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Abstract— We describe a method for an autonomous robot
to efficiently locate one or more distinct objects in a realistic
environment using monocular vision. We demonstrate how to
efficiently subdivide acquired images into interest regions for
the robot to zoom in on, using receptive field cooccurrence his-
tograms. Objects are recognized through SIFT feature matching
and the positions of the objects are estimated. Assuming a 2D
map of the robot’s surroundings and a set of navigation nodes
between which it is free to move, we show how to compute an
efficient sensing plan that allows the robot’s camera to cover the
environment, while obeying restrictions on the different objects’
maximum and minimum viewing distances. The approach has
been implemented on a real robotic system and results are
presented showing its practicability and the quality of the
position estimates obtained.

I. INTRODUCTION

As the field of mobile robotics expands and more ambi-
tious goals are set for autonomous robots, one subfield that
is opening up is interaction with objects. A great portion of
the potential applications envisioned for autonomous agents
involve some form of interaction with specific objects in
the environment, if only in the form of observation and
registration. Yet so far most robotic applications tend to be
one of two things: Either entirely blind to everything in their
surroundings except what is required merely for navigating
through them, or else designed to function in a fixed setting,
where they have a well-known and unchanging frame of
reference that they can relate objects to. Nevertheless, we
are beginning to overcome these limitations. For example,
the robot league of the Semantic Robot Vision Challenge
(SRVC) [1] is a promising attempt to advance understanding
in this area. The purpose of this paper is to take a step
towards merging efficient object detection and recognition
with existing methods for robot navigation in a realistic, free-
roaming setting.

The contributions of this paper lie within the subject of
object search. As such, it touches simultaneously upon two
areas hitherto not much integrated: view planning and visual
search; in other words, optimizing our sensing strategy before
and after we begin to acquire visual data, respectively.

View planning is a comparatively old but still thriving
research area, and is crucial to efficient object detection in
realistic-scale environments, as exhaustive search undersuch
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conditions is unfeasible. The general problem of finding a
minimal set of viewpoints from which to observe all parts of
the environment is called theart gallery problem. [7] proves
that this problem is NP-hard, and thus approximate solutions
are required. Another related view planning problem is the
watchman problem, which entails computing a minimal con-
tinuous path through space from which all of the environment
can be seen; here, the length of the path is what is crucial
- in contrast to the art gallery problem, where the distance
between viewpoints is immaterial. The watchman problem,
too, is NP-hard when there are “holes” in the free space (as
shown in [10]).

Early work on view planning was of a mostly theoretical
nature, but as the field has matured more implementation-
oriented results are emerging. [14] examines the problem
of optimally covering the “view sphere”, i.e. all angles
that can be seen from a fixed point in space, given a
probability distribution for the presence of the object. In
[15], the approach is augmented with multiple viewpoints,
each subsequent point selected by a greedy policy. Using
a polygonal map of the robot’s surrounding, [4] applies a
sampling scheme to find an approximate solution to the art
gallery problem while additionally taking into account the
practical limitations of sensors by postulating maximum and
minimum distances and maximum viewing angle. However,
parameters for only a single object are considered. In [12],
the costs of moving and processing views are combined in
a single planning task, approximated as an integer linear
problem (ILP). A set of candidate view points is assumed
to be provided. Many other approaches exist to solving both
the art gallery and watchman problems; [11] provides an
extensive survey.

The approach to view planning proposed in this paper aims
to move beyond considering only a single object, instead per-
forming an efficient simultaneous search for several objects
of different appearance and potentially different size, given
a 2D map of the environment that has been acquired by the
robot itself (as in for example [6]). This is accomplished
through a greedy algorithm that selects the best viewing
cones, constrained by the maximum and minimum viewing
distances associated with each object.

Visual search is also highly relevant to efficient object
detection and localization. Often, the image that a camera
captures is not immediately sufficient to perform accurate
object detection, especially with low-resolution cameras. For
successful detection and recognition, either moving closer



or zooming in on the object is necessary. Several different
methods have been proposed for determining the area of
interest of an image, so that the robot knows where to zoom
in. [13] demonstrates a foveated dynamic attention system
which uses edges and circular features to direct attention,
though in a non-specific fashion; this is also the case in
[5], where a measure of feature saliency inspired by human
cognition is similarly used in order to provide a sequence of
attentional saccades to potential interest points in the image.
The top-placing entrants in [1] similarly use non-specific
saliency to direct attention for object detection.

An attention control method that uses contextual infor-
mation is described in [9], although its specificity is to the
area surrounding objects rather than objects themselves. [2]
describes an object-specific attentional mechanism utilizing
receptive field cooccurrence histograms or RFCH, which
provide different hypotheses for the occurrence of each
object in the image.

We build on this principle, adding a distance estimate
that facilitates zoom computation along with a more effi-
cient view planning strategy. Using a combination of view
planning and visual search, we show how existing computer
vision methods can be combined to produce an autonomous
robotic system that is able to efficiently detect and local-
ize different objects in a realistic indoor setting. We have
implemented the proposed system on a mobile robot and
demonstrated its practicability in experiments.

A. Hardware

The robotic platform used in this work is a Performance
PeopleBot. It is equipped with a SICK laser rangefinder
with a 180 degree field, positioned near the floor (at about
30 cm), and with a Canon VC-C4R video camera, able
to acquire low resolution footage (320 × 240 pixels) with
pan/tilt functionality and up to13× magnification. The
camera is mounted about 1m above the floor. The robot has
a differential drive and a wireless LAN connection.

B. Training data

The system needs to be provided with training data for
each object, both for the view planning and the visual
search. This includes: An up-close image of the object, pre-
segmented; its true widthWreal and heightHreal in metres
(the objects are considered 2-dimensional for the purposesof
recognition and distance estimation); and manually selected
threshold levelsTfar, Tmid and Tnear used in the image
search. Also, the view planning algorithm needs to know
whether an object is unique or might occur several times.

The training image is processed by RFCH and SIFT
algorithms to provide a set of histograms and key points,
respectively, which are used as basis for both detection,
distance estimation and recognition.

II. NAVIGATION

The robot is provided with a metric 2D-map, consisting of
line features representing walls and other obstacles, as well
as with its own location in this map. The map is assumed

to have been generated in advance by the robot from laser
data, using standard SLAM methods; in our case the ones
previously described in [3]. It is also given a set of nodes in
2D-space with edges between them, constituting anavigation
graph which represents known robot-navigable space [6].
This is generated during mapping; as the robot moves into
unvisited areas, it drops nodes at regular intervals, and when
it moves between existing nodes it connects them.

The object search task begins with a planning step, in
order to determine a good way to explore the map. In this
paper, only the navigation nodes are considered, as they
are the only parts of the map guaranteed to be reachable.
This constraint obviously simplifies the solution a great deal
computationally, compared to view planning approaches that
consider all the space.

The map is assumed to be of a single room, i.e. a basically
convex space, though possibly with a lot of obstacles inside.
Starting with a more complex map, the map of a single
room can be obtained given a subset of the navigation graph
constitutingdoor nodes[6]. Cutting out all door nodes, each
remaining subgraph represents a room, and all features of
the map are assigned to the room which has the nearest nav-
igation node. Planning efficient movement between rooms is
beyond the scope of this paper and currently a closest-next-
room-first strategy is used.

The navigation plan must provide the robot with combi-
nations of nodes it needs to visit, views from those nodes
that it needs to process and the objects it has to look for in
each view, so that all parts of the room are searched for all
objects, while keeping the number of visited nodes and visual
searches as low as possible. Object constraints must also be
fulfilled as, for example, a very small object can only be
seen from a short distance away and vice versa. In addition,
uniqueness must be taken into account: objects should be
discarded once they are found, which means the exploration
plan will need to be updated.

A. Grid-based view planning

1) Occupancy grid: The metric map that we get from
SLAM is not geometrically perfect. Features extracted from
laser data do not form a clean, continuous outline; typically,
many different more or less overlapping line features explain
the same sensor data; the resulting clutter would increase
planning complexity. For this reason, a simpler occupancy
grid-based method is used. The occupancy grid can be
acquired either directly from laser data or by rasterizing
an existing feature map (by simply marking a square as
occupied if it contains any feature).

Note that the occupied squares are not assumed by the
algorithm to obstruct vision. As the data comes from the
laser, which is close to the ground, occupancy need not
correspond to occlusion for the more highly placed camera.

Grid square size is a tuning parameter; a small square size
will result in a lot of points to cover, which means higher
accuracy but also higher computational cost. Small squares
will be very closely packed and will get grouped into the
same views. On the other hand, a too-large square size will



lead to insufficient detail in the plan and may miss parts
of the map to explore. The choice depends on the overall
granularity of objects; in this work, a fixed square size of
0.5m is used.

2) Views: Using this grid,viewscan be calculated. A view
is a triplet consisting of the map node to which the robot
has to travel, the direction it should point its camera and
the list of objects to be searched for. In order to simplify
calculations, grid squares are considered visible in a viewif
their center point is inside the field of view.

3) Object constraints:As several types of objects are
being looked for, their specifications must be taken into
account; specifically, their sizes. Not all objects can be seen
at the same distance. For this reason, for each object a
minimum and a maximum distance are defined; the robot
should attempt to find it only at distances in this interval.

There are separate distance constraints for object recog-
nition and object detection. For recognition, the minimum
distance is simply defined as the range at which the object
would fill an entire image at no zoom; the maximum, as
the range at which the object would occupy an entire image
if maximum zoom were used. The minimum distance for
purposes of detection, on the other hand, is given by the
parameters of the detection algorithm; see (III-B).

Figure 1 shows an example of two potential views of a
set of squares (in this case, a wall). Large circles represent
nodes; dots denote grid square centers; the numbers next
to them indicate the nodes they are associated with; and the
shaded area represents the views (along with objects planned
for in each view). Note that neither view allows for seeing
all objects due to their different sizes; thus, a plan must
incorporate two different views in this direction.

Fig. 1. Example of effect of distance constraints on view planning

4) Strategy: The objective of the algorithm is to ensure
that any occurrence of the sought objects will be seen in some
planned view regardless of which square it is in – in other
words, each object-square combination must be covered by
some view.

The space of possible views being continuous, a set of
candidates is produced by the following discretization: for
each node and for each point to cover, include the view that
has that point at its leftmost edge (Figure 2). No views exist

that contain more points than those in this set.

Fig. 2. Discretization of candidate views

Out of these candidates, the view covering the most object-
square pairs is picked iteratively, removing any pairs covered
from the list, until no pair is left uncovered that could yet be
covered by some view. Any remaining pairs are considered
impossible and subsequently ignored.

The plan consists of visiting the closest navigation graph
node possessing a view that was picked, performing object
search for all views from that node, then moving on to the
next closest node and so on.

If any object known to be unique is found during the visual
search, it can be eliminated from the rest of the plan; if any
views in the plan are rendered empty by this, they can be
removed as well. Non-unique objects will be searched for in
every occupied square.

As is evident from the above, the algorithm proposed is
greedy in terms of nodes and map squares. Although it does
not ensure an optimal solution, it allows for obtaining a low
number of views in polynomial time.

5) Tilt angle selection:Since we are using a 2D map of
the environment, there is no direct information that could
help in deciding how to use the tilt angle of the camera. Yet,
the objects being sought might be at any height, and so some
thought must be given to covering the vertical dimension as
well as the horizontal.

Any grid squares which are closer to a given view’s
associated node than a set threshold (here, 2 meters) generate
new views that cover the vertical extent of the objects’
possible locations. Using the average distance for those grid
squares, together with an upper and a lower boundary for
objects’ positions, one or more tilt angles are selected (with
as little overlap as possible) and the resulting views are added
to the plan.

III. VISION

A. System overview

The vision system enables the robot to look for objects
using images taken by its video camera. For object detection,
the system uses the concept of receptive field cooccurrence
histograms (RFCH) as described in [2]. As potential objects
are detected, the system calculates suitable interest regions
for the camera to magnify. For this, the system needs an
estimate of the distance in order to decide whether to proceed



with recognition directly or zoom in further. In [2] this
estimate was taken from the laser scanner; we instead obtain
an estimate through the RFCH detection procedure itself.

If the distance allows for reliable recognition immediately,
the system attempts SIFT feature matching in order to
recognize the object [8]. Otherwise, the interest regions for
the different objects are merged as far as possible and the
camera zooms in on each region in turn. This procedure is
repeated recursively, until each object either is found or its
presence ruled out.

Fig. 3. Overview of image search

Figure 3 shows an overview of the vision system. The
detailed operation of this system is presented in the following
sections.

B. Object detection

The detection process works on a per-object basis and
makes use of an RFCH algorithm. It consists of several steps:

First, an image is taken by the camera. Second, it is
divided into cells. Receptive field cooccurrence histograms
are computed (using clusters learned from each respective
object during training), and matched against the training
image’s histogram, resulting in a similarity value for each
cell and object. These values are called the object’svote
matrix.

Third, hypotheses are generated; see Figure 4. A cell is a
hypothesis for an object if its value is greater than those of
its 8-connected neighbors, as well as greater than an object-
dependent threshold,Tmid or Tfar (which one depends on
whether the camera is currently zoomed in or not).

(a) Example image (b) Hypotheses of the book

Fig. 4. Hypotheses extracted for the book in the example image.Lightest
squares represent hypotheses.

The size of the vote cells in the above algorithm is a tuning
parameter. Large cells mean faster histogram matching; how-
ever, they decrease the detection rate when they are larger
than the objects in the initial image. Also, maximum distance
allowed for object detection during the planning step is set
to the distance at which an object would occupy a single cell
at no zoom, which decreases as cell size grows. The value

used in this work,15× 15 pixels, is a compromise between
these considerations.

C. Distance estimation

In [2], the initial distance estimate used to determine
zoom levels came directly from the robot’s laser sensor. The
problem with this design is that the distance given by the
laser is often misleading: the laser sensor is placed at a fixed
height above the floor (about 30 centimetres) and if an object
is not at that height, e.g. if it is on a table, the estimate will
be off. It typically works only for objects that are next to
walls (such as on a bookshelf). If the distance estimate is
much too small or large, the final zoom may either not be
sufficient to make the object occupy enough of the image for
matching, or otherwise may be too great causing only a small
part of the object to be seen. Furthermore, even if the object
is recognized, its estimated position might be inaccurate.To
address these issues, in this work we use two alternative ways
of getting a distance estimate.

1) Using the vote matrix.:Using the RFCH vote matrix
for distance estimation consists of measuring how many cells
are part of the object and treating the area they occupy in the
image as the size of the object in the image. Here, cells are
considered to belong to a hypothesis if their degree of match
is above the threshold and there is an 8-connected path of
cells with monotonically increasing value to the hypothesis
(and no shorter such path to any other hypothesis), as shown
in Figure 5. Only the strongest hypothesis and its associated
8-connected cells are taken into account, because it is likely
to be the most reliable.

Fig. 5. A hypothesis, marked X, and its Eight-connected associated cells

Given the object’s real size, stored in the training database,
the distance can then be computed according to:

D =

Wreal

Wim

2 · Wvote

tan

(α

2

)

whereD stands for the estimated distance (metres);Wim,
for the width in pixels of the image,Wvote, for the width
in pixels of the bounding box of the cells belonging to a
hypothesis andα, the horizontal viewing angle.

This estimate is quick and rough, but sufficiently accurate
to allow the object search algorithm to assign a valid zoom.

2) Using SIFT:SIFT extraction produces a scale parame-
ter for each key point extracted. For each matched pair of key
points in the training and recognition image, the quotient of
the keys’ scale parameter gives an estimate of their relative



apparent size and hence their distance. This is done according
to:

D =

Wreal

Wim

2 · Wtr

Str

Srec

tan

(α

2

)

whereStr andSrec stand for the scale of the SIFT point as
extracted from the training image and the recognition image
respectively; andWtr, for the pixel width of the object in
the training image.

As mis-matched key point pairs can produce wildly incor-
rect scale parameters, the final estimate of the object distance
is taken as the median of the distance estimates from all
matches. Experiments indicate that an adequate estimate is
obtained given 10 or more SIFT matches. With 4 matches
or more a passable rough estimate is typically obtained. If
there are fewer than 4 matches, they are likely to be flawed
and the resulting estimate is not used. Experimental results
for this technique can be found in (IV-A).

Although the above method for calculating the distance
is good, it has some drawbacks. The main problem is that
extracting SIFT points from an image is computationally
expensive, and using it to guide the zoom process may take
too long to be feasible. Another problem is the number of
SIFT points required to obtain a robust estimation; when
the object is small in the image, it is unlikely that enough
matches will be available.

D. Calculation of zoom

Given a training image of an object, its known real size,
the distance to the object and the camera field of view, we
want to calculate the magnification needed to make it fill
the image as nearly as possible. The size of the object is
approximated by the size of its bounding box.

In order to make the object fill the image, the horizontal
angle of view (α), as well as the vertical (β), can be
calculated as:

α = 2arctan
(

Wreal

2D

)

β = 2arctan
(

Hreal

2D

)

(1)

Since the object will typically not have the same aspect
ratio as the image, only one of the anglesα and β can be
used to select the actual magnification to use; therefore, of
the two levels of magnification suggested by the height and
the width respectively, the lower level is selected, as given by
the following rule: If Wim

Wtr

< Him

Htr

(Him andHtr being the
heights analogous to the widthsWim and Wtr), α is used;
otherwise,β.

1) Hypothesis reduction:Even with the threshold, there
are typically too many hypotheses to consider one by one. In
order to avoid excessive zooming and processing, hypotheses
are reduced in two steps. First, they are grouped together
into zoom windows, which are regions of the image to be
magnified and processed in the next iteration. The zoom win-
dows’ dimensions are those of the current window, divided
by the limiting view angle (as explained above) times the
current view angle. The distance estimate from the strongest

hypothesis is used for all zoom windows; thus they are all
the same size.

A simple greedy algorithm assigns hypotheses to zoom
windows until all hypotheses are covered. An example of
zoom window creation is shown in Figure 6(a).

However, the distance parameter the vision system calcu-
lates is not always very accurate. An error in this parameter
propagates into the above calculation of the magnification
and into the size of the zoom windows. This may lead
to generating more zoom windows than is warranted and,
consequently, lengthening the search process and consuming
valuable time. Thus, in a second step it is desirable to remove
those windows which do not contribute information to the
search, as they contain few hypotheses and are located close
to “richer” zoom windows.

Therefore, zoom windows which overlap more than 20%
with another containing at least 3 times its number of
hypotheses are removed. These conditions are quite conser-
vative in order to ensure that no potentially important zoom
windows are removed. Figure 6(b), 6(c) show an example of
hypothesis reduction.

(a) Hypothesis assign-
ment

(b) Zoom windows and
overlap

(c) Final zoom window

Fig. 6. Hypothesis reduction sequence. Rectangles show thehypotheses
assigned to zoom windows and the windows themselves, respectively, and
the shaded zone the zoom window overlap.

2) Zoom window sharing:When searching for several
objects, the set of zoom windows obtained for each object
is computed separately. After this is done, the combined set
of windows needs to be merged together. In order to do this,
we look for instances of a zoom window encompassing that
of another object, in which case we can remove the latter.

Not all zoom windows that overlap in this way can
be merged, as straying too far from each object’s target
magnification may cause object detection to fail. The object
search process as a whole goes through up to 3 steps: the
first step without zooming, a second step with a middle-
level zoom and a third step with large zoom; see (III-F). It
is not as important that the middle-level zoom be exact, since
it is only used for hypothesis finding with RFCH. Thus, a
maximum and a minimum value are defined for the middle-
level detection step’s zoom level, allowing some flexibility in
selecting the windows to be used. The most important thing
is to get the minimum zoom right: the lower it is, the more
objects we can look for at one time, but the greater the risk
that objects are missed due to appearing too small.

The algorithm works as follows: first all zoom windows
are set to their minimum size. Then, each zoom window
associated with an object A is compared with those of an
object B. If the hypotheses contained in one of B’s windows
can be made to be contained in one of A’s – expanding if



needed, while conforming to the maximum size for A – then
the B window is removed, and object B is added to the A
window’s list of candidate objects to look for in the next step.
This procedure is repeated for each pair of objects. Figure 7
shows an example of how the zoom windows of two object
might be merged into one.

Tests have showed that too flexible a window size tends to
be harmful to detection. Accordingly, in this work the middle
step zoom levels are constrained to a relatively narrow range.

(a) Zoom windows of mouse pad
and book

(b) Merged zoom window

Fig. 7. Zoom window sharing example

E. Object recognition

The final object recognition is done once the object is
deemed to occupy as much of the image as will fit. It
consists of extracting SIFT points from the current image
and matching them with the SIFT points obtained from the
training image. SIFT points are scale-, position- and rotation
invariant up to a certain level, meaning that many of the
points will match even if the object is seen from a different
angle or under different lighting conditions from the training
image. However, it is usually the case that the number of
SIFT matches during the search is much lower than the
number extracted from the training image, due to changes
in position and background. Because of this, we consider
an object to have been found when there are matches for at
least 5% of its SIFT points. This value has previously been
demonstrated to result in few false positives [2].

Once an object is recognized, its position in space is
calculated from the estimated position of the object inside
the image and the distance calculated by the system; see
(III-C).

Because of the large variation present in the images
acquired by the robot in a realistic setting, it is very probable
that false detections, where no object is present, may reach
the last step of the visual search. In order to reduce the
amount of unneccessary extraction of SIFT points – which is
a relatively expensive procedure – the same RFCH algorithm
that is used for detection is used one last time on the
entire fully zoomed image before running the recognition
algorithm. The SIFT-based recognition is performed only if
this match is above the thresholdTnear.

F. Object search algorithm

Figure 8 illustrates the whole of the object search proce-
dure in detail. Starting with an image at1× magnification,

each object is processed independently, whereupon the re-
sulting zoom windows are merged and each gives rise to a
new, zoomed image and the procedure repeats for each of
them.

The algorithm has three steps: initial, middle and final. It
progresses through them according to the following:

• Initial: No magnification used. After distance estimation
and zooming, proceeds to the middle step.

• Middle: Magnification given by output from zoom win-
dow sharing (Section III-D.2). If new distance estimate
indicates current magnification is too small (not within
1.8× of new desired middle magnification), repeats this
step. If on the other hand it is within1.2× of the
desired final magnification, skips straight to recognition.
Otherwise, moves to final step without further zooming.

• Final: Magnification in accordance with Eq. 1. Performs
recognition.

Typically, each step will run once only.

Fig. 8. Object search algorithm

In the first two steps, an RFCH vote cell grid is created
and used to extract a set of hypotheses (III-B). Then, distance
is estimated (III-C) using the strongest hypothesis and, ifthe
distance found is small enough (here, requiring less than3×

the current magnification), SIFT matching is performed for
a more accurate distance measure. If, in turn, this indicates
that the object is sufficiently magnified the algorithm skips
straight to recognition; otherwise, the most reliable distance
is used to produce a zoom window for the next step.
Hypothesis reduction (III-D.1) prunes the result for each
object; then, hypothesis sets for the different objects are
merged.

The final step in the object search consists simply of
recognition, wherein SIFT matching is preceded by a “sanity
check” RFCH match on the entire image, as mentioned
in (III-E). If the object is found, its location in space
is computed from its position in the image, the distance
estimate, the camera’s pan/tilt angles and the robot’s pose.



The output of the algorithm is a list of objects that were
found in the current view and their calculated locations and
distances.

IV. EXPERIMENTS

Several experiments were performed to test the algorithm
proposed in this work. These experiments used a set of test
objects comprising: a book, a rice carton, a printed mouse
pad, a printed cup and a large robot. The sizes of the front
sides of the book, the carton and the mouse pad are quite
similar, about 18x20 centimetres; on the other hand, the cup
is small (14x10 cm), whereas the robot is the biggest object
(63x55 cm).

A. SIFT-based distance estimations

Distance estimation based on RFCH was only qualitatively
tested as it is not used for localization, and its usefulnessin
the object search makes up part of the results presented in
Section IV-B.

To test the quality of final SIFT-based distance estimation,
several rounds of experiments were conducted using the
book, the rice carton and the mouse pad respectively, each
at two different distances. These tests consisted of extracting
and matching SIFT points for images taken at three different
magnification levels corresponding to those used by the
visual search algorithm, resulting in different numbers of
SIFT matches. Each unique test was done 7 times.

A summary of the results can be seen in Table I. This table
shows the dependency of both systematic error and precision
on the number of SIFT matches.

SIFT points
Systematic
error (cm)

Standard
deviation (cm)

Book
> 10 0.31 10.9
≤ 10 8.8 16.8

Mouse pad
> 10 5.0 10.1
≤ 10 9.3 12.4

Rice
> 10 8.8 11.3
≤ 10 14.9 12.9

TABLE I

ERROR AND STANDARD DEVIATION BY OBJECT

B. View planning and object search

The view planning algorithm was tested in three rooms,
looking for several sets of our objects. Maps (including
navigation graphs) were created using SLAM prior to the
experiments.

Some results of these experiments can be seen in the
table II, where objectsB, C, D, M andR stand for the book,
the cup, the robot, the mouse pad and the rice, respectively,
and roomsL, M andW, for living room, meeting room and
workshop. Each experiment comprises a set of objects, the
room to search and the number of nodes the map of the room
is divided into. The amount of nodes used and the searches
performed are the result of each testcase. We can see how
the number of objects involved in the exploration alters the
amount of searches needed. Note that the first case requires

many more searches; this is because both the cup and the
robot are considered and their sizes do not allow them to
be looked for in the same views. This effect is also evident
when only one of them is included.

Testcase Results
Objects Room Nodes Nodes used Searches
BCDMR L 8 7 18
BDMR L 9 5 8

BCMR
L 8 4 8
M 9 3 8
W 4 2 6

BM
M 9 2 5
W 4 2 3

TABLE II

V IEW PLANNING RESULTS

The previous experiments were performed using distance
estimations based on visual data, and not on laser readings.
That is because laser-based estimates are not as reliable
as vision-based ones. Consider for example the following
experiment, similar to the second testcase of Table II: the
book, the rice carton, the mouse pad and the robot were
placed at different positions inside the living room, as seen
in Figure 9. Searching the room using laser-based distance
estimations only, produces the results shown in Figure 10.
Only two objects were found (one was found twice) and
were located in erroneous positions. On the other hand, with
estimations based on visual data, all the objects are found
and are more accurately localized (Figure 11).

V. CONCLUSIONS AND FUTURE WORK

We have presented an approach to the problem of object
search in a realistic environment, incorporating planningfor
efficient view selection and search within images using a
combination of receptive field cooccurrence histograms and
SIFT features. We have verified the practicability of this
approach through experiments on an actual robotic system.
The view planning strategy can be used even on a feature
map with a clutter of overlapping features, or alternatively
directly on an occupancy grid. It is easy to understand
and uncomplicated to implement, because the reduction to
discrete points relieves us from complex geometrical calcu-
lations. This also saves computation time, allowing it to cope
well with big rooms and lots of objects,

Nevertheless, many issues remain to be solved. Using
a 2D map obtained from laser scans for view planning
is problematic; without very strong assumptions of spatial
layout, it does not really convey a reliable picture of occlu-
sions, nor of the probability of the occurrence of objects.
It is also very sensitive to flawed room subdivision: squares
belonging to neighboring rooms that may well be completely
hidden will still affect the plan, leading to pointless image
searches. Some sort of 3D representation, whether obtained
from vision or range scans, could help in this regard.

Another problem is that the vision algorithm does not in
its current form take into account the fact that objects may
be difficult or impossible to detect or identify when seen



Fig. 9. Distribution of objects. Stars represent nodes; circles, the actual
position of objects.

Fig. 10. Using laser data for distance. Squares represent estimated object
positions.

Fig. 11. Using image-based distance estimates.

from some angles. A simple approach involving looking at
each grid square from two different vantage points was tried,
but proved very inefficient and would not be guaranteed to
succeed in any case. More information about each object
would be required to solve this problem.

The system currently makes use of a number of thresholds
and other parameters that were set through experimentation
and that depend upon the objects and environment. It would
be highly desirable to make the algorithm adaptive enough
to eliminate the need for these parameters.

It would also be very interesting to incorporate knowledge
of different objects’ likely locations, especially in a semantic
framework or using episodic memory.

Other promising avenues of research include: simultaneous
integrated object detection and mapping, online object learn-
ing, hierarchical approaches to detection, as well as general
optimization of the current approach.
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Linköping, Sweden, 1995. Dissertation No 379, ISBN 91-7871-530-X.

[14] Y. Ye and J. K. Tsotsos. Where to look next in 3D object search. In
Symposium on Computer Vision, pages 539–544, 1995.

[15] Yiming Ye and John K. Tsotsos. Sensor planning in 3D object search.
Computer Vision and Image Understanding, 73(2):145–168, 1999.


