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Abstract 

We introduce a comprehensive study of fuzzy geometry in this paper by first defining a fuzzy point and a fuzzy line 
in fuzzy plane geometry. We consider the fuzzy distance between fuzzy points and show it is a (weak) fuzzy metric. 
We study various definitions of a fuzzy line, develop their basic properties, and investigate parallel fuzzy lines. © 1997 
Elsevier Science B.V. 
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1. Introduction 

This paper initiates the study of fuzzy geometry by first studying two basic ideas, fuzzy points and fuzzy 
lines, in fuzzy plane geometry. Further research will be concerned with fuzzy circles, fuzzy rectangles, etc. 
in fuzzy plane geometry [3]. Then one can extend these results to fuzzy geometry in R n, n > 2. 

As an application of fuzzy plane geometry we will propose, in future publications, superimposing objects 
from fuzzy geometry onto data bases to obtain a fuzzy landscape over the data base. A soft query could be 
a fuzzy probe into the fuzzy landscape with the system's response the number data points in an a-cut of the 
interaction of the fuzzy probe and the fuzzy landscape. 

Certain ideas in fuzzy plane geometry have been previously introduced and studied in a series of papers 
[1, 8 11]. In [8, 11] the author considered the area, height, width, diameter and perimeter of a fuzzy subset 
of  the plane. In this paper we will not be concerned with these measures (area, height, etc.) of fuzzy subsets 
of  R 2 but instead we study the basic properties of fuzzy points and lines. The concept of the perimeter of a 
fuzzy set was further studied in [1]. We note that all these measures of  fuzzy subsets of R 2 are real valued. 
That is, in [1, 8, l 1] the perimeter of a fuzzy subset of the plane is a real number. In future research papers 
when we study fuzzy circles, rectangles, etc. in R 2, our measures of area, perimeter, etc. will all be real fuzzy 
numbers. For example, in the second section of this paper the fuzzy distance between two fuzzy points in the 
plane turns out to be a real fuzzy number. 

In [9, 10] the author introduces the ideas of  fuzzy rectangles, fuzzy half-plane, fuzzy polygons and fuzzy 
triangles. Again, the area and perimeter of  a fuzzy triangle is a real number. In future research papers when 
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we do study fuzzy rectangles and fuzzy triangles we will compare our results to those in [9, 10]. However, 
we do plan to have the area and perimeter of  a fuzzy triangle to be a real fuzzy number. 

Now let us introduce the notation that will be used in the rest of  this paper. We will place a "bar"  over 
a capital letter to denote a fuzzy subset of  R or R 2. So, )(, 17,A,B, (~ . . . .  all represent fuzzy subsets of R n, 
n = 1,2. Any fuzzy set is defined by its membership function. I f  ,4 is a fuzzy subset of R, we write its 
membership function as #(xl.3), x in R, with #(xlA ) in [0, 1] for all x. I f / 3  is a fuzzy subset of  R 2 w e  

write #((x,y)lP ) for its membership function with (x,y) in R 2. The c~-cut of  any fuzzy set )( of  R, written 
)((~), is defined as { x : # ( x l ) ( ) > ~  }, 0 < ~<1 .  )((0) is the closure of the union of ) ( (~) ,  0 < ~<1 .  Similar 
definitions exist for or-cuts of fuzzy subsets of  R 2. 

We will adopt the definition of a real fuzzy number given in [6, 7]. N is a (real) fuzzy number if  and only if: 
1. #(x IN) is upper semi-continuous; 
2. #(x I N ) =  0 outside some interval [c,d]; and 
3. there are real numbers a and b so that c<~a<<,b<,d and #(x]_N) is increasing on [c,a], #(x]N) 

is decreasing on [b,d], # ( x [ N ) =  1 on [a,b]. 
It is well-known that N-(~) is a (bounded) closed interval for all ~, when b) is a fuzzy number. A special 

type of fuzzy number is a triangular fuzzy number. A triangular fuzzy number N is defined by three numbers 
a,b,c so that: (1) a < b < c; and (2) the graph of y = #(x]N-) is a triangle with base on [a,c] and vertex 
at (b, 1 ). We denote triangular fuzzy numbers as b) = (a, b, c). 

The next section is concerned with fuzzy points in the plane. The third section investigates fuzzy lines in 
R 2. The final section briefly presents future directions for research in fuzzy geometry. 

2. F u z z y  points  

We see that there are two natural ways to define a fuzzy point in the plane. 

M e t h o d  1. A fuzzy point is a pair (3~, 17) where k and 17 are real fuzzy numbers. 

M e t h o d  2. A fuzzy point at (a, b) in R 2, written/5(a, b), is defined by its membership function: 
1. #((x, y)IP(a, b)) is upper semi-continuous; 
2. #((x,y)lP(a,b)) = 1 if and only if (x,y) = (a,b); and 
3. /5(~) is a compact, convex, subset of  R 2 for all ~, 0~<ct~< 1. 

We will adopt Method 2 in this paper for defining a fuzzy point for two main reasons: (1) We can visualize 
/5(a, b) as a surface in R 3 (the graph of z = #((x, y)l/5(a, b)))  but we cannot construct pictures of  (X', 17) in 
Method 1; and (2) the basic idea behind Method 1 does not give good results for fuzzy lines (Methods 1 and 
2 in the next section). So, for the rest of  this paper a fuzzy point at a point in the plane means it satisfies 
the definition in Method 2. 

E x a m p l e  1. Let )(  and 17 be two real fuzzy numbers so that: #(x [)() = 1 if and only if x = a, # ( y  [ I 7) = 1 
if and only if y = b. Then min(#(x I)(), # (y  [ 17)) = #((x, y)l/5(a, b)) is a fuzzy point at (a, b). 

In the definition of a fuzzy point the constraint that c~-cuts must be convex subsets of  R 2 may be too 
strong. Future researchers may wish to consider ~-cuts of  P(a, b) to be only connected and simply connected. 
However, in this initial paper we will stick with ~-cuts of  fuzzy points convex. The concept of fuzzy point 
(Method 2) is based on the idea of a fuzzy vector in R n, n>~2 [2,4]. 

Let P be a fuzzy subset of  the plane. We would say that F is fuzzy convex if and only if # (v]F)  
>~min(#(u[ff'),P(wlfi')) where u,w are any two points in R 2 and v is any point on the line segment joining 
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u and w. It is not too difficult to see tha t /5 (a ,b )  is fuzzy convex if and only if/5(a,b)(c~) is convex for all 
7. So, assuming/5(a ,  b) has convex a-cuts is equivalent to assuming/5  is fuzzy convex. 

Next we define the fuzzy distance between fuzzy points. Let d(u, v) be the usual Euclidean distance metric 
between points u and v in R 2. We define the fuzzy distance/3 between two fuzzy points/5(a~, b~ ) and/5(a2, b2) 
in terms of  its membership function #(d I/3). See [2,4,5].  

Definition 1. O(~) = {d(u ,v ) 'u  is in /5(al ,b~)(a)  and v is in /5(a2, b2)(~)}, 0~<~< 1. Then ~ ( d l / 3 )  = 
sup{~:d  ~ 0(o~)}. 

Theorem 1. / 3 ( ~ ) =  O(~), 0~<~< 1, and/3 is a real fuzzy number. 

Proof. 1. First we show that b(c~) = f2(c~), 0~<~<1.  Let d C f2(~). Then ~(dlb)~ and f2(~) is a subset 
o f  b (~ ) .  

Now we argue that b ( ~ )  is a subset o f  f2(~). Let d E b (~ ) .  Then p(d  ]/3)~c~. Set p(d  ]/3) = ft. We con- 
sider two cases: (a) fi > c~; and (b) fi = c~. 

(a) We assume that fl > ~. There is a 7, 7 < 7~<fl, with d in (2(7). Since ~2(y) is a subset of  f2(c~) we 
have d in f2(~). Hence b ( 7 )  is a subset of  f2(a). 

(b) Now fl = a. Let K = {A:d E f2(A)}. Then supK = fl = a = p ( d l b  ). There is a sequence 7n in K so 
that 7, Tc~. Given E > 0 there is a positive integer N so that a - ~  < 7n, n>~N. Now d in f2(~n), all n, implies 
d is also in f2(a - e,), any ~ > 0. So d = d(u,v) for some u in /5 (a l ,b l ) (a  -- e) and v in/5(a2,b2)(~ - E). 
This implies that p(u l /5(a l ,b ! ) )>~-e  and p(v[/5(a2, b2))>J~- ~. Since ~ > 0 was arbitrary we see that 
p(ul/5(al, bl ) )> /a  and p(v I/5(a2, b2))>~ c~. This means that d E f2(~) a n d / 3 ( a )  is a subset o f  f2(~). 

This concludes the proof  that b ( ~ )  = Q(c~) for 0 < c~ ~< I. It follows that D(0)  = f2(0) and the first part of 
the proof  is complete. 

2. We now argue tha t /3  is a fuzzy number. 
(a) Since co-cuts o f / 5 ( a ~ , b l )  and /5(a2,b2) are compact it is easily seen that O(a)  is a bounded closed 

interval for all ~. Let f2(~) = [l(~),r(c~)], 0 ~ < ~ < l .  It is also known that i f  c~-cuts o f  a fuzzy number are 
closed sets, then its membership function is upper semi-continuous [4]. But/3(c¢) = 12(c~) is a closed interval 
for all a. Hence, p(d  ]/3) is upper semi-continuous. 

(b) Let f 2 ( 0 ) =  [c,d]. Then p(d  ] / 3 ) =  0 outside [c,d]. 
(c) Let f2( l)  ----- a, where a = d((a~,bl),(a~,b2)). Now since /3(~) = [ l (~) , r (a) ]  for all ~ with l(c¢) 

is increasing from c to a and r (a )  decreasing from d to a we obtain #(d] /3)  is increasing on [c,a] and 
decreasing on [a,d] with #(d [ /3 )=  1 at d = a. 

This concludes our argument tha t /3  is a fuzzy number. [] 

A fuzzy po in t /5 (a ,b )  reduces to a crisp point at (a,b) when It((x,y) [ /3 (a ,b ) )  = 0 for (x,y) ¢ (a,b) and 
equals 1 at (x,y) = (a,b). Clearly, /3 reduces to d (Euclidean metric on R 2) when /5(a~,bl) and /5(a2, bz) 
are crisp points at (al,bl) and (az, b2), respectively. 

The final concept in this section is that o f  a fuzzy metric. 

Definition 2. A fuzzy metric /~¢ is a mapping from pairs of  fuzzy points (P1, P2) into fuzzy numbers so that: 
1. M(P1, P2) = M(P2, PI ); 
2. M(PI, P2) = 6 if and only if P~ and P-~ are both fuzzy points at (a ,b) ;  and 
3. M(PI, P2)<<.M(P1, P 3 ) q - M ( P 3 ,  P2) for any fuzzy points Pl ,  P2, P3. 

To completely specify ~Q in Definition 2 we need to do three things: (1) define 6 in (2); (2) define ~< in 
(3); and (3) define + in (3). 6 will be any fuzzy subset of  R with the following properties: (1) /~(x] 0) = 0 
for x < 0; (2) /~(x]6) = 1 if and only i f x  = 0; and (3) /~(x]6) is decreasing for 0 < x < d, for some 
d > 0, and # (x l0  ) = 0 for x>~d. 
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Since M(P~,P2)  is a fuzzy number its :~-cuts will be closed intervals. We will define two orderings (~<) 
of  fuzzy numbers in terms of  their x-cuts. 

Definition 3. Let ~i and /} be two fuzzy numbers and set ei(.~) = [al(~),a2(o0], /~(0~) = [bl(~),b2(~)] for all 
~. We write ei ~<s/~ if and only if al(~)~< b l (~) and a2(~)~< b2(~) for all :~. We write ii ~< w B if and only if 
a2(~)~<b2(e) for all 0~. 

In Definition 3 "~<s" stands for a strong ordering and "~<w" denotes a weak ordering. The ~ in (3) of  
Definition 2 can be ~ s  or ~<w. I f  we use ~<~ ( ~ w )  we will say that ~ t  is a strong (weak) fuzzy metric. 

The addition ( + )  of  fuzzy numbers in (3) of  Definition 2 is to be done using interval arithmetic. That is, 
we just add the two intervals M(P1,P2)(~)  and M(P3,P2)(~)  for all ~ to obtain the fuzzy number for the 
s u m .  

Theorem 2. The t'elation 4 s  is a partial order (reflexive, transitive', antisymmetric) on the set o f  f u z z y  
numbers. The relation <~w is reflexive and transitive. 

ProoL Obvious. [] 

Theorem 3. /5 & a weak f u z zy  metric. 

Proof. 1. Clea r ly , /5 (PI ,P2)  = D(P2,P1 ). 
2. Let P~- = / 5 ( a l ,  bl ), P~ =/5(a2,  b2). First suppose tha t /5 (PI ,  P2) = 1). This implies 0 is in/5(P1,P2)(1 ). 

But 15)(P1,P2)(1) is the set o f  all d(u ,v )  where u C P~-(1) = { (a , ,&)} ,  v E P~(1) = {(a2,b2)}.  Hence 
d((al,bl ),(a2,b2)) = 0 implies (a j ,b l )  = (a2, b2). Now suppose that P1 and P2 are fuzzy points at (a,b). It 
follows that D(Pj ,P2) (1 )  = {0} a n d / 5 ( P I , P 2 )  has the correct shape to be called an O. 

3. Let P~ = /5(a3,b3) , A = /5(PI ,P2)  , /~ = /5(PI ,P3) ,  C = /5(P3,P2), A(~) = [al(00,a2(~)], /~(~) = 
[bl(00, b2(00] , C(~)  = [C1(g) ,C2(3{) ] .  W e  need to show that a2(0¢)~< b 2 ( g ) +  C2(0~) for all ~. 

We know that, from Theorem 1 

a 2 ( g ) = s u p { d ( u , v )  : u E PI(~),  v EP2(~)} ,  (1) 

b2(~ ) = s u p { d ( u , v ) ' u  C Pl(~),  v E P3(~)}, (2) 

C2(~) = sup{d(u, v) " u E P3(:e), v E P2(,g)}. 

Therefore 

(3) 

a2(00 ~< sup(u,L,){d(u, w) + d(w, v) : u ~ Pl(ot), w E P3(~), v ~ P2(~)} 

<~ supu{d(u,w)  " u ~ Pj(~),  w ~ P3(~)} + sup~{d(w,v) " w E P3(~), V C P2(00} 

<~ b2(:Q + c2(~). 

The following example shows tha t /5  is not a strong fuzzy metric. [~ 

m 

Example  2. Pi ,  P2, and P3 are fuzzy points at (1,0),  (3,0),  and (2,0), respectively. The shape of  each 
P_ is a right circular cone. For example, P~- is a right circular cone with base ( x -  1 ) 2 +  y2 ~<(1/2)2 and 
vertex at (1,0).  The base of  P2 (P3) is (x - 3) 2 + y2 ~< 1/4 ((x - 2) 2 + y2 ~< 1/4). Then D(PI,P2)(O) = [1,3], 
D(PI,P3)(O) ~-/5(P3,P2)(0) = [0,2] SO that D(PI ,P3) (O)+/5(P3 ,P2) (0 )  = [0,4] and [1,3] is not ~<s [0,4]. 
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3. Fuzzy lines 

In this section we: (1) first consider various possible definitions of  a fuzzy line; (2) look at a few examples 
of  fuzzy lines; (3) show how to calculate c~-cuts of  a fuzzy line; (4) discuss basic properties of  our fuzzy 
lines; and (5) consider parallel fuzzy lines and the intersection of  fuzzy lines. 

3.1. Types of fuzzy lines 

Method 1, Given fuzzy numbers A, /~, C a fuzzy line is the set O(, 17) of  all fuzzy number solutions to 

~i2 + / } I  7 = O. (4) 

However,  we know [4] that too often Eq. (4) has no solution (using standard fuzzy arithmetic) for 2 and 
17. Therefore, we will not be able to use Method 1 to define a fuzzy line. 

Method 2. Given fuzzy numbers M,  /~ a fuzzy line is the set 0 ?, 17) of  all fuzzy number solutions to 

17 = M X  + B. (5) 

Using Method 2 a fuzzy line will be (2 ,  Y), X any fuzzy number and I 7 is calculated by Eq.(5).  The main 
reason we will not employ Method 2 to define a fuzzy line is that we cannot construct any pictures (graphs) 
of  this type of  fuzzy line. The following methods lend themselves more easily to visualization. We believe it 
is important to be able to get pictures of  fuzzy objects in fuzzy plane geometry. 

Method 3. L e t / i ,  /~, C be fuzzy numbers. I f  4 (1)  = {a} and /} (1)  = {b} we assume that a and b are not 
both zero. Let 

f 211 (~ )={ (x , y ) :ax+by=c ,  a E f t ( ~ ) , b E B ( ~ ) , c E C ( ~ ) } ,  0~<~<1.  (6) 

The fuzzy line Lll is defined by its membership function 

l~((x,y) lLl~) = sup{~ " (x ,y )  E ~ll(~X)}. (7) 

I f  A(1) = {0} and/~(1)  = {0}, then f211(1) can be empty because we end up with an equation Ox+Oy = c, 
c E C(1 ), which will have no solution when c is not zero. 

We could also use the equation y = m x  + b to define a fuzzy line. 

Method 4. Given fuzzy numbers M and/~ let 

f212(cQ = {(x, y )  : y = mx + b, m ~ _~¢(~), b E/}(~)} for 0 ~ ~ ~< 1. (8) 

Then we define Li2 as 

I~((x,y) I Ll2) = sup{e : (x,y) E ~"~12(~)}. (9) 

Method 5 (Point-slope form). Let /£ be a fuzzy point in R 2 and let 2t) be a fuzzy number. Define, for 
0~<ct~<l, 

Q2(~) = {(x, y )  : y - v = m(x - u),(u,v) ~ R(~),m E ~¢(~)}. (10) 

Fuzzy line L2 is 

la((x,y) lL2 ) = sup{~ : (x ,y )  E ~2(cQ}. (11) 
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m 

Method 6 (Two-point form). Let PI and P2 be two fuzzy points in the plane. Define 

Q 3 ( ° t ) : {  ( x ' y ) ' v ~ - v l  - x -- ul u2 -- ul ' ( U I ' V l ) E P ~ ( ~ ) ' ( U 2 ' V 2 ) E F 2 ( ~ ) } '  for 0~<~<1 .  (12) 

m 

L3 is 

m 

]2((x,y)  I L3) = sup{~ " ( x , y )  E ~3(~)}. (13) 

We will use Methods 3-6 to define our fuzzy lines. Later on in this section we will discuss basic properties 
of  our fuzzy lines and relationships between them. 

3.2. Examples 

Example 3 (A "Jat" fuzzy line). Let A = ( -  1/0/1 ), B = ( -  1/1/2), C = (0/1/2)  all triangular fuzzy numbers. 
Then we see that the support o f  L i i, L ll(0),  is all o f  R 2. Theorem 4 below will show that Faa(C 0 = [2a(~) for 
all a, a = 11, 12,2,3. Notice that L l l ( l )  is the crisp line y : 1. 

Example 4 
is the crisp 
interval [0, 

(A "thin" fitzzy line). Let Ll-~ be defined by y : 2x + / } , / ~  = (0/1/2),  using Method 4. Here 
number two. The graph of  z =/~((x,  y )  I L--2) is generated by placing/} on the y-axis, base on the 
2], and "running" the tr iangle/} along the crisp line y = 2x + 1. 

Example 5 
Then L2(~) 
when K(0)  

(Another "thin"juzzy line using Method 5). Let ~Q = 1 (crisp) and /~ a fuzzy point at (1,1). 
will be all lines, slope one, through a point in /~(~) .  L~(1) is the crisp line y = x. L~- is "thin" 
is "small". 

- -  h 

Example 6 (A "thin" and '9Cat ' '  fuzzy line). Let PI (0, 0) and P2(I ,  1) be two fuzzy points whose graph is a 
right circular cone. The base of  P---~(0,0) is Bj = {(x ,y)  :x 2 + y2 ~<(1/3)2} and vertex at (0,0). The base of  
P2(1, 1) is B2 = {(x ,y)  " ( x -  1 ) 2 +  ( y -  1)2~<(1/3) 2} and vertex at (1,1). Then F33(0), the support of  L33 
by Method 6, is all lines through a point in BI and a point in B2. L3(1) is the line y = x. The graph of  
z = ~t((x,y) I L3) is "thin" between B1 and B2, but gets wider and wider as we move along y = x for x > 1 
or for x < 0. 

3.3. Alpha-cuts of  fuzzy lines 

Theorem 4. La(ct)= [2a(7), O<~<~l,for a = 11, 12,2,3. 

Proof .  Similar to the proof  tha t /3(~)  = g2(c~) in Theorem 1 and is omitted. [] 

3.4. Some basic properties 

m _ _  

We first consider L2 and L 3 and then develop relationships between Lj 1, LI2, L2, and L 3. 

3.4.1. L2 
In the definition of  L~ l e t / £  be the fuzzy point and &¢ the fuzzy slope. I f  A and /} are two fuzzy subsets 

o f  the plane, we write A ~< B if and only if p((x, y) [ A) <~ It((x, y)  [/}) for all (x, y) in R 2. 

Definition 4. We say a fuzzy line £ contains a fuzzy point Q if and only if Q ~< [ .  
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Clearly, L-7 contains/(7 because one can easily check that K<~ L2. I f /3(c ,d)  is a fuzzy point at (c ,d)  and 
L~- contains f i (c ,d) ,  then it follows that (c ,d )  must be in O2(1). Let ~t(1) = [mr,m2] be an interval. We 
also see that O2(1) is all lines through (a ,b)  with slope m, ml <~m<~m2. If )~t is a triangle fuzzy number, 
/~(1) = {m}, a singleton, the O2(1) is the crisp line y -  b = m ( x -  a). 

3.4.2. L3 
Let P--7 = P(a l ,b l  ), P-7 = P(a2,b2) be two fuzzy points which define L--3 by Method 6. Clearly, L-~ contains 

both Pt and P> Also, L3(1 ) = O3(1) will always be the crisp line through (al, bl ) and (a2, b2). If L3 contains 
some other fuzzy point 0 ,  then Q(1) must be on the line which is O3(1). 

3.5. Relationships 

We show how, under certain conditions, Lll is an L12, L3 is an L2, L2 is an Ll2, and L12 is an L2. 

3.5.1.  LII is an LI2 
Assume that zero does not belong to/ t (0) .  Define 

Om(O~ ) = { - a / b  " a E J(~) ,  b E / l (~ )} ,  

and define )~t as 

p(x l a~t) = sup{~ :x E f2m(~)}. 

N e x t  set 

Oh(a) = {e /d"  b E B(~), c C C(~)}, 

and define Bo as 

0~<~<~1, (14) 

(15) 

0~<~<1, (16) 

w 

#(x I B0) = sup{~ "x E Ob(CX)}. (17) 

In the above definitions A, B, C are the fuzzy numbers in the definition of Lll. It can be shown that 
and B~ are also fuzzy numbers and M(~) = Om(~), B~(~) = Ob(~) for all ~. So let 3~ and B-o be the fuzzy 
numbers in the definition of L12. 

T h e o r e m  5 .  L j 1 = L12.  

Proof. We show that Lll(~) = ~ ' - 2 1 1 ( 0 { )  is the same as Ll2(~x) = QI2(~), for all ~. 
If ( x , y )  E Oil(Or), then ax + by  = c for some a E A(ct), b E /~(~), c E (~(~). Then y = mx + bo for 

m = - a / b ,  bo -=- c/b. But m E aTt(~), bo c ao(~t) so that ( x , y )  E (212(~). Hence, Olt(~) is a subset of Oi2(~). 
Similarly, we can show that O12(~) is a subset of O11(~). [] 

3.5.2. L3 is an L2 

Let P--7 = fi(al ,bl) ,  P-7 = fi(az, b2) be two fuzzy points which define L-~. Define Projx (Projy) to be the 

projection of a subset of the plane onto the x-axis (y-axis). We assume that ProjxPl(0)AProjxP2(0 ) is empty. 
This means that if ( u l , v l ) E  PI(O) and (u2 ,v2)E P2(0), then ul - u 2  will never be zero. Define 

{ v2 - t;, - -  } 
£2m(C 0 = m : m -- 1 ,  (u l , v l )  E Pl(00, (u2,v2) E F22(~) , for 0 ~ < ~ 1 ,  (18) 

/2  2 - -  121 

and set 

/~(x I ~  ¢) = sup{~ :x  E Om(~)}. (19) 
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k 

Fig. 1. Fuzzy lines LI2 and L2 can be the same. 

It can be shown that M is a fuzzy number and ~t(c 0 = ~ ' ~ m ( ~ )  for all c~. Now let A) and P-I be fuzzy sets in 
the definition of  L2. 

T h e o r e m  6. L3 = L2. 

Proof.  We show (23(~) = (22(~) for all ~. Let (x, y )  E L~(cO. Then y - v I : m(x - b l  I ) for m C M(~) ,  
(u l , v l )  E Pl(~) .  But then ( x , y )  E f22(c~) and f23(~) is a subset o f  f22(~). Similarly, we can show that O2(c~) 
is a subset o f  f23(~). [] 

3.5.3. L j 2 versus L2 
We first argue that given an L12, we can define an L2 so that L2 = L12. Let M , / }  be two fuzzy numbers that 

define L1--2. We will use the same AI for L~. Fig. 1 shows a typical a-cut o f  an Lj2. Recall that Ll2(~) =- ~212(:~). 
We need to specify a fuzzy point k to completely define L--2. Let A)(~) = [ml,m2] and /l(c 0 = [bl,b2]. We 
now assume tha t /2(xlB)  = 1 if and only i f x  = b* where bl < b* < b2. That is,/} is normalized at only one 
point. Define 3? to be a fuzzy point at (0, b*)  whose c~-cut lies in region R(c 0 in Fig. 1. Then (22(~) = f212(~) 
and L2 will be the same as  L12. 

Conversely, let A) and k be the fuzzy sets in the definition of  L2. K must be a fuzzy point on the y-axis. 
L e t / ¢  be a fuzzy point at (0, b*)  so that its :~-cuts fit inside region R(:~) of  Fig. l. Projy k(c~) will be Ibm,b2] 

in Fig. 1. Define fuzzy number /t so that /~(c~) = Projy/£(~)  for all ~. We use the same ~Q for L12. Then 

(212(~) = f22(c~) for all ~ so that L12 = L2. 

3.6. General properties 

A fuzzy line /2 will be an Lll ,  LI2, L2, or an L~. We see in general that: 
(1) e-cuts of /2  will be closed, connected and arcwise connected but not necessarily convex; 
(2) # ( (x ,y )  ]/2) will be upper semi-continuous (follows from a-cuts being closed); and 
(3) [ is normalized, or there is always at least one crisp line in /2(1). 
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3.7. Parallel and intersectin9 f u z z y  lines 

Definition 5. Let La, Lb be two fuzzy lines. A measure o f  parallelness (p)  o f  La and Lb is defined to be 1 - 2 
where 

2 = supR~ {min(p((x,  y )  [ L~), #((x, y )  I Lb))}. (20) 

In Eq. (20), 2 is just  the height of  the intersection o f  L~ and Lb. So, i f  La N Lb is the empty set (completely 
parallel) ,  then )o = 0 and p = 1. Let la (lb) be a crisp line in L~(1) (Lb(1)). I f  l~ and lb intersect, then 2 = 1 
and p = 0. So we see that p has some properties we would expect for a measure o f  parallelness. 

Suppose La and Lb are both crisp lines. Then p = 1 i f  and only i f  L a and Lb are parallel. 
Now let L~ be a crisp line and Lb a fuzzy line. For example,  let Lb = L12 or L2. I f  M ( 1 )  = [ml,m2], 

ml < m2, then L~ must intersect a crisp line in Lb(1) and p = 0. So we see that we may quite often obtain 
p = 0 for a crisp line and a fuzzy line. 

Definition 6. Let L--~ and L~ be two fuzzy lines. Assume p < 1. The fuzzy region R of  intersection of  L-~ and 
L-b is R = La rq Lb. The membership function for R is 

p((x, y )  JR) = min(p((x,  y )  ]L-~), #((x, y )  I L~)). (21) 

Obviously,  i f  p = l ,  then the fuzzy region of  intersection/~ is the empty set. 

4. Future research 

The next step in this research project on fuzzy geometry is to expand our results on fuzzy plane geometry. 
We will next consider fuzzy circles, fuzzy triangles, etc. We will define the fuzzy area and fuzzy perimeter of 
fuzzy circles, triangles, rectangles, etc. which we will show to be all fuzzy numbers. We will also investigate 
fuzzy measures of  the angles o f  fuzzy triangles. Then the research effort will go into R n, n >/3, and applications 
to fuzzy data base. 
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