether the development approach (i.e. test-last vs. test-first) 

affects the change density. We also wish to see how it contributes to the stability of the 

reusable components. Change density was not explicitly investigated in prior industrial 

studies on TDD [3], but is nevertheless important towards characterizing evolution. 

Furthermore, a prior investigation on reusable components [22] showed that these 

already have a lower code modification rate (are more stable) than non-reused 

components using a test-last approach. Here too, we want to investigate potential 

additional benefits of using TDD, in addition to those that can be achieved through 

systematic reuse. 

RQ3: What is the relation between defect density and change density using test-

last approach vs. TDD over several releases? Prior investigations on TDD and non-

reusable components reveal decreased defects, but also point towards a possible 

increase in change density due to lack of design, etc. Here, we explore the relation 

between defect density and change density for the two last releases (rls4 and rls5, 

developed using TDD) vs. for the three first releases (rls1, rls2, rls3, developed using a 

test-last approach) of the reusable JEF framework. The purpose is to see whether such 

trends can be seen for the reusable components. 

 

3.3 Context 

 

StatoilHydro is a major, multinational oil and gas company. Represented in 28 

countries, it has a total of 24,000 employees, with its main headquarters in Europe. 

The central IT-department in StatoilHydro develops and releases domain-specific 

software to achieve better operation flexibility for central business areas of the 

company. Additionally, they operate and provide support for internal IT-systems in use 
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within StatoilHydro. The department comprises about 100 developers worldwide, with 

main locations in Norway and Sweden.  Exploring potential systematic reuse benefits 

has been a key IT strategy of the O&S (Oil Sales, Trading and Supply) business area 

since 2003.  The strategy has been implemented by developing a framework of reusable 

components called JEF.  This framework is based on JEF (Java Enterprise Framework) 

components, and was developed in response to changing business and market trends.   

Another major incentive has been to the ability to use a consistent and resilient 

technical platform for development and integration of software systems [19]. This reuse 

strategy is now being propagated to and adopted in other divisions within StatoilHydro 

ASA. Following the third release of the framework it became apparent that a new focus 

was needed in order to improve the architecture of the framework and make it more 

reusable, both in terms of the services provided and the components used. Up to this 

point, the JEF framework comprised seven different components, which in later releases 

has been reduced to five.  We will therefore be studying the framework on a per release 

basis in this investigation.   

StatoilHydro is part of our industrial cooperation and we are analyzing their data to 

provide feedback. Two overall change categories are used in StatoilHydro ASA [19].  

These are:  

 scope changes: enhancement/change requests (CR) related to perfective, 

adaptive and preventive changes, and 

 incidents: trouble reports (TR) of defects, related to corrective changes. 

However, an incident can still be classified as a scope change, but will then 

nevertheless be corrected as a defect.   

In this article, as aforementioned in section 2, ―defects‖ refer solely to corrective 

changes, while ―changes‖ refers to enhancement (i.e. perfective, adaptive and 

preventive; – non-corrective) changes collectively. 

When a change request or trouble report is identified by StatoilHydro, it is written 

and registered in Rational ClearQuest. In this article, we are using both overall 

categories to investigate whether the company‘s own experiences with TDD are 

reflected in terms of change and defect densities.  The change requests are the source of 

changes between releases, while the trouble reports show the defects found between 

releases, following the first release. In summary, between releases the change requests 

show experienced evolution, while the trouble reports show needed maintenance. A 

complete description of change data handling in StatoilHydro ASA is reported in [19]. 

Data on defect density and change density for the reusable components, using what is 

here called the test-last approach, were also analyzed and compared to non-reusable 

components by us in [19]. 

The latest version of the data was obtained in December 2007. All data was extracted 

from ClearQuest and exported to Microsoft Excel. The change requests are from 5 

releases of the JEF components, releases 1, 2, 3 using traditional test-last development 

and releases 4 and 5 using TDD.  Table 1 shows the size and release date of each of the 

five JEF releases analyzed in this investigation.  The size measure given is the total for 

each individual release and includes only in-house developed code. 
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Table 1. The size and release date of the five JEF releases 
 

Using traditional development 

methodology 

Using Test Driven Development 

Release 

1: 14. June 

2005 

Release 2: 

9. September 

2005 

Rls 3: 18. 

November 

2005 

Rls 4: 18. April 

2007 

Rls 5: 11. 

December 

2007 

16875 

NSLOC 

18599 

NSLOC 

20348 

NSLOC 

8418 NSLOC 10119 

NSLOC 

 

 

4. Results 

 

 

All the statistical data presented in this study are based on valid change requests and 

trouble reports, as none were missing data. Microsoft Excel was used as a tool to 

analyze changes for the five releases of the reusable JEF framework. In total, there has 

been 271 (test-last: 223, TDD: 48) recorded trouble reports and 224 (test-last: 206, 

TDD: 18) recorded change requests, according to release data in Table 1.  

RQ1: How does defect density for the reusable framework evolve using test-last 

approach vs. TDD over several releases? In the versions using traditional 

development methodology, a total of 10 defects were non-valid.  This is because they 

were either rejected (1), only assigned (3), in progress (3), duplicate (2) or non-fault (1).  

Furthermore, three of them were noted as duplicates in TDD, and are therefore not used 

in our analysis here. That is, the 258 (271-10-3) remaining trouble reports were used in 

our analysis. We first plotted the data using a line plot seen in Figure 1 below. From this 

figure, we can see that the defect density is decreasing over the three releases using the 

test-last approach.  When using TDD, however, there is a spike in defect density for the 

first release (rls 4), while TDD also appears to yield a decreasing defect density over the 

two releases (rls 4 and rls 5) we investigated. 
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Figure 1. Defect density per release 

 

Table 2 shows the defect density (i.e. number of defects / KNSLOC 

(noncommented)) for the five releases of the reusable JEF framework 

investigated. The relative change for release n is (defect density of release n – 

defect density of release n-1)*100 / defect density of release n-1. 

 

Table 2. Defect density for the JEF framework 
 

Releases Mean Defect 

density 

Relative 

trend 

1
st
  

4.35 (of 1
st
, 2

nd
, 

3
rd

) 

11.67 n/a 

2
nd

 1.18 -89.88% 

3
rd

 0.2 -83.05% 

4
th

  

2.79 (of 4
th

 and 

5
th

) 

4.99 2395% 

5
th

 0.59 -88.17% 
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From this table, we see that the defect density of the reusable framework 

decreases for both approaches, though the first release where TDD was used 

yields a spike in defect density, as mentioned previously. The mean defect 

density for the test-last approach was 4.35 ((11.67+1.18+0.2)/3), while for the 

TDD approach this was 2.79 ((4.99-0.59)/2). This is a relative difference of -

35.86%. In terms of mean defect density, we can therefore support the results 

from prior studies [4][6] that TDD yields fewer defects overall.  

RQ2: How does change density for the reusable framework evolve using 

test-last approach vs. TDD over several releases? Analyzing the changes 

made to the reusable framework over several releases, 14 were marked as 

rejected and are therefore not part of this analysis. Consequently, 210 (214-10) 

change requests were used in our analysis. Again, the data was plotted as a line 

graph, here seen in Figure 2.  This figure shows that the change density for the 

reusable framework decreases over several releases for the test-last approach.  

However, for the TDD approach, the change density appears to increase over 

two releases (rls 4 and rls 5). 

 

 

 
 

Figure 2. Change density per release 
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Table 3 shows the change density (#change requests/KSLOC) for each 

release of the JEF framework. The relative change is again calculated as (change 

density of release 2 – change density of release 1)*100 / change density of 

release 1) for each release in relation to the respective corresponding prior 

release. 

 

 

Table 3. Change density for the JEF framework 
 

Releases Mean Change 

density 

Relative 

trend 

1
st
  

 

3.99 (of 1
st
, 

2
nd

, 3
rd

) 

10.61 n/a 

2
nd

 1.08 -89.82% 

3
rd

 0.29 -73.14% 

4
th

  

0.95 (of 4
th

 

and 5
th

) 

0.71 144.82% 

5
th

 1.19 66.38% 

 

We can see from Table 3 that the change density in the test-last approach starts very 

high (10.6), followed by a steep drop (-89.82%). The change density for the TDD 

approach yields an increase over the last test-last release (144.82%), and continues to 

increase over the next release (rls5: 66.38%). Also, the mean change density for the test-

last approach was 3.99 ((10.61+1.08+0.29)/3), while for TDD it was 0.95 

((0.71+1.19)/2).  This yields a -76.19% relative difference between the two approaches. 

RQ3: What is the relation between defect density and change density using test-

last approach vs. TDD over several releases? When it comes to the relation between 

defect density and change density we used all trouble reports and change requests 

mentioned under RQ1 and RQ2 above. The graph in Figure 3 shows the plot of the 

defect density vs. change density for the reusable framework over several releases, 

distinguishing between the test-last and TDD approaches. From this figure, we can see 

that for the test-last approach, both defect density and change density decrease over 

several releases. However, for the TDD approach, the defect density decreases, while 

change density increases. This is possibly due to refactoring, leading to an increase in 

preventive changes.  To see whether such an increase in preventive changes is the case 

here, we further classified the changes according to change type (i.e. perfective, 

adaptive, and preventive). 
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Figure 3. Defect density vs. change density over several releases 

 

The distribution of changes for the test-last approach was analyzed by us in 

[19].  The results from that study showed the distribution to be 59% perfective, 

27% adaptive and 14% preventive changes [19] for the test-last approach. The 

results from our analysis here show that the distribution of changes for the TDD 

approach was 33.3% perfective, 5.6% adaptive and 61.1% preventive. 
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5. Discussion 

 

In Table 6, we have summarized our analysis results, along with corresponding 

research questions. 

Table 6. Summary of the results 
 

Focus I

D 

Research Question Results 

Defect 

density 

R

Q1 
How does defect density 

for the reusable framework 

evolve using test-last 

approach vs. TDD over 

several releases? 

Relative change in mean defect 

density per release was -35.86% for 

TDD compared to traditional test-

last development (Table 2). 

Change 

density 

R

Q2 
How does change 

density for the reusable 

framework evolve using 

test-last approach vs. TDD 

over several releases? 

Relative change for mean change 

density per release was -76.19% for 

TDD compared to test-last 

development (Table 3). 

Relation

ship: defect 

density and 

change 

density 

R

Q3 
What is the relation 

between defect density and 

change density using test-

last approach vs. TDD over 

several releases? 

Test-last: Decreasing defect 

density and change density. 

TDD: Decreasing defect density, 

but increasing change density.  

 

5.1 Benefits of using TDD 

 

Neither software evolution nor reusable components were explicitly investigated in 

prior studies on TDD. Our investigation on reusable components spans five releases, 

three using test-last and two using TDD. One benefit claimed in earlier studies on TDD 

is in terms of reduced number of defects on the magnitude of 40-50% [2][4][6] over the 

traditional test-last approach. In our study, we find that the mean defect density is 

reduced by 35.86%, so we can support this finding. An obvious consequence of using 

TDD is that the discovery of more new defects leads to additional test or validation and 

verification cases being included into the test suites [2]. This means that the ―test suite‖ 

developed within TDD is developed to become a reusable asset towards testing and 

discovery [2]. Also, developing the test cases prior to the actual implementation means 

that defects discovered later are simpler to pinpoint solutions for. Furthermore, the point 

of refactoring inherent in TDD [2] may also help towards fixing defects. However, the 

refactoring also increases the number of changes, as shown from our analysis on the 

distribution of changes under RQ3 above, where the majority of the changes incurred on 

the TDD approach are preventive.  

The trends shown appear to change somewhat over several releases, especially 

related to change density. The decrease for the mean change density between the two 

development approaches reflects that the JEF framework has already been in 

development for several releases prior to the introduction of TDD.  Thus the 

framework‘s stability in terms of incorporating new requirements is continuing across 

development methods. Furthermore, this supports the advantages towards code 

comprehension discussed in [2], and implies that TDD helps towards improving 
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software reuse. Systematic reuse also offers benefits towards managing software 

evolution independent of the development approach used [25]. 

 

5.2 Drawbacks of using TDD 

 

In terms of drawbacks of using TDD, our results on change density indicate that 

context (such as reusable vs. non-reusable components and prior knowledge of TDD) 

plays a large role in writing new test cases, as reported in [2]. Changes (non-corrective) 

were not explicitly considered in earlier studies on TDD. Though the mean change 

density is lower, our results show an increasing change density for the TDD approach. 

Furthermore, the distribution of changes on the TDD approach shows that the majority 

of the changes made to these releases are preventive changes (61.1%). This is likely due 

to the increased focus on refactoring inherent to TDD – refactoring is also seen as a 

partial disadvantage in earlier studies [2] due to the extra time and effort required. We 

find this interesting, considering that code comprehension is claimed as a benefit in 

earlier studies [2]. That is, whether there is potentially a larger number of changes, but 

less effort required per change, using TDD, will remain an issue for further 

investigation. 

One reason for the higher defect and change densities seen in release 4 (the first 

using TDD) may be that this is the first TDD development performed in the company. 

This reflects and supports the notion of a learning curve for TDD, indicated in [7][8].   

Another reason may be the introduction of new requirements from other systems.  

We interviewed a senior developer working with JEF on this issue, and the framework 

is steadily in the process of being propagated to and adopted by other divisions and 

departments in the company.  This means that these systems likely will infer additional 

new and changed requirements on the framework as it is being further reused and 

refined. It should also be noted that whether a component is reusable or not, the more it 

is used, the more changes (and defects) it is likely to incur.  

As mentioned, a higher change density may also indicate a higher level of adaptation 

(i.e. a benefit rather than a drawback).  This may be due to an increasing abstraction 

level, higher number of effective users (i.e. due to the number of dependent 

components) and middleware-like position (i.e. reusable components often provide 

communication or security services typically provided by middleware) of the reusable 

components. All of these characteristics are factors which may influence reusable 

components independently from the development approach. Though the reusable 

components we have investigated are all subject to the same influences, these may of 

course change over time.  

Lack of design was claimed as a potential disadvantage of TDD in [2][9][10] towards 

designing and maintaining the architecture of a system. Although we did not explicitly 

investigate this issue in our study, developers in the company indicate that they‘ve 

retained their documentation practices and increased their focus on proper logging 

together with the introduction of TDD as a new development approach. However, they 

do not maintain any special documentation related to their use of TDD.  Also, their 

experience is that the usefulness of TDD as a development approach depends on the 

clarity of the requirements.  Where the requirements are unclear, an extra overhead is 

often needed since the tests have to be updated or rewritten very often, in addition to the 

code. 
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5.3 Threats to Validity 

 

We here discuss the possible threats to validity in our survey, using the definitions 

provided by [20]: 

Construct Validity: The analysis constructs we have used (defect density and change 

density) are based on well-founded concepts in the software evolution and maintenance 

field.  All our data are pre-delivery change requests and trouble reports from the 

development phases of each new subsequent release.  This is similar to the data used in 

at least one other study [14]. Also, we have made an effort to exclude any invalid or 

incomplete records for trouble reports or change requests. 

External Validity: The object of study is a framework consisting of only five to seven 

reusable components, and the data has been collected for 5 releases of these 

components.  The framework is currently being reused in two applications within the 

company. Our results should be relevant and valid for other releases of these 

components, as well as for comparable contexts in other organizations.   

Internal Validity: All of the change requests and trouble reports for the JEF 

components have been analyzed and the calculations have been performed by us using 

the tool(s) mentioned. The calculations were double-checked to ensure compliance and 

correctness, and feel that we‘ve done our utmost to eliminate any possible errors. Also, 

all the change requests and trouble reports used were complete and valid. 

Conclusion Validity: This analysis is performed based on a complete set of data as 

available at the time the analysis was performed. We therefore think that this data set 

should be sufficient to draw relevant and valid conclusions. 

 

6. Conclusion and Future Work 

 

We have carried out an investigation on defect and change density in relation to the use 

of the Test Driven Development vs. test-last approaches on a framework of reusable 

components. Our results in this study have been presented to StatoilHydro ASA (the 

origin of the data), and can be summarized as follows: 

 We found the relative change in mean defect density per release to be -35.86% 

for TDD compared to traditional test-last development.  

 The relative change for mean change density per release was -76.19% for TDD 

compared to test-last development.  

 The distribution of changes for the TDD approach was 33.3% perfective, 5.6% 

adaptive and 61.1% preventive. 

The results have been presented to Statoil ASA and contribute towards understanding 

the implications of using TDD as a development methodology, as well as possible 

impacts of switching development methods. The results will also be combined with 

other research in the company to explain findings regarding effort and reuse. In this 

way, they hope to use this work as input towards improving current and future reuse 

programs at StatoilHydro. Additionally, we plan to expand our dataset to include 

additional releases of the reusable framework, and to refine the research questions based 

on our findings here. Future work includes an investigation of effort towards defects 

(maintenance) and changes (evolution) to investigate other potential facets of benefits 

related to TDD. 
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Abstract. Software risk management studies commonly focus on project level risks and 

strategies. Software architecture investigations are often concerned with the design, implementation 

and maintenance of the architecture.  However, there has been little effort to study risk management 

in the context of software architecture. We have identified risks and corresponding management 

strategies specific to software architecture evolution as they occur in industry, from interviews with 

16 Norwegian IT-professionals. The most influential (and frequent) risk was “Lack of stakeholder 

communication affected implementation of new and changed architectural requirements negatively”. 

The second most frequent risk was “Poor clustering of functionality affected performance 

negatively”. Architects focus mainly on architecture creation. However, their awareness of needed 

improvements in architecture evaluation and documentation is increasing. Most have no formally 

defined/documented architecture evaluation method, nor mention it as a mitigation strategy. Instead, 

problems are fixed as they occur, e.g. to obtain the missing artefacts. 

Keywords: software architecture, software evolution, risk management, software architecture 

evaluation  

 

1. Introduction 

 

Modern software systems are commonly built by acquiring and integrating various 

components developed by commercial or open source entities. The software engineering 

community has enabled several processes for developing and maintaining component-

based systems. Proper handling of software architecture is one of the most important 

factors towards successful development and evolution of component-based systems. 

However, there has been little effort to identify and understand the architectural risks in 

software evolution and potential strategies to deal with those risks. We assert that it is 

important to obtain and disseminate the information about potential risks (i.e. problems) 

in architecture evolution, as the architecture constitutes the central part of a software 

system [1]. Knowledge and understanding about architecture evolution risks should 

facilitate the development of improved strategies to mitigate these risks. 

We have decided to obtain such knowledge from practicing IT-professionals working 

with software architecture, as they are expected to encounter risks (i.e. problems that 

may occur) in evolving software architectures on a regular basis. Our research here is 

concerned with Component-Based Software Engineering (CBSE) development, where 

there has been architectural evolution during the systems‘ lifetime.  

Using a convenience sample of respondents, we carry out a preliminary investigation 

of architectural risks and management strategies in software evolution. This means 

changes to the structure(s) of a system of software elements, their external properties 

and mutual relationships, all viewed from a perspective of risk analysis and risk 



Appendix A 

 

 150 

mitigation. This exploratory study is targeted at Norwegian IT-professionals who hold 

significant knowledge and experience in designing and evolving software architectures.  

We have identified architectural risks (i.e. problems identified in planning or 

experienced during the maintenance/evolution) and associated risk management 

strategies (i.e. methods to mitigate these issues) as they occur in industry. ―Lack of 

stakeholder communication affected implementation of new and changed architectural 

requirements negatively‖ was the most influential as well as the most frequent risk.  

This risk was most effectively mitigated by extending the time used towards 

communication with stakeholders. ―Poor clustering of functionality affected 

performance negatively‖ was the next most frequent risk.  This risk was in turn most 

successfully mitigated by refactoring or improving the modifiability of the architecture. 

Furthermore, architects easily handle anticipated or experienced risks. However, their 

focus is usually on ―forward engineering‖, not on reengineering (i.e. the architecture 

solution rather than the suitable steps to get there [14] in advance). Despite this, some of 

the findings also show that awareness of software documentation and evaluation issues 

and practices is increasing. Also, most of the respondents have no formally defined or 

documented architecture evaluation method in place.  Rather, challenges are met as they 

appear, and the main focus is on obtaining the missing artifact. Finally, none of our 

respondents mentioned using formally defined or documented architecture evaluation as 

a risk mitigation strategy.   

The remainder of the paper is organized as follows:  Section 2 holds Background.  

Research Design is in Section 3.  Section 4 contains information on our data collection, 

and the results of our study are in Section 5. Discussion and Threats to Validity are 

located in Section 6, and Conclusions and future work are in section 7. 

 

2. Background and Related Work 

 

Software Architecture [1] can be defined as the discipline dealing with the structure or 

structures of a system, comprising software elements, the externally visible properties 

(―interface‖ of in-going and out-going calls) of those elements, and the relationships 

between them. Well-defined software architecture is one of the key factors in 

successfully developing and evolving a non-trivial system or a family of systems. A 

well-defined software architecture provides a framework for the earliest design 

decisions to achieve functional and quality requirements. In addition, it has a profound 

influence on project decomposition and coordination. Poor architecture often leads to 

project inefficiencies, poor communication, and inaccurate decision making [1]. The 

above definition of software architecture refers to software elements, which can be seen 

as components of the given software system. Hence software architecture is closely 

related to CBSE [2].  

Clerc et. al. [14] conducted a study to understand architects‘ attitudes towards 

software architecture knowledge. They found that architects are aiming more at creation 

and communication instead of review and maintenance of a system‘s architecture. Bass 

et al. [21] analyzed the output from 18 ATAM evaluations to discover risk themes 

specifically for software architecture.  Besides a set of risk categories, they found that 

the more prevalent risks are those of omission (i.e. of not taking action on a particular 

issue).  They also did not find a link between the risk categories and the 

business/mission goals or the domain of a system. Bass et al. further comment that the 
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similarities to their study shown in [23] indicate the industrial relevance of the risk 

categories [21], as well as the ability of ATAM analysis to discover architectural risks. 

Another risk categorization from ATAM evaluations is presented in O‘Connell [22], 

using 8 evaluation results.  Although study [22] was analyzed independently from [21], 

the resulting themes are similar in content.  It should be noted though that neither of 

these studies deal explicitly with the evolution of software architecture.  

The architecture of a system will evolve as architectural changes are accumulated 

over time. There are diverging views in the research community about how software 

evolution should be defined.  These include considering maintenance as a broader term 

[5], seeing evolution as a step in the software lifecycle [4], and regarding evolution as 

software systems‘ dynamic behavior through maintenance and enhancements [3].  Some 

[9] consider evolution as the enhancement and improvement performed on a system 

between releases. Based on this description, we define software evolution for this study 

as: the systematic and dynamic updating in new/current development or reengineering 

from past development of component(s) (source code) or other artifact(s) to a) 

accommodate new functionality, b) improve the existing functionality, or c)enhance the 

performance or other quality attribute(s) of such artifact(s) between different releases.  

If left unchecked, over time, a system‘s architecture will naturally decay as new 

quality and functional requirements are imposed on it.  This decay is manifested by the 

original architectural structure(s) being lost. This is sometimes called ―software rot‖ 

[20], and is one of the most prevalent reasons behind reengineering the architecture of a 

software system.   

Risk management entails methods to mitigate risks that may occur during a software 

development project. Boehm [8] describes a framework for risk management consisting 

of two main steps, namely risk assessment (identification, analysis, and prioritization) 

and risk control (planning, resolution, and monitoring). Ropponen and Lyytinen [6] 

have identified six elements of software risk. Their results reveal influence on risk 

elements by environmental factors (e.g. development method).  Also, awareness of risk 

management importance and method(s) was shown to have an effect. Keil et al. [10] 

conducted a risk management survey of project managers.  They identified several 

additional important risk factors in comparison with Boehm [8], contributing these to 

changes in the industry since Boehm‘s study.  Additionally, they discovered that 

important risks were commonly out of managers‘ control.  They therefore suggested 

that project managers widen their attention beyond traditional software risk factors. 

Further based on the definition of risk in Boehm‘s article[8], as well as input from 

[6][12], we use the following definition for architectural evolution risks: the issues or 

problems that can potentially have negative effects on the software architecture of a 

system as it evolves over time, hence compromising the continued success of the 

architecture. The above studies on architectural risks [21][22] have focused on 

discovering risk categories directly from the output of ATAM [1] analyses. They use 

analysis outputs from organizations where such evaluation is an established practice.  

However, they do not comment on how commonly such formal evaluation methods are 

used in industry. Nor do they take software evolution specifically into account. In [7], 

the authors found that evaluation practices could range from completely ad-hoc to 

formally planned, from qualitative to quantitative. They also discovered that the 

approach depended on the goals of the evaluation. This means that additional risk issues 

and management strategies could be left undiscovered by looking only at output from 
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structured analysis reports. We therefore decided to employ semi-structured interviews 

to gather qualitative information on risk issues and risk management strategies. 

 

3. Research Design: Context, Motivation and Research Questions 

We observed that risks and risk management strategies are commonly studied in 

relation to general software development [11][12][13], identifying risks on the project 

level [6][8][10]. Similarly, software architecture studies often focus on the design, 

implementation and maintenance of the architecture.  While these results are important, 

there has been little effort to study risk management in the context of software 

architecture [21][22]. Hence, we decided to carry out an empirical study to help further 

identify and better understand the risks and risk management strategies in relation to 

software architecture.  

This research is limited to those software systems which have two major 

characteristics: use of CBSE and changes in the systems' software architectures during 

their lifetimes. This means projects that have at least delivered the first production 

release, i.e. can be said to be in the ―maintenance‖ phase.  

Our main motivation is to obtain insight into the actual risks (i.e. issues identified 

and experienced which may affect the software architecture negatively) and associated 

risk management strategies (i.e. effective mitigation methods), as they occur in industry, 

in relation to software architecture evolution. We aim to use the results from this 

exploratory study as basis for more in-depth studies in this area.  

This study is aimed at identifying and understanding risks and strategies relevant to 

software architecture evolution.  That is, we investigate the steps of risk identification, 

analysis and prioritization, as well as risk planning and resolution [8], as they occur in 

industry. We do not cover issues pertaining to risk assurance or monitoring [8]. The 

research questions are as follows: 

RQ1: What are the relevant architectural risks of software evolution, i.e. what 

software architecture related risks can be encountered during software evolution? 
Any issue that can affect a project adversely if not handled correctly is considered a risk 

[8]. The first step in Boehm‘s risk management framework [8] entails risk 

identification, analysis, and prioritization. We are hence here interested in investigating 

the state-of-the-practice regarding risk awareness, i.e. to obtain insight on which risks 

that software architects deem more important in relation to software architecture 

evolution. 

As aforementioned, software architecture is the central part of a software system [1], 

so failure of the software architecture can easily cause the entire project to fail. Hence a 

proper focus on the software architecture is needed to ensure the project is kept on 

budget and schedule. Similarly, changes to the software architecture can cause 

subsequent changes in many components of a software system [1].  It is therefore 

imperative to be aware of the possible risks incurred on the software architecture 

through software evolution.  

RQ2: How can these risks best be assessed; through which methods or 

mechanisms were these risks identified, analyzed and prioritized? Software 

architecture evaluation is widely known as an important and effective way to assess 

architectural risks [1, 7]. In order to identify, analyze and prioritize [8] risks there is the 

need for effective methods or mechanisms for software architecture evaluation. Such 

mechanisms help validate architecture design decisions with respect to required quality 
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attributes (such as testability, availability, modifiability, performance, usability, security 

etc.).  Prior architecture analysis studies [21][22] focused on structured analysis outputs 

as a method to discover risks.  However the analysis methods used can range quite 

widely [7].  Investigating a wider range of analysis methods will help discover risk 

issues possibly missed by earlier studies. 

RQ3: How can these risks best be mitigated: what were the relevant risk 

management strategies? Were the strategies successful or not? The second step in 

Boehm‘s framework [8] encompasses risk control.  This step focuses on problem 

mitigation; it is aimed at handling problems to minimize their impact. Here, our aim is 

to obtain the status quo, and suggest possible improvements by enabling a systematic 

approach to architectural risk management in software evolution.  It is therefore 

imperative that we receive information on both positive and negative aspects of 

employed risk management strategies, and also on their outcomes. 

Again, risks in relation to the central part of a software system (i.e. the architecture 

[1]) are important.  Proper management of these risks on the three levels, technical, 

process and organization [11][12][13], provides the ability to minimize the potentially 

far-reaching impacts of these risks [8].  

In order to practically explore the three research questions above, we designed an 

interview guide consisting of six questions. The relation between the questions in the 

interview guide, the research questions, and Boehm‘s framework [8] is shown in Table 

1. 

 
Table 1. Relation between research questions and the interview guide 

 
 Identification, 

Analysis, and 
Prioritization [8] 

Assess-ment [8] Planning, and 

Resolution [8] 

Questions in the interview guide RQ1 RQ2 RQ3 

Q1.1. Describe architectural problems (indicate 
influence) and strategies (rate outcome) you 

identified in planning maintenance/evolution?  

X  X 

Q1.2. Describe architectural problems (indicate 
influence) and strategies (rate outcome) 

experienced and employed during 

maintenance/evolution? 

X  X 

Q2. Indicate weighting of and any changes in 

the following quality attributes[1]: testability, 

availability, modifiability, performance, 
usability and security) in your software 

architecture? 

X   

Q3. How has the architecture changed 
throughout the lifetime of the system? 

X   

Q4. Please describe your architecture change 

process? 

 X X 

Q5 Which architectural patterns (e.g. layering, 

task control, AI approach pipe-and-filter etc.) 
did you use to design the architecture? 

X   

Q6. Does your organization use a defined and/or 

documented method or process to evaluate 
software architecture? 

 X X 

 

Question Q6 has been adapted from an earlier empirical study aimed at identifying 

the factors that can influence software architecture evaluation practices [7]. We also 

gathered demographic data (e.g. level of experience) about the respondents. The 

interview guide was piloted with 3 researchers to ensure quality and ease of 

understanding, through which the questions were polished and refined. We aimed to be 
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flexible so as to gain as much qualitative information on each question as possible. 

Therefore, all the questions (Q1-Q6) were left open-ended.  Also, the influence of each 

risk and the outcome of each strategy were indicated on a 5-point Likert scale. That is, 

risk Influence was ranked Very High = 5 to Very Low = 1.  Similarly, strategy Outcome 

success was ranked Completely =  5, Mostly = 4, Medium = 3, Somewhat = 2 and Not 

at all = 1 successful. 

 

4. Data Collection and Analysis 

 

This study was carried out using a convenience sample of participants from the software 

industry in Norway. Potential respondents were first contacted by email, and sent the 

invitation letter with interview guide to get an overview.  Later the potential 

respondents were contacted again by phone and signed up for a phone-interview 

appointment if they agreed to participate. The respondents were 16 IT-professionals in 

different companies with prior knowledge and experience with software architecture. 

The phone interviews took on average 30 minutes to carry out, and we obtained 

complete responses to all the six questions from all 16 respondents. The data was 

recorded on paper and transcribed into electronic form.  The responses were also 

summarized and read back to the respondents directly after the interviews, so they could 

be checked for accuracy.  

Nine of the respondents had bachelor level degrees, while seven had master degree 

level educations.  On average, the respondents had 8 years of experience working with 

software architecture, with six having less than five years of experience, five having 5-

10 years of experience and another five having over 10 years of experience 

We analyzed the data as follows: The data was initially analyzed by dividing the 

data into discrete parts and coding each piece according to risk or strategy theme(s).  As 

an example, for risks this was done as {condition – what may go wrong, 

consequence(s)}: e.g. “requirements from earlier versions still in effect affected 

architecture design negatively.” was coded as {earlier version requirements, negative 

for architecture design}. 

We then examined them for commonalities and differences, and grouped related 

pieces of information based on their coding (e.g. for risks, {earlier version requirements, 

negative for architecture design} and {required same functionality as before, negative 

for planning} were grouped as {required backward compatibility, negative for 

architecture maintenance/evolution planning and design}). Each respondent’s transcript 

was run through this procedure. The results were checked by a second researcher to 

ensure reliability.  This is similar to the constant comparison method described in [16]. 

The issues identified in the data analysis were classified into three categories; technical, 

process and organizational. We believe that risk management is not merely a technical 

issue; rather, it spans all three categories [11][12][13][21].   

 

5. Results  

 

The results are here divided into categories of (1) technical, (2) process and (3) 

organizational risks.  This means that we have combined the findings from Q1.1 and 

Q1.2 for RQ1 and RQ3.  
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Technical risks: Table 2 shows the most influential technical risks and 

corresponding management strategies performed. From Table 2, we can see that the 

strategy applied in planning towards TR1 was Completely successful (Outcome = 5).  

Furthermore, overall the strategies were also 3 out of 5 of Medium success (Outcome = 

3), and 1 out of 5 Not at all successful (Outcome = 1).  
 

 

 

Table 2. Most influential (Influence ≥ 4) technical risks (TRs) and corresponding management strategies 

performed 

 
Technical ID Risk Influence Strategy Outcome 

Identified in 

planning 

TR

1 

Poor clustering of 

functionality affected 
performance negatively 

4 Refactoring of the 

architecture 

5 

Experienced 

during 

TR

2 

Poor original core design 

prolonged the duration of 
the maintenance/ 

evolution cycle 

4 Improve modifiability of 

the architecture 

3 

 TR
3 

Increased focus on 
modifiability contributed 

negatively towards 

system performance 

4 Implementation of 
changes towards 

modifiability 

3 

 TR

4 

Varying release cycles 

for COTS/OSS 

components made it 
difficult to implement 

required changes 

4 Use own development as 

potential backup  

3 

 TR
5 

Poor clustering of 
functionality affected the 

performance negatively 

4 Implement extra 
architecture add-ons 

1 
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Process risks: Table 3 (below) shows the most influential process risks and 

corresponding management strategies performed. These results (Table 3) show that all 

of the strategies used in response to the most influential risks in planning were 

Completely successful. Towards the risks experienced during the 

maintenance/evolution, the strategies were 3 out of 10 Completely successful, 5 out of 

10 of Medium success, while 2 out of 10 were Completely successful.  
 

  

Table 3.  Most influential (influence ≥ 4) process risks (PRs) and corresponding management strategies 

performed 

 
Process ID Risk Influence Strategy Outcome 

Identified in 

planning 

PR1 Lack of architecture 

documentation 
contributed to more effort 

being used on planning 
the maintenance/ 

evolution 

4 Recover arch. 

documentation from 
current architecture 

design 

5 

PR2 Lack of architecture 
evaluation delayed 

important maintenance/ 

evolution decisions 

4 Recover evaluation 
artefacts where needed 

5 

Alter process to capture  

important details 

5 

Experienced 

during 

PR3 Lack of stakeholder 

communication affected 

implementation of new/ 
changed architectural 

requirements negatively 

5 Negotiated project 

extension 

3 

Allow additional time for 

communication/feedback 

5 

PR4 Insufficient requirements 

negotiation contributed to 
requirement 

incompatibilities on the 

architecture 

4 Postponed some 

requirements to next 
maintenance/evolution 

cycle 

3 

PR5 Poor integration of 

architecture changes into 

implementation process 
affected implementation 

process and the 
architecture design 

negatively 

4 Overlay new architecture 

change process onto 

implementation process 

5 

Integrate architecture 

considerations into 
implementation process 

3 

PR6 Using Software Change 
Management (SCM) sys. 

w/o explicit software 
architecture description 

contributed to 

inaccuracies in 
communicating the 

architecture 

4 Use separate system for 
architecture description 

(using ADL), link to 
SCM system 

3 

Trial use of additional 

ADL system 

3 

PR7 No standard terminology 

affected internal and 

external communication 
efforts negatively 

4 Align terminology with 

literature 

1 

Extra communication to 

clarify terminology 

1 

PR8 Customer architects being 

unfamiliar with 

architecture change 
process affected maint./ 

evo. cycle schedule 
negatively 

4 Extra communication 

effort with own resident 

architect to clarify 

5 
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Organizational risks: Table 4 (below) shows the most influential organizational 

risks and corresponding management strategies performed. Among the strategies used 

in response to these most influential organizational risks (Table 4) identified in 

planning, 2 out of 4 were Medium successful, while 2 out of 4 were Completely 

successful. Towards those experienced during, the strategies were all Medium 

successful. 
 

Table 4. Most influential (influence ≥ 4) organizational risks (ORs) and corresponding management strategies 

performed 

 
Organization ID Risk Influence Strategy Outcome 

Identified in 
planning 

OR
1 

Architecture team on a per 
maintenance/evolution 

cycle basis contributed to 

loss of knowledge about 
the existing architectural 

design 

4 Dedicated personnel 
to ―retrieve‖ 

knowledge 

3 

OR
2 

Cooperative maintenance / 
evolution with architects 

from customer organization 
required extra training and 

communication efforts 

4 Frequent, interactive, 
scheduled meetings 

to keep up to date 

5 

OR
3 

Lack of clear point of 
contact from customer 

organization contributed to 

inconsistencies in 
communication of the 

architecture and 
requirements 

4 Involve all ―layers‖ 
of customer 

organization as 

stakeholders, allow 
extra communication 

time 

5 

OR

4 

Not allowed to change OSS 

as decision mandate 
external to architecture 

team, affecting 

performance and 
modifiability negatively 

4 Ensure compliance 

with external 
mandate holder 

3 

Experienced 
during 

OR
5 

Separate architecture team 
per maint. / evo. cycle 

contributed to insufficient 

knowledge about the 
existing architectural 

design 

4 Regain architecture 
details from upper 

management 

remaining 

3 

OR
6 

Prior architecture maint./ 
evo. by other projects due 

to lack of personnel made it 
difficult to obtain existing 

architecture design 

documentation 

4 Merge architecture 
knowledge / 

documentation to 
central location 

3 

OR

7 

Large architecture team 

affected division of duties 

and subsequently 
implementation of maint./ 

evolution cycle negatively 

4 Divide duties 

between subgroups 

3 

OR
8 

Lack of clear lead architect 
affected implementation 

progress negatively and 
contributed to extra effort 

needed 

4 Merge duties and 
diverge roles more 

clearly 

3 
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Additionally, our results show that the overall most frequent (and most influential) 

risk was ―Lack of stakeholder communication affected implementation of new and 

changed architectural requirements negatively‖.  The most successful strategy in 

response to this risk was ―Allow additional time for communication for communication 

and feedback‖. The second most frequent risk was ―Poor clustering of functionality 

affected performance negatively‖, with ―Refactoring the architecture‖ and ―Improve the 

modifiability of the architecture‖ as corresponding most successful strategies.  The 

results from questions Q2, Q3, Q5 (Table 5), and Q4, Q6 are below. 

 
Table 5. Summary of additional findings for RQ1 

 
Q2. Quality attribute foci: 

 Focus on any given QA can change during the project.  

 Only a few projects experienced a lowering of focus on a given QA. 

 Most frequent QA with increased focus was Modifiability, followed by Usability.    

Q3. Architecture changes made during system lifetime to: 

 Improve processing speed or scale (7 out of 16) 

 Improve flexibility to accommodate future changes  

  (7 out of 16) 

 Accommodate new or altered user requirements  

  (5 out of 16) 

 Improve system uptime (3 out of 16) 

 Enable additional access interfaces  

   (1 out of 16) 

 Increase abstraction level (1 out of 16) 

 Support additional record types (1 out of 16) 

Q5. Architectural patterns used (as means to solve design challenges): 

 Inversion of Control (1 out of 16),  

 Layered (3 out of 16),  

 Blackboard (3 out of 16), 

 Model View Controller (4 out of 16),  

 Pipeline (3 out of 16),  

 Task Control (2 out of 16), and  

 Broker (1 out of 16).   



Appendix A 

 

 159 

The following are results from Q4 (RQ2, RQ3) (architecture change process): 

 none used a strictly defined change process, 

 7 out of 16 performed this process informally, 

 4 out of 16 employed loosely defined procedures, 

 3 out of 16 changed the architecture as part of the development process, and 

 2 out of 16 just change the architecture as needed. 

In question Q6, none of the respondents answered that they have a defined or 

documented process for software architecture evaluation. 5 out of 16 of the respondents 

have a loosely defined process in place if needed.  Another 5 out of 16 have knowledge 

of evaluation processes or methods mentioned in literature. Yet another 5 out of 16 of 

the respondents carry out a software architecture evaluation informally if needed.  

Finally, 1 out of 16 of the respondents reports that her/his organization has a process for 

software architecture evaluation in place (in this specific case, based on the Architecture 

Tradeoff Analysis Method – ATAM [1]), but this is not commonly used. 

 

6. Discussion 

 

6.1 Comparison to Related Work 

 

The Technical risks identified by the respondents show a high focus on design and 

creation of the architecture, supporting [14].   

While Ropponen‘s [6] focus was overall software development risks, ours is software 

architecture risks in software evolution. The strategies used in response to the risks we 

identified as (See Table 6 below) ―Architecture Team‖ and ―Requirements‖ risks were 

reported as being Medium or Completely successful in outcome. We can hence support 

the notion that there is at least some success in managing risks related to ―Architecture 

Team‖ and ―Requirements‖ [6].  

A summarized comparison with the above and Bass et al. [21] is also in Table 6.  
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Table 6. Summary of comparison to related work 

  
ID Ropponen et al. [6] 

 Requirements risks:  

PR4 ―Insufficient requirements negotiation contributed to requirement incompatibilities‖ 

TR3 ―Increased focus on modifiability contributed negatively towards system performance‖ 

 Architecture Team risks: 

OR5 

 

―Separate architecture team per maint. / evo. cycle contributed to insufficient knowledge about 

the existing architectural design― 

OR7 

 

―Large architecture team affected division of duties and subsequently implementation of maint./ 

evo. cycle negatively‖ 

OR8 
 

―Lack of clear lead architect affected implementation progress negatively and contributed to 
extra effort needed‖ 

 Stakeholder risks (from the subcontractor viewpoint):  

PR3 ―Lack of stakeholder communication affected implementation of maint./ evo. cycle negatively‖ 

OR2 
 

―Cooperative maint./evo. w/ architects from customer organization required extra training and 
communication efforts‖ 

OR3 

 

―Lack of clear point of contact from customer organization contributed to inconsistencies in 

communication of the architecture and requirements‖ 

PR8 ―Customer architects being unfamiliar with architecture change process affected maint./evo 

cycle schedule negatively‖ 

ID Bass et al. [21] 

 Quality Attribute risk: 

TR3  ―Increased focus on modifiability contributed negatively towards system performance‖ 

 Integration risks:  

TR4 ―Varying release cycles for COTS/OSS components made it difficult to implement required 

changes‖ 

OR4 ―Not allowed to change OSS as decision mandate external to architecture team, affecting 

performance and modifiability negatively― 

 Requirements risks:  

PR4 ―Insufficient requirements negotiation contributed to requirement incompatibilities on the 

architecture‖ 

TR3 ―Increased focus on modifiability contributed negatively towards system performance‖ 

 Documentation risks:  

PR1 ―Lack of architecture documentation contributed to more effort being used on planning the 
maintenance/evolution‖ 

PR6 ―Using Software Change Management system w/o explicit software architecture description 

contributed to inaccuracies in communicating the architecture‖ 

 Process and Tools risks:  

PR2 ―Lack of architecture evaluation delayed important maintenance/evolution decisions‖ 

PR6 ―Using Software Change Management system w/o explicit software architecture description 

contributed to inaccuracies in communicating the architecture‖ 

 Allocation risks:  

TR1 ―Poor clustering of functionality affected performance negatively‖ 

TR4 ―Varying release cycles for COTS/OSS components made it difficult to implement required 
changes‖ 

 Coordination risks:  

PR3 ―Lack of stakeholder communication affected implementation of maint./evo. cycle negatively‖ 

PR8 ―Customer architects being unfamiliar with architecture change process affected maint./evo 

cycle schedule negatively‖ 

OR2 ―Cooperative maint./evo. with architects from customer organization required extra training and 
communication efforts‖ 

OR3 ―Lack of clear point of contact from customer organization contributed to inconsistencies in 

communication of the architecture and requirements‖ 

OR4 ―Not allowed to change OSS as decision mandate external to architecture team, affecting 

performance and modifiability negatively‖ 

 



Appendix A 

 

 161 

6.2 Observations on Key Architectural Risks and Promising Risk Management 

Strategies 

 

The most influential Process risks we identified (Table 3) show that the main focus is 

still forward thinking (producing systems according to budget and schedule) 

rather than hindsight reflection and learning.  Further, from the answers to Q5 we 

can see that the consequences of using one or more specific patterns are neither 

explicitly considered, nor evaluated as potential risks (though tactics, packaged by 

patterns, is a risk issue also discovered from ATAM reports in [21][22]).  

The answers from Q4 and Q6 also point towards this main focus. Hence there is no 

apparent specific focus on discovering potential problems (rather problems are fixed as 

they are encountered, focussing on the missing artefacts).  This is despite the potential 

benefits (e.g. identifying architecture design errors and potentially conflicting quality 

requirements early) of defined and documented architecture evaluation described in the 

literature [1]. However, architects are becoming aware that their practices around 

evaluation and documentation need improvement. This is echoed by the 

Organizational risks we identified (Table 4), such as ―Architecture team on a per 

maint./evo. cycle basis contributed to loss of knowledge about the existing architectural 

design‖ and ―Large architecture team affected division of duties and subsequently 

implementation of maint./evo. cycle negatively‖.  

A link to Business Risks [19] (i.e. those that affect the viability of a software 

system) can also be seen. The architectural risks identified are influenced by and in turn 

also affect such elements as e.g. cost, schedule.  

Considering the most influential Technical risks (table 3), we can see that the 

majority of them were experienced during the maintenance/evolution, without prior 

planning. The same appears the case for the most influential Process risks, whereas for 

the most influential Organizational risks half were identified in planning, and another 

half were experienced during the maintenance/evolution. In terms of management 

strategies, one overall trend appears to be that those employed in response to risks 

identified in planning had a more successful outcome. This appears especially to be the 

case where the same risk was both identified in planning as well as experienced during 

the maintenance/evolution (e.g. Technical risks TR1 and TR5: ―Poor clustering of 

functionality affected performance negatively‖). These findings also emphasize the 

points about forward engineering and awareness discussed above. 

One of the strategies applied towards technical risks, as well as two of the strategies 

applied towards process risks were Not at all successful. These strategies should be 

viewed in light of the respective projects‘ context (Tables 2, 3). Additionally, 

improvement is needed in the employed strategies, especially regarding issues 

encountered during maintenance/evolution. The lack of a strictly defined and 

documented architecture change process reported by the respondents (Q4) is also an 

interesting finding. We would expect architecture evaluation to be part of a given 

change process in order to analyze the consequences of proposed architectural changes.  

To improve this situation, we believe that rigorous documentation and evaluation of 

architecture should be made an integral part of a software architecture change process. 

Furthermore, management of risks specific to architectural modifications should be 

given more attention. To achieve these objectives, software architects should be 

provided appropriate training. Moreover, organizational management should also 
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demonstrate commitment to implement changes to the way software architecture 

changes are handled. 

 

6.3 Threats to Validity 

 

Threats to validity (using definitions provided by Wohlin et al. [15]):  

Construct Validity: The research questions are rooted firmly in the research 

literature, and the actual questions in the interview guide have direct relations to the 

research questions. The interview guide was refined through pre-testing among our 

colleagues to ensure quality.  All the terms used in the guide were defined at the 

beginning to avoid any potential misinterpretations.   
External Validity: This study has been conducted by using a convenience sample of 

16 IT-professionals, an issue which remains a threat.  Nevertheless, obtaining a random 

sample is almost unachievable in software engineering studies because our community 

lacks good demographic information about populations of interest [17]. The respondents 

were chosen by us based on their background and experience with software architecture.  

Each respondent nevertheless represents a different company.  
Internal Validity: The respondents are all knowledgeable and from the software 

industry, and have expressed an interest in the study. They all have the needed 

knowledge and background to provide informed answers. We hence believe that they 

have answered the questions to the best of their ability, truthfully and honestly, drawing 

on their own experiences, skills and knowledge.  We also clarified any ambiguities in 

the questions or the accompanying definitions during the actual interviews, in addition 

to the definitions provided in the guide.    
Conclusion Validity: This is an exploratory study. The findings are based on 

analyzing data from a relatively small number of software architects. We plan to 

implement a large scale study to confirm the results of this study. However, the 

exploratory nature of the study has identified several issues that may cause architectural 

risks for evolving systems. The insights gained will also function as background for 

refining the interview guide towards expansion of the sampling base for the planned 

larger scale study. 

 

7. Conclusion and Future Work 

 

We conducted phone-based, semi-structured interviews of 16 software architects from 

Norway for an exploratory study regarding risks and risk management strategies 

occurring in industry related to software architecture evolution.  

Our findings include an initial identification of risks and corresponding risk 

management strategies as they occur in industry. Our main observations include that 

―lack of stakeholder communication affected implementation of new and changed 

architectural requirements negatively‖ was the most influential and frequent risk. The 

corresponding most successful strategy was to ―Allow additional time for 

communication and feedback‖. In second place concerning most frequent risks came 

―Poor clustering of functionality affected performance negatively‖. The most successful 

management strategies towards this risk were ―Refactoring the architecture‖, and 

―Improve the modifiability of the architecture‖.  
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Furthermore, architects‘ main concerns are towards designing and creating the 

architecture.  However, our results also show some awareness towards improvements in 

relation to how these tasks are performed, as well as towards the importance of retaining 

knowledge about and performing evaluation of the architecture. As most respondents 

have no formally defined or documented method to evaluate software architecture, 

problems are fixed as they occur with focus on the lacking artefacts rather than on the 

method.  

Our results here will be used as input for a larger study in the software industry to 

survey the state-of-practice on risk and risk management regarding software architecture 

evolution. In particular, we plan to explore the relation between risks and risk 

management practices, and project context factors. 
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Abstract 
The little effort that has been made to study risk management in the context of software architecture 

and its evolution, has so far focused on output from structured evaluations. However, earlier research 

shows that formal, structured evaluation is not commonly used in industry. We have performed a survey 

among software architects, in order to capture a more complete picture of the risk and management 

issues in software architecture evolution. Our survey is specifically about their current knowledge of 

actual challenges they have anticipated and experienced, as well as strategies the respondents have 

employed in response. We received completely filled questionnaires from 82 respondents out of a total 

distribution of 511 architects from the software industry in Norway. While many of the risks we have 

identified can be aligned with results from earlier studies, we have also identified several risks which 

appear not to fit risk these risk categories. Additionally, we found a direct link to business risks, as well 

as a relatively low level of low levels of awareness that lack of software architecture evaluation 

represents a potential risk.  

 

Keywords: software architecture, software evolution, risk management, software 

architecture evaluation 

 

1. Introduction 

Proper management of software architecture is one of the most important factors 

towards successful development and evolution of component-based software systems. 

The architecture is a core part of a software system [1], and obtaining and disseminating 

information about relevant risks is therefore important. By software architecture 

evolution, we mean accumulated changes to the structure(s) of a system of software 

elements, their external properties and mutual relationships [1]. Some effort has been 

made towards identifying and understanding the risks and corresponding strategies 

involved in managing software architecture evolution (but based on outputs from 

structured architecture evaluations – which are not commonly used in industry [7]).  

We expect that practicing IT-professionals who work with architecture on a daily 

basis will encounter architectural evolution risks on a regular basis.  Therefore, this 

investigation targets software professionals in the IT-industry with significant 

knowledge and experience about software architecture design and evolution.  The 

systems we investigate are within Component-Based Software Engineering (CBSE – 

including internal, Components Off-The-Shelf (COTS) and Open Source components 

(OSS)) development, and whose architectures have evolved during their lifetimes. We 

have also targeted small and medium sized enterprises (SMEs). 
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Based on our initial identification of risks and management strategies [19], we have 

carried out an industrial survey of architectural risks and mitigation strategies in 

software evolution. In this investigation, we have identified additional architectural 

risks and associated risk management strategies related to software evolution in the IT-

industry, in a three-part adapted operational matrix (Tables 2, 3, 4). This allows easy 

lookup of strategies and related outcome profiles as applied to the most influential risks 

we identified. The most influential risks were regarding poor clustering of functionality 

and insufficient stakeholder communication. While many of the risks we have identified 

fit with results from earlier studies [22][23], we have also identified several risks which 

appear not to fit risk these risk categories. We found a low level of awareness that lack 

of architecture evaluation represents a potential problem, as well as a direct link to 

business risks.  

The remainder of this paper is organized as follows: Section 2 holds background and 

related work. The research method is presented in Section 3. Section 4 contains 

information on our data collection and analysis, and the results of our study stand in 

Section 5. Discussion and Threats to Validity are contained in Section 6, and conclusion 

and future work stand in section 7. 

 

2. Background and Related Work 

 

Risks are challenges that can have negative influences on a project unless they are 

handled properly. Risk management involves methods to handle risks that may occur 

during a software development project. Boehm [8] details a risk management 

framework which includes two main steps: risk assessment (i.e. risk identification, 

analysis and prioritization) and risk control (i.e. planning, resolution and monitoring). 

Technological, process and organizational issues are also important collective facets of 

software risk mitigation (i.e. proper handling of occurring problems to minimize their 

consequences) [11][12][13].   

A definition of Software Architecture can be found in [1, page 3]: the structure or 

structures of a system, which comprise software elements, the externally visible 

properties of those elements, and the relationships between those elements. Defining 

and maintaining a software architecture properly is key to success with development 

and evolution of non-trivial systems, such as within CBSE [2]. Benefits to project 

organizational structure can also be seen. Furthermore, a lack of attention to software 

architecture often has negative consequences reaching beyond the architecture itself, for 

example with respect to inter-personal communication, unnecessary redundancies and 

decision making in the project [1].  

Definitions of software evolution exist in the research literature in several variants: 

evolution as part of maintenance [5], evolution as a software lifecycle step [4], 

evolution as the dynamic behavior of software systems through lifelong maintenance 

and enhancements [3], and evolution as the enhancements and improvements regarding 

functionality and performance made between releases [9]. Our definition of software 

evolution (updated from [19]) is as follows: the systematic and dynamic updating of a 

component (source code) or other artifact to a) accommodate new, altered or removed 

functionality or b) enhance the reliability/availability (i.e. fewer failures), performance, 

or other quality attribute(s) of such an artifact between different releases.  
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Capturing architectural information is important in determining inherent risks in the 

architecture, as well as the impact these risks may have. The concept of Architectural 

Knowledge is relatively new in Software Engineering [21]. Combining the documented 

design of the architecture with records of actual design decisions, underlying 

assumptions and context (as well as additional factors) constitutes a knowledge base for 

understanding all aspects of that software architecture.  The key point is that most of the 

needed architectural information included, save perhaps the actual architectural design, 

commonly is not explicitly documented [21]. Clerc et al. [14] carried out a survey 

among software architects in the Netherlands, focusing on architectural knowledge. 

Their findings show that architects emphasize creation and communication at the 

expense of reviewing and maintaining a given architecture. Furthermore, architects were 

not concerned with learning and reflection. 

Ropponen and Lyytinen performed a survey regarding risks in software development 

and how these risks can be handled [6].  They asked project managers questions 

regarding software development risks, their mitigation, and corresponding influence by 

environmental factors. They identified the following six categories of software risk: 1) 

scheduling and timing risks, 2) functionality risks, 3) subcontracting risks, 4) 

requirements management, 5) resource usage and performance risks, and 6) personnel 

management risks. Their results also reveal that all of the risk categories were affected 

by environmental factors.  

Bass et al. [22] used results from 18 ATAM evaluations to reveal and analyze risk 

themes specifically towards software architecture. In addition to a set of risk categories, 

they also found that the more prevalent risks are those of omission, i.e. of not taking 

action on a particular issue. They also did not find a link between the risk categories and 

the business/mission goals or the domain of a system. Another risk categorization from 

ATAM evaluations is presented in O‘Connell [23], using 8 evaluation results.  

These studies utilize ATAM outputs from organizations where such evaluation is 

established as a practice, but do not comment on how common such formal evaluation 

methods are in industry. A related study [7] on architecture evaluation shows that 

practices range from completely ad-hoc to formally structured, from qualitative to 

quantitative. Additional risks and management strategies could therefore escape 

discovery when only investigating structured analysis reports. It should also be noted 

that neither of these studies deal explicitly with evolution of software architecture. In 

contrast, our investigation incorporates risks explicitly identified in planning and 

experienced during the evolution of software architecture, based on input directly from 

software architects. 

 

3. Research Method 

 

Motivation: Our initial observation [19] was that risk management studies usually 

identify risks on the general project level [6][8][10]. On the other hand, software 

architecture studies commonly focus on the design, implementation and maintenance of 

the architecture, i.e. as a software artifact. There has been some effort to study the two 

in combination [19], i.e. risk management of software architecture activities, but based 

on outputs from structured architecture evaluations [22][23]. We therefore decided to 

perform a more in-depth investigation to further identify and understand actual risks and 

associated risk management strategies in relation to software architecture evolution, as 
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they are identified, experienced and employed in industry. We study industrial risk 

identification, analysis and prioritization (RQ1), as well as risk planning and resolution 

(RQ2) [8][19]. 

Our Research Questions (background in a review of research literature, being 

adapted as follows): 

RQ1: What are the relevant architectural evolution risks, i.e. what risks induced on 

the software architecture through software evolution? Boehm‘s first step [8] includes 

risk identification, analysis, and prioritization. We are focusing on the state-of-the-

practice in risk awareness, i.e. we wish to gain insight regarding which risks software 

architects deem important with respect to an evolving architecture. In our prestudy [19] 

we saw that challenges (risks) were handled on a case-by-case basis, whether known 

before project start, or experienced during projects.  

RQ2: How can these risks best be mitigated: how successful were the relevant risk 

management strategies? Boehm‘s second step [8] includes risk control, focusing on 

problem mitigation; i.e. proper handling of occurring problems to minimize their 

impact. Our goal is again to obtain an overview of state-of-the-practice.  Furthermore, 

we wish to suggest possible improvements through enabling a systematic approach to 

managing architectural risks in software evolution. Hence, it is important that we obtain 

information regarding positive and negative aspects of applied risk management 

strategies and their outcomes. As mentioned, our prestudy [19] indicated that risk 

mitigation is performed in an ad-hoc manner. Most of the respondents also reported not 

having a documented or defined risk management process to deal systematically with 

risk aspects when altering the architecture.  

Our questionnaire: Building on the questionnaire from our prestudy [19], we have 

designed a revised questionnaire totalling 23 questions. Questions Q1-Q5 and Q8 are 

closely related to those in our prestudy. Furthermore, questions Q6-Q23 were adapted 

and changed from an earlier empirical study aimed at identifying the factors that can 

influence software architecture evaluation practices [7]. Some of the questions are semi-

open questions, i.e. the answer categories are indicated, but the actual answer is free 

text.  The remaining questions are mainly closed, although some have alternatives such 

as ―other, please describe:‖ to allow filling in additional answers not covered by the 

given alternatives for a particular question. In addition, respondent information 

regarding level of experience, education, number of years in the IT-industry, position, 

size of company etc. was collected. We have tried out the questionnaire on four of our 

colleagues to ensure the quality of the questions and that they were easy to understand. 

This caused 7 out of 23 questions to be refined.   

In this article, we are focussing on identification, analysis and prioritization, as well as 

planning and resolution, of risks. We therefore discuss questions Q1.1 and Q1.2 of the 

questionnaire separately in this article, as both of them contribute to both RQ1 and 

RQ2. Q1.1 reads ―Challenges identified in planning the maintenance/evolution 

related to the software architecture (indicate influence on the architecture, also indicate 

strategies, and their outcome)?‖, and Q1.2 reads ―Challenges experienced during the 

maintenance/evolution related to the software architecture (indicate influence on the 

architecture, also indicate strategies, and their outcome)?‖  

In questions Q1.1 and Q1.2, we used a 5-point ordinal Likert scale to rank risk 

Influence with value range Very High (VH) = 5, High (H) = 4, Medium (M) = 3, Low 

(L) = 2 and Very Low (VL) = 1. Similarly, strategy Outcome was ranked Not at all = 1, 
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Somewhat = 2, Medium = 3, Mostly = 4, and Completely = 5 successful. The rank 0 

was used to indicate ―Don‘t know‖ on both scales. 

Context: Our research in this investigation is on software development projects with 

the following two major characteristics – use of CBSE (including development with 

internal, COTS and OSS components), and incurred changes in the software 

architecture during their lifetime. This implies that the investigated projects have 

delivered their first production release. That is, they can be considered to be in the 

―post-development‖ phase, i.e. undergoing maintenance/evolution. The survey 

respondents were all from the IT-industry in Norway.  

 

4. Data Collection and Analysis 

 

This questionnaire-based survey was performed using a variant of snowball sampling, 

a technique described in [18], where key practitioners serve as contact points towards 

the organizations involved. The contact points are then sent the questionnaire, and 

forward it on to other potential respondents. The contact points can also report the total 

number of respondents from each organization and function as a temporary checkpoint 

for the number of completed questionnaires. This type of sampling is close to 

convenience sampling in that the contact persons are known during the execution of the 

survey. To ease the workload and streamline the data collection and validation process, 

we enabled a web-interface to make the questionnaire available to the respondents 

online.  

To ensure previous knowledge and experience working with software architecture, we 

required at least 2 years of professional experience (the lowest level seen in our 

prestudy – respondents at this level were still able to give relevant and valuable 

answers). The questionnaire took about 30 minutes to fill in completely. In total we 

were able to reach 63 small and medium sized software companies (all less than 100 

employees), with 511 potential respondents. We received 82 complete answers out of 

511 total contacted (i.e. a response rate of 16 %). Furthermore, the mean project size 

was 7.  

We analyzed the data as follows: The data on risks and strategies were divided into 

distinct parts and each piece coded according to risk or strategy theme(s). As an 

example [19], for risks this was specified as {risk condition – what may go wrong, risk 

consequence(s)}. For example, ―requirements from earlier versions still in effect 

affected architecture design negatively‖ was coded as {earlier version requirements, 

negative for architecture design}. The coded pieces were then examined for 

commonalities and differences, combining related information pieces.  For example, for 

risks, {earlier version requirements, negative for architecture design} and {required 

same functionality as before, negative for planning} were grouped as {required 

backward compatibility, negative for architecture maintenance/evolution planning and 

design}. These groups were then compared to the risks and strategies we discovered 

from our prestudy to check for overlaps and similarities.  

We ran all the answer records through this procedure. The results were further 

checked to ensure reliability. This is similar to the constant comparison method 

described in [16]. We retained the risk classification scheme used in our prestudy [19] 

for the three categories technical, process and organizational. We maintain that risk 
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management is not merely a technical issue; rather, it covers all three categories 

[11][12][13]. 

 

5. Results 

 

In presenting the results, we have divided the risks into the three categories mentioned 

above. The results are presented in three tables which together constitutes an adapted 

operational matrix. In this context they enable lookup of strategies and their outcome 

profiles as applied to the most influential risks we identified. The outcome is presented 

as a set of the number of instances each rating was given by the respondents, i.e. 

Outcome rating = Number of {―Not at all‖, ―Somewhat‖, ―Medium‖, ―Mostly‖, and 

―Completely‖} successful instances. Though it was possible to enter ―Don‘t Know‖ as a 

rating, none of the respondents did so. In presenting the results, the strategy with the 

highest number of ―Completely‖ (or ―Mostly‖ if no instances were rated ―Completely‖) 

successful responses is taken as the most successful.  The strategy applied by the most 

respondents is taken as the most frequent strategy. Finally, ―*‖ indicates that this risk 

was also identified among the most influential in our prestudy [19]. 
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Technical risks: From Table 2, we can see that Technical Strategy (TS) 1 (Table 2) 

was the overall most successful strategy, and also the most frequent one, applied in 

planning. During maintenance/evolution, TS 7 (Table 2) was the most successful (and 

most frequent) strategy applied towards technical risks. 

 
 

Table 1. Most influential (Risk Influence VH > 1) technical risks (TRs), 
and strategies 

 
Technical (identified in planning), ID: 

Risk  

Risk 

Influence 

ID:Strategy:Outcome rating = Number of {―Not at all‖, 
―Somewhat‖, ―Medium‖, ―Mostly‖, and ―Completely‖} successful 

instances. 

TR 1: Poor clustering of functionality affected 

performance negatively * 

VH: 7,  

H: 23 
TS 1 Refactoring of the architecture  {0, 8, 2, 5, 

3} 

TS 2 Redesign within constraints  {0, 0, 1, 4, 

0} 

TS 3 Design with high focus on modifiability {0, 1, 2, 6, 

1} 

TS 4 Finalize modifiability design 
considerations early 

{0, 1, 0, 0, 
0} 

TR 2: Requirements from other system(s) 

affected performance negatively  

VH: 5,  

H: 10 
TS 2 Redesign within constraints {0, 1, 4, 4, 

0} 

TS 5 Employ separate agents for external 
communication, protocol for information 

sharing  

{0, 1, 2, 2, 
0} 

TS 3 Design with high focus on modifiability  {0, 1, 4, 3, 
0} 

TR 3: Undefined variation points in 

requirements affected performance negatively, 
caused increased focus on modifiability 

VH: 3, 

H: 10 
TS 3 Design with high focus on modifiability {0, 0, 3, 5, 

1} 

TS 4 Finalize modifiability design 

considerations early 

{0, 3, 2, 3, 

0} 

TR4: Extensive focus on streamlining of the 
architecture affected modifiability negatively 

VH: 2, 
H: 10 

TS 3 Design with high focus on modifiability {0, 0, 3, 3, 
1} 

TS 4 Finalize modifiability design 

considerations early 

{0, 2, 3, 3, 

0} 

TR 5: Architectural mismatch caused redesign 

of part of the architecture 

VH: 2, 

H: 2 
TS 1 Refactoring of the architecture {0, 1, 1, 0, 

0} 

TS 3 Design with high focus on modifiability {0, 0, 0, 1, 
0} 

TS 4 Finalize modifiability design 

considerations early 

{0, 0, 1, 0, 

0} 

Experienced during 

TR 6: Increased focus on modifiability 

contributed negatively towards system 
performance * 

VH: 6, 

H: 10 
TS 6 Implementation of changes towards 

improved modifiability 

{0, 0, 2, 1, 

0} 

TS 7 Minor implementation changes {0, 1, 6, 7, 
0} 

TR 7: Poor original core design prolonged the 

duration of the maintenance/ evolution cycle * 

VH: 3, 

H: 11 

TS 6 Implementation of changes towards 

improved modifiability 

{0, 0, 3, 4, 

0} 

TS 8 Informal review of the architecture {0, 0, 3, 3, 

0} 

TS 7 Minor implementation changes {0, 0, 1, 2, 
0} 

TS 1 Refactoring the architecture {0, 0, 3, 0, 

0} 

TR 8: Varying release cycles for COTS/OSS 

components made it difficult to implement 

required changes * 

VH: 2, 

H: 16 
TS 9 Use own development as potential 

backup solution 

{0, 4, 5, 8, 

0} 

TS 10 Implement extra architecture add-ons {0, 1, 2, 0, 
0} 

 



Appendix A 

 

 172 

Process risks: The results from Table 3 show that 7 out of 12 Process Strategies (PS) 

applied in planning were rated Completely (i.e. Outcome = 5) successful in at least one 

instance. For strategies applied during the maintenance/evolution, only 1 out of 12 (PS 

17) strategies was rated Completely successful in one instance. Furthermore, PS 1 was 

the most successful and most frequent strategy used. 
 

Table 2. Most influential (Risk Influence VH > 1) process risks (PRs), 
and strategies 

 
Process (identified in planning), ID: 

Risk 

Risk 

Influ

ence 

ID:Strategy:Outcome rating = Number of {―Not at all‖, 

―Somewhat‖, ―Medium‖, ―Mostly‖, and ―Completely‖} successful 

instances. 

PR 1: Lack of architecture documentation 

required more effort to be spent on planning 

during maintenance/evolution * 

VH:  6, 

H: 25 

PS 1 Recover needed architecture 

documentation using current architecture 

design and other artefacts as a basis 

{0, 3, 2, 5, 

1} 

PS 2 Thorough planning before 

implementing maintenance/evolution 

changes 

{0, 1, 8, 7, 

1} 

PS 3 Recover architecture evaluation 

artefacts where needed 

{0, 0, 4, 2, 

0} 

PS 4 Alter process to capture important 
architecture details 

{0, 1, 3, 3, 
0} 

PS 5 Explicit training on architecture 

documentation 

{0, 0, 1, 3, 

0} 

PR 2: Lack of architecture evaluation 
contributed to discovering potential problems 

later in planning of maintenance/evolution 

VH: 5 , 
H: 13 

PS 1 Recover needed architecture 
documentation using current architecture 

design and other artefacts as a basis 

{0, 0, 3, 4, 
1} 

PS 3 Recover architecture evaluation 

artefacts where needed 

{0, 1, 2, 4, 

0} 

PS 4 Alter process to capture important 

architecture details 

{0, 0, 2, 3, 

0} 

PR 3: Lack of business context analysis 

affected stakeholder relationships negatively 

VH: 4 , 

H: 13 
PS 6 Integrate business context in 

planning of the maintenance/evolution 

{0, 2, 5, 3, 

1} 

PS 7 Include business context informally {0, 1, 1, 4, 
0} 

PR 4: Insufficient requirements 

negotiation postponed important architecture 
decisions 

VH: 4, 

H: 9 
PS 8 Negotiate requirements early {0, 0, 2, 2, 

1} 

PS 9 More explicit communication {0, 2, 3, 0, 

0} 

PS 10 Allow additional time for 
communication and feedback 

{0, 1, 1, 3, 
0} 

Experienced during     

PR 5: Insufficient stakeholder 
communication contributed to insufficient 

requirements negotiation and affected 

implementation of new/changed architectural 
requirements negatively 

VH: 7, 
H: 13 

PS 13 Extra communication effort {0, 1, 7, 3, 
0} 

PS 14 Postpone some requirements to next 

maintenance/evolution cycle 

{0, 0, 1, 2, 

0} 

PS 15 Arrange plenary meetings for all 

stakeholders 

{0, 0, 3, 4, 

0} 

PS 16 Negotiate project extension {0, 1, 2, 2, 

0} 

PR 6: Poor integration of architecture 

changes into implementation process affected 

implementation process and the architecture 
design negatively * 

VH: 2, 

H: 20 
PS 17 Overlay architecture change process 

onto implementation of 

maintenance/evolution 

{0, 0, 4, 7, 

1} 

PS 18 Integrate architecture considerations 

into implementation process 

{0, 1, 9, 2, 

0} 
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Organizational risks: Among the Organizational Strategies (OS) used in response to 

the most influential organizational risks (Table 4) identified in planning, 2 out of 9 (OS 

2 and OS 4) were Completely successful in one instance. The highest rating for the 

strategies employed towards organizational risks experienced during the maintenance/ 

evolution was Mostly successful. Furthermore, OS 5 was the overall most frequent 

strategy applied towards the organizational risks identified. 

 

Table 3. Most influential (Risk Influence VH > 1) organizational risks 
(ORs), and strategies 

 

Organization (identified in planning), 

ID: Risk 

Risk 

Influence  

ID:Strategy:Outcome rating = Number of {―Not at all‖, 
―Somewhat‖, ―Medium‖, ―Mostly‖, and ―Completely‖} successful 

instances. 

OR 1: Not allowed to change OSS as 
decision mandate external to architecture team, 

affecting performance and modifiability 

negatively * 

VH: 6, 
H: 22 

OS 

1 

Frequent, interactive, scheduled 
meetings to keep up to date 

{0, 1, 4, 5, 
0} 

OS 

2 

Involve all "layers" of customer 

organization as stakeholders, allow extra 
time for proper communication 

{0, 0, 1, 0, 

0} 

OS 

3 

Ensure compliance with external 

mandate holder 

{0, 0, 4, 1, 

0} 

OS 

4 

Involve mandate holder early as 
stakeholder in planning 

{0, 2, 4, 9, 
1} 

OR 2: Separate architecture team per 
maintenance/evolution cycle basis contributed 

to loss of and insufficient knowledge about the 

existing architectural design * 

VH: 4, 
H: 29 

OS 

5 

Dedicate personnel to "retrieve" 
architecture knowledge 

{0, 2, 11, 6, 
0} 

OS 

6 

Increased focus on proper 

documentation, to allow bringing new 
personnel up to speed quickly 

{0, 1, 8, 6, 

0} 

OR 3: Cooperative maintenance/evolution 

with architects from customer org. required 

extra training and communication efforts * 

VH: 3, 

H: 10 
OS 

1 

Frequent, interactive, scheduled 

meetings to keep up to date 

{0, 0, 1, 1, 

0} 

OS 

7 

Perform maintenance/evolution 
incrementally 

{0, 0, 2, 0, 
0} 

OS 

8 

Allott extra time for proper 

communication with all stakeholders 

{0, 0, 1, 0, 

0} 

OS 

9 

Include other project's architects in 

planning, implementation 

{0, 1, 4, 5 

0} 

OR 4: Lack of clear point of contact from 
customer organization contributed to 

inconsistencies in communication of the 
architecture and requirements * 

VH: 2, 
H: 27 

OS 

5 

Dedicate personnel to "retrieve" 
architecture knowledge 

{0, 0, 1, 0, 
0} 

OS 

1 

Frequent, interactive, scheduled 

meetings to keep up to date 

{0, 0, 4, 5, 

0} 

OS 

2 

 

Involve all "layers" of customer 

organization as stakeholders, allow extra 

time for proper communication 

{0, 3, 6, 4, 

1} 

OS 

6 

Increased focus on proper 

documentation, to allow bringing new 

personnel up to speed quickly 

{0, 1, 5, 6, 

0} 

Experienced during 

OR 5: Prior architecture 

maintenance/evolution pushed to other 
projects due to lack of personnel influenced 

knowledge on the architecture negatively * 

VH: 3, 

H: 11 
OS 

10 

Regain architecture details from 

remaining upper management personnel 

{0, 0, 2, 1, 

0} 

OS 

11 

Keep architecture documentation 
centralized 

{0, 0, 5, 8, 
0} 

OR 2: Separate architecture team per 
maintenance/evolution cycle contributed to 

loss of and insufficient knowledge about the 

existing architectural design * 

VH: 2, 
H: 13 

OS 

10 

Regain architecture details from 
remaining upper management personnel 

{0, 2, 6, 6, 
0} 

OS 

11 

Keep architecture documentation 

centralized 

{0, 0, 0, 1, 

0} 

OS 

12 

Set up standard procedure for 
distribution of architecture 

documentation and knowledge 

{0, 2, 0, 0, 
0} 
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Furthermore, our results show that the overall most influential risk was TR 1: ―Poor 

clustering of functionality affected performance negatively‖.  The corresponding most 

successful strategies were TS 1: ―Refactoring of the architecture‖ and TS 3: ―Design 

with high focus on modifiability‖. The second most influential risk was PR 5: 

―Insufficient stakeholder communication contributed to insufficient requirements 

negotiation and affected the implementation of new/changed architectural requirements 

negatively‖, with PS 15: ―Extra communication effort‖ and PS 17: ―Arrange plenary 

meetings for all stakeholders‖ as the corresponding most successful strategies. The 

outcome rating mode was ―High‖ for Technical, ―Medium‖,―High‖ for Process, and 

―Medium‖ for Organizational strategies applied towards these most influential risks 

(Tables 2, 3, 4). The median outcome rating was ―Medium‖ for all three categories. 
 

6. Discussion 
 

Comparison with related work: Table 5 shows the relation between risk categories 

identified by Ropponen et al. [6] (general software development risk categories) and 

Bass et al. [22] (architectural risk categories). The relations shown indicate the 

industrial relevance of the risks identified in our investigation. 
 

Table 4. Summary of comparison to related work 
  

Ropponen et al. [6] Technical risks (TR) Process risks 

(PR) 

Organizational risks 

(OR) 

Requirements risks:  TR 2, TR 3, TR 6, PR 4  

Architecture Team risks:    OR 2 

Stakeholder risks (from the 
subcontractor viewpoint):  

 PR 5 OR 3, OR 4 

Bass et al. [21]    

Quality Attribute risk:  TR 6   

Integration risks:  TR 5, TR 8 PR 6 OR 1 

Requirements risks:  TR 3 PR 4  

Documentation risks:   PR 1  

Process and Tools risks:   PR 2  

Allocation risks:  TR 1, TR 7, TR 8   

Coordination risks:   PR 5 OR 1, OR 2, OR 3, OR 4 

 

In summary, three of the architectural risks we have identified do not fit the 

categories in related work [22][23]. We have focused specifically on architectural risks 

as {risk, consequence} (see Section 4), while earlier studies focused on aggregating 

categories of risks. Furthermore, we have identified relevant strategies towards 

mitigating the identified risks in software architecture evolution (Tables 2, 3, 4). 

Observations on key architectural risks and promising risk management: The 

three-part adapted operational matrix in Tables 2, 3 and 4 enables lookup of strategies 

and related outcome profiles as applied to the most influential risks we identified, for 

both practitioners and researchers. Our aim is that researchers will use this matrix to 

build on in further investigations of risks and strategies in software architecture 

evolution.  Practitioners can use this matrix to gain information on relevant strategies 

for use in response to risks they encounter.   

Comparing our results with our prestudy [19], TR 1 (overall most influential risk) is 

identical to the second overall most influential risk. PR 5 (second overall most 

influential risk) is also closely related to the risk identified as overall most influential in 

that study. Furthermore, 4 out of 8 Technical risks, 2 out of 6 Process risks and 4 out of 
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5 Organizational risks identified in this investigation as most influential were also 

identified in our prestudy [19]. The larger number of identified risks appears in 

planning, as opposed to being encountered later during the maintenance / evolution, 

which was the case in our prestudy [19]. Furthermore, PR 3 shows a more direct link to 

Business Risks [24] (i.e. risks which influence software system viability) than was 

discovered in [19]. This comes in addition to the implicit circular feedback influences 

on and from e.g. normal cost and schedule monitoring. 

Defined and documented architecture evaluation enables architects to e.g. discover 

design errors and conflicting requirements early in the process, potentially saving a 

project from more significant problems later.  In this investigation, we find risks that 

mirror this concern, such as PR 2. Nevertheless, only 18 out of 82 respondents indicate 

this risk‘s influence as ―Very High‖ or ―High‖. While there is a relatively low level of 

awareness that lack of architecture evaluation represents a potential risk, the 

corresponding mitigation strategies we identified (PS 1, PS 3, PS 4) merely entail 

recovering the missing evaluation output. However, there is some evidence in other 

research that internal architecture evaluation is frequently performed by experts, and 

works because of their high level of competence and experience [25].  

The median strategy outcome rating in all three categories (technical, process, 

organizational) was ―Medium‖, indicating that there is still need for improvement in 

mitigating risks. While a large number of the identified Technical strategies (TS) focus 

on developing the specified system, the majority of the identified Process strategies (PS) 

involve recovering needed architectural documentation or other details. Furthermore, 

the majority of the Organizational strategies include efforts towards better 

communication with e.g. stakeholders.  

The focus of architects‘ mitigation efforts are hence on recovering needed architecture 

details and improving communication while producing the system according to 

specification. Effort should therefore be made towards improving regular 

documentation and evaluation of the architecture, integrated with the maintenance / 

evolution process. Proper training of both architects and organizational management are 

means to achieve these improvements. 

Threats to Validity: We here discuss validity threats in our investigation, based on 

Wohlin et al. [15] (specifically for experiments, but also applicable to survey studies):  

Construct Validity: The research questions have a firm basis in the research 

literature.  The actual questionnaire questions have been mapped directly to the research 

questions. The survey questionnaire has been further pre-tested through four colleagues 

to ensure its quality.  The questionnaire questions that were not adopted from a previous 

study [7] (see Section 3) were initially investigated in our prestudy [19]. Furthermore, 

all terminology used in the questionnaire is explained at the start of the questionnaire to 

provide clear definitions and avoid misinterpretations. 

External Validity: This survey has been conducted by using non-probabilistic 

snowball-like sampling [18]. It is very difficult to achieve a random sample in surveys 

within the software engineering field, due to the lack of good demographic information 

regarding the populations we are interested in, though an example of stratified-random 

sampling of projects has been described in the research literature [20]. Furthermore, we 

ensured the total sampling frame (511 professionals) had relevant background and 

experience in software architecture. All the respondents are nevertheless from the 

Norwegian IT-industry, an issue which remains a limitation.    
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Internal Validity: All the respondents had relevant knowledge of and experience 

with industrial software development.  They have also expressed an interest in the 

survey, so we think that they have answered the survey questions to the best of their 

ability by relying on their own experiences, skills and knowledge of software 

architecture.  We were also available via email during the survey to clarify any 

ambiguities in the questions or the accompanying definitions, in addition to the 

provided terminology definitions in the questionnaire.    

Conclusion Validity: This is a qualitative study, and we have used non-probabilistic 

snowball-like sampling. The number of respondents is 82 (out of 511), and were all 

from small and medium companies (all less than 100 employees), with a mean project 

size of 7 person-years. 

 

7. Conclusion and Future Work 

 

Our survey on risks and risk management regarding software architecture evolution 

has involved 82 respondents from the software industry. Through this survey on state-

of-practice, we have identified real, industrial, architectural risks and corresponding 

management strategies employed in response.   

We have developed a three-part adapted operational matrix (Tables 2, 3, 4) for risks 

and corresponding risk management strategies in software architecture evolution, based 

on responses from our survey respondents. Table 6 shows a summary of our findings. 

 
Table 5. Summary of findings 

 
Most influential risks Corresponding most successful 

strategies 

1. ―Poor clustering of functionality affected performance 

negatively‖ 

―Refactoring of the architecture‖ 

and  

―Design with high focus on 

modifiability‖ 

2. ―Insufficient stakeholder communication contributed to 

insufficient requirements negotiation and affected the 

implementation of new/changed architectural requirements 

negatively‖ 

―Extra communication effort‖ and  

―Arrange plenary meetings for all 

stakeholders‖ 

Additional findings: 

 Direct link to Business risks. 

 Relatively low level of awareness that lack of architecture evaluation represents a potential risk. 

   

Future work involves expanding our research on risk and risk management issues to 

include other countries (e.g. Netherlands) in our survey base. Furthermore, we want to 

couple these risks and corresponding risk management strategies with an investigation 

of code-level and artefact data related to architecture evolution, in order to move 

towards a framework for better handling of these issues. Finally, a more thorough 

analysis of data pertaining to software architecture evaluation methods, processes and 

issues is planned. 
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In this appendix, the abstracts of the 10 secondary articles that contribute towards the 

background of the work in this thesis are presented.  They are presented in the same 

order as earlier in this thesis. The articles are titled as follows: 

 

SP1: Preliminary Results from a State-of-Practice Survey on Risk Management in Off-

The-Shelf Component-Based Development. 

SP2: Barriers to Disseminating Off-The-Shelf Based Development Theories to IT 

Industry. 

SP3: An Empirical Study on Off-the-Shelf Component Usage in Industrial Projects. 

SP4:  Validation of New Theses on OTS-Based Development. 

SP5: Reflections on conducting an international survey of Software Engineering. 

SP6: An Empirical Study on the Decision Making Process in Off-The-Shelf Component 

Based Development. 

SP7: A State-of-the-Practice Survey of Off-the-Shelf Component-Based Development 

Processes. 

SP8: An Empirical Study of Software Changes in Statoil ASA – Origin, Priority Level 

and Relation to Component Size. 

SP9: A Case Study of Defect-Density and Change-Density and their Progress over 

Time. 

SP10: A State-of-the-Practice Survey on Risk Management in Development with Off-

The-Shelf Software Components. 
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SP1: Preliminary Results from a State-of-the-Practice Survey on Risk 

Management in Off-The-Shelf Component-Based Development  

 
Jingyue Li

1
, Reidar Conradi
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, Odd Petter N. Slyngstad

1
, Marco Torchiano

3
 , Maurizio Morisio

3
, and 

Christian Bunse
4
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NO-7491 Trondheim, Norway  
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Christian.Bunse@iese.fraunhofer.de  

Abstract. Software components, both Commercial-Off-The-Shelf and Open Source, are 

being increasingly used in software development. Previous studies have identified typical 

risks and related risk management strategies for what we will call OTS-based (Off-the-

Shelf) development. However, there are few ef-fective and well-proven guidelines to help 

project managers to identify and manage these risks. We are performing an international 

state-of-the-practice survey in three countries - Norway, Italy, and Germany - to investigate 

the rela-tive frequency of typical risks, and the effect of the corresponding risk man-

agement methods. Preliminary results show that risks concerning changing re-quirements 

and effort estimation are the most frequent risks. Risks concerning traditional quality 

attributes such as reliability and security of OTS component seem less frequent. 

Incremental testing and strict quality evaluation have been used to manage the possible 

negative impact of poor component quality. Real-istic effort estimation on OTS quality 

evaluation helped to mitigate the possible effort estimation biases in OTS component 

selection and integration.  
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SP2: Barriers to Disseminating Off-The-Shelf Based Development Theories to IT 

Industry  
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ABSTRACT 
In this position paper, we have reported results of an industrial seminar. The seminar was intended to 

show our findings in an international survey, conducted in Norway, Italy and Germany, on off-the-shelf 

component-based development. Discussion in the second section of the seminar revealed several 

obstacles of popularizing the OTS based development theories into IT industry.  
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SP3: An Empirical Study on Off-the-Shelf Component Usage in Industrial Projects 
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Abstract. Using OTS (Off-The-Shelf) components in software projects has become increasing popular in 

the IT industry. After project managers opt for OTS components, they can decide to use COTS 

(Commercial-Off-The-Shelf) components or OSS (Open Source Software) components instead of 

building these themselves. This paper describes an empirical study on why project decisionmakers use 

COTS components instead of OSS components, or vice versa. The study was performed in form of an 

international survey on motivation and risks of using OTS components, conducted in Norway, Italy and  

Germany. We have currently gathered data on 71 projects using only COTS components and 39 projects 

using only OSS components, and 5 using both COTS and OSS components. Results show that both 

COTS and OSS components were used in small, medium and large software houses and IT consulting 

companies. The overall software system also covers several application domains. Both COTS and OSS 

were expected to contribute to shorter time-to-market, less development effort and the application of 

newest technology. However, COTS users believe that COTS component should have good quality, 

technical support, and will follow the market trend. OSS users care more about the free ownership and 

openness of the source code. Projects using COTS components had more difficulties in estimating 

selection effort, following customer requirement changes, and controlling the component‘s negative effect 

on system security. On the other hand, OSS user had more difficulties in getting the support reputation of 

OSS component providers. 
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SP4:  Validation of New Theses on OTS-Based Development 
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Abstract 

 

Using OTS (Off-The-Shelf) components in software development has become increasingly popular in the 

IT industry. OTS components can be either COTS (Commercial-Off-The-Shelf), or OSS (Open-Source- 

Software) components. A recent study with seven structured interviews concluded with six theses, which 

contradicted widely accepted (or simply undisputed) insight. Since the sample size of that study was very 

small, it is necessary to investigate these theses in a larger and randomized sample. A state-of-the-practice 

survey in three countries – Norway, Italy, and Germany – has been performed to validate these new 

theses. Data from 133 OTS component-based projects has been collected. Results of this survey support 

four and contradict two of the initial theses. The supported theses are: OSS components were mainly used 

without modification in practice; custom code mainly provided additional functionality; formal OTS 

selection processes were seldom used; OTS component users managed to get required changes from 

vendors. The unsupported theses are: standard mismatches were more frequent than architecture 

mismatches; OTS components were mainly selected based on architecture compliance instead of function 

completeness. 
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SP5: Reflections on conducting an international survey of Software Engineering 

Reidar Conradi 1), Jingyue Li 1), Odd Petter N. Slyngstad 1), Vigdis By Kampenes 2), Christian Bunse 

3), Maurizio Morisio 4), Marco Torchiano 4), 
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7491 Trondheim, Norway, {conradi, jingyue, oslyngst} at idi.ntnu.no  
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Italy, {morisio, torchiano} at polito.it  

Abstract 

Component-based software engineering (CBSE) with Commercial Off-The-Shelf (COTS) or Open 

Source (OSS) Components are more and more frequently being used in industrial development. We 

therefore need to issue experience-based guidelines for the evaluation, selection and integration of such 

components. We have performed a survey on industrial COTS/OSS development in three countries – 

Norway, Italy and Germany. Concrete survey results, e.g. on risk management policies and process 

tailoring, are not being described here, but in other papers.  This is a method paper, reporting on the 

challenges, approaches and experiences gained by conducting the main survey.  The main contributions 

are as follows: At best, we can achieve a stratified-random sample of ICT companies, followed by a 

convenience sample of relevant projects.  This is probably the first software engineering survey using 

census type data, and has revealed that the entire sampling and contact process can be unexpectedly 

expensive.  It is also hard to avoid national variances in the total process, possibly leading to 

uncontrollable biases. 
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SP6: An Empirical Study on the Decision Making Process in Off-The-Shelf 

Component Based Development 
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ABSTRACT 

 

Component-based software development (CBSD) is becoming more and more important since it 

promotes reuse to higher levels of abstraction. As a consequence, many components are available being 

either open-source software (OSS) or commercial-off-the-shelf (COTS). However, it is still unclear how 

the decision for acquiring OSS or COTS components is made in practice. This paper describes an 

empirical study on why project decision makers selected COTS instead of OSS components, or vice 

versa. The study was performed as an international survey in Norway, Italy and Germany. It focused on 

decision making on using off-the-shelf (OTS) components. We have gathered answers from 83 projects 

using only COTS components and 44 projects using only OSS components. Results of this study show 

significant differences and commonalities of integrating OSS or COTS components. Moreover, the study 

illustrates several research questions that warrant future research. 
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SP7: A State-of-the-Practice Survey of Off-the-Shelf Component-Based 

Development Processes 
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Abstract. To gain competitive advantages software organizations are forced to develop 

systems quickly and cost-efficiently. Reusing components from third-party providers is one 

key technology to reach these goals. These components, also known as OTS (Off-the-Shelf) 

components, come in two different types: COTS (Commercial-Off-The-Shelf) and OSS 

(Open–Source-Software) components. However, the reuse of pre-fabricated components 

bears one major question: How to adapt development processes/methods with refer to 

system development using OTS components. To examine the state-of-the-practice in OTS 

component-based development a survey on 133 software projects in Norway, Italy and 

Germany was performed. The results show that OTS-based development processes are 

typically variations of well-known process models, such as the waterfall- or prototyping 

model, mixed with OTS-specific activities. One reason might be that often the process is 

selected before the use of OTS components is considered. Furthermore, the survey shows 

that the selection of OTS components is based on two processes: “Familiarity-based” and 

“Internet search-based”. Moreover, it appears that the lifecycle phase to select OTS 

components is significantly correlated with a project members’ previous familiarity with 

possible OTS candidates. Within this paper, we characterize the state-of-the-practice 

concerning OTS processes, using seven scenarios, and dis-cuss how to decide or modify 

such processes and how to select OTS components.  
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Abstract—This paper describes the results of analyzing change requests from 4 releases of a set of 

reusable components developed by a large Oil and Gas company in Norway, Statoil ASA. These 

components are total 20348 SLOC (Source Lines of Code), and have been programmed in Java. Change 

requests in our study cover any change in the requirements.  We have investigated the distribution of 

change requests over the categories perfective, adaptive and preventive changes that characterize aspects 

of software maintenance and evolution. In total there are 208 combined perfective, adaptive and 

preventive changes. The results reveal that 59% of changes are perfective, 27% of changes are adaptive 

and 14% of changes are preventive. The corrective changes (223 in total) are excluded in this paper, since 

they will be analyzed in future work.  We have also investigated the relation between customers‘ and 

developers‘ priority on change requests and found no significant difference between customer and 

developers‘ priority of change requests. Larger components had more change requests as expected and 

priority level of change requests increases with component size. The results are important in that they 

characterize and explain the changes to components.  This is an indication as to which components 

require more effort and resources in managing software changes at Statoil ASA. 
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SP9: A Case Study of Defect-Density and Change-Density and their Progress over 

Time 
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Abstract 

 

We have performed an empirical case study, investigating defect-density and change-density of a 

reusable framework compared with one application reusing it over time at a large Oil and Gas company 

in Norway, Statoil ASA.  The framework, called JEF, consists of seven components grouped together, and 

the application, called DCF, reuses the framework, without modifications to the framework. We analyzed 

all trouble reports and change requests from three releases of both. Change requests in our study covered 

any changes (not correcting defects) in the requirements, while trouble reports covered any reported 

defects. Additionally, we have investigated the relation between defect-density and change-density both 

for the reusable JEF framework and the application. The results revealed that the defect-density of the 

reusable framework was lower than the application. The JEF framework had higher change-density in 

the first release, but lower change-density than the DCF application over the successive releases. For the 

DCF application, on the other hand, a slow increase in change-density appeared. On the relation 

between change-density and defect-density for the JEF framework, we found a decreasing defect-density 

and change-density. The DCF application here showed a decreasing defect-density, with an increasing 

change-density.  The results show that the quality of the reusable framework improves and it becomes 

more stable over several releases, which is important for reliability of the framework and assigning 

resources. 
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Abstract—An international survey on risk management in software development with Off-the-
Shelf (OTS) components is reported upon and discussed. The survey investigated actual risk-
management activities and their correlations with the occurrences of typical risks in OTS 
component-based development. Data from 133 software projects in Norway, Italy, and Germany 
were collected using a stratified random sample of IT companies. The results show that OTS 
components normally do not contribute negatively to the quality of the software system as a 
whole, as is commonly expected. However, issues such as the underestimation of integration 
effort and inefficient debugging remain problematic and require further investigation. The results 
also illustrate several promising effective risk reduction activities, e.g., putting more effort into 
learning relevant OTS components, integrating unfamiliar components first, thoroughly 
evaluating the quality of candidate OTS components, and regularly monitoring the support 
capability of OTS providers. Five hypotheses are proposed regarding these risk-reduction 
activities. The results also indicate that several other factors, such as project, cultural, and 
human-social factors, have to be investigated to thoroughly deal with the possible risks of OTS-
based projects. 


