
S2GPS: Slow-Start Generalized Processor Sharing

Extended Abstract

Anastasios Stamoulis J�org Liebeherr

Department of Computer Science

University of Virginia

Charlottesville, VA 22903

Email: fas4r j jorgg@cs.Virginia.EDU

Abstract

Packet scheduling methods that approximate Generalized Processor Sharing (GPS) are cur-
rently the focus of much research in the area of Quality-of-Service (QoS) networks. The ability
of GPS schedulers to provide rate guarantees as well as delay guarantees meets the demand of
many network applications. This paper addresses a shortcoming of GPS which has been given
little attention, however, which can have signi�cant impact on the service provided by GPS.
Since, with GPS, the service rate received by a session is proportional to the number of back-
logged sessions in the system, the service rate of a session may change abruptly if some other
session becomes active. This may result in abrupt increases of delay of consecutive packets. In
this paper we propose a new scheduler, called Slow-Start GPS (S2GPS), which alleviates the
problem of abrupt delay increases when new sessions start transmitting. S2GPS is a modi�ca-
tion of GPS where sessions do not receive their guaranteed service rates immediately after they
become active. Instead, the service rates of such sessions are gradually increased. This We will
show that this prevents an abrupt delay increase of the other sessions. We derive delay bounds
for sessions constrained by leaky buckets and we express quantitatively the advantages of the
S2GPS discipline.

1 Introduction

The Generalized Processor Sharing (GPS) scheduling method is known for providing support for
isolation and sharing in a Quality-of-Service (QoS) network [4, 7, 8]. Even though GPS can provide
rate guarantees to the session it services, a session that has been active for a long period of time can
experience a sudden reduction in its service rate when some other, previously idle, session becomes
active. The decrease of the service rates can be quite large, resulting in a possibly signi�cant increase
of the delay of consecutive packets of an active session. To alleviate this problem, we propose
a modi�cation to GPS, called Slow-Start Generalized Processor Sharing (S2GPS) that prevents
abrupt rate and delay increases by gracefully degrading the service rate of active sessions. This is
accomplished by the following modi�cation to the original GPS scheduling method. Whenever a
session becomes active and starts sending packets, this session is not assigned the full bandwidth at
once, but gradually. The name \slow-start" should indicate that the service rate of a newly active
session is increased slowly when the session starts transmitting. As a result, all sessions that have
been active see their service rates decreased smoothly.

The remainder of this extended abstract is structured as follows. In Section 2 we review GPS
and demonstrate the problem of drastic delay increases in GPS. In Section 3 we present the new
Slow-Start GPS scheduler that alleviates this problem. In Section 3 we present an analytical result
on the worst-case delays in S2GPS. In Section 4 we de�ne the packetized version of S2GPS and
show how it can be implemented using the concept of virtual time. We present conclusions in
Section 5.

2 The Problem: Abrupt Delay Increases in GPS

A GPS scheduler [7] is a work-conserving scheduler that serves all incoming arrivals at a �xed rate
r. Each session i is characterized by a weight �i. Let Si(�; t) be the processing time given to session
i in the interval (�; t]. Then, a GPS scheduler is de�ned as one for which:

Si(�; t)

Sj(�; t)
�

�i

�j

for any pair of sessions i and j that are active throughout the interval (�; t]. If B(t) is the set of
active sessions at time t, then every session i 2 B(t) is served at the instantaneous service rate of:

ri(t) =
�iP

j2B(t)
�j

r (1)

We refer to ri(t) as the fair share of session i at time t. A session i is guaranteed a minimum service
rate of

gi =
�iPN
j=1 �j

r (2)

where N is the maximum number of sessions that are being serviced by the GPS scheduler.

GPS is an idealized scheduler in that it works under the assumption that all workload is in�nitely
divisible and that all backlogged sessions can be served simultaneously. Since a packet scheduler
can transmit only one packet at a time, approximation techniques are needed that emulate the
idealized GPS system. Several approximations of GPS have been proposed recently, e.g., [1, 3, 4,
5, 7, 12, 9, 10, 6, 13, 14]. An advantage of scheduling method derived from GPS is that (within
certain restrictions) end-to-end delay bounds can be calculated with relative ease [8].

A problem with GPS: The following example will demonstrate how the service rate of a session
can decrease under GPS due to the activity of other sessions, and how, as a result, the delay can
increase abruptly. Suppose that we have a video transmission system over an ATM Permanent
Virtual Connection (PVC) with a bandwidth of 1Mbps. On this PVC, three MPEG movie trans-
missions are multiplexed using PGPS scheduling, a packet-by-packet version of the GPS scheduling
method [7]. The movie transmissions result from two software-compressed MPEG traces [?] (Ses-
sions 1 and 2 send identical streams). Sessions 1 and 2 have a worst-case delay bound of 400 ms and
session 3 has a worst-case delay of 200 ms. Sessions 1 and 2 start transmitting at time t = 0 sec.

Figure 1(a) depicts the delay of Sessions 1 and 2 without transmission from Session 2. In
Figure 1(b) we assume that Session 2 starts transmitting at time t = 3 sec. Note in Figure 1(a)
that even without Session 2 the burstiness of the MPEG traces results in abrupt delay increases;
For example, the delay increase at time t = 2:8 sec is only due to burstiness of the MPEG traces.

2

However, the delay increase caused by the bursty nature of MPEG is much smaller than the delay
caused by the arrival of Session 3 at time . From Figure 1(b) we can see that when session 3
starts transmitting at t = 2:8 sec. Here, the delay of Sessions 1 and 2 is increased to over 250 ms,
corresponding to a 66% increase of delay. This example shows that even with very bursty types
of tra�c (like MPEG), the abrupt delay increase when new sessions start transmitting can be
dramatic. This problem is resolved by the S2GPS scheduler presented in the next section.

0

0.05

0.1

0.15

0.2

0.25

0.3

2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6

De
lay

 (s
ec

s)

Arrival Time (secs)

(a) Only Session 1 and 2 transmit.

0

0.05

0.1

0.15

0.2

0.25

0.3

2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6

De
lay

 (s
ec

s)

Arrival Time (secs)

(b) All sessions (1, 2, and 3) transmit.

Figure 1: Abrupt Increase of Delay

3 Slow-Start GPS (S2GPS)

In this section we propose a modi�cation to the GPS scheduling method that prevents abrupt delay
increases such as the one shown in the previous section. The delay increases are a direct result
of Equation (1) for calculating the service rate rk(t) for a session k. Whenever the set of active
sessions, B(t), changes, the service rate rk(t) of a session k is changed also. Therefore, when a new
session becomes active, i.e., the set B(t) grows, the service rate of all active sessions is immediately
reduced.

As a solution to mitigate this e�ect, we present the Slow-Start GPS (S2GPS) scheduling method.
In S2GPS, whenever a session becomes active, its service rate is increased linearly over an interval of
length T . Thus, when a `new' session becomes active, the service rate of the `old' sessions decrease
linearly.

For each session k, T > 0 speci�es the amount of time that has to pass before session k is
assigned its fair share of the bandwidth.

If a session k becomes active at �k, the S2GPS scheduler increases its service rate linearly in the
interval [�k; �k + T]. At time �k + T , the session is assigned the same share of bandwidth that is
allocated by the GPS scheduler (and given in Equation (1)). If we use r̂k(t) to denote the service
rate for session k that is allocated by the S2GPS scheduler at time t, we have:

r̂k(t) = minfrk(t);
t� �k

T
rk(t)g : t � �k (3)

where rk(t) is the service rate allocated to session k under GPS.
The rate increase of session k in the time interval [�k; �k + T] can be viewed as a slow-start

phase of this session. At time t = T + �k , the slow-start phase for session k is over, and session k

will be assigned its full fair share of the bandwidth.
In Figure 2 we illustrate the di�erence between the rate allocation of GPS and S2GPS. The

�gure depicts the service rate of a session k as a function of time. We assume that session k
3

2

becomes active
Session k

t
3

t

R
at

e
A

llo
ca

te
d

to
 S

es
si

on
 k

t
1

Session j
becomes inactive

end of
busy period

T T

r (t)

S GPS2

^
r (t)
GPS

Figure 2: Service rate of a session as a function of time in GPS and S2GPS.

becomes active at time t1 and that some previously active session j 6= k becomes inactive at time
t2. Under GPS, the service rate ri(t) is changed immediately whenever the set of active sessions is
changed. Under S2GPS, the service rate adapts slowly with a linear slope. Note that the slope of
the rate increase after time �1 is completely determined by T and rk(t); However, the slope of the
rate decrease after time t2 additionally depends on B(t), the set of active sessions.

4 Analysis of S2GPS

The slow-start phase introduced by S2GPS can increase the worst-case delays of a sessions, if
compared to a GPS scheduler. To gain insights into the delay performance of the S2GPS we have
derived analytical worst-case delay bounds. Similar to [7], we assume that the tra�c of a session is
constrained by a leaky bucket. That is, for each session k we have a pair of parameters (�k; �k) and
the maximum tra�c that the session can submit to the scheduler is constrained by A�k(t) = �k+�kt.

The derivation of the worst-case delay bounds too complex to be presented here. A complete
derivation is available in [11]. Here, we only present delay bounds in the following theorem.

Theorem 1 In a S2GPS scheduler the worst-case delay �k for a leaky bucket constrained session
k with parameters (�k; �k) and with guaranteed rate gk is given by

�k =

=

8>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>:

q
2T�k
gk

:
q

2T�k
gk

� T and �kT
2gk

� �k
�k
� 0r

2T (�k+�k
1
�k

(T
3

2gk
��k))

gk
� 1

�k
(T

3

2gk
� �k) : �kT

2gk
� �k

�k
� T and 0 � 1

�k
(T

3

2gk
� �k) � Tr

2T (�k+�k
�kT

2gk
�

�k
�k

)

gk
� �kT

2gk
� �k

�k
: 0 � 1

�k
(T

3

2gk
� �k) � T and

r
2T (�k+�k

�kT

2gk
�

�k
�k

)

gk
� T

1
gk
(�k +

gkT
2) : 1

gk
(�k +

gkT
2) � T

�k�gk
gk

1
�k
(gkT2 � �k) +

1
gk
(�k +

gkT
2) : 1

gk
(�k +

gkT
2) < T and 0 � 1

�k
(gkT2 � �k) � T

�k�gk
gk

T + 1
gk
(�k +

gkT
2) : �k�gk

gk
T + 1

gk
(�k +

gkT
2) � 0

0 : otherwise

(4)

4

5 S2PGPS: A Packet-by-packet Version of S2GPS

Similar to GPS, S2GPS assumes a uid model where tra�c is in�nitely divisible. In real life,
however, a scheduler can only serve one packet at a time. Analogous to the work in [7], we de�ne a
packet approximation of S2GPS, called Slow-Start Packetized GPS or S2PGPS. We can show that
S2GPS can closely approximate the uid model. In fact we have shown that a S2PGPS system
cannot fall behind the corresponding S2GPS system by more than the transmission time of a packet
with maximum size.

We have devised an algorithm that implements S2GPS using the concept of `virtual time', a
concept that was proposed in [4, 7] for implementing GPS systems. In [4, 7], the virtual time
V (t) =

R t2
t1

d�P
i2B(t)

�i
is used as a measure of progress in the system in the time interval [�1; �2) .

When a packet arrives, the scheduler assigns it a `virtual �nishing time' and then serves packets in
increasing order of the virtual �nishing times. For the p-th packet of the k-th session, the virtual

start time S
(p)
i and virtual �nish time F

(p)
i are de�ned as [7]:

S
(p)
i = maxfF

(p�1)
i ; V (t

(p)
i)g (5)

F
(p)
i = S

(p)
i +

L
(p)
i

�i
(6)

where t
(p)
i is the arrival time of packet p and L

(p)
i is the length of packet p.

The di�culty of �nding a packet-by-packet version of S2GPS, as compared to the original GPS
and PGPS systems, is that the weight �k of a session k is not constant if session k is in the slow-
start phase. We have solved this problem by assigning to sessions that are in a slow-start phase

an \e�ective" weight �
(p)
eff and set the virtual �nishing time equal to S

(p)
k +

L
(p)
k

�
(p)
eff

. Then we can use

Equation (6) to calculate the virtual �nishing times. The e�ective weight �
(p)
eff can be interpreted

as the average weight of the pth packet, averaged over the transmission time of the pth packet.

If we set �
(p)
eff to:

�
(p)
eff =

L
(p)
k

NP
i=1 ;i6=k

�i

r(wp� wp�1)� L
(p)
k

(7)

where wp is an auxiliary variable given iteratively by (with w�1 = 0):

wp =

vuut2L
(p)
k

PN
i=1 �i

r�k
+ (wp�1)2 (8)

we can prove the following theorem [11] which is the analogue to the result in [7] for the relation
on GPS and PGPS.

Theorem 2 Let d
(p)
k;S2PGPS

and d
(p)
k;S2GPS

denote the departure times of the pth packet of session k

under S2GPS and S2PGPS. Then we have

d
(p)
k;S2PGPS

� d
(p)
k;S2GPS

�
Lmax

r
8p; k (9)

5

In other words, a S2PGPS system cannot fall behind a S2GPS system by more than one maximum
packet size.

We have performed simulation experiments [11] that demonstrate how well S2GPS reduces the
rate at which delays can change in a GPS system. Due to space limitations, the results of the
simulations are not included in this abstract. If accepted, we will show the simulation results at
the workshop.

References

[1] J.C.R. Bennett and H. Zhang. Hierarchical packet fair queueing algorithms. In ACM Sigcomm '96,
August 1996.

[2] J.C.R. Bennett and H. Zhang. WF2Q: Worst-case Fair Weighted Fair Queueing. In Proc. IEEE Infocom
'96, March 1996.

[3] J. Davin and A. Heybey. A simulation study of fair queueing and policy enforcement. Computer
Communication Review, 20(5):23{29, October 1990.

[4] A. Demers, S. Keshav, and S. Shenker. Analysis and Simulation of a Fair Queueing Algorithm. In Proc.
Sigcomm '89, pages 1{12, 1989.

[5] S. J. Golestani. A self-clocked fair queueing scheme for broandband applications. In Proc. IEEE Infocom
'94, pages 636{646, 1994.

[6] P. Goyal, H. M. Vin, and H. Cheng. Start-time Fair Queueing: A Scheduling Algorithm for Intergrated
Services Packet Switching Networks. In ACM Sigcomm'96, pages 157{168, 1996.

[7] A. K. Parekh and R. G. Gallager. A Generalized Processor Sharing Approach to Flow Control in Inte-
grated Services Networks: The Single-Node Case. IEEE/ACM Transactions on Networking, 1(3):344{
357, June 1993.

[8] A. K. Parekh and R. G. Gallager. A Generalized Processor Sharing Approach to Flow Control in
Intergrated Services Networks: The Multiple Node Case. IEEE/ACM Transanctions on Networking,
2:137{150, April 1994.

[9] D. Saha, S. Mukherjee, and S. H. Tripahi. Carry-Over Round Robin: A Simle Cell Scheduling Mecha-
nism for ATM Networks. In IEEE Infocom'96, pages 630{637, 1996.

[10] S. Shreedhar and G. Varghese. E�cient fair queueing using de�cit round robin. IEEE Transanctions
on Networking, 4(3):375{385, June 1996.

[11] A. Stamoulis and J. Liebeherr. S2GPS: Slow-Start Generalized Processor Sharing. Technical Report
TR96-xx, University of Virginia, 1996. In preparation.

[12] D. Stiliadis and A. Varma. Design and Analysis of Frame-based Fair Queueing: A New Tra�c Scheduling
Algorithm for Packet-Switched Networks. In ACM Sigmetrics '96, pages 104{115, May 1996.

[13] O. Yaron and M. Sidi. Generalized Processor Sharing Networks with Exponentially Bounded Burstiness
Arrivals. Journal of High Speed Networks, 3:375{387, 1994.

[14] Z.L. Zhang, D. Towsley, and J. Kurose. Statistical Analysis of Generalized Processor Sharing Scheduling
Discipline. In ACM Sigcomm'94, pages 68{77, August 1994.

6

