Hybrid Laser and Vision Based

Dorian Galvez Lopez, Kristoffer Sp,

Object Search and Localization

Chandana Paul and Patric Jensfelt

Centre for Autonomous Systems, Royal Institute of Technplog
SE-100 44 Stockholm, Sweden

dori an3d@nui | . com {krsj, chandana, patri c}@ada. kt h. se

Abstract— We describe a method for an autonomous robot
to efficiently locate one or more distinct objects in a realistic
environment using monocular vision. We demonstrate how to
efficiently subdivide acquired images into interest regions for
the robot to zoom in on, using receptive field cooccurrence his-
tograms. Objects are recognized through SIFT feature matchig
and the positions of the objects are estimated. Assuming a 2D
map of the robot’s surroundings and a set of navigation nodes
between which it is free to move, we show how to compute an
efficient sensing plan that allows the robot’'s camera to cover the
environment, while obeying restrictions on the different objects’
maximum and minimum viewing distances. The approach has
been implemented on a real robotic system and results are
presented showing its practicability and the quality of the
position estimates obtained.

. INTRODUCTION

conditions is unfeasible. The general problem of finding a
minimal set of viewpoints from which to observe all parts of
the environment is called theat gallery problem [7] proves
that this problem is NP-hard, and thus approximate solgtion
are required. Another related view planning problem is the
watchman problemwhich entails computing a minimal con-
tinuous path through space from which all of the environment
can be seen; here, the length of the path is what is crucial
- in contrast to the art gallery problem, where the distance
between viewpoints is immaterial. The watchman problem,
too, is NP-hard when there are “holes” in the free space (as
shown in [10]).

Early work on view planning was of a mostly theoretical
nature, but as the field has matured more implementation-
oriented results are emerging. [14] examines the problem

As the field of mobile robotics expands and more ambief optimally covering the “view sphere”, i.e. all angles

tious goals are set for autonomous robots, one subfield théat can be seen from a fixed point in space, given a
is opening up is interaction with objects. A great portion oprobability distribution for the presence of the object. In
the potential applications envisioned for autonomous &ger|15], the approach is augmented with multiple viewpoints,
involve some form of interaction with specific objects ineach subsequent point selected by a greedy policy. Using
the environment, if only in the form of observation anda polygonal map of the robot’s surrounding, [4] applies a
registration. Yet so far most robotic applications tend & bsampling scheme to find an approximate solution to the art
one of two things: Either entirely blind to everything in the gallery problem while additionally taking into account the
surroundings except what is required merely for navigatingractical limitations of sensors by postulating maximurd an
through them, or else designed to function in a fixed settingninimum distances and maximum viewing angle. However,
where they have a well-known and unchanging frame qfarameters for only a single object are considered. In [12],
reference that they can relate objects to. Nevertheless, we costs of moving and processing views are combined in
are beginning to overcome these limitations. For example, single planning task, approximated as an integer linear
the robot league of the Semantic Robot Vision Challengproblem (ILP). A set of candidate view points is assumed
(SRVC) [1] is a promising attempt to advance understanding be provided. Many other approaches exist to solving both
in this area. The purpose of this paper is to take a stehe art gallery and watchman problems; [11] provides an
towards merging efficient object detection and recognitioextensive survey.
with existing methods for robot navigation in a realistied- The approach to view planning proposed in this paper aims
roaming setting. to move beyond considering only a single object, instead per
The contributions of this paper lie within the subject offorming an efficient simultaneous search for several object
object search. As such, it touches simultaneously upon twad different appearance and potentially different sizeegi
areas hitherto not much integrated: view planning and Visua 2D map of the environment that has been acquired by the
search; in other words, optimizing our sensing strateggreef robot itself (as in for example [6]). This is accomplished
and after we begin to acquire visual data, respectively. through a greedy algorithm that selects the best viewing
View planning is a comparatively old but still thriving cones, constrained by the maximum and minimum viewing
research area, and is crucial to efficient object detection tlistances associated with each object.
realistic-scale environments, as exhaustive search \guaér Visual search is also highly relevant to efficient object

detection and localization. Often, the image that a camera
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captures is not immediately sufficient to perform accurate
object detection, especially with low-resolution camefas
successful detection and recognition, either moving close



or zooming in on the object is necessary. Several differemd have been generated in advance by the robot from laser
methods have been proposed for determining the area ddita, using standard SLAM methods; in our case the ones
interest of an image, so that the robot knows where to zoopreviously described in [3]. It is also given a set of nodes in
in. [13] demonstrates a foveated dynamic attention systeBD-space with edges between them, constituting\dgation
which uses edges and circular features to direct attentiograph which represents known robot-navigable space [6].
though in a non-specific fashion; this is also the case imhhis is generated during mapping; as the robot moves into
[5], where a measure of feature saliency inspired by humamvisited areas, it drops nodes at regular intervals, arehwh
cognition is similarly used in order to provide a sequence af moves between existing nodes it connects them.
attentional saccades to potential interest points in thegen The object search task begins with a planning step, in
The top-placing entrants in [1] similarly use non-specifiorder to determine a good way to explore the map. In this
saliency to direct attention for object detection. paper, only the navigation nodes are considered, as they
An attention control method that uses contextual inforare the only parts of the map guaranteed to be reachable.
mation is described in [9], although its specificity is to theThis constraint obviously simplifies the solution a greatlde
area surrounding objects rather than objects themsel2gs. fomputationally, compared to view planning approachet tha
describes an object-specific attentional mechanism iatjiz consider all the space.
receptive field cooccurrence histograms or RFCH, which The map is assumed to be of a single room, i.e. a basically
provide different hypotheses for the occurrence of eaatonvex space, though possibly with a lot of obstacles inside
object in the image. Starting with a more complex map, the map of a single
We build on this principle, adding a distance estimateoom can be obtained given a subset of the navigation graph
that facilitates zoom computation along with a more effieonstitutingdoor nodeg6]. Cutting out all door nodes, each
cient view planning strategy. Using a combination of viewemaining subgraph represents a room, and all features of
planning and visual search, we show how existing computéine map are assigned to the room which has the nearest nav-
vision methods can be combined to produce an autonomoiggtion node. Planning efficient movement between rooms is
robotic system that is able to efficiently detect and localbeyond the scope of this paper and currently a closest-next-
ize different objects in a realistic indoor setting. We haveoom-first strategy is used.
implemented the proposed system on a mobile robot andThe navigation plan must provide the robot with combi-
demonstrated its practicability in experiments. nations of nodes it needs to visit, views from those nodes
that it needs to process and the objects it has to look for in
each view, so that all parts of the room are searched for all
The robotic platform used in this work is a Performancebjects, while keeping the number of visited nodes and Visua
PeopleBot. It is equipped with a SICK laser rangefindesearches as low as possible. Object constraints must also be
with a 180 degree field, positioned near the floor (at abodlfilled as, for example, a very small object can only be
30 cm), and with a Canon VC-C4R video camera, ablseen from a short distance away and vice versa. In addition,
to acquire low resolution footage3Z0 x 240 pixels) with  uniqueness must be taken into account: objects should be
pan/tilt functionality and up tol3x magnification. The discarded once they are found, which means the exploration
camera is mounted about 1m above the floor. The robot hpkan will need to be updated.
a differential drive and a wireless LAN connection.

A. Hardware

A. Grid-based view planning

B. Training data 1) Occupancy grid: The metric map that we get from

The system needs to be provided with training data foBLAM is not geometrically perfect. Features extracted from
each object, both for the view planning and the visudkser data do not form a clean, continuous outline; typicall
search. This includes: An up-close image of the object, preaany different more or less overlapping line features érpla
segmented; its true widti/,..; and heightH,..,; in metres the same sensor data; the resulting clutter would increase
(the objects are considered 2-dimensional for the purpafsesplanning complexity. For this reason, a simpler occupancy
recognition and distance estimation); and manually setectgrid-based method is used. The occupancy grid can be
threshold levelsTy,,, Trmiq and Thcqr Used in the image acquired either directly from laser data or by rasterizing
search. Also, the view planning algorithm needs to knowan existing feature map (by simply marking a square as
whether an object is unique or might occur several times. occupied if it contains any feature).

The training image is processed by RFCH and SIFT Note that the occupied squares are not assumed by the
algorithms to provide a set of histograms and key pointalgorithm to obstruct vision. As the data comes from the
respectively, which are used as basis for both detectiolaser, which is close to the ground, occupancy need not
distance estimation and recognition. correspond to occlusion for the more highly placed camera.

Grid square size is a tuning parameter; a small square size
Il. NAVIGATION will result in a lot of points to cover, which means higher

The robot is provided with a metric 2D-map, consisting oficcuracy but also higher computational cost. Small squares
line features representing walls and other obstacles, #s weill be very closely packed and will get grouped into the
as with its own location in this map. The map is assumegame views. On the other hand, a too-large square size will



lead to insufficient detail in the plan and may miss partthat contain more points than those in this set.
of the map to explore. The choice depends on the overall

granularity of objects; in this work, a fixed square size of

0.5m is used.

2) Views: Using this grid viewscan be calculated. A view
is a triplet consisting of the map node to which the robot
has to travel, the direction it should point its camera and
the list of objects to be searched for. In order to simplify
calculations, grid squares are considered visible in a view
their center point is inside the field of view.

3) Object constraints:As several types of objects are
being looked for, their specifications must be taken into
account; specifically, their sizes. Not all objects can lense
at the same distance. For this reason, for each object a Fig. 2. Discretization of candidate views
minimum and a maximum distance are defined; the robot
should attempt to find it only at distances in this interval. ~ Out of these candidates, the view covering the most object-

There are separate distance constraints for object recdifiuare pairs is picked iteratively, removing any pairs cede
nition and object detection. For recognition, the minimunfrom the list, until no pair is left uncovered that could yet b
distance is simply defined as the range at which the objeggvered by some view. Any remaining pairs are considered
would fill an entire image at no zoom; the maximum, agmpossible and subsequently ignored.
the range at which the object would occupy an entire image The plan consists of visiting the closest navigation graph
if maximum zoom were used. The minimum distance fonode possessing a view that was picked, performing object
purposes of detection, on the other hand, is gi\/en by trearch for all views from that node, then moving on to the
parameters of the detection algorithm; see (Ill-B). next closest node and so on.

Figure 1 shows an examp|e of two potentia| views of a If any object known to be Unique is found during the visual
set of squares (in this case, a wall). Large circles reptesegfarch, it can be eliminated from the rest of the plan; if any
nodes; dots denote grid square centers; the numbers n¥i@ws in the plan are rendered empty by this, they can be
to them indicate the nodes they are associated with; and tfgmoved as well. Non-unique objects will be searched for in
shaded area represents the views (along with objects planrfvery occupied square.
for in each view). Note that neither view allows for seeing As is evident from the above, the algorithm proposed is

all objects due to their different sizes; thus, a plan mudgireedy in terms of nodes and map squares. Although it does
incorporate two different views in this direction. not ensure an optimal solution, it allows for Obtaining a low

number of views in polynomial time.
5) Tilt angle selection:Since we are using a 2D map of

5 o gt ——— the gnvwonment, there is no d|rect information that could
mgmﬁ \15\15‘%\@81518 help in deciding how to use the tilt angle of the camera. Yet,
. _alb e the objects being s_ought might i)e at any hgght, _and SO some

e PG el’ TR thought must be given to covering the vertical dimension as
T Wb well as th_e horizontal. _ _ o
W@WE - /m i Any_ grid squares which are closer to a given view's
Sz i |8 associated node than a set threshold (here, 2 meters) tenera
\m’w new views that cover the vertical extent of the objects’
possible locations. Using the average distance for thase gr
borlandbook,mousepad rice squares, together with an upper and a lower boundary for
objects’ positions, one or more tilt angles are selecteth(wi
as little overlap as possible) and the resulting views adedd
Fig. 1. Example of effect of distance constraints on view piag to the plan.

4) Strategy: The objective of the algorithm is to ensure . VISION

that any occurrence of the sought objects will be seen in sorfe System overview
planned view regardless of which square it is in — in other The vision system enables the robot to look for objects
words, each object-square combination must be covered hging images taken by its video camera. For object detection
some view. the system uses the concept of receptive field cooccurrence
The space of possible views being continuous, a set afstograms (RFCH) as described in [2]. As potential objects
candidates is produced by the following discretizatiorn: foare detected, the system calculates suitable interesin®gi
each node and for each point to cover, include the view th&ir the camera to magnify. For this, the system needs an
has that point at its leftmost edge (Figure 2). No views existstimate of the distance in order to decide whether to pbcee



with recognition directly or zoom in further. In [2] this used in this work,15 x 15 pixels, is a compromise between
estimate was taken from the laser scanner; we instead obt#fiese considerations.
an estimate through the RFCH detection procedure itself.
If the distance allows for reliable recognition immedigtel
the system attempts SIFT feature matching in order to In [2], the initial distance estimate used to determine
recognize the object [8]. Otherwise, the interest regians f zoom levels came directly from the robot’s laser sensor. The
the different objects are merged as far as possible and tReoblem with this design is that the distance given by the
camera zooms in on each region in turn. This procedure @ser is often misleading: the laser sensor is placed at d fixe
repeated recursively, until each object either is foundtor i height above the floor (about 30 centimetres) and if an object
presence ruled out. is not at that height, e.g. if it is on a table, the estimatd wil
be off. It typically works only for objects that are next to
walls (such as on a bookshelf). If the distance estimate is
recomion | Much too small or large, the final zoom may either not be
sufficient to make the object occupy enough of the image for
matching, or otherwise may be too great causing only a small
part of the object to be seen. Furthermore, even if the object
Fig. 3. Overview of image search is recognized, its estimated position might be inaccurkte.
address these issues, in this work we use two alternative way

Figure 3 shows an overview of the vision system. Th@f 9etting a distance estima.te.. _
detailed operation of this system is presented in the fatigw 1) USing the vote matrix.Using the RFCH vote matrix

C. Distance estimation

Acquire Object Distance
Image Detection Estimation

Zoom in

sections. for distance estimation consists of measuring how manyg cell
are part of the object and treating the area they occupy in the
B. Object detection image as the size of the object in the image. Here, cells are

The detection process works on a per-object basis arggnadered to belong to a hypothesis if their degree of match

. . iS. above the threshold and there is an 8-connected path of
makes use of an RFCH algorithm. It consists of several steps: . : . : .
. . . ._cells with monotonically increasing value to the hypothkesi
First, an image is taken by the camera. Second, it | ,
- : S : and no shorter such path to any other hypothesis), as shown
divided into cells. Receptive field cooccurrence histogram

: In Figure 5. Only the strongest hypothesis and its assatiate
are computed (using clusters learned from each respectlge g Y 9 yp

; . - . : -connected cells are taken into account, because it ity like
object during training), and matched against the trainin y

. o S S f be the most reliable.
image’s histogram, resulting in a similarity value for each

cell and object. These values are called the objeabt®
matrix.

Third, hypotheses are generated; see Figure 4. A cell is a
hypothesis for an object if its value is greater than those of
its 8-connected neighbors, as well as greater than an ebject
dependent threshold;,,,;; or T, (which one depends on
whether the camera is currently zoomed in or not).
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Fig. 5. A hypothesis, marked X, and its Eight-connected aatext cells

Given the object’s real size, stored in the training datapas
the distance can then be computed according to:

Wim
- Wrealm
j— vote
D= t—a
(a) Example image (b) Hypotheses of the book an (5)
Fig. 4. Hypotheses extracted for the book in the example imagétest where D §tands fF)r the eStimf"ted distance (metrég_);n!
squares represent hypotheses. for the width in pixels of the imagelV, ., for the width

in pixels of the bounding box of the cells belonging to a
The size of the vote cells in the above algorithm is a tuningypothesis andy, the horizontal viewing angle.

parameter. Large cells mean faster histogram matching: how This estimate is quick and rough, but sufficiently accurate
ever, they decrease the detection rate when they are largerallow the object search algorithm to assign a valid zoom.
than the objects in the initial image. Also, maximum diseanc 2) Using SIFT: SIFT extraction produces a scale parame-
allowed for object detection during the planning step is sder for each key point extracted. For each matched pair of key
to the distance at which an object would occupy a single cdlloints in the training and recognition image, the quotient o
at no zoom, which decreases as cell size grows. The valtlee keys' scale parameter gives an estimate of their relativ



apparent size and hence their distance. This is done angordhypothesis is used for all zoom windows; thus they are all

to: the same size.
Wooar Wim  Sir A simple greedy algorithm assigns hypotheses to zoom
D= 2- Wi Srec windows until all hypotheses are covered. An example of
tan (3) zoom window creation is shown in Figure 6(a).

However, the distance parameter the vision system calcu-
where S;,. and S,... stand for the scale of the SIFT point aslates is not always very accurate. An error in this parameter
extracted from the training image and the recognition imageropagates into the above calculation of the magnification
respectively; and¥,,., for the pixel width of the object in and into the size of the zoom windows. This may lead
the training image. to generating more zoom windows than is warranted and,

As mis-matched key point pairs can produce wildly incorconsequently, lengthening the search process and congumin
rect scale parameters, the final estimate of the objectrdista valuable time. Thus, in a second step it is desirable to remov
is taken as the median of the distance estimates from &llose windows which do not contribute information to the
matches. Experiments indicate that an adequate estimates@arch, as they contain few hypotheses and are located close
obtained given 10 or more SIFT matches. With 4 matchd® “richer” zoom windows.
or more a passable rough estimate is typically obtained. If Therefore, zoom windows which overlap more than 20%
there are fewer than 4 matches, they are likely to be flawetith another containing at least 3 times its number of
and the resulting estimate is not used. Experimental mesultypotheses are removed. These conditions are quite conser-
for this technique can be found in (IV-A). vative in order to ensure that no potentially important zoom
Although the above method for calculating the distanc&indows are removed. Figure 6(b), 6(c) show an example of
is good, it has some drawbacks. The main problem is thAypothesis reduction.
extracting SIFT points from an image is computationally
expensive, and using it to guide the zoom process may takg
too long to be feasible. Another problem is the number of
SIFT points required to obtain a robust estimation; when
the object is small in the image, it is unlikely that enough
matches will be available.

(a) Hypothesis assign) Zoom windows andc) Final zoom window
ment overlap

D. Calculation of zoom
) o ] ) ~ Fig. 6. Hypothesis reduction sequence. Rectangles shovthetheses
Given a training image of an object, its known real Sizeassigned to zoom windows and the windows themselves, régggcand

the distance to the object and the camera field of view, w&e shaded zone the zoom window overlap.
want to calculate the magnification needed to make it fill , ) .
2) Zoom window sharing:When searching for several

the image as nearly as possible. The size of the object i
g y P . %Jects the set of zoom windows obtained for each object

approximated by the size of its bounding box.

In order to make the object fill the image, the horizontaiS computed separately. After this is done, the combined set
angle of view @), as well as the vertical @), can be of windows needs to be merged together. In order to do this,
calculated as: we look for m;tanges of.a zoom window encompassing that

of another object, in which case we can remove the latter.
azgarcmn(%) ﬁzgarctan(%) 1) Not all zoom windows that overlap in this way can
be merged, as straying too far from each object’s target

Since the object will typically not have the same aspeahagnification may cause object detection to fail. The object
ratio as the image, only one of the anglesand 3 can be search process as a whole goes through up to 3 steps: the
used to select the actual magnification to use; therefore, fifst step without zooming, a second step with a middle-
the two levels of magnification suggested by the height anldvel zoom and a third step with large zoom; see (IlI-F). It
the width respectively, the Iower level is selected, asmgivg is not as important that the middle-level zoom be exact,esinc
the following rule: If W;'" < fm ([, and Hy, being the it is only used for hypothesis finding with RFCH. Thus, a
heights analogous to the WldtIWZm and Wy,), « is used; maximum and a minimum value are defined for the middle-
otherwise, (. level detection step’s zoom level, allowing some flexilgilit

1) Hypothesis reductionEven with the threshold, there selecting the windows to be used. The most important thing
are typically too many hypotheses to consider one by one. Ia to get the minimum zoom right: the lower it is, the more
order to avoid excessive zooming and processing, hypathesshjects we can look for at one time, but the greater the risk
are reduced in two steps. First, they are grouped togethigwat objects are missed due to appearing too small.
into zoom windowswhich are regions of the image to be The algorithm works as follows: first all zoom windows
magnified and processed in the next iteration. The zoom wiare set to their minimum size. Then, each zoom window
dows’ dimensions are those of the current window, dividedssociated with an object A is compared with those of an
by the limiting view angle (as explained above) times th®bject B. If the hypotheses contained in one of B's windows
current view angle. The distance estimate from the strdngesan be made to be contained in one of As — expanding if



needed, while conforming to the maximum size for A — theeach object is processed independently, whereupon the re-
the B window is removed, and object B is added to the Aulting zoom windows are merged and each gives rise to a
window’s list of candidate objects to look for in the nextste new, zoomed image and the procedure repeats for each of
This procedure is repeated for each pair of objects. Figuretiiem.
shows an example of how the zoom windows of two object The algorithm has three steps: initial, middle and final. It
might be merged into one. progresses through them according to the following:

Tests have showed that too flexible a window size tends to
be harmful to detection. Accordingly, in this work the middl
step zoom levels are constrained to a relatively narrowaang

« Initial: No magnification used. After distance estimation
and zooming, proceeds to the middle step.

« Middle: Magnification given by output from zoom win-
dow sharing (Section 111-D.2). If new distance estimate
indicates current magnification is too small (not within
1.8x of new desired middle magnification), repeats this
step. If on the other hand it is within.2x of the
desired final magnification, skips straight to recognition.
Otherwise, moves to final step without further zooming.

« Final: Magnification in accordance with Eqg. 1. Performs
recognition.

(a) Zoom windows of mouse pad (b) Merged zoom window

and book Typically, each step will run once only.

Fig. 7. Zoom window sharing example

Getimage :RFCI—: ) For each object
E. Object recognition l
. Distance
The final object recognition is done once the object is Ny eﬁﬁfm';e e
deemed to occupy as much of the image as will fit. It 5 [ :
consists of extracting SIFT points from the current image . p— Disance
and matching them with the SIFT points obtained from the © | [Lresegniion with SIFT_| Yes :
training image. SIFT points are scale-, position- and rotat No
invariant up to a certain level, meaning that many of the verge || | [obiectiosation "
points will match even if the object is seen from a different windows | estimation reduction

angle or under different lighting conditions from the tiai
image. However, it is usually the case that the number of
SIFT matches during the search is much lower than the , :
number extracted from the training image, due to changes PP :
in position and background. Because of this, we consider
an object to have been found when there are matches for at
least 5% of its SIFT points. This value has previously been Fig. 8. Object search algorithm
demonstrated to result in few false positives [2].

Once an object is recognized, its position in space is |n the first two steps, an RFCH vote cell grid is created
calculated from the estimated position of the object insidgnd used to extract a set of hypotheses (I11-B). Then, digtan
the image and the distance calculated by the system; sgesstimated (I1I-C) using the strongest hypothesis anthef
(-C). distance found is small enough (here, requiring less than

Because of the large variation present in the imagage current magnification), SIFT matching is performed for
acquired by the robot in a realistic setting, it is very ptolea a more accurate distance measure. If, in turn, this indicate
that false detections, where no object is present, may reagiat the object is sufficiently magnified the algorithm skips
the last step of the visual search. In order to reduce th@raight to recognition; otherwise, the most reliable afise
amount of unneccessary extraction of SIFT pOintS—WhiCh i% used to produce a zoom window for the next Step_
a relatively expensive procedure — the same RFCH algorithpypothesis reduction (l1l-D.1) prunes the result for each
that is used for detection is used one last time on thgpject; then, hypothesis sets for the different objects are
entire fully zoomed image before running the recognitionnerged.
algorithm. The SIFT-based recognition is performed only if The final step in the object search consists simply of
this match is above the threshdld... recognition, wherein SIFT matching is preceded by a “sanity
check” RFCH match on the entire image, as mentioned
in (II-E). If the object is found, its location in space

Figure 8 illustrates the whole of the object search procds computed from its position in the image, the distance
dure in detail. Starting with an image &k magnification, estimate, the camera’s pan/tilt angles and the robot’s.pose

F. Object search algorithm



The output of the algorithm is a list of objects that weremany more searches; this is because both the cup and the
found in the current view and their calculated locations antbbot are considered and their sizes do not allow them to
distances. be looked for in the same views. This effect is also evident

when only one of them is included.
IV. EXPERIMENTS y

Several experiments were performed to test the algorithm _ Testcase Results
proposed in this work. These experiments used a set of test I%:J)el\;ts R°L°m Nosdes N°de75 used Seifg‘:hes
objects cpmprising: a book, a rice carton, a printed mouse SDMR T 5 5 5
pad, a printed cup and a large robot. The sizes of the front L 8 4 8
sides of the book, the carton and the mouse pad are quite BCMR M 9 3 8
similar, about 18x20 centimetres; on the other hand, the cup \,cll g 2 g
is small (14x10 cm), whereas the robot is the biggest object BM W 7 > 3
(63x55 cm). TABLE Il
A. SIFT-based distance estimations VIEW PLANNING RESULTS

Distance estimation based on RFCH was only qualitatively

tested as it is not used for localization, and its usefuliess  The previous experiments were performed using distance
the object search makes up part of the results presenteddBiimations based on visual data, and not on laser readings.

Section IV-B. _ _ ~_ That is because laser-based estimates are not as reliable
To test the quality of final SIFT-based distance estimation,s ision-based ones. Consider for example the following

several rounds of experiments were conducted using Wgneriment, similar to the second testcase of Table II: the
book, the rice carton and the mouse pad respectively, €agfsk the rice carton, the mouse pad and the robot were
at two different distances. These tests consisted of &MlaC paceq at different positions inside the living room, asnsee
and matching SIFT points for images taken at three differeij rigyre 9. Searching the room using laser-based distance
magnification levels corresponding to those used by thesimations only, produces the results shown in Figure 10.
visual search algorithm, resulting in different numbers Obnly two objects were found (one was found twice) and

SIFT matches. Each unique test was done 7 times. were located in erroneous positions. On the other hand, with

A summary of the results can be seen in Table I. This tablesiimations based on visual data, all the objects are found
shows the dependency of both systematic error and precisigRy are more accurately localized (Figure 11).
on the number of SIFT matches.

V. CONCLUSIONS AND FUTURE WORK

SIFT points ?r/rsotf r(gfél)c deﬁﬁ{:ﬁ?{fﬂm) We have presented an approach to the problem of object
>0 031 10.9 search in a realistic environment, incorporating planriog

Book <10 8.8 16.8 efficient view selection and search within images using a
Mouse pad z }8 g:g ig:i combination of receptive field cooccurrence histograms and

: >10 88 11.3 SIFT features. We have verified the practicability of this
Rice <10 14.9 12.9 approach through experiments on an actual robotic system.
TABLE | The view planning strategy can be used even on a feature

ERROR AND STANDARD DEVIATION BY OBJECT map with a clutter of overlapping features, or alternativel

directly on an occupancy grid. It is easy to understand
and uncomplicated to implement, because the reduction to
discrete points relieves us from complex geometrical calcu
B. View planning and object search lations. This also saves computation time, allowing it tpeo
The view planning algorithm was tested in three roomsyell with big rooms and lots of objects,
looking for several sets of our objects. Maps (including Nevertheless, many issues remain to be solved. Using
navigation graphs) were created using SLAM prior to th@ 2D map obtained from laser scans for view planning
experiments. is problematic; without very strong assumptions of spatial
Some results of these experiments can be seen in tlout, it does not really convey a reliable picture of oeclu
table I, where object8, C, D, M andR stand for the book, sions, nor of the probability of the occurrence of objects.
the cup, the robot, the mouse pad and the rice, respectivelyjs also very sensitive to flawed room subdivision: squares
and roomd., M andW, for living room, meeting room and belonging to neighboring rooms that may well be completely
workshop. Each experiment comprises a set of objects, th&dden will still affect the plan, leading to pointless ingag
room to search and the number of nodes the map of the romearches. Some sort of 3D representation, whether obtained
is divided into. The amount of nodes used and the searchigem vision or range scans, could help in this regard.
performed are the result of each testcase. We can see howAnother problem is that the vision algorithm does not in
the number of objects involved in the exploration alters thés current form take into account the fact that objects may
amount of searches needed. Note that the first case requibes difficult or impossible to detect or identify when seen



from some angles. A simple approach involving looking at

each grid square from two different vantage points was tried

but proved very inefficient and would not be guaranteed to
succeed in any case. More information about each object
would be required to solve this problem.

The system currently makes use of a number of thresholds
and other parameters that were set through experimentation
and that depend upon the objects and environment. It would
be highly desirable to make the algorithm adaptive enough
to eliminate the need for these parameters.

It would also be very interesting to incorporate knowledge
of different objects’ likely locations, especially in a santic
framework or using episodic memory.

Other promising avenues of research include: simultaneous
integrated object detection and mapping, online objechlea
ing, hierarchical approaches to detection, as well as géner

Fig. 9. Distribution of objects. Stars represent nodesslesr, the actual Optimization of the current approach.
position of objects.
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