
Efficient multicasting for delay tolerant networks
using graph indexing

Misael Mongiovı̀, Ambuj K. Singh,
Xifeng Yan and Bo Zong

Department of Computer Science
University of California

Santa Barbara, CA 93106, US
Email: {misael,ambuj,xyan,bzong}@cs.ucsb.edu

Konstantinos Psounis
Department of Electrical Engineering and

Computer Science
University of Southern California

Los Angeles, CA 90089 US
Email: kpsounis@usc.edu

Abstract—In Delay Tolerant Networks (DTNs), end-to-end
connectivity between nodes does not always occur due to lim-
ited radio coverage, node mobility and other factors. Remote
communication may assist in guaranteeing delivery. However, it
has a considerable cost, and consequently, minimizing it is an
important task. For multicast routing, the problem is NP-hard,
and naive approaches are infeasible on large problem instances.

In this paper we define the problem of minimizing the remote
communication cost for multicast in DTNs. Our formulation
handles the realistic scenario in which a data source is continu-
ously updated and nodes need to receive recent versions of data.
We analyze the problem in the case of scheduled trajectories
and known traffic demands, and propose a solution based on
a novel graph indexing system. We also present an adaptive
extension that can work with limited knowledge of node mobility.
Our method reduces the search space significantly and finds
an optimal solution in reasonable time. Extensive experimental
analysis on large real and synthetic datasets shows that the
proposed method completes in less than 10 seconds on datasets
with millions of encounters, with an improvement of up to 100
times compared to a naive approach.

I. INTRODUCTION

Delay Tolerant Networks (DTNs) are communication net-
works that lack continuous connectivity due to node mobility,
failures or other factors. They experience frequent partitioning,
and end-to-end paths between two nodes may never exist.
Routing in DTNs uses a store-carry-forward approach [1],
where intermediate nodes delay the transmission of messages
until new links are available and messages are “eventually”
delivered with some delay. When the lack of connectivity is
due to node mobility, the movement of nodes can be exploited
to carry the messages.

In recent years, routing protocols for multicast in DTNs
have received considerable attention [2], [3], [4]. Multicast
protocols optimize the transmission cost by sharing routing
paths among multiple destinations. Recent advances allow us
to achieve a good tradeoff between minimization of the trans-
mission cost and maximization of the delivery rate. However,
due to the nature of DTNs, proper delivery cannot always be
guaranteed.

To guarantee the connectivity in DTNs, nodes can be
equipped with remote communication (or long range com-
munication) devices [5], to be used when end-to-end com-
munication cannot be otherwise achieved. Since remote com-

munication is expensive, its utilization should be limited as
much as possible. Providing an extra remote communication
to guarantee delivery introduces the new challenging problem
of minimizing its cost.

We formulate the problem of optimizing the remote com-
munication cost in a network of moving nodes, and call it
the demand cover problem. Our model considers a set of
moving nodes (e.g. people or vehicles) that are equipped
with devices providing two kinds of communication. A short-
range communication (e.g. radio), considered non-costly, can
occur between two nodes when they are close to each other.
A remote communication (e.g. cellular or satellite), which
involves a fixed cost, can occur at any time independently
of node positions. In our model, a set of continuously-updated
data objects needs to be shared among nodes. Each data object
needs to be received by a subset of destinations. For each
destination, its deadline (time instant at which the object is
needed) is specified. To avoid receiving non-recent copies of
objects, a latency is also specified. We aim to find the set of
remote transmissions that minimizes the communication cost
subject to the aforementioned delay constraints.

The described problem has several practical applications.
For instance, consider a network of city buses, in which
a transportation agency wants to provide passengers with
personalized news that depends on their position, traveling
plan etc. Each bus can obtain the news updates by the cellular
network (costly). However, it is more convenient to share the
information among various buses via radio communication
(non-costly). Another example considers soldiers or military
vehicles that move following a specific strategy. They need
to access certain information related to their location (e.g.
satellite images). In this case, the only options available are
satellite communication (costly) and node-to-node communi-
cation (zero cost). The proposed approach also has applications
in data ferrying [5], [6]. A set of moving nodes (ferries) is
charged for gathering data. Depending on time constraints on
data delivery, the ferries may decide whether to use short-
range or remote communication. Note that in these examples,
the node trajectories and the traffic demands are known in
advance.

Solving the demand cover problem introduces new chal-

lenges due to temporal constraints. A data object may need to
be transmitted remotely more than once, due to either lack of
connectivity or a latency constraint. For instance, consider the
four nodes in Fig. 1(a) that move following certain trajectories.
Initially, nodes 2 and 3 are in contact. At time t1, nodes 2 and
4 enter in each other’s radio range and a new contact begins.
At time t2, the contact between nodes 2 and 3 ends since they
move away from each other. Three of these nodes (shown
with triangles) need to receive the same data object. Each of
them has a given deadline (ta, tb and tc, resp.) and a latency
(δa, δb and δc, resp.). A remote transmission to node 3 at
time t1 covers the data needs ra and rb. Although rc can be
reached by transmitting the object to node 4 at any time after
t1, the latency δc cannot be satisfied. Therefore, an updated
copy of the object needs to be transmitted during the interval
[tc − δc, tc].

In this paper, we prove that the demand cover problem is
NP-hard and present a baseline graph-based approach for it.
In order to make this problem feasible on large datasets, we
formulate it as a query processing problem and develop a novel
graph-indexing-based solution. Due to the index, we are able
to handle thousands of destinations on a network with millions
of encounters in less than 10 seconds, with an improvement
of up to 100 times compared to a naive approach.

(a) (b)

Fig. 1. An example of a DTN among moving nodes. (a) The four solid
lines represent four trajectories. Time is denoted on the x-axis. The big
dashed circles represent radio range of nodes. Nodes that are involved in
a transition (contact beginning or contact end) are filled. Three data needs
(ra, rb and rc) are represented with filled triangles. Their deadlines are ta,
tb and tc, respectively while their latencies are δa, δb and δc, respectively.
(b) The corresponding space-time graph. Snapshots of the connectivity graph
at three different times are depicted within big ovals. Temporal links joining
contiguous snapshots are represented with dotted lines.

Our contribution can be summarized as follows: (i) We
define a novel problem (namely demand cover) that formalizes
the problem of optimizing the remote communication cost
in a network of moving nodes. (ii) We prove that demand
cover is NP-hard. (iii) We develop a compact graph-based
representation of a demand cover instance and present a base-
line algorithm. (iv) We propose a novel indexing system for
quickly solving demand cover on graphs optimally. Our system
further compresses the compact graph and uses an efficient
filtering approach to retrieve a small portion of vertices that
are relevant for achieving an optimal solution. (v) We evaluate
the proposed approach on two real and one synthetic datasets
and show that an exact solution can be found in reasonable
time in datasets with millions of encounters.

The paper is structured as follows: Sect. II describes the
related work. Sect. III introduces some basic concepts in
DTNs. Sect. IV defines the problem, provides a graph repre-
sentation and presents a simple solution. Sect. V describes our
indexing system for demand cover. Sect. VI presents extensive
experimental analysis on real and synthetic datasets. Finally,
Sect. VII concludes the paper with some future directions.

II. RELATED WORK

Previous works on DTNs have focused on three types of
contacts: scheduled, predicted and opportunistic. Scheduled
contacts result from applications of known trajectories, such
as deep-space communication and data service in developing
regions [1], [7], [6], [8]. Predicted contacts are considered in
applications where mobility patterns exist [9], [10], [11], [12],
[13], [14], [15]. Opportunistic contacts deal with completely
uncertain circumstances where mobile nodes meet each other
by random chance. Our work falls into the category of
scheduled contacts [6], [1].

Graph representations are widely applied in studying routing
strategies. In [16], [17], [6], evolving graphs are employed to
model topological mutations in DTNs. In [18], the authors
consider the shortest path problem in evolving graphs and its
generalizations. In [19], the authors focus on the problem of
finding the multicast tree with minimum overall transmission
time in evolving graphs. In our work, we use compression and
indexing techniques to efficiently explore evolving graphs with
the purpose of minimizing the remote communication cost.

Multicast for DTNs has recently drawn considerable atten-
tion. In [2], semantic models are proposed to unambiguously
describe multicast in the context of DTNs. The throughput of
multicast is discussed in [3] and mobility-assisted routing is
used to improve the throughput bound of wireless multicast.
In [4], multicast problems in DTNs are considered in a social
network setting where centrality and community in DTNs
are employed to help determine the appropriate selection
of relays, with the objective of minimizing the delay of
multicast message transmissions. In this paper, we study a
novel optimization problem which is similar to traditional
multicast problems. However, instead of minimizing the delay
of message transmissions, we are interested in minimizing the
communication cost subject to time constraints. To this end,
the question of whether a node is reachable from another node
is more important than the question of how a message flows
in the network.

Graph indexing systems have been widely studied by the
database community. The most common approaches aim to
efficiently solve problems as graph matching [20], [21] or
reachability test [22], [23]. The closest to our work are
systems for reachability tests, which aim to efficiently check
if two vertices are reachable from each other (a path that
connects them exists) in a directed graph. Some systems use
chains [24] (generalization of paths) decomposition or path-
tree [23] decomposition. The underlying idea is that if a vertex
u of a chain (or a tree-of-paths) is reachable from another
vertex v, all the vertices downstream in that chain are also

reachable from v. We use a similar idea, but our system is
designed to quickly identify the regions of the graph that can
reach a given destination instead of verifying the reachability
between pairs. Moreover, we propose a method for finding
a small subset of representative vertices that allows us to
solve the demand cover problem optimally and with reasonable
efficiency on large datasets.

III. PRELIMINARIES

In this section, we describe some basic concepts concerning
DTNs for introducing our approach. We consider a network
of moving nodes whose trajectories are known in advance
or can be predicted. When two nodes enter each other’s
radio coverage area, a link between them is formed and a
contact (or encounter) begins. A contact between two nodes
terminates when they lose radio connectivity as they move
away from each other. Contact beginnings and contact ends
are also called transitions. The status of the network at a
certain time instant can be described by a connectivity graph,
whose vertices represent moving nodes and a link is placed
between two nodes if their distance is within a given threshold
d, called the radio range. The network dynamics can be
described by a series of snapshots of the connectivity graph
over time [17], [1]. All the snapshot graphs are aggregated
in a unique composite graph (called the space-time graph)
where vertices corresponding to the same moving node in
two consecutive connectivity graphs are joined by a temporal
link. In contrast to spatial links, temporal links are directed.
A message can travel across a so called space-time path. If
some spatial links toward the destination are available, the
message is forwarded, otherwise the message is carried by
the moving node (a temporal link is traversed) and forwarded
when another suitable node is encountered. In the following,
we use the term route to indicate the space-time path that a
message traverses.

Fig. 1(b) shows the space-time graph corresponding to
Fig. 1(a). Three snapshot graphs are represented, each of them
describing the connectivity of the network at the time inter-
vals [t0, t1), [t1, t2) and [t2, tMAX), respectively. Contiguous
snapshots are joined by temporal links (in dotted line). Each
snapshot is associated with its lifetime, i.e. the extent in time
to which it refers. Message traversals (routes) can include both
spatial and temporal links.

IV. PROBLEM DESCRIPTION

In this section, we formally define the demand cover prob-
lem and develop some baseline approaches. We consider a
set of n nodes (numbered 1, 2, . . . , n) that move following
certain trajectories (T1, T2, . . . , Tn, respectively). A trajectory
associates a node with a position in space (typically a plane)
at each time instant in the range [t0, tMAX). At a specific
time, two nodes can communicate with each other through
a so called contact transmission (short-range, typically radio)
if their Euclidean distance is within a fixed threshold d (we
also say that they are in contact). This contact transmission
(between nodes) does not incur any cost. Each node can also
communicate at any time with a data source (Internet or a

central server) through a costly remote transmission (cellular
or satellite), with a fixed cost (our approach can also be
extended to a decentralized scenario where a central server
is not available and data are distributed among nodes).

We consider the problem of delivering data objects to
multiple destinations. In contrast to other multicast approaches
in which static messages are sent to multiple destinations,
we consider the problem of sharing data objects that are
continuously updated over time. The dynamic character of data
objects introduces new constraints: each destination needs to
receive the object before a given deadline and with a delay
that is limited by a given latency. We define the data demand
I of a data object as its set of data needs, i.e. triples of the
form (i, t, δ), where i, t and δ represent the destination, the
deadline and the latency, respectively. We call the instant t−δ
the release time. It represents the earliest time instant at which
an object can be obtained from the data source.

The data flow in our setting is modeled by two kinds of
transmissions: a remote transmission is denoted by a pair
(i, t), where i represents the node that receives the object
and t is the time instant in which the transmission occurs;
a contact transmission, is represented by a triple (i1, i2, t)
where i1, i2, t represent the node that transmits the object,
the node that receives it and the time instant at which
the transmission occurs, respectively. For simplicity, all the
transmissions are considered instantaneous (the movement
between nodes is usually very slow compared to the speed
of transmission; therefore, all the necessary objects can be
transmitted before the contact terminates). We say that a
remote transmission (is, ts) covers a data need (id, td, δ) if
there exists a sequence of contact transmissions (i0, i1, t1),
(i1, i2, t2), . . ., (ik−1, ik, tk) with i0 = is and ik = id, such
as ts ≤ t1 ≤ t2 ≤ . . . ≤ tk ≤ td and td − ts ≤ δ. The set
of data needs covered by a remote transmission is also called
the coverage of the remote transmission. The demand cover
problem is defined as follows:

Problem definition: Given a set of trajectories and a data
object with demand I , find the minimum set of remote
transmissions that covers I .

The formulated problem can be shown to be NP-hard (even
in the 2D plane) by reduction from the well known Set-cover
problem. Given a family of sets S = {S1, S2, ..., Sm} of
elements taken from a set C, Set-cover calls for finding the
minimum sub-family of S that covers all the elements of C.
A proof is given in our extended technical report [25].

A. ILP formulation

The demand cover problem can be formulated in ILP
(Integer Linear Programming) and solved by a standard solver.
Here, we give an ILP formulation and show that solving it on
large datasets is infeasible.

We consider a set of n moving nodes numbered 1 through n
and a special node that represents the central server, numbered
0. We write i →t j if node i can communicate with node j
at time t (i.e. they are within distance d or i = 0). We also
consider a discrete set T of time instants that correspond to

transitions or deadlines of data needs. This restriction does not
compromise the result. In fact, given an optimal solution for
demand cover, it is always possible to modify this solution
in such a way that each transmission between two nodes is
delayed until the contact between them ends (right before the
link breaks) or a data need that involves one of the nodes
expires, without increasing the cost. Since communication
is assumed to be instantaneous, the contact length is not
important.

We employ two classes of boolean variables. The first class
contains variables of the kind xi,j,t,r, where i and j represent
nodes, t represents a time instant and r = (ir, tr, δr) ∈ I
represents a data need. This class of variables models the flow
of objects. The variable xi,j,t,r has value 1 if i sends a message
to j at time t to satisfy the data need r. Variables of this
kind are considered for i →t j and tr − δr ≤ t ≤ tr. The
second class of variables, of the kind yi,t, counts the number
of remote transmissions. Each variable says whether a remote
transmission between the central server and a particular node
occurs at a certain time or not. The complete ILP formulation
is as follows.

min
∑
t∈T

n∑
i=1

yi,t

s.t.
∑
t∈T

t≥tr−δr
t≤tr

∑
i=0...n
i→tir

xi,ir,t,r ≥ 1 ∀r = (ir, tr, δr) ∈ I (1)

∑
t′∈T

tr−δr≤t′≤t

∑
i=0...n
i→t′ j1

xi,j1,t′,r − xj1,j2,t,r ≥ 0 (2)

∀r = (ir, tr, δr) ∈ I, ∀j1, j2, t | j1 →t j2

yi,t ≥ x0,i,t,r ∀r ∈ I, i = 1 . . . n, t ∈ T (3)
xi,j,t,r, yi,t ∈ {0, 1}

Constraint 1 models the fact that for each data need, the data
object must be sent to the destination at a time instant between
the release time and the deadline. Constraint 2 models the
propagation of data objects. It says that if a data object is
transmitted from a source j1 to j2 at time t for satisfying a
data need r, then j1 must receive the object before t and after
the release time. Finally, constraint 3 assigns value 1 to each
variable of the kind yi,t if a message is transmitted from the
central server to node i at time t in order to satisfy some data
need.

Solving this formulation with standard solvers is infeasible
on large instances. The main problem is the number of
variables and constraints. Even on a sparse network with 100
nodes, 100 encounters per node and 100 data needs, we have
hundreds of millions of variables and constraints.

B. A naive approach for the demand cover problem

An improvement on executing the ILP program can be
obtained by reducing the problem to Set-cover. Each candidate
remote transmission can cover a set of data needs. The
minimum set of remote transmissions that covers all the data
needs corresponds to the minimum Set-cover in this family of

sets. Since remote transmissions can occur at any time, the
number of sets for the Set-cover family is huge. However,
not all time instants need to be considered. To guarantee that
all the data needs are covered, one can consider only time
instants that correspond to the release time (the earliest time
instant at which the data object needs to be sent for a data
need to be satisfied) of a data need. Given a candidate remote
transmission, the set of covered data needs can be computed
by exploring the space-time graph (e.g., by depth-first search
or breadth-first search).
C. A compact graph representation

The naive approach requires exploring a space-time graph,
whose size can be huge. However, this graph can be com-
pacted, thanks to two observations. First, in each snapshot
graph, all the vertices that are in the same connected compo-
nent have the same reachability properties, so one vertex can
be taken as a representative of all the others. Second, when a
transition occurs, connected components of the snapshot graph
that do not contain any nodes involved in the transition are not
influential.

To generate the compressed graph, we focus on two kinds
of transitions. A split transition causes a connected component
to be split into two connected components. A merge transition
causes two components to merge into a single connected
component. We generate a space-time graph considering only
these two kinds of transitions. Then, for all snapshot graphs,
each connected component is collapsed into one single vertex.
At this point, all the edges of the graph are directed and
can be classified as follows: (i) split edges, which connect
components that split with their respective partitions; (ii)
merge edges, which connect components that merge with the
resulting components and (iii) non-influential edges, which
connect components that do not change. Finally, each non-
influential edge is removed by collapsing its endpoints and
each vertex is labeled with its lifetime (note that a vertex can
span several snapshots), which we call the component lifetime.

One example of a compressed graph is shown in Fig. 2,
which refers to the example in Fig. 1. Boxes represent vertices
of the compressed graph. Edges of the connected graph are
represented by solid lines. The extent of a box in time
represents the component lifetime. For instance, the extent of
the component c1 is [t0, tMAX) (the whole time horizon) since
this component is never involved in any split or merge. The
naive approach can be executed on the compressed graph in
place of the cumbersome space-time graph. The family of sets
for Set-cover is obtained by building a set for each vertex of
the compressed graph whose lifetime contains the release time
of some data needs. Each set can be computed by exploring
the compressed graph.

V. AN INDEXING SYSTEM FOR THE DEMAND COVER
PROBLEM

Solving the demand cover problem efficiently raises several
challenges. First, for each vertex v of the compressed graph,
the set of data needs that can be covered by v needs to be
retrieved. This operation can be very expensive when the

Fig. 2. The compressed graph representation of the example in Fig. 1. A
compressed graph is depicted over the space-time graph. Boxes and solid
arrows represent vertices and edges of the compressed graph, respectively.
The extent of a box in time represents the component lifetime. Three data
needs are represented (by filled triangles) with their extent in time. From left
to right: ra = (2, ta, δa), rb = (3, tb, δb), rc = (4, tc, δc).

size of the graph is large. Second, Set-cover is NP-hard,
therefore no polynomial-time solutions exist (unless P=NP) in
the general case. For small instances, Set-cover can be solved
optimally in acceptable time by pruning techniques as branch-
and-bound. In our case, however, the number of sets generated
is usually very high, since a data need can potentially be
covered by many vertices. Many of these sets are redundant,
i.e. they are fully contained in other sets. For example, in
Fig. 2, the set of data needs covered by c6 contains only rc.
The vertex c4 covers the set {ra, rb, rc}, which contains the
data need covered by c6. Therefore, c6 can be excluded by the
computation since all the data needs that can be covered by it
can also be covered by c4. Removing redundant sets leads to
a considerable reduction of the Set-cover instance. However,
removing the redundancy by traditional methods is expensive,
since it requires one to find maximal sets [26]. Additionally,
in a typical application, a large number of data objects are
requested and each data object has its own set of data needs.
Solving the demand cover problem for each data object can
be extremely expensive.

We propose a novel approach, called Path-wise indexing
(PIE, for short), which builds an index of the set of trajectories
with the purpose of efficiently performing queries of the
form: given a set of data needs, return the minimum set
of remote transmissions that covers all the data needs. We
use a preprocessing-filtering-optimization scheme to solve the
demand cover problem. Given a database of trajectories, a
preprocessing phase generates a compact data index. When a
query (represented by a set of data needs) has to be performed,
we use the data index to generate a lightweight instance of
Set-cover (filtering phase). Set-cover is then solved optimally
(optimization phase) and the solution is returned.

The proposed indexing system has several advantages. First,
the index is much more compact than the compressed graph,
and hence requires less memory and is much more efficiently
manageable. Second, the set of vertices in the compressed
graph from which the data needs are reachable can be iden-
tified fast. Note that current reachability indexes cannot be

efficiently applied to our problem since many reachability tests
need to be performed. Finally, we can efficiently prune nodes
of the compressed graph that are not promising and generate
a small instance for Set-cover.
A. Index structure

The key idea behind the index structure is that the set of data
needs covered by a node in a path p of the compressed graph
includes the set of data needs covered by other subsequent
nodes p. Therefore, a node can be taken as a representative
of a portion of the path. Moreover, a node of the compressed
graph can be uniquely determined by a path and a time instant.
This implies that we can use the coverage of a pair (p, t) in
place of the coverage of the corresponding compressed node.
We denote the coverage of (p, t) as C(p, t). Based on these
considerations, we partition the compressed graph into a set of
disjoint paths and build a compact graph, named a PIE graph,
whose vertices represent disjoint paths and edges preserve the
connectivity across paths. Each vertex of the PIE graph is
labeled with a time interval (namely its lifetime) that is the
union of the lifetimes of its composing vertices. Edges are
labeled with the end of the lifetime of the source nodes in the
compressed graph. Instead of exploring all the nodes of a path,
we can determine a set of time instants that is representative
of the whole path by exploring the compact PIE graph.

Figure 3(a) shows an example (not related to previous
figures). The small circles and thin edges form the compressed
graph, while the big ovals represent disjoint paths. Consider
the path p3. {ta, tb} is the set of time instants that are
representative for p3. Indeed, the set of data needs covered
by p3 at time ta is C(p3, ta) = {r1, r2} (r3 does not satisfy
δ3). Since no other data needs (i, t, δ) have (t− δ) ∈ [ta, tb),
(p3, ta) is representative of the interval [ta, tb). tb coincides
with the release time of r3 (i.e. (tr3 − δ3)). Therefore, its
coverage (C(p3, tb) = {r3}) cannot be contained in C(p3, ta).
The pair (p3, tb) is instead representative of the remaining part
of the path. The path p3 produces only two sets (C(p3, ta)
and C(p3, tb)) for Set-cover. In general, up to 4 sets would
be produced without indexing, since we may have many other
non-reachable data needs whose release times fall within all
vertices of p3. Next we describe in details the three steps of
our method: preprocessing, filtering and optimization.
B. Preprocessing

Given the set of trajectories, first a compressed graph (GC)
is generated. The graph is then decomposed into a disjoint
set of paths. There is a large number of possible ways to
partition the graph into disjoint paths. A suitable partition
strategy should satisfy the following properties: (i) the number
of disjoint paths should be small and (ii) the number of edges
across two paths should be small as well. In general, finding
the minimum set of disjoint paths that covers a graph is a non-
trivial problem [27]. However, since the compressed graph is
a DAG and is generated by a simple split-merge model, we
can use the following simple and optimal [25] strategy: pick
one vertex a time (proceeding in time order) and elongate it
by random walk until a vertex without outgoing edges.

Fig. 3. (a) An example of a PIE graph. The small circles and thin arrows
form the compressed graph. Each path is circumscribed by an oval and its
lifetime is reported. Links between paths are represented by thick arrows.
They are labeled by the ends of the lifetimes of their source vertices. Solid
triangles within circles represent data needs. (b) Validity intervals of a set of
data needs in a path p3. Bars represent the extent of validity intervals of data
needs. The minimal family of sets for this path is {C(p3, ta), C(p3, tb)}.

We can prove that across two paths no more than one edge
exists in each direction. Indeed, each edge of the compressed
graph comes from a merge or a split between two components.
In the case of a merge, the source vertex cannot have other
outgoing edges, while in the case of split, the target vertex
cannot have other incoming edges. This implies that no edges
can exist between internal nodes of two different paths, and
hence each edge connecting two paths can be either outgoing
from the last vertex of the source path or incoming to the
first vertex of the target path. Since the compressed graph is a
DAG, and each path is elongated as much as possible, at most
two edges can connect two paths, one in each direction.

We associate each edge (pi, pj) of the PIE graph with the
end of the lifetime of the source vertex in pi. We denote this
time instant as ft(pi, pj). It represents the time in which a
data object can traverse the edge (pi, pj). Fig. 3 depicts an
example of PIE graph. The small vertices and thin edges form
the compressed graph, while the big vertices and thick edges
represent the PIE graph.

C. Filtering

For each vertex p of the PIE graph, our filtering algorithm
finds a set of time instants TIp that are representative of the
whole path p, and the family S of corresponding sets. Our
strategy guarantees that the coverage of each vertex of the
compressed graph is fully contained in at least one set in S.
Since the PIE graph is much smaller than the compressed
graph, exploring the former is much more advantageous in
terms of running time and memory consumption.

The filtering procedure consists of two steps: backflow and

prune. Backflow propagates the data needs in reverse order
from the destination paths to all the possible source paths.
For each path, we compute the validity interval of a data
need, which defines the time interval in which the data object
must reach the path for the data need to be covered. At the
end, each path is associated with a set of data needs that it
can cover with their validity intervals. The coverage of a pair
(p, t) can be identified by the set of data needs such as their
validity intervals in p include t. After the validity intervals are
generated, the prune procedure computes the family of sets for
Set-cover. It collects the family of coverages of representative
time instants from each path.

Before describing these two procedures in detail, we first
present an example. Fig. 3(b) shows the path p3 of the example
in Fig. 3(a) and the validity interval of each data need in it.
The validity intervals of r1 and r2 start at the beginning of the
path, since their release times precede it. These intervals end at
times t1 and t2, respectively, times associated with outgoing
edges (see Fig. 3(a)). Each of them represents the last time
instant at which the data object must leave the path to be able
to reach the respective data need. For the data need r1 (r2
resp.), if the data object leaves the path after t1 (t2 resp.), the
destination cannot be reached. The validity interval of r3 starts
at time tb = tr3− δ3, corresponding to the release time of r3,
and ends at time t3, time associated to the unique outgoing
edge that can reach r3. The representative time instants for
this path are ta and tb, corresponding to maximal sets of data
needs. Therefore, the minimal family of sets for this path is
S = {C(p3, ta), C(p3, tb)}. Note that no other time instants
have a coverage that is not included in at least one set of the
family.

1) Backflow: We define the validity interval of a data need
r = (i, t, δ) in a path p (named valid int(r, p)) recursively in
the following way:

If p has lifetime [b, e) and is the destination path of r (i.e.
t ∈ [b, e)), we have: valid int(r, p) = [max(b, t− δ), t).

If p is a non-destination path with lifetime [b, e) that links
to a set of paths p1, p2, . . . , pk with validity intervals [b1, e1),
[b2, e2), . . . , [bk, ek), respectively:

valid int(r, p) =

{
Φ if ft(p, pi) 6∈ [bi, ei) ∀i = 1 . . . k
[t1, t2) otherwise

where t1 = max(b, t − δ) and t2 is the maximum t′ such as
t′ = ft(p, pi) for some i = 1 . . . k and t′ ∈ [bi, ei).

Intuitively, the end of a validity interval in a path is given
by the last time instant in which the data object can flow in
another path that has a compatible validity interval, while the
beginning of a validity interval is limited by t − δ and the
starting time of the path.

The coverage of a pair (p, t) can be identified by the set
of data needs whose validity intervals include t. Intuitively,
if validity intervals are represented by horizontal bars (as in
Fig. 3(b)), the coverage of a pair (p, t) can be easily identified
by drawing a vertical line and taking all the data needs whose
validity intervals are intersected. For instance, in Fig. 3(b) a
vertical line drawn at time ta intersects the validity intervals

of r1 and r2. Therefore, the coverage of (p, ta) is {r1, r2}.
This property is formally stated by the following lemma:

Lemma 1: Let (T, I) be an instance of demand cover,
where T is the set of trajectories and I is the set of data needs,
and GP be the corresponding PIE graph. Given a vertex p of
GP and a time instant t, the coverage of p at time t is:

C(p, t) = {r ∈ I | t ∈ valid int(r, p)}.

The interval valid int(r, p) can be computed for all paths
in a breadth-first search fashion, by starting from the path
containing r and exploring the PIE edges in reverse time order
until the release time is reached. When a new vertex is visited,
the validity interval of r in it is updated. The resulting time
complexity is O(|EP |), where EP is the set of edges in the
PIE graph.

2) Prune: For each path p, we identify the minimum-size
set TIp of time instants that is representative of the whole
path, i.e. such that for all t ∈ lifetime(p) we have C(p, t)
contained in at least one set C(p, t′) with t′ ∈ TIp. This
problem corresponds to the problem of finding the maximal
sets in the family of all possible coverage sets of p (i.e.
{C(p, t)|t ∈ lifetime(p)}).

Figure 4 shows an example path with the validity intervals
of five data needs. The coverage of a time instant can be easily
identified by drawing a vertical line and taking all the validity
intervals that it intersects. The representative time instants for
this path are t1, t2 and t3, corresponding to the maximal sets
of data needs. Note that no other time instants have a coverage
that is not included in the coverage of at least one of the time
instants t1, t2 or t3.

Fig. 4. An example of maximal coverage sets in a path. Bars represent the
extent of validity intervals of data needs. The coverage of the time instants
t1, t2 and t3 are maximal sets among all the coverage sets in the path. The
family of maximal sets can be found by sliding a vertical line in reverse
time order and taking each time instant that corresponds to the beginning of
a validity interval (indicated by the symbol “-” at the top) that occurs right
after the end of the same or another validity interval (indicated by the symbol
“+”). This family has minimum size.

In general, the maximal sets can be found in time O(mn),
where m is the number of maximal sets and n is the size of
the input [26]. In our case, since each element corresponds
to a contiguous interval, we can find the maximal sets in
linear time. Our procedure slides a vertical line across the
path in reverse time order, and takes all the time instants
that correspond to maximal sets. Each position t of the line

corresponds to a coverage C(p, t). As the line is slid, the
coverage is modified, by either adding or deleting data needs.
Whenever a deletion follows an addition, the current coverage
is taken as a maximal set. Note that additions correspond to
the end of validity intervals, while deletions correspond to
the beginning of validity intervals. In Fig. 4, the coverage
associated with the sliding line is initially empty. When the
line intersects the validity interval of r4, r4 is added to the
coverage (additions are indicated by the symbol “+” at the
top). The interval of r5 is then encountered and r5 is also
added to the coverage. When the beginning of the validity
interval of r4 is encountered (at time t3), the current coverage
is taken as maximal set and r4 is deleted (indicated by the
symbol “-”). Other two additions are then encountered (r2
and r3) followed by a deletion (r5). The coverage at time t2
(before deleting r5) is then taken as another maximal set. The
last maximal set is taken at time t1, after another addition and
another deletion are encountered. The following lemma states
that this procedure finds all and only the maximal sets in the
family of coverage sets.

Lemma 2: Let (T, I) be an instance of demand cover and
GP be the PIE graph built from (T, I). Given a path p
of GP , consider the sequence of time instants t1, t2, . . . , tk
corresponding to extremes (beginnings or ends) of valid-
ity intervals in reverse time order and the set TIp =
{ti | ti is a beginning time and ti−1 is an ending time}.

1) For each time instant t ∈ lifetime(p) we have: ∃t′ ∈
TIp | C(p, t) ⊆ C(p, t′);

2) For each time instant t′ ∈ TIp we have: @t ∈
lifetime(p) | C(p, t′) ⊂ C(p, t);

3) For each pair of distinct time instants t′, t′′ ∈ TIp we
have C(p, t′) 6= C(p, t′′).

A clear consequence of this lemma is that the family of
maximal sets generated by our procedure has minimum size.
TIp can be built in time O(|I| · log(|I|)).

D. Optimization

After the filtering process, a post-pruning (in short PP)
phase is applied in order to remove sets that are fully contained
in other sets. Note that although the purpose of the filtering
procedure is to remove these sets, this procedure is not
guaranteed to be exhaustive, since redundant sets can occur
across different paths. The post-pruning phase can be applied
to the naive approach as well.

We use an Integer Linear Program to solve Set-cover
optimally. Finally, the optimal set of remote transmissions is
extracted from the optimal subfamily returned by Set-cover.

E. Adaptive extension

In real world, it is difficult for many applications to guar-
antee that moving objects travel with known trajectories over
a long time interval. However, it is reasonable to assume that
moving objects stick to known traveling plans in near future.
In this case, the time dimension is partitioned into discrete
time slots, where trajectories of moving objects are updated
after each time slot. PIE can adapt to this variation without

much modification. In the following, we briefly introduce two
possibilities: null-initial-state and adaptive extensions.

The most straightforward way is to build an independent
index for each time slot. We call it null-initial-state extension
because this method simply ignores previous knowledge and
treats each time slot as a new start. One weakness of this
method is that it neglects information objects transmitted
during the prior time slots, producing more remote transmis-
sions. An alternative is to apply the adaptive extension. To
reuse data objects transmitted before, we keep track of the
distribution of the objects over the nodes, together with the
remote transmission time of each object, and use them as
initial state for the new time slot. As a result, some data needs
can be satisfied without any additional remote transmissions.

In case of deviations from expected trajectories within a
time slot, information requests that cannot be served based
on the existing schedule can be served by additional remote
transmissions.

VI. EXPERIMENTAL ANALYSIS

Here, we describe the datasets, the implementation of our
methods, and the experimental results obtained.

A. Dataset

Cabs Mobility [28] (CAB, for short) contains mobility traces
of taxi cabs in San Francisco, USA. It consists of GPS
coordinates of 536 taxis collected over 23 days in the San
Francisco Bay Area. The average time interval between two
consecutive location updates is less than 10 seconds.

GeoLife GPS Trajectories [29] (GeoLife, for short) is a
GPS trajectory dataset collected in (Microsoft Research Asia)
GeoLife project by 165 users in a period of over two years.

Synthetic trajectories (SYN, for short) consists of 10K
nodes that move randomly on a 2-D plane with size 3600
km2 over 10 days. Starting from a uniformly random position,
the speed of each node is updated periodically with normal
distribution (µ = 1.2 m/s and σ = 1) as well as its direction
(µ = current direction and σ = 1 radiant). The update rate is
generated with exponential distribution (µ = 60 sec).

For all datasets, the radio range is set to 100 meters. The
data needs are generated by the following process. First, for
each moving node, the number of data needs is generated with
a Poisson distribution. Then, each data need is generated with
a deadline that is uniformly distributed and a latency that is
normally distributed (µ = 15 min and σ = 1).

B. Implementation

We implemented the naive approach described in Sect. IV-B
on the space-time graph. We also implemented the naive
approach on the compressed graph (called naive-c for short)
and the PIE indexing system (Sect. V). All methods include the
post-pruning phase described in Sect. V-D. We experimented
with a version without the post-pruning phase, obtaining a
slight degradation of performances in each method. We also
implemented the ILP program described in Sect. IV-A, but it
did not terminate due to the huge number of variables and

constraints (hundreds of billions). All methods were imple-
mented in C++ (Dev C++ IDE ver. 4.9.9.2). The experiments
were performed on a DELL Intel core I7 CPU with 2 GB of
memory. For the ILP solver, we used lp solver 5.5.2.0 [30],
an open source tool based on branch-and-bound.
C. Results

Each dataset is first preprocessed and its PIE index is
generated. Fig. 5(a) reports the preprocessing time on CAB, on
a number of datasets spanning from 1 to 13 days. Depending
on the dataset size, the preprocessing phase takes tens through
thousands of seconds. Although the preprocessing phase is
sometimes expensive, it is executed only once. The rate of
compression of the PIE graph and the compressed graph with
respect to the space-time graph is shown in Fig. 5(b). The
compressed graph is about four orders of magnitude smaller
than the space-time graph and PIE further reduces the size of
about three times.

On CAB, the running time for demand cover queries is
shown in Fig. 5(c) and 5(d). Fig. 5(c) shows the running time
for a number of datasets spanning from 1 to 13 days. The
average number of data needs per cab per day is set to 2
(resulting in 1072 data needs per day). The reported times
represent an average over 10 queries. PIE performs about
one order of magnitude faster than naive-c and two orders
of magnitude faster than naive in almost all cases. In order to
evaluate the scalability over the size of the query, we generate
queries by varying the average number of data needs per cab
per day λ from 1 to 4. The results over 1 day are reported
in Fig. 5(d). For more than 4 data needs, the naive method is
unable to answer queries in acceptable time.

We also execute the adaptive extension (Sect.V-E) on CAB,
for one day with time slot 15 minutes. Over a total number of
1089 data needs, null-initial-states method returns 675 remote
transmissions, while the adaptive method returns 617 ones,
with approximately a 10% improvement. For reference, the
number of transmissions suggested by using full knowledge
is 480. All the results of the adaptive extension refer to an
average over 10 executions.

Fig. 5(e) show the execution time for demand cover queries
on GeoLife. The average number of data needs per person
per day is set to 10. The results refer to a set of datasets,
each of them spanning a time interval ranging from 1 to 30
days. As for CAB, the reported times represent an average
over 10 queries. In this dataset, PIE scales better than naive
and naive-c with length of the spanning interval. For SYN,
the results are reported in Fig. 5(f). They refer to one data
need per node per day. The naive approach here is not able
to terminate in acceptable time even for one day, therefore
we report only PIE and naive-c. PIE performs about three
orders of magnitude faster then naive-c. Additional results are
provided in our extended technical report [25].

VII. CONCLUSION

We examined the problem of optimizing the remote com-
munication cost for multicast in DTNs. After formalizing the
demand cover problem and showing that it is NP-hard, we

 10

 100

 1000

 10000

 0 2 4 6 8 10 12 14

P
re

p
ro

c
e
s
s
in

g
 T

im
e
 (

s
e
c
o
n
d
s
)

Length of time interval (days)

CAB

(a) CAB - preprocessing

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0 2 4 6 8 10 12 14

C
o
m

p
re

s
s
io

n
 R

a
te

 (
%

 o
f
n
o
d
e
s
)

Length of time interval (days)

Compressed
PIE

(b) CAB - compression

 0.1

 1

 10

 100

 1000

 10000

 100000

 0 2 4 6 8 10 12 14

R
e
s
p
o
n
s
e
 T

im
e
 (

s
e
c
o
n
d
s
)

Length of time interval (days)

PIE
Naive-c

Naive

(c) CAB - query time

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

 0 1 2 3 4 5

R
e
s
p
o
n
s
e
 T

im
e
 (

s
e
c
o
n
d
s
)

Number of data needs (λ)

PIE
Naive-c

Naive

(d) CAB - query time

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 0 5 10 15 20 25 30

R
e
s
p
o
n
s
e
 T

im
e
 (

s
e
c
o
n
d
s
)

Length of time interval (days)

PIE
Naive-c

Naive

(e) GeoLife

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 0 1 2 3 4 5 6

R
e
s
p
o
n
s
e
 T

im
e
 (

s
e
c
o
n
d
s
)

Length of time interval (days)

PIE
Naive-c

(f) SYN

Fig. 5. Performances of our method in comparison with naive and naive-c. We
report (a) prepocessing time and (b) compression rate for CAB and running
time for (c) CAB, (e) GeoLife and (f) SYN. We show the dependence on the
number of data needs in (d).

provided a graph-indexing-based solution for it. Our system
can solve the demand cover problem optimally on large real
instances (dataset with million of events and queries with
thousands of nodes) in less than 10 seconds in most cases. We
plan to extend our work in two ways. First, we aim to take into
account the uncertainty in mobility and data needs. For this,
we need to fit stochastic mobility models in our framework
and optimize the expected communication cost. Finally, we
plan to consider the problem of scheduling new trajectories
with the purpose of guaranteeing the connectivity, in the case
when the communication with a central data source is not
always available.

ACKNOWLEDGEMENTS

Research was sponsored by the Army Research Laboratory
and was accomplished under Cooperative Agreement Number
W911NF-09-2-0053. The views and conclusions contained
in this document are those of the authors and should not
be interpreted as representing the official policies, either
expressed or implied, of the Army Research Laboratory or
the U.S. Government. The U.S. Government is authorized
to reproduce and distribute reprints for Government purposes
notwithstanding any copyright notation here on.

REFERENCES

[1] S. Jain, K. Fall, and R. Patra, “Routing in a delay tolerant network,”
vol. 34, August 2004, pp. 145–158.

[2] W. Zhao, M. Ammar, and E. Zegura, “Multicasting in delay tolerant
networks: semantic models and routing algorithms,” in Proc. of WDTN,
2005, pp. 268–275.

[3] U. Lee, S. Y. Oh, K.-W. Lee, and M. Gerla, “Relaycast: Scalable
multicast routing in delay tolerant networks,” in IEEE ICNP, 2008, pp.
218–227.

[4] W. Gao, Q. Li, B. Zhao, and G. Cao, “Multicasting in delay tolerant
networks: a social network perspective,” in Proc. of MobiHoc, 2009, pp.
299–308.

[5] W. Zhao, M. Ammar, and E. Zegura, “A message ferrying approach for
data delivery in sparse mobile ad hoc networks,” in Proc. of MobiHoc.
New York, NY, USA: ACM, 2004, pp. 187–198.

[6] B. K. Polat, P. Sachdeva, M. H. Ammar, and E. W. Zegura, “Message
ferries as generalized dominating sets in intermittently connected mobile
networks,” in Proc. of the MobiOpp, 2010, pp. 22–31.

[7] I. F. Akyildiz et.al., “Interplanetary internet: state-of-the-art and research
challenges,” Comput. Netw., vol. 43, pp. 75–112, October 2003.

[8] Q. Li and D. Rus, “Sending messages to mobile users in disconnected
ad-hoc wireless networks,” in Proc. of MobiCom, 2000, pp. 44–55.

[9] X. Zhang, J. Kurose, B. N. Levine, D. Towsley, and H. Zhang, “Study of
a bus-based disruption-tolerant network: mobility modeling and impact
on routing,” in Proc. of MobiCom, 2007, pp. 195–206.

[10] J. Leguay, T. Friedman, and V. Conan, “DTN routing in a mobility
pattern space,” in Proc. of WDTN, 2005, pp. 276–283.

[11] C. Liu and J. Wu, “An optimal probabilistic forwarding protocol in delay
tolerant networks,” in Proc. of MobiHoc, 2009, pp. 105–114.

[12] E. Altman et.al., “Decentralized stochastic control of delay tolerant
networks,” in Proc. of INFOCOM, 2009, pp. 1134–1142.

[13] R. Groenevelt, P. Nain, and G. Koole, “Message delay in manet,”
SIGMETRICS Perform. Eval. Rev., vol. 33, pp. 412–413, June 2005.

[14] T. Spyropoulos, K. Psounis, and C. S. Raghavendra, “Efficient routing
in intermittently connected mobile networks: the single-copy case,”
IEEE/ACM Trans. Netw., vol. 16, pp. 63–76, February 2008.

[15] T. Spyropoulos et.al., “Efficient routing in intermittently connected
mobile networks: the multiple-copy case,” IEEE/ACM Trans. Netw.,
vol. 16, pp. 77–90, February 2008.

[16] S. Merugu, M. Ammar, and E. Zegura, “Routing in space and time in
networks with predictable mobility,” Georgia Institute of Technology,
Tech. Rep., 2004.

[17] V. Borrel, M. H. Ammar, and E. W. Zegura, “Understanding the wireless
and mobile network space: a routing-centered classification,” in Proc. of
ACM CHANTS, 2007, pp. 11–18.

[18] A. Faragó and V. R. Syrotiuk, “Merit: A unified framework for routing
protocol assessment in mobile ad hoc networks,” in Proc. of MobiCom.
New York, NY, USA: ACM, 2001, pp. 53–60.

[19] S. Bhadra and A. Ferreira, “Complexity of connected components in
evolving graphs and the computation of multicast trees in dynamic
networks,” Ad Hoc Networks and Wireless, pp. 259–270, 2003.

[20] M. Mongiovi et. al., “SIGMA: a set-cover-based inexact graph matching
algorithm,” J Bioinform Comput Biol, vol. 8, no. 2, pp. 199–218, 2010.

[21] S. Zhang, J. Yang, and W. Jin, “SAPPER: subgraph indexing and
approximate matching in large graphs,” PVLDB, vol. 3, pp. 1185–1194,
September 2010.

[22] Y. Chen and Y. Chen, “An Efficient Algorithm for Answering Graph
Reachability Queries,” in Proceedings of the 2008 IEEE 24th Interna-
tional Conference on Data Engineering. Washington, DC, USA: IEEE
Computer Society, 2008, pp. 893–902.

[23] R. Jin et. al., “Efficiently answering reachability queries on very large
directed graphs,” in SIGMOD, 2008, pp. 595–608.

[24] H. V. Jagadish, “A compression technique to materialize transitive
closure,” ACM Trans. Database Syst., vol. 15, pp. 558–598, 1990.

[25] M. Mongiovi, A. K. Singh, X. Yan, B. Zong, and K. Psounis, “Ef-
ficient multicasting for delay tolerant networks using graph index-
ing,” http://www.cs.ucsb.edu/research/tech reports/reports/2011-07.pdf,
UC Santa Barbara, Tech. Rep., 2011.

[26] D. M. Yellin, “Algorithms for subset testing and finding maximal sets,”
in SODA, 1992, pp. 386–392.

[27] R. Diestel, Graph theory, ser. Graduate texts in mathematics. Springer,
2006.

[28] M. Piorkowski et.al., “CRAWDAD data set (v. 2009-02-24),”
http://crawdad.cs.dartmouth.edu/epfl/mobility, Feb. 2009.

[29] “GeoLife GPS Trajectories,” http://research.microsoft.com/.
[30] M. Berkelaar et. al., “Mixed Integer Linear Programming (MILP)

solver,” http://sourceforge.net/projects/lpsolve.

